
diGRASS: Directed Graph Spectral Sparsification via
Spectrum-Preserving Symmetrization

YING ZHANG, ZHIQIANG ZHAO, and ZHUO FENG, Stevens Institute of Technology, USA

Recent spectral graph sparsification research aims to construct ultra-sparse subgraphs for preserving the origi-
nal graph spectral (structural) properties, such as the first few Laplacian eigenvalues and eigenvectors, which
has led to the development of a variety of nearly-linear time numerical and graph algorithms. However, there
is very limited progress for spectral sparsification of directed graphs. In this work, we prove the existence
of nearly-linear-sized spectral sparsifiers for directed graphs under certain conditions. Furthermore, we in-
troduce a practically-efficient spectral algorithm (diGRASS) for sparsifying real-world, large-scale directed
graphs leveraging spectral matrix perturbation analysis. The proposed method has been evaluated using a
variety of directed graphs obtained from real-world applications, showing promising results for solving di-
rected graph Laplacians, spectral partitioning of directed graphs, and approximately computing (personalized)
PageRank vectors.

CCS Concepts: •Theory of computation→ Sparsification and spanners; •Computingmethodologies

→ Machine learning algorithms;

Additional KeyWords and Phrases: Spectral graph theory, spectral graph sparsification, directed graphs, lapla-
cian solver, PageRank

ACM Reference Format:

Ying Zhang, Zhiqiang Zhao, and Zhuo Feng. 2024. diGRASS: Directed Graph Spectral Sparsification via
Spectrum-Preserving Symmetrization. ACM Trans. Knowl. Discov. Data. 18, 4, Article 102 (February 2024),
25 pages. https://doi.org/10.1145/3639568

1 INTRODUCTION

Graph-based analysis is an essential technique that has been widely adopted in many electronic

design automation (EDA) problems, such as the tasks for logic synthesis and verification,
layout optimization, static timing analysis (STA), network partitioning/decomposition, circuit
modeling and simulation, and so on. In recent years, several research problems for simplifying
large graphs leveraging spectral graph theory have been extensively studied by mathematics
and theoretical computer science (TCS) researchers [5, 12, 13, 23, 26, 35, 40]. Recent spectral
graph sparsification research allows constructing nearly-linear-sized subgraphs that can well
preserve the spectral (structural) properties of the original graph, such as the the first few
eigenvalues and eigenvectors of the graph Laplacian. The related results can potentially lead to

This work is supported in part by the National Science Foundation under Grants CCF-2041519 (CAREER), CCF-2021309
(SHF), and CCF-2011412 (SHF)..
Y. Zhang and Z. Zhao contributed equally to this research.
Authors’ address: Y. Zhang, Z. Zhao, and Z. Feng, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ
07030, USA; e-mails: {yzhan232, zzhao76, zfeng12}@stevens.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1556-4681/2024/02-ART102
https://doi.org/10.1145/3639568

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

https://orcid.org/0000-0003-3864-8673
https://orcid.org/0000-0001-7239-6604
https://orcid.org/0000-0002-2989-2597
https://doi.org/10.1145/3639568
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639568
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639568&domain=pdf&date_stamp=2024-02-13

102:2 Y. Zhang et al.

the development of a variety of nearly-linear time numerical and graph algorithms for solving
large sparse matrices and partial differential equations (PDEs), graph-based semi-supervised

learning (SSL), computing the stationary distributions of Markov chains and personalized PageR-
ank vectors, spectral graph partitioning and data clustering, max flow and multi-commodity flow
of undirected graphs, nearly-linear time circuit simulation and verification algorithms, and so on
[10, 12, 13, 18, 22, 24, 40, 41, 43].

However, there is not a unified approach that allows for truly-scalable spectral sparsification
of directed graphs. For example, the state-of-the-art sampling-based methods for spectral sparsifi-
cation are only applicable to undirected graphs [24, 38, 41]; the latest theoretical breakthrough
in spectral sparsification of directed graphs [11] can only handle strongly-connected directed
graphs,1 which inevitably limits its applications when confronting real-world graphs, since many
directed graphs may not be strongly connected, such as the graphs used in chip design automation
(e.g., timing analysis) tasks as well as the graphs used in machine learning and data mining tasks.

Consequently, there is still a pressing need for the development of highly-robust (theoretically-
rigorous) and truly-scalable (nearly-linear complexity) algorithms for reducing real-world large-
scale directed graphs while preserving key graph spectral (structural) properties. In summary, we
make the following contributions:

(1) We prove the existence of nearly-linear-sized spectral sparsifiers for directed graphs whose
symmetrized undirected graphs only contain non-negative edge weights and introduce a
practically-efficient yet unified spectral sparsification approach (diGRASS) that allows sim-
plifying real-world, large-scale (un)directed graphs with guaranteed preservation of the orig-
inal graph spectra.

(2) We show that leveraging a scalable spectral matrix perturbation analysis for constructing
ultra-sparse subgraphs will allow us to well preserve the key eigenvalues and eigenvectors
of the original directed graph Laplacians.

(3) Our approach is applicable to a much broader range of directed graphs when comparing
with the state-of-the-arts that may only be applicable to specific types of graphs, such as
undirected or strongly-connected directed graphs.

(4) Through extensive experiments for real-world directed graphs, diGRASS has been leveraged
for computing PageRank vectors, spectral partitioning of directed graphs, and solving di-
rected graph Laplacian matrices.

