Toward Efficient Homomorphic Encryption for Outsourced
Databases through Parallel Caching

OLAMIDE TIMOTHY TAWOSE, University of Nevada, Reno, USA
JUN DAL, California State University, Sacramento, USA

LEI YANG, University of Nevada, Reno, USA

DONGFANG ZHAO, University of Nevada, Reno, USA

Many applications deployed to public clouds are concerned about the confidentiality of their outsourced data,
such as financial services and electronic patient records. A plausible solution to this problem is homomorphic
encryption (HE), which supports certain algebraic operations directly over the ciphertexts. The downside
of HE schemes is their significant, if not prohibitive, performance overhead for data-intensive workloads
that are very common for outsourced databases, or database-as-a-serve in cloud computing. The objective of
this work is to mitigate the performance overhead incurred by the HE module in outsourced databases. To
that end, this paper proposes a radix-based parallel caching optimization for accelerating the performance of
homomorphic encryption (HE) of outsourced databases in cloud computing. The key insight of the proposed
optimization is caching selected radix-ciphertexts in parallel without violating existing security guarantees of
the primitive/base HE scheme. We design the radix HE algorithm and apply it to both batch- and incremental-
HE schemes; we demonstrate the security of those radix-based HE schemes by showing that the problem of
breaking them can be reduced to the problem of breaking their base HE schemes that are known IND-CPA (i.e.
Indistinguishability under Chosen-Plaintext Attack). We implement the radix-based schemes as middleware
of a 10-node Cassandra cluster on CloudLab; experiments on six workloads show that the proposed caching
can boost state-of-the-art HE schemes, such as Paillier and Symmetria, by up to five orders of magnitude.

CCS Concepts: » Security and privacy — Management and querying of encrypted data; - Computing
methodologies — Distributed algorithms.

Additional Key Words and Phrases: cloud computing, distributed computing, encrypted database, homomorphic
encryption

ACM Reference Format:

Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao. 2023. Toward Efficient Homomorphic
Encryption for Outsourced Databases through Parallel Caching. Proc. ACM Manag. Data 1, 1, Article 66
(May 2023), 23 pages. https://doi.org/10.1145/3588920

1 INTRODUCTION

1.1 Background and Motivation

While increasingly more applications are deployed on the public clouds, one of the biggest challenges
lies in confidentiality, especially for those applications that usually touch on sensitive data in the
fields such as public health [37], bioinformatics [65], and financial services [35]. Although various
encryption schemes (e.g., AES [47], RSA [54]) can be applied before the data are sent to the cloud,

Authors’ addresses: Olamide Timothy Tawose, University of Nevada, Reno, USA, otawose@nevada.unr.edu; Jun Dai,
California State University, Sacramento, USA, jun.dai@csus.edu; Lei Yang, University of Nevada, Reno, USA, leiy@unr.edu;
Dongfang Zhao, University of Nevada, Reno, USA, dzhao@unr.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART66 $15.00

https://doi.org/10.1145/3588920

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

https://doi.org/10.1145/3588920
https://doi.org/10.1145/3588920

66:2 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

it would defeat the purpose of cloud computing if the users must download and decrypt the
encrypted data for processing: the cloud in this case works merely as remote storage with no
computing functionalities. One plausible solution to the above confidentiality problem is adopting
specific encryption schemes such that the ciphertexts stored on the cloud can perform certain
computations, which are known as homomorphic encryption (HE). Although most HE schemes
support only primitive arithmetic operations such as addition and multiplication, it turns out that
many commonly-used operations (e.g., comparison) can be constructed on top of circuits of additions
and multiplications [28]. However, a scheme supporting both addition and multiplication over
ciphertexts, namely fully homomorphic encryption (FHE), usually incurs a much higher performance
overhead than (partial) HE, or PHE schemes by orders of magnitude. These PHE schemes can be
categorized into two types depending on how the key is distributed.

The first type of PHE schemes, e.g., Symmetria [57], is implemented as a symmetric operation
for the scenarios where a secret key can be securely shared among parties. In order to ensure
high security, Symmetria introduces a randomization component in the ciphertext that keeps
growing, which might cause significant performance overhead. Seabed [49] is another symmetric
PHE cryptosystem but only supports primitive additions (e.g., no subtraction or negation).

The second type of PHE scheme, e.g., Paillier [48], is implemented as an asymmetric operation
with a pair of public and private keys. An asymmetric scheme employs hard mathematical problems
in number theory and group theory to safely distribute the public keys, rendering it orders of
magnitude slower than a symmetric scheme. Although a hybrid scheme can be used with symmetric
key for encryption and asymmetric operation for key distribution, key distribution is needed per
session in database-as-a-service (DaaS), implying that asymmetric operations would be invoked
routinely.

Although PHE is much more efficient than FHE, PHE still cannot meet the performance re-
quirements for data-intensive workloads in DaaS. As we will show later in this paper (§??), the
state-of-the-art PHE scheme, Symmetria [57], can only encrypt data at a rate of 3 Mbps—much
lower than the commodity network bandwidth (cf. Fig. 11) that is in the order of tens of Mbps or
even Gbps. That being said, the performance bottleneck of data-intensive applications, such as
video analysis [21, 32], lies at the encryption subsystem.

Our long-term goal is to improve the performance of homomorphic encryption applied to large
volumes of outsourced data; this paper attains the above goal, as the first step, by proposing a
new caching approach to reduce the computational overhead in both symmetric- and asymmetric-
PHE schemes for outsourced databases or DaaS in cloud computing. It is our hope that data-
intensive applications would better exploit the high security and low overhead of PHE schemes by
incorporating the proposed technique.

1.2 Contributions

The key insights of our proposed caching technique include: (i) precomputing and caching some
homomorphic ciphertexts before encrypting the large volume of plaintexts; (ii) expanding a re-
quested plaintext into a summation of additive radix entries; (iii) constructing the ciphertexts with
randomized homomorphic addition, without touching on encryption primitives; and (iv) enabling
incremental encryption based on the extended entries of the cached ciphertexts.

Formally, we claim the following technical contributions.

o Firstly, we propose an algorithm to reconstruct the ciphertext using radixes in the context of

homomorphic encryption (HE). We name the new algorithm radix homomorphic encryption,
or RHE. We conduct a thorough analysis of parametrization for RHE. (§3)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:3

e Secondly, we design a full-fledged protocol called Radix-additive caching for homomorphic
encryption (Rache), which adopts RHE to securely encrypt a large volume of data. We
articulate the security goal, threat model, and security assumptions, under which the RHE
protocol is proven secure. (§4)

e Thirdly, we extend Rache into an incremental protocol that allows for efficient homomorphic
encryption of data streams. We also demonstrate the provable security of this incremental
protocol. (§5)

2 PRELIMINARIES AND RELATED WORK
2.1 Confidentiality of Outsourced Data

We review four important techniques to ensure the confidentiality of outsourced data: encrypted
storage, encrypted tuples, encrypted fields, and secure multi-party computation.

Encrypted Storage. The database instance from the cloud vendor is considered as storage of
encrypted data and the client is responsible for nontrivial queries. This solution is viable only if (i)
the relations touched on by the query are small enough that the network overhead of transmitting
those relations is acceptable, and (ii) the user has the capability (both computation and storage) to
execute the query locally. We stress that this solution might defeat the purpose of outsourcing the
database service to the cloud.

Encrypted Tuples. Every tuple of the original relation R is encrypted into a ciphertext that is
stored in column T of a new relation R°. For each attribute A; in R, there is a corresponding attribute
A{ in R®, whose value is the index of R.A;. The index is usually assigned by a random integer based
on some partitioning criteria and can be retrieved with the metadata stored on the client, i.e., the
user’s local node. As a result, the schema stored at the cloud provider is R°(T, A3, . . ., Af, ...). When
the user submits a query Q, the client splits Q into two subqueries Qs and Q.. Qs serves as a filter to
eliminate those unqualified tuples based on the indices in R® and transmits the qualified tuples (in
ciphertexts) to the client. Q. then ensures that those false-positive tuples are eliminated after the
encrypted tuples are decrypted using the secret key presumably stored on the client. This approach
involves both the client (i.e., the user) and the server (i.e., the cloud provider) when completing a
query, often referred to as information hiding approaches [30].

Encrypted Fields. The third approach aims to minimize the involvement of clients when
processing the query over the encrypted data stored at the cloud vendor. The idea is to encrypt
the relations at a finer granularity—each attribute of a relation is separately encrypted. The key
challenge of this approach lies in its expressiveness, e.g., how to apply arithmetic or string operations
over the encrypted fields. While fully homomorphic encryption (FHE) [28] can support a large
set of computing problems, the performance of current FHE implementations cannot meet the
requirements of practical database systems [50, 51]. An alternative solution is partially homomorphic
encryption (PHE) schemes [26, 48], which are orders of magnitude faster than FHE but only support
a single algebraic operation. Traditional PHE schemes are designed for public-key (asymmetric)
encryption, which is desirable for straightforward key distribution over insecure channels but
significantly more expensive than secret-key (symmetric) encryption. However, in the context of
DaasS, the user usually serves as both the sender and the receiver and there is no need to distribute
the key. To this end, symmetric (partially) homomorphic encryption (SHE), was proposed [49, 57].

Secure Multi-Party Computation (MPC). In addition to HE-based methods, another widely-
used technique for data privacy is secure multi-party computation (MPC), which originated from [64]
and has been mostly built upon oblivious transfer [29, 39], threshold homomorphic encryption [17,
19], and secret sharing [52, 59]. MPC has been applied in multiple machine learning frameworks,
such as DeepSecure [55], SecureML [45], and ABY [23].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:4 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

2.2 Homomorphic Encryption

The term homomorphic or homomorphism originates from group theory, which depicts such a
function that can be applied either before or after the operations conducted in the domain or the
image. Formally, we have the following mathematical definition.