The spectrally-sparsified directed graphs constructed by diGRASS will potentially lead to the
development of much faster numerical and graph-related algorithms. For example, spectrally-
sparsified social (data) networks allow for more efficient modeling and analysis of large social
(data) networks; spectrally-sparsified neural networks allow for more scalable model training and
processing in emerging machine learning tasks; spectrally-sparsified web-graphs allow for much
faster computations of personalized PageRank vectors; spectrally-sparsified integrated circuit net-
works will lead to more efficient partitioning, modeling, simulation, optimization and verification
of large chip designs, and so on.
The rest of this article is organized as follows. Section 2 describes recent works related to spec-

tral algorithms for directed graphs and the key idea of the proposed method. Section 3 introduces
the background of the (un)directed graphs and spectral graph sparsification. Section 4 introduces a
novel theoretical framework for unified spectral sparsification of directed graphs. Section 5 intro-
duces a practically-efficient algorithm for spectral directed graph sparsification. Section 6 describes

1A strongly connected directed graph is a directed graph in which any node can be reached from any other node along
with direction.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:3

several important applications of the proposed diGRASS algorithm. Section 7 demonstrates com-
prehensive experiment results of diGRASS for a variety of real-world, large-scale directed graphs,
which is followed by the conclusion of this work in Section 8.

2 RELATEDWORKS

This section firstly provides a simple overview of undirected graph sparsification. Then we in-
trouduce the existing directed graph symmetrization methods that convert directed graphs into
undirected ones such that existing sparsification algorithms on undirected graphs can be directly
utilized. At last, prior theoretical directed graph sparsification algorithms are introduced briefly.

2.1 Graph Sparsification

Graph sparsification aims at finding a subgraph (sparsifier) that has the same set of vertices but
much fewer edges than the original graph. There are several types of graph sparsifiers proposed
for undirected graphs. Graph spanners [2–4, 34] are trying to preserve the pair-wise shortest-path
distance between the original graph and the sparsifier. Cut sparsifiers [7, 21] are targeting pre-
serving the cut values between cuts. Spectral sparsification methods preserve the graph spectral
(structural) properties, such as distances between vertices, effective resistances, cuts in the graph,
as well as the stationary distributions of Markov chains [12, 13, 40]. Therefore, spectral graph
sparsification is a much stronger notion than cut sparsification, and more spectral related sparsi-
fication methods are proposed in recent years, such as spectral preservation of pseudoinverse for
the graph Laplacian [29] and linear-sized sparsifier [28].

2.2 Directed Graph Symmetrization

When dealing with directed graphs, it’s natural to convert directed graphs into undirected ones so
that existing undirected graph algorithms can be subsequently leveraged. The related transforming
procedures are called symmetrization methods. We will review three existing graph symmetriza-
tion methods, including the A + A� 2 symmetrization, bibliometric symmetrization methods, and
the random-walk symmetrization.
—A + A� symmetrization simply ignores the edges’ directions, which is the simplest andmost

efficient way for directed graph symmetrization. However, edge directions may play an important
role in directed graphs. As shown in Figure 1, edges (8, 1) and (4, 5) seem to have the equal im-
portance in the symmetrized undirected graph A + A�. However, in the original directed graph,
edge (8, 1) is much more important than edge (4, 5), since removing edge (8, 1)will lead to the loss
of more connections in the directed graph. For example, removing edge (4, 5) will only affect the
walks from node 4 to any other nodes as well as walks from any other nodes to node 5. However,
if we remove edge (8, 1) in the directed graph, it will affect the walks from node 8 to any other
nodes and the walks to node 1; there will also be no access from nodes 5, 6, 7, and 8 to nodes 1, 2, 3,
and 4.
— Bibliographic symmetrization [37] adopts AA� + A�A as the adjacency matrix after sym-

metrization to take the in-going and out-going edges into consideration. However, it cannot be
scaled to large-scale graphs since it will create much denser undirected graphs after symmetriza-
tion. Also, disconnected graphs can be created due to the AA� + A�A symmetrization, as shown
in Figure 1.
— Random-walk symmetrization [11] is based on random walks and allows normalized cut

to be preserved after symmetrization. This is also a new symmetrization approach used in recent
work for defining the Laplacian matrix of directed graphs. When defining the Laplacian matrix, we

2The definition for the adjacency matrix of (un)directed graphs A is introduced in Section 4.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:4 Y. Zhang et al.

Fig. 1. Converting a directed graph G in (a) into undirected ones using A + A�, AA� + A�A, and the pro-
posed LGL

�
G
as shown in Figures (b)-(d), respectively.

can apply the random walk for aperiodic graphs, or lazy random walk scheme for periodic graphs.
In [11], Cheeger’s inequality has been extended to directed graphs and plays a significant role
in spectral analysis of directed graphs. It connects Cheeger constant (conductance) with spectral
properties (eigenvalues of the graph Laplacian) of a graph. It also provides the bound for the small-
est eigenvalue of the directed graph Laplacian. However, the related theoretical results can only
be applied to strongly-connected aperiodic directed graphs, which are rare to find in real-world
applications.

2.3 Directed Graph Sparsification Algorithms

Refs. [13] and [12] expanded the scope and work on not only strongly-connected graphs but also
Eulerian graphs. However, there are obvious limitations with this approach. For example, a random
graph needs to be converted into an Eulerian graph via an Eulerian scaling procedure by introduc-
ing additional edges, changing the directions of the edges, or reweighing the edges, which may
jeopardize the original graphs’ spectral properties [13]. In addition, the Eulerian scaling is very tim-
ing consuming for large-scale graphs. Lastly, even though the complexity of algorithms is nearly
linear-time, it is still not fast in practice for different applications, such as solving asymmetric
linear systems, computing the stationary distribution of a Markov chain or computing expected
commute time in a directed graph, and so on.
In [9], the authors design cut sparsifiers and sketches for directed graphs. Cut is a property that

connects between undirected and directed graphs. How to construct cut sparsifiers for directed
graphs really depends on cut balance, which is the ratio between incoming and outgoing edges in
any given cut.

3 BACKGROUND

3.1 Definitions and Preliminaries

Undirected graph.Consider a weighted, undirected graphG = (V ,E,ω)withn = |V | andm = |E |,
where V denotes a set of vertices, n denotes the number of vertices, E denotes a set of edges, m
denotes the number of edges, and ω denotes a weight function that assigns a positive weight to

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:5

each edge. The adjacency matrix of graph G can be defined as follows:

AG (p,q) =

{
ω(p,q) if (p,q) ∈ E

0 if otherwise .
(1)

The Laplacian matrix can be computed by

LG = DG − AG, (2)

where DG is a diagonal matrix with elements DG (p,p) =
∑

t�p ω(p, t). For any real vector x ∈

R
n , the Laplacian quadratic form of graph G is defined as x�LGx =

∑
(p,q)∈E ω(p,q)(x(p) − x(q))2.

Recall that the undirected graph Laplacian is defined in Equation (2). Alternatively, the undirected
graph Laplacian can also be written as [38]

LG = B�WB, (3)

where matrix W is the diagonal matrix withW (p,p) to be the node degree for node p and matrix
B is shown as

B(p,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if v is pth edge’s head;

−1 if v is pth edge’s tail;

0 otherwise .

(4)

Directed graph. Consider a directed graphG = (V ,EG ,wG)withV denoting the set of vertices,
EG representing the set of directed edges, andwG denoting the associated edgeweights. Letn = |V |,
m = |EG | be the size of node and edge set. In the following, we denote the diagonal matrix by DG

with DG (i, i) being equal to the (weighted) outdegree of node i , as well as the adjacency matrix of
G by AG:

AG (i, j) =

{
wG (i, j) if (i, j) ∈ EG

0 otherwise .
(5)

Then the directed Laplacian matrix can be constructed as follows [13, 14]:

LG = DG − A�
G. (6)

The directed graph Laplacian matrix can also be constructed as LG = B�WC, where W and B

are defined the same as above, while matrix C is a signed edge-vertex incidence (injection) matrix
defined as follows:

C(p,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if v is pth edge’s head;

0 if v is pth edge’s tail;

0 otherwise.

(7)

For better illustration, we have summarized the most-frequently used symbols in our article in
Table 1. It can be shown that any directed (undirected) graph Laplacian constructed using Equation
(6) will satisfy the following properties: (I) Each column (and row) sum is equal to zero; (II) All
off-diagonal elements are non-positive; (III) The Laplacian matrix is asymmetric (symmetric) and
indefinite (positive semidefinite).

3.2 Spectral Graph Sparsification

Spectral sparsifier was first introduced by Spielman and Teng [40]. Given an undirected graph
with n vertices and m edges, a nearly-linear time algorithm was introduced for building (1 ± ϵ)
spectral sparsifiers withO(n logn/ϵ2) edges in [38]. S is said to be a (1± ϵ) spectral sparsifier ofG
if the following inequality holds for any x ∈ Rn :

(1 − ϵ)x�LGx ≤ x�LSx ≤ (1 + ϵ)x�LGx , (8)

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:6 Y. Zhang et al.

Table 1. Summary of Symbols Used in This Article

Before symmetrization After symmetrization
G = (V ,EG ,wG): (un)directed graph Gu = (V ,EGu

,wGu
): undirected graph

S = (V ,ES ,wS): sparsifier of G Su = (V ,ESu ,wSu): sparsifier of Gu

V : node set V : node set
n = |V |: number of nodes n = |V |: number of nodes
EG : edge set EGu

: edge set
mG = |EG |: number of edges in EG mGu

= |EGu
|: number of edges in Gu

ES : edge set of its sparsifier ESu : edge set of the symmetrization’s sparsifier
mS = |ES |: number of edges in ES mSu = |ESu |: number of edges in ESu
LG: Laplacian matrix of G LGu

: Laplacian matrix of Gu

LS: Laplacian matrix of sparsifier S LSu : Laplacian matrix of sparsifier Su

where LG and LS denote the symmetric diagonally dominant (SDD) Laplacian matrices of
graphsG and S , respectively. The key to the analysis of spectral sparsifier S, which is the improved
construction of Equation (8), is to observe the following equation [6]:

x�LSx

σ
≤ x�LGx ≤ σx�LSx, (9)

where x ∈ Rn . Relative condition number can be defined as κ(LG, LS) ≤ σ 2, implying that a smaller
relative condition number or σ 2 corresponds to a higher (better) spectral similarity between two
graphs.

4 A THEORETICAL FRAMEWORK FOR UNIFIED SPECTRAL SPARSIFICATION

In this section, we provide an innovative method to convert a directed graph into an undirected
one with the proposed LGL�G symmetrization. We will also introduce the spectral properties of the
new symmetrization scheme, as well as the proof for the existence of nearly-linear-sized spectral
sparsifier for a directed graph under certain conditions.

4.1 Our Contribution: The LGL
�
G Symmetrization Scheme [44]

For directed graphs, the subgraph S can be considered spectrally similar to the original graph G
if the condition number or the ratio between the largest and smallest singular values of L+S LG
is close to 1, where L+S denotes the Moore–Penrose pseudoinverse of LS. Spectral sparsification of
directed graphs is equivalent to finding an ultra-sparse subgraph S such that the condition number
of (L+S LG)

�(L+S LG) is small enough. Note that the singular values of L+S LG are the square roots of
eigenvalues of (L+S LG)

�(L+S LG), and (L+S LG)
�(L+S LG) can be written into L�G(LSL

�
S)
+LG. Although

L�G(LSL
�
S)
+LG is not equal to (LSL

�
S)
+(LGL

�
G), they do share the same eigenvalues under special

conditions according to the following theorem [20]:

Theorem 1. Consider matrices X ∈ Rm
′,n′

and Y ∈ Rn
′,m′

withm′ ≤ n′. Then the n′ eigenvalues
of YX are the m′ eigenvalues of XY together with n′ −m′ zeroes; that is pYX(t) = tn

′−m′
pXY(t). If

m′ = n′ and at least one of X or Y is nonsingular, then XY and YX are similar.