DEeFINITION 1 (HOMOMORPHISM). Given two groups (F, ®) and (G, ®), a functionh : F — G is
called a homomorphism if h(f; ® f2) = h(f1) ® h(f2),Vfi, f2 € F.

There are many examples of homomorphism. The following is a simple one we have seen in
basic mathematics.

Example 1. We can define two groups F = (R,+) and G = (R, X) with the regular arithmetic
operations, where R and R* denotes real numbers and positive real numbers, respectively. Moreover,
we define a function h(x) = 2*, where x € R. Evidently, the following equation holds: h(a + b) =
2940 = 24 % 2% = h(a) x h(D). A

Homomorphic encryption (HE) is a specific type of encryption where certain operations between
operands can be performed directly on the ciphertexts in the sense that the result can be decrypted
into the same value as if the operations were applied to the plaintexts. If we connect HE to the
group-theoretical definition of homomorphism, the encryption function can be thought of the
homomorphism, the set of plaintexts as the domain of the homomorphism, and the set of ciphertexts
as the image of the homomorphism.

An HE scheme that supports the arithmetic addition over the ciphertexts is called additive. That
is to say, we can define an addition operation @ between two ciphertexts, say enc(x) and enc(y)
encrypted by function enc(-), such that

dec(enc(x) ® enc(y)) =x+y, (1)

where dec(-) denotes the decryption function corresponding to enc(-). It should be noted that Eq. (1)
does not necessarily imply a mathematical homomorphism as defined in Def. 1; that is, we generally
do not require enc(x) @ enc(y) = enc(x+y). This is more of a practical security consideration rather
than a mathematical one: randomness is always required for cryptographic schemes in practice (e.g.,
to defeat chosen-plaintext cryptanalysis), and therefore, repeated encryption of the same plaintext
should look different, i.e., random.

Many encryption schemes in the literature are homomorphic, such as Symmetria [57] and
Paillier [48]. Symmetria is a symmetric encryption scheme, meaning that a single secret key is
used to both encrypt and decrypt the messages. By contrast, Paillier is asymmetric, where a pair of
public and private keys are used for encryption and decryption, respectively. Due to the expensive
arithmetical operations performed by the asymmetric encryption, Paillier is orders of magnitude
slower than Symmetria. However, Paillier is particularly useful when there is no secure channel to
share the secret key among parties.

An HE scheme that supports multiplication is called multiplicative. Symmetria [57] is also
multiplicative using a distinct scheme than the one for addition. Other well-known multiplicative
HE schemes include RSA [54] and ElGamal [26]. A multiplicative HE scheme ensures the following
equality,

dec(enc(a) ® enc(b)) = ax b,

where ® denotes the multiplication defined over ciphertexts.

An HE scheme that supports both addition and multiplication is called a fully HE (FHE) scheme.
This requirement should not be confused with specific addition and multiplication parameters,
such as Symmetria [57] and NTRU [34]. That is, the addition and multiplication must be supported

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:5

homomorphically under exactly the same scheme:

dec(enc(a) ® enc(b)) =a+b
dec(enc(a) @ enc(b)) =axb

It turned out to be extremely hard to construct FHE schemes until Gentry [28] demonstrated
that such a scheme can be constructed using lattice theory. Indeed, multiple implementations
are available today, such as BGV [31], BFV [27], and CKKS [15]. Nonetheless, the performance
overhead of FHE implementations still cannot meet the requirement of many real-world applications,
especially those data-intensive applications. Two popular open-source libraries of FHE schemes
are IBM HEIib [33] and Microsoft SEAL [58]. Some more recent implementations are optimized for
machine learning and vector computation, such as TenSEAL [11].

A lot of research efforts have been put to optimize the performance of HE schemes. For instance,
hardware-based optimization [24, 53, 56] has been heavily exploited. A recent article argues that
the current performance bottleneck of HE lies in the memory wall [22]. The notion of incremental
cryptography was first formalized in 1990s [9, 10], mainly from a theoretical perspective. More
recent work on incremental encryption schemes can be found in [5, 40, 44]. Incremental encryption
recently draws a lot of research interests for efficient data encoding in the resource-constraint
contexts such as mobile computing [12, 38, 63].

2.3 Provable Security

When employing an encryption scheme in an application, it is highly desirable to demonstrate its
security in a provable manner. Formally, we need to clearly identify the following three important
pieces for provable security of a given encryption scheme: security goal, threat model, and as-
sumptions. The security goal spells out the desired effect when the application is under attack; the
threat model articulates what an adversary can do with the attack, such as what information of the
plaintext/ciphertext can be collected and the resource/time limitation of the attack; the assumption
lists the presumed specifics of the subsystems or components of the cryptographic scheme, which
is usually an important building block for the security proof, e.g., reduction. The security goal and
threat model are usually called security definition collectively.

One well-accepted security definition with a good balance between efficiency and security is
that the adversary is able to launch a chosen-plaintext attack (CPA), defined as follows.

DEFINITION 2 (CHOSEN-PLAINTEXT ATTACK). Given a security parameter n, i.e., the bitstring length
of the key, an adversary can obtain up to poly(n) of plaintext-ciphertext pairs (m,c), where m is
arbitrarily chosen by the adversary and poly(-) is a polynomial function on n. With such information,
the adversary tries to decrypt a ¢’ that is not included in the polynomial number of known ciphertexts.

The polynomial requirement is only for practical reasons, as we usually assume that the adversary
should only be able to run a polynomial algorithm without unlimited resources. Accordingly, we
want to design encryption schemes that are CPA secure: even if the adversary A can obtain those
extra pieces of information, A should not be able to decode the ciphertext better than a random
guess up to a very small probability. To quantify the degree of this small probability, negligible
function is defined as below.

DEFINITION 3. A function u(-) is called negligible if for all polynomials poly(n) the inequality
u(n) < m holds for sufficiently large n’s.

For completeness, we list the following lemmas for negligible functions that will be used in later
sections. We state them without the proofs, which can be found in introductory cryptography or
complexity theory texts.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:6 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

LEMMA 1 (SUMMATION OF TWO NEGLIGIBLE FUNCTIONS IS A NEGLIGIBLE FUNCTION). Let yi1(n)

d
and i, (n) be both negligible functions. Then p(n) is a negligible function that is defined as u(n))
p1(n) + pa(n).

LEMMA 2 (QUOTIENT OF A POLYNOMIAL FUNCTION OVER AN EXPONENTIAL FUNCTION IS A NEG-
LIGIBLE FUNCTION). % is a negligible function. That is, AN € N, Vn > N : % pol;(n) ,
where N denotes natural numbers.

3 RHE: RADIX HOMOMORPHIC ENCRYPTION
3.1 Overview

Our key observation is that although a HE encryption operation is costly, the algebraic operation
over the ciphertexts is comparatively cheaper. While the concrete performance gap is dependent on
how a specific HE scheme is implemented and to which data the scheme is applied, we exemplify
such gaps in our experiments: Figure 2 in §6.4.1 shows that the addition of two ciphertexts takes
less than 1% time than the encryption of a plaintext in Paillier [48]. With that said, if we convert the
expensive encryption operation of a given plaintext into an equivalent set of algebraic operations
over existing (i.e., cached) ciphertexts, we may obtain a performance edge. There are two questions,
however, in this idea.

First, which ciphertexts should we cache? Evidently, we can always cache only he(1) and then
compute he(m) of n-bit plaintext m with @], he(1). However, the accumulative overhead caused
by a lot of homomorphic additions would at some point outweigh the encryption cost due to O(2")
additions. We propose to only cache a set of selective ciphertexts; specifically, let r be a radix (and
we will show how to pick r in §3.3), then the ciphertexts of r-power series will be pre-computed:
he(r'), where r’ < 2". By doing so, the target ciphertext will be constructed through O(n) additions.
It should be noted that the target ciphertext at this point is merely a deterministic ciphertext with
no security.

Second, how to ensure the randomness of the ciphertext? Randomness must be added to the
ciphertext to achieve a practical security level, e.g., anti- chosen-plaintext attack (CPA). Informally,
the randomness must be probabilistic small, which usually takes the form of picking a piece of data
out of an exponential space. From the above discussion, we have n cached ciphertexts; we will use
these ciphertexts as ingredients to add a random he(0) to the deterministic ciphertext. The random
he(0) is constructed by working on every radix-power r': randomly adding radix-power he(r’) and
if so, then subtracting r times of he(r'™!). Overall, there are O (rn) homomorphic additions that will
result in he(0), which is randomly selected from an exponential space O(2"). The above radix-wise
homomorphic additions can be parallelized with the many-core architecture in modern CPUs.
Before formalizing the algorithm, we illustrate the idea of Rache in an oversimplified scenario
Example 2.