Based on Therorem 1, L�G(LSL
�
S)
+LG and (LSL�S)

+(LGL
�
G)will share the same eigenvalues. Under

this condition, spectral sparsification of directed graphs is equivalent to finding an ultra-sparse
subgraph S such that the condition number of (LSL�S)

+(LGL
�
G) is small enough. Theorem 2 shows

both LGL
�
G and LSL

�
S are the Laplacian matrices of some undirected graphs.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:7

Fig. 2. Edge coupling during directed Laplacian symmetrization.

Theorem 2. For any (un)directed graph G = (V ,EG ,wG) and its Laplacian LG, its symmetrized

undirected graph Gu = (V ,EGu
,wGu

) can be obtained via Laplacian symmetrization LGu
= LGL

�
G,

where LGu
is positive semi-definite (PSD) and will have the all-one vector as its null space.

Proof. The row sum of the Laplacian matrix equals to zero, which can be proved as follows:

LGu
(i, i) +

∑
j, j�i

LGu
(i, j)

=
∑
k

LG (i,k)LG (i,k) +
∑
j, j�i

∑
k

LG (j,k)LG (i,k)

=
∑
k

LG (i,k)

(
LG (i,k) +

∑
j, j�i

LG (j,k)

)
= 0,

(10)

which indicates the all-one vector is the subspace of the null space of LGu
. Meanwhile, the column

sum of LGu
equals to zero, which can be proved by the same way. Also, it’s very straightforward

to prove LGu
is PSD since x�LGu

x = x�LGL
�
Gx = ‖L�Gx‖ ≥ 0 holds for any real vector x ∈ R |V | .

It can be shown that Gu will contain negative edge weights under the following condition:∑
k

(AG (k, i)DG (k, j) + DG (i,k)AG (j,k)) >∑
k

AG (k, i)AG (k, j).
(11)

The edges will be coupled together and cause a denser graph in LGu
, if a node has more than

one outgoing edge. As an example shown in Figure 2, when edge e2 is added into the initial graph
G that includes a single edge e1, an extra edge (shown in red dashed line) coupling with e1 will
be created in the resultant undirected graph Gu ; similarly, when an edge e3 is further added, two
extra edges coupling with e1 and e2 will be created inGu . When the last edge e4 is added, It forms
a clique. �

4.2 Why not L�GLG Symmetrization?

LGL
�
G symmetrization is a novel spectrum-preserving Laplacian symmetrization procedure for

converting directed graphs into undirected ones. On the other hand, L�GLG does not work for this
purpose since L�GLG does not correspond to the Laplacian of an undirected graph. Since the row
sum of LG is not zero, the row sum of the L�GLG will not be zero shown as follows:

(L�GLG)(i, i) +
∑
j, j�i

(L�GLG)(i, j)

=
∑
k

LG(k, i)LG(k, i) +
∑
j, j�i

∑
k

LG(k, i)LG(k, j)

=
∑
k

LG(k, i)

(
LG(k, i) +

∑
j, j�i

LG(k, j)

)
� 0.

(12)

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:8 Y. Zhang et al.

Although L�GLG is a PSD matrix, the all-one vector is not its null space, and existing methods for
spectral sparsification of undirected graphs [5, 43] cannot be exploited for sparsifying directed
graphs.

4.3 Existence of Nearly-linear-sized Spectral Sparsifier

In this section, we prove the existence of nearly-linear-sized spectral sparsifier for directed graphs
under the condition that their corresponding undirected graphs (obtained through the proposed
Laplacian symmetrization scheme) only contain non-negative edge weights.

Lemma 3. Let ϵ > 0, and u1, u2, . . . , um denote a set of vectors in Rn that allow expressing the

identity decomposition as [5] ∑
1≤i≤m

uiu
�
i = idRn , (13)

where idRn ∈ Rn×n denotes the identity matrix. Then there exists a series of non-negative coefficients

{ti }
m
i=1 such that |{ti |ti � 0}| = O(n/ϵ2), and

(1 − ϵ)x�idRnx ≤
∑
i

tix
�uiu

�
i x

≤ (1 + ϵ)x�idRnx. ∀x ∈ Rn .

(14)

Theorem 4. For an undirected graph Gu = (V ,EGu
,wGu

) converted from a directed graph G =
(V ,EG ,wG) via Laplacian symmetrization LGu

= LGL
�
G, there exists a (1 + ϵ)-spectral sparsifier

Su = (V ,ESu ,wSu) that can be constructed withO(n/ϵ
2) PSDs such that the corresponding undirected

graph Laplacian LSu = LSL
�
S satisfies the following condition for any x ∈ R |V | [27]:

(1 − ϵ)x�LGu
x ≤ x�LSux ≤(1 + ϵ)x�LGu

x. (15)

Proof. Lemma (3) proves the existence of the sparsifier for an undirected graph with non-
negative edge weights. Given a directed graph G withmG edges, it can be shown that the Lapla-
cian of the symmetrized undirected graphGu can be expressed as combination ofmG PSDmatrices
rather thanmGu

PSDmatrices. The key of our approach is to construct a set of vectors u1, . . . , umG

in R |V | such that ui can be expressed as an identity decomposition shown in Equation (13). Since
LGu

and its Moore–Penrose inverse (pseudoinverse) L+Gu
can be written as

LGu
=

n−1∑
j=1

λ′ju
′
ju

′
j
�, L+Gu

=

n−1∑
j=1

1

λ′j
u′ju

′
j
�, (16)

where vectors u′i and λ
′
i are the eigenvector and eigenvalue, respectively, it can be shown that

LGu
L+Gu
=

n−1∑
j=1

u′ju
′
j
�
= idLGu , (17)

where idLGu is the identity on im(LGu
) = ker(LGu

)�. In the following, we show how to construct
vectors ui for i = 1, . . . ,mG . The undirected Laplacian after symmetrization can be written as
LGu
= B�WoB with Wo =WCC�W. Consequently, Un×mG

matrix with ui for i = 1, . . . ,mG as its
column vectors can be constructed as

Un×mG
= [u1, . . . , umG

] = L
+/2

Gu
B�W

1/2
o . (18)

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:9

It can be shown that Un×mG
will satisfy the following equation:

Un×mG
U�
n×mG

=

mG∑
i=1

uiui
� = LGu

+/2B�WoBLGu

+�/2

= LGu

+/2LGu
LGu

+�/2 = idLGu

. (19)

According to Lemma 3, we can always construct a diagonal matrix T ∈ Rm×m with ti as its ith
diagonal element. Then there will be at mostO(n/ϵ2) positive diagonal elements in T, which allows
constructing LSu as

LSu = B�W
1/2
o TW

1/2
o B (20)

that corresponds to the directed subgraph S for achieving (1 + ϵ)-spectral approximation of G as
required by Equation (15).
Since matrix Wo is a symmetric positive semidefinite matrix and T is a symmetric diagonal

matrix, LSu can be further written into

LSu = B�W
1
2
o T

1
2 T

1
2W

1
2
o B =

(
B�W

1
2
o T

1
2

) (
B�W

1
2
o T

1
2

)�
. (21)

Therefore, the Laplacian of the directed graph LS can be expressed as

LS = B�W
1
2
o T

1
2 . (22)

Also, the following inequality holds for any x ∈ R |V |

(1 − ϵ)x�idLGu x ≤
∑
i

tiuiu
�
i ≤ (1 + ϵ)x�idLGu x. (23)

Since
∑

i tiuiu
�
i = UTU� and we have

UTU� =
(
L
+/2

Gu
B�W

1/2
o

)
T
(
L
+/2

Gu
B�W

1/2
o

)�
= L

+/2

Gu
LSuL

+/2

Gu
,

(24)

while Equation (23) can be proved through the following steps based on the Courant–Fischer
Theorem:

1 − ϵ ≤
y�UTU�y

y�y
≤ 1 + ϵ ∀y ∈ im(LGu

)

⇐⇒ 1 − ϵ ≤
y�L

+/2

Gu
LSuL

+/2

Gu
y

y�y
≤ 1 + ϵ ∀y ∈ im(LGu

)

⇐⇒ 1 − ϵ ≤
x�L

1
2

Gu
L
+/2

Gu
LSuL

+/2

Gu
L

1
2

Gu
x

x�L
1
2

Gu
L

1
2

Gu
x

≤ 1 + ϵ ∀x ⊥ 1

⇐⇒ 1 − ϵ ≤
x�LSux

x�LGu
x
≤ 1 + ϵ ∀x ⊥ 1

⇐⇒ (1 − ϵ)x�LGu
x ≤ x�LSux ≤ (1 + ϵ)x�LGu

x ∀x ⊥ 1.

(25)

Equation (25) demonstrates that Su is a (1 + ϵ)-spectral sparsifier of graph Gu under specific
conditions. �

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:10 Y. Zhang et al.

Theorem 4 proves that there exists an undirected graph Su and the connection between graph Su
and the original directed graphG. The next key step is to show that LSu can be factorized into the
product of a directed graph Laplacian LS and its transpose. Also, Theorem 4 does not immediately
imply a sparse structure in LS. To prove the existence of nearly-linear-sized spectral sparsifier
for a directed graph, we further assume the undirected graph Gu obtained through the proposed
Laplacian symmetrization only contains edges with non-negative weights. Next, the following
Lemma 5 can be exploited to prove the existence of nearly-linear-sized LS based on Equation (22):

Lemma 5. [SparseCholesky Algorithm [25]] Given an n × n undirected Laplacian matrix Lu with

O(m) non-positive off-diagonal elements (non-negative edge weights), the SparseCholesky Algorithm

[25] runs in expected time O(m log3 n) and computes a permutation Π, a lower triangular matrix L

withO(m log3 n) nonzero entries, and a diagonal matrix D such that with probability 1 − 1
poly(n)

, we

have
1

2
x�Lux ≤ x�Zx ≤

3

2
x�Lux, (26)

where Z = ΠLDL�Π�, and Z has a sparse Cholesky factorization.

Reference [25] provides a nearly-linear time algorithm for constructing L using the sparsified
Cholesky factorization method, which is a process of constructing clique structure of the Schur
complement. More importantly, [25] demonstrates thatL is a lower diagonal matrix which always
corresponds to a feed-forward directed graph. As a result, we can conclude that given a Laplacian
matrix of an undirected graph with non-negative edge weights, it can be always factorized into
the product of a nearly-linear-sized directed Laplacian matrix and its transpose through the LDLT

decomposition (sparsified Cholesky factorization).
Combining Theorem 4 and Lemma 5 will allow us to prove the following main theorem.

Theorem 6. For any given directed graph G = (V ,EG ,wG), when its undirected graph

Gu = (V ,EGu
,wGu

) obtained via the proposed Laplacian symmetrization only contains non-negative

edge weights, there exists a (1 + ϵ)-spectral sparsifier S = (V ,ES ,wS) with O(n log
3 n/ϵ2) edges.

However, the above theorem has its own limitations. For example, when comparing with the
works of [11, 13, 14] which can preserve the cut in the sparsifier, ours cannot.

5 DIGRASS: A PRACTICALLY-EFFICIENT ALGORITHM FOR SPECTRAL

SPARSIFICATION OF DIRECTED GRAPHS

To apply our theoretical results to deal with real-world directed graphs, the following concerns
should be addressed in advance:

— The undirected graph LGL
�
G may become too dense to compute and thus may impose high

cost during spectral sparsification.
As we introduced in Section 4.1, the LGL�G symmetrization scheme will create extra edges if
a node has more than one outgoing edge in LG, as shown in Figure 2. Under this condition, it
may be possible to directly perform symmetrization on LG if LG is relatively sparse. However,
for general cases where LG may be very dense, the generated LGu

will be much denser due to
the edge coupling effect, which will inevitably impose high computational and memory cost
for following spectral sparsification procedure. To achieve a general algorithmic framework
for handling directed graph with various densities, it is necessary to solve this issue during
the framework design.