Example 2. Let’s try to encrypt number 100 using the Rache encryption scheme. For the sake
of simplicity, let r = 2, Ctxt[] be the list of cached r-power ciphertexts, and @ be the addition on
the ciphertexts. Obviously, 100 = 64 + 32 + 4 = r® + r> + r2. Therefore, Rache(100) = Rache(r®) &
Rache(r’) @ Rache(r?) = Ctxt[6] & Ctxt[5] & Ctxt[2]. That is, instead of calculating Rache(100)
using sophisticated number-theoretical rules, we can simply construct Rache(100) through two
homomorphic additions of cached ciphertexts, which are much simpler and faster. A

3.2 Algorithm

Algorithm 1 formalizes the radix-based procedure. Let n denote the security parameter of the
underlying PHE scheme, i.e., the bitstring length of the key k that is usually generated by k «

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:7

Algorithm 1: RHE: Radix Homomorphic Encryption

Input: An array of plaintexts Ptxt[], each being a padded n-bitstring; A homomorphic
encryption function he(-) s.t. Va; € Ptxt[], €, he(a;) = he(3; a;); Radix r;
Output: An array of ciphertexts Ctxt[] such that Vi, he™! (Ctxt[i]) == Ptxt[i], where
he™! denotes the decryption function;

// Initialization
1m:=2"-1
2 fori=0;i <= |log, mJ;i++do
3 ‘ radixes|i] = he(r?)
4 end
radixes [I_logr m| + 1] = he(0)

(5]

// Encoding

6 for i = 0; i < Ptxt.size(); i++ do

7 for j =0;j <= |log, m];j ++do

8 | idx[j] = (Pext[i] / rl) %

9 end

/] Pext[i] = 3 idx[j] x r/
10 Ctxt[i] = ;Ejfr m] @;‘i’;[k] radixes|k]
// Randomization

11 isSwap & {0,1}

12 if 1 == isSwap then

13 ‘ Ctxt[i] := Ctxt[i] & radixes [I_logr m| + 1]
14 end

15 for j=1;j < |log, m];j++ do

16 isSwap & {0,1}

17 if 1 == isSwap then

18 Ctxt[i] := Ctxt[i] & radixes [j]
19 fork=0k <r;k++do

20 ‘ Ctxt[i] := Ctxt[i] © radixes [j — 1]
21 end

22 end

23 end
24 end

Gen(1™), where Gen() is a pseudorandom generator. For the sake of clarity, we assume that the
original plaintext value can be converted into a bitstring of length n or smaller; this should not
be a technical limitation in practice, as we can always split a large value into multiple blocks of
n-bits, each of which is encrypted with randomization. In other words, we construct a block cipher
using Algorithm 1. If there are identical blocks, the security is nonetheless guaranteed because
Algorithm 1 is randomized (Lines 11 and 16).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:8 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

Lines 1-5 initialize the reused entries of the integral powers of radix r for future construction of
ciphertexts. Specifically, Line 5 precomputes the homomorphic encryption of plaintext 0, which will
be used for the base case during the randomization (Lines 11-14). Lines 6—24 encode the plaintexts,
each of which is computed directly over the encoded radixes that are initialized at the beginning
of the protocol. For each plaintext, Lines 11-14 randomize the radix summation of ciphertexts
such that repeated plaintexts will result in distinct ciphertexts. The idea of the randomization is
to iterate every precomputed ciphertext radixes[i] and randomly add it to the ciphertext; if the
addition happens, we subtract ciphertext radixes[i — 1] repeatedly r times.

The correctness of Algorithm 1 can be verified by straightforward algebraic computation. We
skip the full computation here due to space constraints.

3.3 Parameterization

3.3.1 Heuristic Radix Selection. This section will discuss heuristic methods to decide the radix
value r in practice. The discussion will remain mostly informal as there are unlimited factors
in real-world applications; a more rigorous approach to be presented in the next section (§3.3.2)
focuses on the worst-case scenario, where we can make more assumptions of the factors that allow
us to conduct a more quantitative analysis.

In practice, the initialization cost can be thought of a constant cost because it can be amortized
by a large number of follow-up computations. As a result, the key trade-off lies at the cost of &’s
and that of encrypting the plaintext message m. Let g denote the ratio of computational costs of
ciphertext addition over homomorphic encryption:

def Time(Ctxt[i] ® Ctxt[]j])
B Time(Rache(m))

s

where Time() denotes the time function and Ctxt[] denotes the list of cached ciphertexts. Evidently,
the bottom line is to ensure the average cost of) cx Ctxt[k] for a requested ciphertext is lower
than that of Rache(m), or g|K| < 1, because otherwise there is no performance improvement from
caching the ciphertext. In a specific HE scheme, g can be estimated using some benchmarks; for
example, Figure 2 shows that ciphertext addition is two orders of magnitude faster than encryption
in Paillier: g = 0.01. This implies that, on average, |K| should be smaller than 100. With radix r,
the maximal possible upper bound would be r!%. Therefore, we need to pick r to ensure that the
maximal value of the plaintext set is smaller than r19 in Paillier. If M is the maximal message, then
we require M < r'% or r > M. If the plaintext space is a set of 256-bit strings, then M = 22 and
r > (2556)T > 225 ~ 59 Therefore, r can be set to 6.

3.3.2 Optimal Radix in the Worst Case. This section will investigate the optimal radix in the worst
case. Let m > 2 denote the maximal value to be encrypted in the application. Let r > 2 denote
the radix or base of the homomorphic encryption. Obviously, given an arbitrary number x, where
0 < x < m, there are k + 1 radix entries: r%, 1, ..., r*, where k = [log"|. Let 0 < x < k. In the
worst case, each r* radix-entry incurs r — 2 times of homomorphic addition, i.e., when computing
(r = 1) - x*. Since one more homomorphic addition needs to be taken for the summation of each
radix, the overall times of homomorphic addition, in the worst case when m is one less than the

next integral power of r (ie., [log"] = log!*! -1), is

fry=@-2)k+1)+k=(r- 1)10grrn+l 1

Our goal is therefore to find out the optimal r that minimizes f(r). This can be achieved by
calculating the first-order and second-order derivatives of f(r). We skip the detailed computation
here for the sake of space; the following elementary calculus and algebra sketch the procedure to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:9

derive that r = 2 leads to the minimum number of homomorphic additions in the worst case.
d
f(r)= d—f(r) =In(m+1)-(Inr)2-r - (rlnr—r+1).
r

The stationary point is therefore the solution to g(r) = f’(r) = 0, which yields r = 1. Since we
require r > 2, we need to find another qualified radix. First, we calculate g(2):

g(2)=2In2-2+1>2x0.69-1>0.
Then, let r > 3, therefore Inr > 1, which yields:
9g()l,ss=rlnr—r+1=r(lnr-1)+1>0.
Note that by definition, the following equation holds:

f'(r)=In(m+1)-(Inr)~2-r - g(r).
If we assume m > 2, then In(m + 1) > 0. Both (Inr)"% and r~! factors are obviously positive.
Therefore, f’(r) is always positive, meaning that f(r) is a monotonically increasing function. It
follows that the minimal qualified radix » = 2 leads to the minimum number of homomorphic
additions.

4 RACHE: RADIX-ADDITIVE CACHING FOR HOMOMORPHIC ENCRYPTION
4.1 Security Definitions and Assumptions

The security goal of our target outsourced databases is computational secrecy, which implies that any
adversary cannot differentiate between the encrypted data and a random string with a probability
significantly larger than 50%, coined as indistinguishability. This means that when an adversary is
given a ciphertext, he or she cannot do much better than randomly guessing the corresponding
plaintext with reasonable resources. Technically, the degree of closeness is quantified by a negligible
function; we refer readers to §2.3 for more technical details. Indeed, if we want to be strict on the
50% requirement, then it is called perfect secrecy (information-theoretical secrecy), which is beyond
the scope of this paper.

In the context of computational secrecy, we assume that the adversary cannot obtain unlimited
computing resources and can only run probabilistic polynomial-time (PPT) algorithms. We also
assume that the adversary can launch a chosen-plaintext attack (CPA), meaning that the adver-
sary can obtain poly(n) arbitrary pairs of (plaintext, ciphertext), where n denotes the security
parameter and poly(-) denotes a polynomial function. We call a scheme IND-CPA if it exhibits
indistinguishability under CPA.

Finally, we assume the primitive homomorphic encryption schemes, into which radix-caching
is integrated, are IND-CPA. This is technically required because we will need this assumption
to prove that Rache is IND-CPA. We call those original homomorphic encryption schemes base
schemes, whose encryption function must not be deterministic—a necessary (but not sufficient)
requirement for any scheme to be IND-CPA. In practice, many existing base schemes have been
proven IND-CPA; for instance, both base schemes (Paillier [48], Symmetria [57]) used by Rache are
IND-CPA.

4.2 Scheme Description

We start with integrating RHE into a symmetric homomorphic encryption scheme. We denote a
quadruple

I1 = (Gen, Enc, Dec, ®)
as a symmetric homomorphic encryption, where Gen denotes the function to generate a random
key k of length n, Enc denotes the encryption function parameterized with k to encode a plaintext

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:10 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

m into a ciphertext ¢, Dec denotes a decryption function with parameter k to decode ¢ back into m,
and @ denotes the additive operation over two ciphertexts Enc(m;) and Enc(m;) such that

Dec (Enci(my) ® Enci(my)) = my + mo.
A symmetric Rache scheme built upon II is a triple
I1(Gen, RHE, Dec), (2)

where RHE denotes the procedure defined in Algorithm 1. Note that RHE(m) is equal to Enc(m)
up to O(n) random ciphertexts of zeros (out of the overall r* parameter space):

RHE(m) = Ency.(m) (@ Enck(O)) ,
I

where I is an index set whose cardinality is a polynomial on n. By definition, the equality Decy (RHE(m)) =
m holds.

An asymmetric Rache scheme can be similarly built upon an asymmetric base HE scheme, except
for the keys for Enc and Dec: two random keys—public key pk and private key sk—are generated
by Gen. For instance, we now require the following equality holds when RHE is built upon an
asymmetric base scheme:

Decg (RHE i (m1) ® RHE i (m3)) = my + my.

Because RHE touches on only the encryption function, there is no need to differentiate between
symmetric and asymmetric base schemes. Therefore, in the following discussion, we assume the
underlying base scheme is symmetric for more succinct notations.