— It can be quite challenging to convert the sparsified undirected graph to its corresponding
directed sparsifier LS, even when LSu is available.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:11

There is no guarantee that the LS is an one-to-one correspondence to LSu . For example, it
is possible that multiple LS correspond to the same symmetrized undirected graph Lapla-
cian LSu . So it can be challenging to convert the LSu back to LS, even when LSu is available.
While the coupling edges generated during symmetrization will make the situation even
harder.

To address the above concerns for unified spectral graph sparsification, we propose a practically-
efficient frameworkwith following desired features: (1) our approach does not require to explicitly
compute LGL�G but only the matrix-vector multiplications; (2) our approach can effectively iden-
tify the most spectrally-critical edges for dramatically decreasing the relative condition number;
(3) although our approach requires to compute LSL�S , the LSu matrix density can be effectively con-
trolled by carefully pruning spectrally-similar edges through the proposed edge similarity check-
ing scheme.

5.1 Initial Sparsifier Construction

Motivated by the recent research on low-stretch spanning trees [1, 17] and spectral perturbation
analysis [18, 43] for nearly-linear-time spectral sparsification of undirected graphs, we propose
a practically-efficient algorithm for sparsifying general directed graphs by first constructing the
initial subgraph sparsifiers of directed graphs through the following steps:

— Step 1: Compute D−1(AG + A
�
G) as a new adjacency matrix, where D denotes the diagonal

matrix with each element equal to the row (column) sum of (AG + A
�
G). Recent research

shows such split transformations can effectively reduce graph irregularity while preserving
critical graph connectivity, distance between node pairs, theminimal edgeweight in the path,
as well as outdegrees and indegrees when using push-based and pull-based vertex-centric
programming [33].

— Step 2:Construct amaximumspanning tree (MST) based onD−1(AG + A
�
G), which allows

effectively controlling the number of outgoing edges for each node so that the resultant
undirected graph after symmetrization will not be too dense.

— Step 3: Recover the direction of each edge in the MST and make sure each node of its spar-
sifier has at least one outgoing edge if there are more than one in the original graph for
achieving stronger connectivity in the initial directed sparsifier.

5.2 Spectral Sensitivity of Off-subgraph Edges

As aforementioned, when the condition number of L+SuLGu
is small, the condition number of L+S LG

will be small, which represents that graph S is a good spectral sparsifier for graph G. To this end,
we will exploit the following spectral perturbation analysis framework for computing spectral
sensitivity of each off-subgraph edges. For the generalized eigenvalue problem

LGu
vi = λiLSuvi, for i = 1, . . . ,n (27)

let matrixV = [v1, . . . , vn]. Then vi and λi can be constructed to satisfy the following orthogonality
requirement:

v�i LGu
vj =

{
λi , i = j

0, i � j
and v�i LSuvj =

{
1, i = j

0, i � j .
(28)

Consider the following first-order generalized eigenvalue perturbation problem:

LGu
(vi + δvi) = (λi + δλi)(LSu + δLSu)(vi + δvi), (29)

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:12 Y. Zhang et al.

where a small perturbation δLSu in LSu is introduced, leading to the perturbed generalized eigen-
values and eigenvectors λi +δλi and vi + δvi. By only keeping the first-order terms, Equation (29)
becomes

LGu
δvi = λiLSuδvi + λiδLSuvi + δλiLSuvi. (30)

Let δvi =
∑

jψi, jvj, then Equation (30) can be expressed as

∑
j

ψi, jLGu
vj = λiLSu

(∑
j

ψi, jvj

)
+ λiδLSuvi + δλiLSuvi. (31)

Based on the orthogonality properties in Equation (28), multiplying vi to both sides of Equation
(31) results in

λiδLSuvi + δλiLSuvi = 0, (32)

which further leads to
δλi
λi
= −v�i δLSuvi. (33)

Then the task of spectral sparsification of general (un)directed graphs will require to recover as few
as possible off-subgraph edges to the initial directed subgraph S such that the largest eigenvalues,
or the condition number of L+SuLGu

can be dramatically reduced. Expand δLSu with only the first-
order terms as

δLSu = δLSL
�
S + LSδL

�
S , (34)

where δLS = wG (p,q)ep,qep
� for (p,q) ∈ EG \ ES , ep ∈ Rn denotes the vector with only the p-

th element being 1 and others being 0, and ep,q = ep − eq. The spectral sensitivity for each
off-subgraph edge (p,q) can be expressed as

ζp,q = v�i
(
δLSL

�
S + LSδL

�
S

)
vi. (35)

It is obvious that Equation (35) can be leveraged to rank the spectral importance of each off-
subgraph edge. Consequently, spectral sparsification of general graphs can be achieved by only
recovering a few dissimilar off-subgraph edges with large spectral sensitivity values. In this work,
the following method based on t-step power iterations is proposed for efficient computation of
dominant generalized eigenvectors

v1 ≈ ht =
(
L+SuLGu

) t
h0, (36)

where h0 denotes a random vector. When the number of power iterations is small (e.g., t ≤ 3), ht
will be a linear combination of the first few dominant generalized eigenvectors corresponding to
the largest few eigenvalues. Then the spectral sensitivity for the off-subgraph edge (p,q) can be
approximately computed by

ζp,q ≈ h�t
(
δLSL

�
S + LSδL

�
S

)
ht. (37)

The computation of ht through power iterations requires solving the linear system of equations
LSux = b for t times. Note that only LSu needs to be explicitly computed for generalized power
iterations. The Lean Algebraic Multigrid (LAMG) [30] solver is leveraged for computing ht,
which can handle undirected graphs with negative edge weights and has an empirical O(|ESu |)
complexity for solving Laplacian matrices LSu .

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:13

Fig. 3. LAMG setup phase.