4.3 Provable Security

This subsection proves that the Rache scheme is IND-CPA. We first explain the intuition why Rache
is CPA-secure and then give the formal proof.

Recall that Rache precomputes and caches log, 2" radix entries. If we assume the system picks
the optimal r = 2 in the worst case, then the scheme will simply cache n radix entries. Therefore,
those ciphertexts cached by Rache should not significantly help the adversary—who presumably
runs a probabilistic polynomial-time (PPT) Turing machine—as the overall space is exponential
(Lines 11-23, Algorithm 1).

Technically, we want to reduce the problem of breaking the base homomorphic encryption scheme
IT to the problem of breaking its Rache extension I1. That is, if a PPT adversary A takes an algorithm
alg to break II, then A can efficiently (i.e., in polynomial time) construct another algorithm alg’
that calls alg as a subroutine to break IT as well (simulating alg’ with alg). However, we assume
that the base scheme is IND-CPA, so the above cannot happen—leading to a contradiction. We
formalize the above in the following proposition.

PRrOPOSITION 1. IfHE schemell is IND-CPA, then its Rache-extension I1 defined in Eq.(2) is IND-CPA.

Proor. Let CPA;(denote the indistinguishability experiment with scheme X. The probability
for A to successfully break IT and II are Pr [CPAgI = 1] and Pr [CPA;I = 1], respectively. By

assumption, the following inequality holds:
1
Pr[CPA] =1] < S+e 3)

where € is a negligible probability. By comparing II and II, the latter yields n additional pairs
of plaintexts and ciphertexts out of the total 2" possible pairs in the worst case. Therefore, the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:11

following inequality holds:

l
Pr|cpaZt = 1| - pr[cPaf =1] < poly(n) (4)
IT on
Combining Eq. (3) and Eq. (4) yields the following inequality:
1 l
Pr [CPAEZ‘ = 1] < 1) ey bolvim)
I 2 2n
Now, we only need to show that the summation of the last two terms, € + f%n("), is negligible.

According to Lemma 1 and Lemma 2 (§2), this is indeed the case. Therefore, the probability for the
adversary (A to succeed in the CPATZII experiment is only negligibly higher than %, proving that
Rache is IND-CPA, as claimed. m]

5 INCREMENTAL RACHE
5.1 Overview

While Rache can effectively precompute and cache those selected ciphertexts given an upper bound
of the plaintexts, the principle cannot be applied to data streams where the maximal value is
unknown a priori. To that end, we propose to dynamically precompute those r powers when a
newly seen maximum is observed. The key idea is straightforward: whenever the cipher encounters
a plaintext that is significantly larger than the largest (cached) value, we submit a request to expand
the list of cached values by adding a few precomputed ciphertexts that are closer to the new large
plaintext. The remaining job is then to quantify the meaning of significantly and a few, which will
be elaborated on in the remainder of this section. Before the formal discussion, we illustrate the
high-level idea of incremental Rache by extending Example 2 into the following Example 3: recall
that we have a good set of cached ciphertexts now for up to r°, where r = 2.

Example 3. Now let’s assume that a new value 200 is being encrypted. In theory, we could compute
Rache(200) = Rache(r®) ® Rache(r®) ® Rache(r®) ® Rache(r*); however, this naive approach would
not scale: at some point the cost of many &’s would outweigh that of the original encryption.
An alternative is to precompute some larger ciphertexts and append them into Ctxt[]: Ctxt[7] =
Rache(r") = Rache(128). As a result, we can compute Rache(200) = Rache(r’) @ Rache(r®) &
Rache(r®) = Ctxt[7] & Ctxt[6] & Ctxt[3], which saves one @ in this example; but for larger
plaintexts, the saving would look much more significant. A

5.2 Definitions and Notations
We begin by defining two important building blocks of incremental Rache, pivot and nuance.

DEFINITION 4 (P1voT). A pivot in incremental Rache is one plaintext whose ciphertext is precomputed
and cached.

By definition, the preimage of every entry of the radixes[] array discussed in Alg. 1 is a pivot.
However, the converse is not true in general for incremental Rache: we might optionally choose to
cache more “important” ciphertexts in addition to those in radixes|].

DEFINITION 5 (NUANCE). A nuance in incremental Rache is a pair (§, RHE()), where & is a
plaintext and RHE(&) is the Rache ciphertext of &.

We use p = ©(poly(n)) to denote the asymptotic number of pivots that will be preprocessed.
Common values for p include n, 1 < ¢ < 5 [6]. Similarly, we use d = ©(poly(n)) to denote the
asymptotic number of nuances that will be cached. We assume the plaintext can be encoded with
the security parameter n. Again, we can pad shorter ones or break longer ones into blocks to ensure
the aligned lengths. We denote by m the number of plaintexts (thus m < 2™).

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:12 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

5.3 Scheme Description

To make it more concrete, we slightly extend the triple expression of an HE scheme into a quintuple
by considering the spaces of plaintexts and ciphertexts. Formally, we denote by quintuple IT =
(P,C, K, E, D) an HE scheme, where P is the set of plaintexts, C is the set of ciphertexts, K is the
set of secret keys (for succinctness assuming the scheme is symmetric), & and D are sets of keyed
encryption and decryption functions that satisfy the following predicate,

VK e K, Vx € P, Jex € &, Jdg € D, di(ex(x)) = x.
An incremental Rache is a septuple extended from II:
I=(P.C.K.ED,BN), (5)

where 8 is a function from plaintexts to the set of the indexed pivots, N is a nuance function from
a polynomial number of plaintexts to their ciphertexts, and & is the set of keyed functions for
incremental encryption. While , C, K, and D inherit the same semantics from II, others need
more explanation. We elaborate on 8, N, and & as follows.

We start with 8. Recall that we assume the size of the current data set is m, implying its index
m — 1 (counting from 0). The newly added data point, therefore, has index m. The value of function
B(m) is calculated as the encryption of the largest pivot that is smaller than the new data point. If
we sort the pivots P;’s in an increasing order (P < P; < P, < ...), then we can formally define 8
as follows:

B(m) = ex(P),

where P; < m < P;i4 and i denotes the pivot index.

The nuance function N maps a logarithmic distance from P; to its encryption:

N : [1,{—})”12_ le — C,

& ex(9),

where & € {Zf :VjeN, 2/ < [%]} and eg € &. By convention, we use dom(N) to denote the

domain of function N, i.e., the set of nuance plaintexts between two adjacent pivots. It is evident to
see that the new data point, denoted Ptxt[m], can be calculated as follows:

|[dom(N)| '
Ptxt[m] = P; + Z 0,1} x 2/.
j=1
We are now ready to define E. Let RHE}?C € & with key K, then an incremental encryption

function in & is defined as follows:

def |[dom(N)|
RHEP(m) € ek (P,-+ Z {0,1}><21')
j=1
|[dom(N)|
=ex(P;) @ ex {0,1} x zf)
j=1
|[dom(N)| '
=ex(P)® P ex ({01} x2)
j=1
=8me P NE©x{01}.
Eedom(N)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:13

5.4 Provable Security
We will demonstrate that incremental Rache is IND-CPA. We formalize the proof in the following
proposition.

ProrosITION 2. If a homomorphic encryption I1 is IND-CPA, then its corresponding incremental
Rache-extension I1 defined in Eq. (5) is IND-CPA.

ProoF. The probability for an adversary A to successfully break IT and II are Pr [CPAr&IzI = 1]
and Pr [CPAI.? = 1], respectively. By assumption, the following inequality holds:

PricPa =1] < +e (6)

where € is a negligible probability. By comparing IT and II, the latter yields p + d additional pairs
of plaintexts and ciphertexts out of the total 2" possible pairs in the worst case. Therefore, the
following inequality holds:

+d
Pr[cpaZ =1] - pr[cpagf =1] < 225, (7)

Combining Eq. (6) and Eq. (7) yields the following inequality:

p+d 1 poly(n)
2n 2 2n

where the last equality comes from the simple fact that the summation of two polynomials is also a

polynomial:

1
Pr[CPAZ‘:l] <Zte+
i 2

s

Vx,y € poly(n) : (x+y) € poly(n).
poly(n)

Now, we only need to show that the summation of the last two terms, € + L T & negligible.
According to Lemma 1 and Lemma 2 (§2), this is indeed the case. Therefore, the probability for the
adversary A to succeed in the CPA? experiment is only negligibly higher than £, proving that

incremental Rache is IND-CPA, as claimed. O

6 EVALUATION
6.1 Objectives
We aim to answer the following questions experimentally:

e What is the performance overhead of encryption in outsourced databases? (§6.3)

e How does Rache perform comparing with state-of-the-art HE schemes in term of computa-
tional time and scalability? (§6.4)

e How does incremental Rache help reduce the performance overhead of encrypting data
streams? (§6.5)

Specifically, in §6.3, we report the performance overhead of homomorphic encryption schemes,
i.e., Cassandra performance with and without data encryption. In §6.4, we report the performance of
Rache from three perspectives: comparison on three micro benchmarks (§§6.4.1-6.4.3), comparison
on three real-world applications (§§6.4.4-6.4.6), and scalability on the number of parallel cores and
input sizes (§6.4.7). In §6.5, we report the performance of incremental Rache from the following
three perspectives. The performance and overhead are reported in sections §§6.5.1-6.5.2. The
effectiveness of incremental encryption for aggregation functions is reported in §6.5.3. Lastly
in §6.5.4, we show that incremental Rache outperforms Symmetria even for an arbitrary message
with the original cache.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:14 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

6.2 Experimental Setup

6.2.1 Systems and Implementation. We implement Rache (both the batch and the incremental
versions) upon two base schemes, an asymmetric scheme Paillier [48] and a symmetric one Sym-
metria [57]. Both base schemes have proven to be IND-CPA [438, 57]. Our implementation follows
the same spirit of CryptDB [51], which leaves the vanilla database unchanged but plugs in the
cryptographic subsystem as a middleware. As a result, we integrate Rache into Cassandra [41]
through the DataStax Java driver [20].

The project is managed by Maven 3.6.3 and compiled with Java 11. The parallelization (e.g.,
randomized radix additions on Lines 15-23, Algorithm 1) is implemented with OpenMPI 4.0.3 [46].
At the time of writing this paper, the implementation consists of 29,584 lines of code.

We deploy the Rache-enabled Cassandra on a 10-node cluster hosted at CloudLab [25]. Each
node is equipped with two 36-core Intel Xeon Platinum 8360Y CPUs, 256 GB ECC DDR4-2666
memory, and two 1 TB SSDs. The operating system image is Ubuntu 20.04.3 LTS. All servers are
connected via a 1 Gbps control link (Dell D3048 switches) and a 10 Gbps experimental link (Dell
S5048 switches). We only use the experimental links for our evaluation.

6.2.2 Configurations. Some of the most important parameters of Cassandra are as follows. The
replica factor is set to three. Hinted handoff is enabled globally. The maximum throttle of each thread
is the default 1,024 KB. The internal buffers are flushed to disk every 10 seconds. The partitioner is
the default Murmur3Partitioner. There is one seed node (i.e., node @) with the SimpleSeedProvider
class (implementing the SeedProvider interface). The concurrency of reads and writes (including
materialized view writes) is set to 32. The full specification can be found in the cassandra.yaml
file in the source code.

6.2.3 Workloads. We have tested the system prototype with six workloads, all of which are publicly
available. These workloads include three micro-benchmarks and three real-world applications.

The first benchmark is a micro-benchmark to quantify the cost of homomorphic encryption and
homomorphic addition, respectively. For the former, a sequence of integers [0, 32,768) are homo-
morphically encrypted; for the latter, the ciphertexts stored at radix entries are homomorphically
summed up in a round-robin fashion 32,768 times.

The second benchmark is TPC-H ver. 3.0.0 [62], a standard relational database benchmark. TPC-H
allows the user to specify the scales of the generated data; in this paper we set the scale as one,
resulting in about one gigabyte of data. We will focus on the part table, which consists of 200,000
tuples.

The third benchmark is a dynamic set of random numbers for homomorphic encryption. This
benchmark is mainly used for the purpose of weak scaling, allowing for the scalability test ranging
between 1,024 and 32,768 numbers.

The first application is the U.S. national COVID-19 statistics from April 2020 to March 2021 [16].
The data set has 341 days of 16 metrics, such as death increase, positive increase, and hospitalized
increase.

The second application is the human genome reference 38 [36], commonly known as hg38, which
includes 34,424 rows of singular attributes, e.g., transcription positions, coding regions, and number
of exons, last updated in March 2020.

The third application is the history of Bitcoin trade volume [13] since it was first exchanged in
the public in February 2013. The data consists of the accumulated Bitcoin exchange on a 3-day
basis from February 2013 to January 2022, totaling 1,086 large numbers.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:15

Cassandra vs. Paillier vs. Rache Homomorphic Encryption and Addition Encoding TPC-H
1064 (2% Cassandra Only =

& 279 Encryption 10° —

<

Cassandra + Paillier f _ =<9 Addition 1B |] _
=7 Cassandra + Rache - 1054 ! ! | -

»-
2
S

5
]

EZZ Paillier
Rache Init |
=3 Rache Exec

Time (ms)
Time (ms)
S

-
<

Time (ms)
G

2

2

YN

CZ.

)

#ﬂﬂ‘m

16 32 1

A
/.

ol BN

F NN i 1SS 1 2 4 8
Covid-19 Bitcoin hg38 Number of Cores

2

NI
INI & INI L
16 32

4 8
Number of Cores

Fig. 1. Performance with and with- Fig. 2. Homomorphic encryption Fig. 3. Performance comparison on
out encryption schemes. and addition in Paillier. the TPC-H benchmark.

6.3 Performance with and without Homomorphic Encryption

We record the execution time of Cassandra when inserting three real-world data sets. The configu-
ration of Cassandra and data set specification can be found in the previous section §6.2. We repeat
the experiments three times and report both the average and the standard variation in the figure.
To eliminate the possible caching effect, we truncate the table every time before starting the timer
for the execution.

Figure 1 reports the results, which clearly shows that Rache significantly improves the perfor-
mance of homomorphic encryption. For the Covid-19 data set (left column), the original Paillier
scheme incurs 20X overhead while Rache only incurs about 2X. For the Bitcoin data set (center
column), the originial Paillier scheme incurs 4X overhead while Rache’s overhead is negligible.
Similarly, for the hg38 data set (right column), Paillier incurs about 10X overhead and Rache’s
overhead is marginal.

6.4 Batch Rache

6.4.1 Encryption vs. Addition. Fig. 2 shows that the homomorphic addition is a much cheaper
operation than homomorphic encryption in Paillier. Regardless of the number of available cores,
homomorphic encryption takes more than two orders of magnitude time than homomorphic
addition.

6.4.2 TPC-H. We report Rache’s performance of encoding the TPC-H [62] data in Fig. 3. We report
the execution time of initializing the radixes and that of encoding with Rache, respectively. The
former is referred to as Rache Init and the latter as Rache Exec in the figure. The initialization time
of Rache is roughly flattened, showing a marginal increase when more cores are involved due to
the inter-process communication (IPC) overhead. It should be noted that, however, the Rache Init
overhead is a one-time cost. Specifically, the Init cost is the execution time to construct the Ptxt[]
vector, which stores the radix values for future additive computation over ciphertexts. We observe
that Rache outperforms Paillier by four orders of magnitude at all scales.

In general, the overhead incurred by Rache on different number of cores comes from the coordina-
tion of multiple processes and threads, such as MPI_Reduce that aggregates the partial summations
over ciphertexts. The overhead discrepancy of different workloads, however, largely depends on
the maximal value in the message space (assuming the radix r is fixed). As we will see soon in the
following sections, the Rache initialization overhead (i.e., Rache Init)is lower than others (i.e.,
Figures 4-7). This can be best explained by the fact that the Part relation in TPC-H has its maximal
numeric values in the order of thousands, which are much smaller than other benchmarks. Because
the maximal value is smaller in TPC-H, Rache needs to precompute and cache fewer ciphertexts
during the initialization phase, which results in smaller overhead than other benchmarks. This

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:16 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

observation also explains why the overhead stays roughly constant from one core to 32 cores:
each core precomputes the same set of cached ciphertexts that are determined by radix r and the
maximal plaintext message, both of which are the same on 1-32 cores.

6.4.3 Random Numbers. In this benchmark, n random numbers are generated in a uniform distri-
bution by modular n. We report the results of Rache and Paillier in Fig. 4. The Rache overhead stays
roughly constant for different numbers of cores, but not as low as TPC-H. Despite the overhead,
we observe that Rache’s encoding time is about two orders of magnitude lower than Paillier’s at all
scales.

Encoding 1,024 Random Numbers

71 Paillier

Rache Init

ES3 Rache Exec |

‘I

Time (ms)

10t
\ N ﬁ

N Ern

1 2 4 8
Number of Cores

16 32

Time (ms)

Encoding COVID-19 Data (4/1/20--3/7/21)

10%4—

103+

3] Rache Exec |

27 Paillier

Rache Init

Time (ms)

)

S

<

Encoding Human Genome #38 (3/13/2020)

=1 Paillier

Rache Init

N Rache Exec

N

R

2 4 8
Number of Cores

2 4 8
Number of Cores

16 32

Fig. 4. Encoding performance on the human

random numbers.

Fig. 5. Encoding the U.S. COVID- Fig. 6. Encoding
19 statistics. genome reference 38.

6.4.4 US. COVID-19 Statistics. Fig. 5 reports the encoding performance of the U.S. COVID-19
statistics published at [16]. We observe that with few cores (e.g., 1 and 2) the overhead is smaller
than the encoding cost, while with more cores (e.g., 16, 32) the per-core encoding is very efficient
and takes less time than the overhead. Some of the overhead, i.e., precomputing and caching the
large radixes, is unnecessary for those small values, and yet has to exist due to those extremely
large values. We stress that the overhead is a one-time thing though: if there were, say, ten years
of COVID-19 data, the overhead would look roughly the same and would be outweighed by the
increased cost of encoding the data.

6.4.5 Human Genome Reference 38. Fig. 6 reports the encoding performance of Rache and Paillier
on a database of human genome [36] (hg38) that was last updated in March 2020, under the umbrella
of the Augustus gene prediction project [7]. As expected, Rache outperforms Paillier at all scales
by orders of magnitude. In sheer contrast to the COVID-19 dataset, the initialization overhead
of Rache in hg38 is much less significant: even at 32-core, the overhead is less than 30%. This is
mainly due to a large number of plaintexts (172,120), whose encoding time greatly outweighs the
initialization, which is not trivial: 29 radixes for values as large as 248,937,123.