5.3 Lean Algebraic Multigrid (LAMG)

The setup phase of LAMG contains two main steps [30], as shown in Figure 3. First, a nodal elim-
ination procedure is performed to eliminate disconnected and low-degree nodes. Next, a node
aggregation procedure is applied for aggregating strongly connected nodes according to the fol-
lowing affinity metric cuv for nodes u and v :

cuv =
(X(u, :),X(v, :))2

(X(u, :),X(u, :))(X(v, :),X(v, :))

with (x, y) = ΣKk=1x(k) · y(k).

(38)

where X = (x(1), . . . , x(K)) is computed by applying a few Gauss–Seidel (GS) relaxations using K
initial random vectors to the linear system equation LSux = 0. Let x̃ represent the approximation
of the true solution x after applying several GS relaxations to LSux = 0. Due to the smoothing
property of GS relaxation, the latest error can be expressed as es = x − x̃, which will only contain
the smooth components of the initial error, while the highly oscillating modes will be effectively
damped out [8]. Nodes u and v are considered strongly connected to each other if X(u, :) and
X(v, :) are highly correlated for all the K test vectors (or a larger cuv value), which thus should be
aggregated to form a coarse level node.
Once the multilevel hierarchical representations of the original graph (Laplacians) have been

created, algebraic multigrid (AMG) solvers can be built and subsequently leveraged to solve
large Laplacian matrices efficiently.

5.4 Edge Spectral Similarities

The proposed spectral sparsification algorithm will first sort all off-subgraph edges according
to their spectral sensitivities in descending order (p1,q1), (p2,q2), ... and then select top few off-
subgraph edges to be recovered to the initial subgraph. To avoid recovering redundant edges into
the subgraph, it is indispensable to check the edge similarities: only the edges that are not similar
to each other will be added to the initial sparsifier. To this end, we exploit the following spec-
tral embedding scheme for distinguishing off-subgraph edges leveraging approximate dominant
generalized eigenvectors ht computed by Equation (36):

ψp,q(ht) =
∑
k

wp,qkh
�
t

(
ep,qe

�
p,qk
+ ep,qke

�
p,q

)
ht, (39)

where (p,qk) are the directed edges sharing the same head with (p,q) but different tails. Then the
proposed scheme for checking the spectral similarity of two off-subgraph edges will include the
following steps:

Step 1: Perform t-step power iterations with r = O(logn) initial random vectors h(1)0 , . . . , h
(r)
0 to

compute r approximate dominant generalized eigenvectors h(1)t , . . . , h
(r)
t ;

Step 2: For each edge (p,q), compute an r -dimensional spectral embedding vector sp,q ∈ Rr with

sp,q(r) = ψp,q(h
(r)
t);

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:14 Y. Zhang et al.

Step 3: Check the similarity of two off-subgraph edges (pi ,qi) and (pj ,qj) with

SpectralSim(i, j) = 1 −
||spi,qi − spj,qj | |

max(| |spi,qi | |, | |spj,qj | |)
. (40)

If SpectralSim(i, j) < ϱ for a given threshold ϱ, edge (pi ,qi) is considered spectrally dissimilar to
(pj ,qj). Given a list of candidate off-subgraph edges, Algorithm 2 is proposed for edge similarity
checking.

5.5 Algorithm Flow and Complexity of diGRASS

Algorithm 1 shows the algorithm flow for directed graph sparsification, where LG is the Laplacian
matrix for original graph, LS is the Laplacian matrix of initial spanning tree,dout is the user-defined
outgoing degree for nodes, and λlimit is the desired maximum generalized eigenvalue. Algorithm 2

ALGORITHM 1: The diGRASS Algorithm Flow

Input: LG, LS, dout, λlimit, α , ϱ
Output: LS

1: Compute the dominant generalized eigenvector ht, and its eigenvalue λmax;
2: while λmax > λlimit do

3: Compute the spectral sensitivity ζp,q of each off-subgraph edge (p,q) ∈ EG\S ;
4: Sort edge spectral sensitivities in descending order and include the top α% off-subgraph

edges into the candidate edge list Ẽlist = [(p1,q1), (p2,q2), ...];
5: Form the final edge list Elist that only includes spectrally-dissimilar off-subgraph edges ob-

tained by using Edge_Similarities_Checking(Ẽlist, LG, LS,dout, ϱ);
6: Update S̃ = S + Elist and compute the latest dominant generalized eigenvector h̃t, and its

eigenvalue λ̃max based on LG and LS̃ ;

7: if λ̃max < λmax then

8: Update S = S̃ , ht = h̃t, λmax = λ̃max ;
9: end if

10: end while

11: Return LS.

ALGORITHM 2: Edge_Similarities_Checking

Input: Ẽlist, LG, LS, dout, ϱ
Output: Elist

1: Perform t-step power iterations with r = O(logn) initial random vectors h
(1)
0 , . . . , h

(r)
0 to compute r

approximate dominant generalized eigenvectors h(1)t , . . . , h
(r)
t ;

2: Compute a r -dimensional embedding vector spi ,qi ∈ R
r for ∀(pi ,qi) ∈ Ẽlist;

3: let Elist = [(p1,q1)];
4: for i=2:|Ẽlist | do
5: Calculate the spectral similarity score SpectralSim(i, j) between (pi ,qi) and every edge (pj ,qj) in Ẽlist;

6: if SpectralSim(i, j) < ϱ and dpj ,dqj < dout for ∀(pj ,qj) ∈ Ẽlist then

7: Elist = [Ẽlist; (pi ,qi)];
8: end if

9: end for

10: Return Elist ;

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:15

obtains the edges after checking edges similarities for the off-subgraph edges, where Ẽlist is the set
of off-subgraph edges; Elist is the set of edges that will be added into sparsifier; dp is the outgoing
degree for node p. The complexity has been summarized as follows:

(a) Generate an initial subgraph S from the original directed graph inO(m logn) orO(m+n logn)
time;

(b) Compute the approximate dominant eigenvector ht and the spectral sensitivity of each off-
subgraph edge in O(m) time;

(c) Recover a small amount of spectrally-dissimilar off-subgraph edges into the latest subgraph
S according to their spectral sensitivities and similarities in O(m) time;

(d) Repeat steps (b) and (c) until the desired condition number or spectral similarity is achieved.