6.4.6 Bitcoin Trade Volume. We apply Rache and Paillier to the historical trade volume of Bitcoin
exchanges since 2013 [13]. Fig. 7 shows that Rache outperforms Paillier by more than one order
of magnitude, which is consistent with what we have found so far. The notable thing here is the
large overhead incurred by Rache: on a single core, the overhead is on par with Rache’s encoding
time; on 32 cores, the overhead is on par with the Paillier processing time and orders of magnitude
larger than Rache’s encoding time. This phenomenon is due to two reasons. First, the Bitcoin trade
volume consists of very large numbers—most are in the order of millions and the largest one is
4,956,849,516 requiring 34 radixes. Second, the number of plaintexts is relatively small: there are
1,086 plaintexts, each of which records the Bitcoin exchange for the last three days.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:17

Encoding Bitcoin Trade (2/8/2013--1/7/2022 Weak Scaling of Random Numbers 104 Encoding Different Numbers of Plaintexts
27 Paillier = = = ol & 5 57 Paillier 5]
Rache Init f f Rache Init B
10 —I B =Y Rache Exec 103| =3 Rache Exec g

Paillier
Rache Init
=3 Rache Exec

NN

U

Time (ms)
Time (ms)
Time (ms)

5
H
i

-
°N

1)

N

\ 7 N
10t N 102 = ~ N ﬁ H
BN BN BN Bk = B BN BN BN BN m BN BN BN

1 2 6 32 1 2 8 32 1,024 2,048 4,096 8,192 16,384 32,768

4 8 4 16
Number of Cores Number of Cores Number of Plaintexts

Fig. 7. Encoding the Bitcoin trade Fig. 8. Weak scaling of the encryp- Fig. 9. Encoding a variety of work-
volume. tion of random numbers. loads with a fix number of 32 cores.

6.4.7 Scalability. We evaluate the scalability of Rache in this section. We focus on the data sets of
random numbers rather than specific benchmarks or applications simply because we can generate
arbitrarily large data sets of random numbers. Fig. 8 reports the conventional weak-scaling experi-
ment. We control the workload to be proportional to the number of cores: 1,024 plaintexts for every
core. That is, the workloads range from 1,024 to 32,768 plaintexts of uniformly distributed random
numbers. In each workload, the maximal value is close to the maximal number due to the uniform
distribution.

Rache outperforms Paillier by orders of magnitude at all scales. However, Rache seems to exhibit
a higher slope of encoding time. We stress that the absolute values of Rache performance are
sub-seconds (and the y-axis is logarithmic), therefore the overhead can be best explained by the
IPC overhead. To verify this, we conduct the following experiment, in which we fix the number of
cores but increase the workloads.

Fig. 9 shows the encoding time when we fix the number of cores as 32 but increase the number
of plaintexts from 1,024 to 32,768. We observe that when the IPC overhead is fixed (for 32 cores),
the encoding time is proportionally increased regarding the workload size.

6.5 Incremental Rache

6.5.1 TPC-H. We compare Rache! and Symmetria on TPC-H with the option “-s 100”; there are
overall 20,000,000 tuples in the Part table. We vary the number of pivots (i.e., p) on the x-axis
between 2 and 64. We report the performance of Rache (without the overhead of constructing the
pivots p’s and nuances d’s, which will be reported in the next experiment), and compare it against
Symmetria in Fig. 10. Generally speaking, larger p values allow Rache to complete faster because
of the finer granularity of the gaps among p’s as well as fewer nuances. Notably, Rache is about
3x faster than Symmetria when p = 32. If the plaintexts are overly split (e.g., p = 64), the extra
cost for maintaining the pivots may outweigh the benefit of d dictionaries, causing suboptimal
performance.

6.5.2 Random Numbers. We compare the performance of Symmetria and Rache when encrypting
1,024 random numbers of variable lengths in Fig. 11. We on the x-axis vary the (n, p) pairs ranging
between 8 and 32, where n indicates the bitstring length and p indicates the number of pivots,
respectively. We observe that Rache consistently outperforms Symmetria for all (n, p) pairs by up
to 50% reduction in running time, which is aligned with the results of the TPC-H benchmark in
Fig. 10.

We measure the time overhead for precomputing pivots and nuances of 23 random values. Note
that this experiment has a much larger data set than that in Fig. 11 (i.e., 1,024 = 21°) because we will,

IFor simplicity, we use Rache to indicate incremental Rache in this section.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:18 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

Symmetria vs. Rache on TPC-H Symmetria vs. Rache on Random Numbers Overhead of Rache Init

~12000

w

1000

w
o

@
S
S

g10°

g
o

N
S
S

Execution Time (microseconds;
@
2
3
Overhead (milliseconds)
B

Execution Time (seconds)
N
[

B
1.5 -A- Average Symmetria =y 20004 | -A- Average Symmetria | p -A- Average Overhead
€~ Average Rache RN -&- Average Rache X Standard Deviation
1.0 . 10t
2 4 8 16 32 64 (8.8) (8,16) (8,32) (16,8) (16,16)16,32) (32,8) (32,16)(32,32) (2,2) (2,3) (2/4) (2,5) 3,3) (3,4) 3,5) (4,4) (4,5) (5,5)
[(n, p)-tuples (x,y), p = 327x,d = 327y

Fig. 10. Performance comparison Fig. 11. Performance comparison Fig. 12. Performance overhead in-
on TPC-H (scale = 100), 20,000,000 of Symmetria and Rache on 1,024 curred by pivots and nuances when
tuples in table Part. random plaintexts. encrypting 232 random plaintexts.

to a large extent, vary both the number of pivots p = n*, 2 < x < 5 (x is considered as a practical
upper bound in complexity theory [6]), and the number of nuances d = n¥, x < y. We set n = 32,
meaning that there are up to 2% distinct values in the underlying data set. The x-axis of Fig. 12
enumerates those (x, y) pairs.

6.5.3 Aggregating Encrypted Fields. For a simple aggregate query shown in Listing 1 (i.e., the
average part size), its Rache execution on the scale-10 TPC-H is illustrated in the following equation:

2,000,000 2,000,000
ex E si| = EB ex (1),

i=1 i=1

where s; denotes the value of the P_Size field of the i-th row of relation Part.
1 -- TPC-H 3.0, "dbgen -s 10", two million tuples

2 SELECT AVG(P_Size)

3 FROM Part;

Listing 1. A simple SQL aggregate query on TPC-H.

Directly adding up ek (s;) is more costly than arithmetic operations because @ on ciphertexts is
number-theoretical. Rache allows us to cache the ciphertexts of both pivot and nuance along with
their frequencies in plaintexts. Therefore, we can reduce the frequency of @ by arithmetic X if the
HE scheme supports it (Symmetria [57] does) and calculate the result as follows:

2,000,000 P d
e (Z si) = freqf X @ ex (P;) +freq§ X @ ex (&),
i=1 j=1

i=1

where p and d are much smaller than 200,000 (e.g., p = d = 32), freqy indicates the frequency of the
x-th element in the y-container, and ek (-)’s are part of the entries (trees of pivots and dictionaries
of nuances) cached in memory.

Fig. 13 reports the time for aggregating 200,000 Part.P_Size fields on scale-1 TPC-H, where each
step aggregates additional 10,000 encrypted fields. We observe that the one-step cost of Symmetria
is not constant: in a later step, it takes more time to aggregate the same number of new ciphertexts.
This is concerning because it implies that the batch HE scheme is not scalable and would stop
working at some point. To investigate how bad it could become, Fig. 14 reports the same workload
on TPC-H of both scales-1 and scale-10; we did not report the scale-100 results because Symmetria
finished only 53% (10,550,000 out of 20,000,000) ciphertext additions after 100 hours of execution.
We observe that Rache can aggregate 2,000,000 fields within a second while Symmetria takes hours
to complete the same workload.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:19

Time Breakdown of Aggregation Aggregation Time of Ciphertexts Single Radix Entries

10° " S 107 et 2218 | -A- Average Speedup |
_ A = 21— Standard Deviation |
T 100 A FER IR AR | 2 10° : 2.0
2O e g
203 4 -/ Elapsed Symmetria Time § 105 [Al pe =4 gt
210 B] -~ Symmetria Time 318 \
= -f=}- Single-step Symmetria Time =, . Rache T 2 N
Ep -O- Single-step Rache Time | [RacheTime + ‘%1.7—1‘\\
o
E g10° 16
F ot oL | FTYTOo-=d 15

10? 14 S
o SO HODOOOHDD o e
1 4 101112 13 14 15 16 17 18 19 20 0) (16,10)(32,10)(64,10) 0 4 8 16 20 24 28 32

(64,1) (2,10) (4,10) (8,1 12
Step # t #, TPC-H Scale) Radix Entries (2°x)
Fig. 13. Time breakdown of aggre- Fig. 14. Aggregating time with dif- Fig. 15. Rache speedup over Sym-
gating 200,000 tuples of table Part ferent numbers of pivots on differ- metria when computing nuances

in TPC-H. ent TPC-H scales. on-the-fly.

6.5.4 Computing Nuances On-the-fly. The previous experiments assume that there is sufficient
memory capacity to accommodate p pivots and d nuances. In certain application scenarios (e.g., edge
computing [1, 2], supply chains [60], system-on-chip [14]), we might have limited resources and
may not be able to hold, say, 232 nuances. Therefore, the following experiment will investigate the
worst-case scenario where we are forced to compute nuances on the fly. We report the performance
of adopting a single nuance for a random value in [O, 2%%) in Fig. 15. The worst-case overhead of
calculating a single nuance leads to as low as 1.3x speedup over the vanilla Symmetria encryption.
In the best case, i.e., when nuance is set to one, the speedup is over 2.1x.

6.6 Summary of Experimental Results

Rache. Both micro benchmarks and real-world applications confirm the efficiency of Rache:
Rache incurs insignificant overhead to Cassandra while the conventional Paillier encryption is 2-10
times slower. Rache also exhibits strong scalability on up to 32 cores and 32X larger input data size.

Incremental Rache. Incremental Rache is 2-3X faster than Symmetria and the initialization
overhead is as low as 10 ms. In particular, incremental Rache is 3-5 orders of magnitude faster
than Symmetria for aggregation workloads that are commonly deployed in outsourced databases.
Finally, incremental Rache outperforms Symmetria by 1.3-2.2X speedup even though incremental
ciphertexts are not cached.

7 CONCLUSION AND FUTURE WORK

This paper proposes radix-based parallel caching optimization for accelerating the performance of
homomorphic encryption (HE) of outsourced databases in cloud computing. The key insight of the
proposed optimization is caching selected radix-ciphertexts in parallel without violating existing
security guarantees of the original HE scheme. We design the radix HE algorithm and apply it
to both batch and incremental HE schemes; we demonstrate the security of those radix-based
HE schemes by reducing the Rache-extended problem to the base HE schemes that are known
IND-CPA. We implement the radix-based schemes as middleware of a 10-node Cassandra cluster
on CloudLab; experiments on six workloads show that the proposed caching significantly improves
the performance of state-of-the-art HE schemes.

Our future work will focus on integrating radix-based caching into scientific blockchains [3, 4]
such that sensitive scientific data can be shared and verified among the collaborators confidentially.
One orthogonal optimization in this context will be to exploit the specific data format used in
scientific workflows [43, 61] and array databases [8, 18]. We also plan to apply radix caching in
federated learning [42].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

66:20 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

ACKNOWLEDGMENTS

This work is supported in part by NSF under Grants IIS-1838024, CNS-1950485, and OIA-2148788.
The authors thank the CloudLab team for providing access to their computing clusters. CloudLab
is funded by NSF.

REFERENCES

(1]

— —
o0 3
[ter i

—
O
—

[10

[t

[11]
[12]

[13]
[14]

[15]

(16
[17]

—

[18]

Abdullah Al-Mamun, Jun Dai, Xiaohua Xu, Mohammad Sadoghi, Haoting Shen, and Dongfang Zhao. 2020. Consortium
Blockchain for the Assurance of Supply Chain Security. In 27th Annual Network and Distributed System Security
Symposium (NDSS).

Abdullah Al-Mamun, Haoting Shen, and Dongfang Zhao. 2022. DEAN: A Lightweight and Resource-efficient Blockchain
Protocol for Reliable Edge Computing. In IEEE International Parallel and Distributed Processing Symposium (IPDPS).
Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao. 2021. BAASH: Lightweight, Efficient, and Reliable Blockchain-
As-A-Service for HPC Systems. In International Conference on High Performance Computing, Networking, Storage and
Analysis (SC).

Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao. 2021. SciChain: Blockchain-enabled Lightweight and Efficient
Data Provenance for Reproducible Scientific Computing. In IEEE 37th International Conference on Data Engineering
(ICDE).

Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. 2017. Cryptography with Updates. In Advances in Cryptology
— EUROCRYPT 2017, Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.). Springer International Publishing, Cham,
445-472.

Sanjeev Arora and Boaz Barak. 2009. Computational Complexity: A Modern Approach (1st ed.). Cambridge University
Press, USA.

Augustus: Gene prediction. Accessed 2022. https://github.com/Gaius- Augustus/Augustus.

Peter Baumann, Dimitar Misev, Vlad Merticariu, Bang Pham Huu, and Brennan Bell. 2018. Rasdaman: Spatio-Temporal
Datacubes on Steroids. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (Seattle, Washington) (SIGSPATIAL °18). Association for Computing Machinery, New York, NY,
USA, 604-607. https://doi.org/10.1145/3274895.3274988

Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1994. Incremental Cryptography: The Case of Hashing and
Signing. In Advances in Cryptology - CRYPTO 94, 14th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 21-25, 1994, Proceedings (Lecture Notes in Computer Science, Vol. 839), Yvo Desmedt (Ed.).
Springer, 216-233. https://doi.org/10.1007/3-540-48658-5_22

Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. 1995. Incremental cryptography and application to virus protec-
tion. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing (STOC), Frank Thomson
Leighton and Allan Borodin (Eds.).

Ayoub Benaissa, Bilal Retiat, Bogdan Cebere, and Alaa Eddine Belfedhal. 2021. TenSEAL: A Library for Encrypted
Tensor Operations Using Homomorphic Encryption. arXiv:2104.03152 [cs.CR]

Tarunpreet Bhatia, A K. Verma, and Gaurav Sharma. 2020. Towards a secure incremental proxy re-encryption for
e-healthcare data sharing in mobile cloud computing. Concurrency and Computation: Practice and Experience (CCPE)
32, 5(2020), 5520. https://doi.org/10.1002/cpe.5520 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5520
e5520 CPE-18-0794.R1.

Bitcoin Trade History. Accessed 2022. https://www.blockchain.com/charts/trade-volume.

Subodha Charles and Prabhat Mishra. 2020. Securing Network-on-Chip Using Incremental Cryptography. In 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). 168-175. https://doi.org/10.1109/ISVLSI49217.2020.00039
Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homomorphic Encryption for Arithmetic of
Approximate Numbers. In Advances in Cryptology - ASTACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 10624), Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer, 409-437.
https://doi.org/10.1007/978-3-319-70694-8_15

Covid-19 Data. Accessed 2022. https://covidtracking.com/data/download/national-history.csv.

Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. 2001. Multiparty Computation from Threshold Homomorphic
Encryption. In Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding (Lecture Notes in Computer Science, Vol. 2045),
Birgit Pfitzmann (Ed.). Springer, 280-299. https://doi.org/10.1007/3-540-44987-6_18

P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J.
Becla, D. DeWitt, B. Heath, D. Maier, S. Madden, J. Patel, M. Stonebraker, and S. Zdonik. 2009. A Demonstration of SciDB:
A Science-Oriented DBMS. Proc. VLDB Endow. 2, 2 (aug 2009), 1534-1537. https://doi.org/10.14778/1687553.1687584

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

https://github.com/Gaius-Augustus/Augustus
https://doi.org/10.1145/3274895.3274988
https://doi.org/10.1007/3-540-48658-5_22
https://arxiv.org/abs/2104.03152
https://doi.org/10.1002/cpe.5520
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5520
https://www.blockchain.com/charts/trade-volume
https://doi.org/10.1109/ISVLSI49217.2020.00039
https://doi.org/10.1007/978-3-319-70694-8_15
 https://covidtracking.com/data/download/national-history.csv
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.14778/1687553.1687584

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:21

[19] Ivan Damgard and Jesper Buus Nielsen. 2003. Universally Composable Efficient Multiparty Computation from
Threshold Homomorphic Encryption. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2729),
Dan Boneh (Ed.). Springer, 247-264. https://doi.org/10.1007/978-3-540-45146-4_15

DataStax Java Driver. Accessed 2022. https://github.com/datastax/java-driver.

M. Daum, B. Haynes, D. He, A. Mazumdar, and M. Balazinska. 2021. TASM: A Tile-Based Storage Manager for Video
Analytics. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE Computer Society, Los Alamitos,
CA, USA, 1775-1786. https://doi.org/10.1109/ICDE51399.2021.00156

Leo de Castro, Rashmi Agrawal, Rabia Yazicigil, Anantha Chandrakasan, Vinod Vaikuntanathan, Chiraag Juvekar, and
Ajay Joshi. 2021. Does Fully Homomorphic Encryption Need Compute Acceleration? arXiv:2112.06396 [cs.CR]
Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Framework for Efficient Mixed-Protocol
Secure Two-Party Computation. In 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015. The Internet Society. https://www.ndss-symposium.org/ndss2015/aby---
framework-efficient- mixed-protocol-secure-two-party-computation

Yarkin Doroz, Erdinc Ozturk, and Berk Sunar. 2015. Accelerating Fully Homomorphic Encryption in Hardware. IEEE
Trans. Comput. 64, 6 (2015), 1509-1521. https://doi.org/10.1109/TC.2014.2345388

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,
David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Operation of CloudLab. In
Proceedings of the USENIX Annual Technical Conference (ATC). 1-14. https://www.flux.utah.edu/paper/duplyakin-atc19
T. Elgamal. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory 31, 4 (1985), 469-472. https://doi.org/10.1109/TIT.1985.1057074

Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint
Archive, Paper 2012/144. https://eprint.iacr.org/2012/144 https://eprint.iacr.org/2012/144.

Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing (STOC).

O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play ANY Mental Game. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing (New York, New York, USA) (STOC ’87). Association for Computing
Machinery, New York, NY, USA, 218-229. https://doi.org/10.1145/28395.28420

Hakan Hacigiimis, Bala Iyer, Chen Li, and Sharad Mehrotra. 2002. Executing SQL over Encrypted Data in the
Database-Service-Provider Model. In Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data (Madison, Wisconsin) (SIGMOD °02). Association for Computing Machinery, New York, NY, USA, 216-227.
https://doi.org/10.1145/564691.564717

[31] Shai Halevi and Victor Shoup. 2021. Bootstrapping for HElib. J. Cryptol. 34, 1 (jan 2021), 44 pages. https://doi.org/10.
1007/500145-020-09368-7

Brandon Haynes, Maureen Daum, Dong He, Amrita Mazumdar, Magdalena Balazinska, Alvin Cheung, and Luis Ceze.
2021. VSS: A Storage System for Video Analytics. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD/PODS °21). 685-696. https://doi.org/10.1145/3448016.3459242

HEIib. Accessed 2022. https://github.com/homenc/HElib.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. 1998. NTRU: A Ring-Based Public Key Cryptosystem. In Algo-
rithmic Number Theory, Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings
(Lecture Notes in Computer Science, Vol. 1423), Joe Buhler (Ed.). Springer, 267-288. https://doi.org/10.1007/BFb0054868
[35] W. Kuan Hon and Christopher Millard. 2018. Banking in the cloud: Part 3 - contractual issues. Computer Law &
Security Review 34, 3 (2018), 595-614. https://doi.org/10.1016/].clsr.2017.11.007

Human Genome Databases. Accessed 2022. http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/.

Tehsin Kanwal, Adeel Anjum, and Abid Khan. 2021. Privacy preservation in e-health cloud: taxonomy, privacy
requirements, feasibility analysis, and opportunities. Clust. Comput. 24, 1 (2021), 293-317. https://doi.org/10.1007/
510586-020-03106-1

Gang Ke, Shi Wang, and Huan-huan Wu. 2021. Parallel incremental attribute-based encryption for mobile cloud data
storage and sharing. Journal of Ambient Intelligence and Humanized Computing (01 2021), 1-11. https://doi.org/10.
1007/512652-020-02842-x

Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster Malicious Arithmetic Secure Computation
with Oblivious Transfer. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(Vienna, Austria) (CCS ’16). Association for Computing Machinery, New York, NY, USA, 830-842. https://doi.org/10.
1145/2976749.2978357

Louiza Khati and Damien Vergnaud. 2018. Analysis and Improvement of an Authentication Scheme in Incremental
Cryptography. In Selected Areas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB, Canada,

[20
[21

— =

[22

—

[23

—

[24

=

[25

—

[26

—

[27

—

[28

—

[29

—

[30

[t

(32

—

[33
[34

[lami bt

[36
[37

—

[38

[t

[39

—

[40

—

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

https://doi.org/10.1007/978-3-540-45146-4_15
https://github.com/datastax/java-driver
https://doi.org/10.1109/ICDE51399.2021.00156
https://arxiv.org/abs/2112.06396
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://doi.org/10.1109/TC.2014.2345388
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1109/TIT.1985.1057074
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/564691.564717
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1007/s00145-020-09368-7
https://doi.org/10.1145/3448016.3459242
https://github.com/homenc/HElib
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1016/j.clsr.2017.11.007
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/
https://doi.org/10.1007/s10586-020-03106-1
https://doi.org/10.1007/s10586-020-03106-1
https://doi.org/10.1007/s12652-020-02842-x
https://doi.org/10.1007/s12652-020-02842-x
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357

66:22 Olamide Timothy Tawose, Jun Dai, Lei Yang, and Dongfang Zhao

[41

—

[42

—

[43

[t}

[44

=

[45

[

[46]
[47
[48

—

[49

—

[50

=

(51

—

(52

—

[53

[t

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

August 15-17, 2018, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 11349), Carlos Cid and Michael
J. Jacobson Jr. (Eds.). Springer, 50-70. https://doi.org/10.1007/978-3-030-10970-7_3

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Structured Storage System. SIGOPS Oper.
Syst. Rev. 44, 2 (April 2010).

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas. 2017. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA (Proceedings of Machine
Learning Research, Vol. 54), Aarti Singh and Xiaojin (Jerry) Zhu (Eds.). PMLR, 1273-1282. http://proceedings.mlr.press/
v54/mcmahani7a.html

Parmita Mehta, Sven Dorkenwald, Dongfang Zhao, Tomer Kaftan, Alvin Cheung, Magdalena Balazinska, Ariel Rokem,
Andrew Connolly, Jacob Vanderplas, and Yusra AlSayyad. 2017. Comparative Evaluation of Big-Data Systems on
Scientific Image Analytics Workloads. In 43rd International Conference on Very Large Data Bases (VLDB).

Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. 2012. Incremental Deterministic Public-Key Encryption.
In Advances in Cryptology — EUROCRYPT 2012, David Pointcheval and Thomas Johansson (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 628-644.

Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable Privacy-Preserving Machine Learning.
In 2017 IEEE Symposium on Security and Privacy (SP). 19-38. https://doi.org/10.1109/SP.2017.12

MPL. Accessed 2021. https://www.mpi-forum.org/docs/.

National Institute and Technology of Standards. 2001. Advanced Encryption Standard. NIST FIPS PUB 197 (2001).
Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of
the 17th International Conference on Theory and Application of Cryptographic Techniques (Prague, Czech Republic)
(EUROCRYPT’99). Springer-Verlag, Berlin, Heidelberg, 223-238.

Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran Ramjee, Andreas Haeberlen, Harmeet
Singh, Abhishek Modi, and Saikrishna Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with
Seabed. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI). USENIX
Association, USA, 587-602.

Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted Database using Semantically Secure
Encryption. Proc. VLDB Endow. 12, 11 (2019), 1664-1678. https://doi.org/10.14778/3342263.3342641

Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan. 2011. CryptDB: protecting confiden-
tiality with encrypted query processing. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles (SOSP).

T. Rabin and M. Ben-Or. 1989. Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In Proceedings
of the Twenty-First Annual ACM Symposium on Theory of Computing (Seattle, Washington, USA) (STOC ’89). Association
for Computing Machinery, New York, NY, USA, 73-85. https://doi.org/10.1145/73007.73014

Dayane Reis, Jonathan Takeshita, Taeho Jung, Michael Niemier, and Xiaobo Sharon Hu. 2020. Computing-in-Memory
for Performance and Energy-Efficient Homomorphic Encryption. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 28, 11 (2020), 2300-2313. https://doi.org/10.1109/TVLSL.2020.3017595

R. L. Rivest, A. Shamir, and L. Adleman. 1978. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
Commun. ACM 21, 2 (feb 1978), 120-126. https://doi.org/10.1145/359340.359342

Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure: Scalable Provably-Secure Deep
Learning. In Proceedings of the 55th Annual Design Automation Conference (San Francisco, California) (DAC ’18).
Association for Computing Machinery, New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3195970.3196023
Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslinski, Christopher Peikert, and
Daniel Sanchez. 2021. F1: A Fast and Programmable Accelerator for Fully Homomorphic Encryption. Association for
Computing Machinery, 238-252. https://doi.org/10.1145/3466752.3480070

Savvas Savvides, Darshika Khandelwal, and Patrick Eugster. 2020. Efficient Confidentiality-Preserving Data Analytics
over Symmetrically Encrypted Datasets. Proc. VLDB Endow. 13, 8 (April 2020), 1290-1303. https://doi.org/10.14778/
3389133.3389144

SEAL 2021. Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL. Microsoft Research, Redmond, WA..
Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (nov 1979), 612-613. https://doi.org/10.1145/359168.
359176

Haoting Shen, Shahriar Badsha, and Dongfang Zhao. 2020. Consortium Blockchain for the Assurance of Supply Chain
Security. In 27th Annual Network and Distributed System Security Symposium (NDSS).

Tong Shu, Yanfei Guo, Justin Wozniak, Xiaoning Ding, Ian Foster, and Tahsin Kurc. 2021. Bootstrapping In-Situ Work-
flow Auto-Tuning via Combining Performance Models of Component Applications. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC) (St. Louis, Missouri). Article 28,
15 pages. https://doi.org/10.1145/3458817.3476197

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

https://doi.org/10.1007/978-3-030-10970-7_3
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/SP.2017.12
https://www.mpi-forum.org/docs/
https://doi.org/10.14778/3342263.3342641
https://doi.org/10.1145/73007.73014
https://doi.org/10.1109/TVLSI.2020.3017595
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3466752.3480070
https://doi.org/10.14778/3389133.3389144
https://doi.org/10.14778/3389133.3389144
https://github.com/Microsoft/SEAL
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3458817.3476197

Toward Efficient Homomorphic Encryption for Outsourced Databases through Parallel Caching 66:23

[62] TPC-H 3.0.0. Accessed 2022. http://tpc.org/tpc_documents_current_versions/current_specifications5.asp.

[63] Fenghe Wang, Junquan Wang, and Wenfeng Yang. 2021. Efficient incremental authentication for the updated data in
fog computing. Future Generation Computer Systems (FGCS) 114 (2021), 130-137. https://doi.org/10.1016/].future.2020.
07.039

[64] Andrew C. Yao. 1982. Protocols for secure computations. In 23rd Annual Symposium on Foundations of Computer
Science. 160-164. https://doi.org/10.1109/SFCS.1982.38

[65] Xiaojie Zhu, Erman Ayday, Roman Vitenberg, and Narasimha Raghavan Veeraragavan. 2021. Privacy-Preserving
Search for a Similar Genomic Makeup in the Cloud. IEEE Transactions on Dependable and Secure Computing (2021).
https://doi.org/10.1109/TDSC.2021.3074327

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 66. Publication date: May 2023.

 http://tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://doi.org/10.1016/j.future.2020.07.039
https://doi.org/10.1016/j.future.2020.07.039
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/TDSC.2021.3074327

	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Contributions

	2 Preliminaries and Related Work
	2.1 Confidentiality of Outsourced Data
	2.2 Homomorphic Encryption
	2.3 Provable Security

	3 RHE: Radix Homomorphic Encryption
	3.1 Overview
	3.2 Algorithm
	3.3 Parameterization

	4 Rache: Radix-Additive Caching for Homomorphic Encryption
	4.1 Security Definitions and Assumptions
	4.2 Scheme Description
	4.3 Provable Security

	5 Incremental Rache
	5.1 Overview
	5.2 Definitions and Notations
	5.3 Scheme Description
	5.4 Provable Security

	6 Evaluation
	6.1 Objectives
	6.2 Experimental Setup
	6.3 Performance with and without Homomorphic Encryption
	6.4 Batch Rache
	6.5 Incremental Rache
	6.6 Summary of Experimental Results

	7 Conclusion and Future Work
	Acknowledgments
	References