6 APPLICATIONS OF DIRECTED GRAPH SPARSIFICATION

6.1 Directed Laplacian Solver

Recent research has focused on developing more efficient algorithms for solving undirected Lapla-
cians [22, 24]. In thiswork, wewill focus on solving asymmetric Laplacianmatrices that correspond
to directed graphs: solving the following linear system equations LGx = b, where the right-hand-
side (RHS) vector b lies in the left singular vector space, will be equivalent to solving the following
problem:

LGL
�
GL

�+
G x = b. (41)

Let y = L�+G x, thenwewill first solve LGu
y = b. Once y is obtained, we can get the solution x = L�Gy.

Since LGu
is a much denser matrix, LGu

should not be explicitly formed when solving LGu
y = b. To

this end, iterativemethods such as thepreconditioned conjugate gradient (PCG) method can be
leveraged for solving LGu

y = bwith LSu as the preconditioner. Note that only LSu will be explicitly
computed during PCG iterations.
The directed graph sparsifier can also be directly leveraged as a preconditioner for solving

LGx = b using existing iterative methods, such as the generalized minimal residual (GMRES)
method [36]. GMRES is a widely-adopted Krylov-subspace iterative method for solving asymmet-
ric matrices. Given an initial solution vector x0, GMRES gradually improves the solution xm of the
mth iteration by minimizing the residue as follows:

xm = argmin
z∈x0+Km(LG,r0)

‖LGz − b‖2, (42)

where r0 = b − LGx0, and Km(LG, r0) = span{r0, LGr0, L
2
Gr0, . . . , L

m−1
G

r0} denotes the Krylov sub-
space.

6.2 (Personalized) PageRank Vectors

The idea of PageRank is to give a measurement of the importance for each web page. For example,
PageRank algorithm aims at finding the most popular web pages, while the personalized PageRank
algorithm aims at finding the pages that users will most likely visit. To state it mathematically, the
PageRank vector π satisfies the following equation:

π = (cA�
GDG

−1 + (1 − c)v01
�)π , (43)

where 0 < c < 1 is the damping constant, and vector v0 with non-negative coordinates, satisfying
1�v0 = 1, is the personalization vector. The original, non-personalized definition of the PageRank
is described when v0 =

1
n
1. Meanwhile, D−1

G
can not be defined if there exist nodes that have no

outgoing edges. To deal with such situation, a self-loop with a small edge weight can be added for
each node.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:16 Y. Zhang et al.

Fig. 4. Eigenvalues of LGu
for the directed graph in Figure 5 .

Fig. 5. Spectral partitioning of directed (left) and undirected graphs (right). The nodes within the same
cluster are assigned the same color.

6.3 Directed Graph Partitioning

It has been shown that partitioning and clustering of directed graphs can play very significant
roles in a variety of applications related to machine learning [31], data mining and circuit synthe-
sis and optimization [32], and so on. However, the efficiency of existing methods for partitioning
directed graphs strongly depends on the complexity of the underlying graphs [31]. For an undi-
rected graph, the eigenvectors corresponding to the first few smallest eigenvalues can be utilized
for the spectral partitioning purpose [39]. For a directed graphG on the other hand, the eigenvec-
tors corresponding to the first few different smallest eigenvalues of Laplacian LGu

will be required
for directed graph partitioning. The eigenvalues according to the symmetrization of the directed
graph in Figure 5 have a few multiplicities, which are shown in Figure 4. The partitioning result of
the directed graph in Figure 5 will depend on the eigenvectors that correspond to eigenvalues of
μ1, μ2, μ4, μ8. As shown in Figure 5, the spectral partitioning results can be quite different between
the directed and undirected graph with the same set of nodes and edges.

7 EXPERIMENTAL RESULTS

The proposed algorithm for spectral sparsification of directed graphs has been implemented using
MATLAB and C++. Extensive experiments have been conducted to evaluate the proposed method
with various types of directed graphs obtained from public-domain datasets [15]. To ensure that
every node in the graph has at least one out-going edge, we delete the nodes with no out-going
edges in the graph.

7.1 Dataset Description

The datasets are from SuiteSparse Matrix Collection [16]. If a node has only incoming edges or is
isolated with the rest of nodes, this bode will be removed from the graph. The statistics of datasets
are summarized in Table 2. The detailed description for each graph is shown as follows:

— gre_115, gre_185, and gre_1107 are from the Harwell–Boeing collection, which describe the
simulation of computer systems.

— hor is from the Harwell–Boeing Collection and it describes a flow network.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:17

Table 2. Statistics of Datasets

Dataset |V | |EG |
|EG |
|V |

gre_115 1.1E2 4.2E2 3.8
gre_185 1.8E2 1.0E3 5.6
gre_1107 1.1E3 5.6E3 5.1
harvard500 0.5E3 2.6E3 5.2
cell1 0.7E4 3.0E4 4.3
hor 0.4E3 3.7E3 9.3
pesa 1.2E4 8.0E4 6.7
big 1.3E3 0.9E5 6.9

Dataset |V | |EG |
|EG |
|V |

wordnet3 7.7E4 1.3E5 1.7
p2p-
Gnutella05

3.4E3 1.4E4 4.1

p2p-
Gnutella31

1.5E4 5.2E4 3.7

email-Eu-
core

1.0E3 2.5E4 25.3

wiki-Vote 7.1E3 1.0E5 14.7
cit-HepTh 2.7E4 3.5E5 13.0

Fig. 6. The spectral sensitivity scores of off-subgraph edges (e1 to e19 in blue) for the undirected (left) and
directed graph (right).

— harvard500 is a web connectivity matrix from Cleve Moler.
— cell1 is a GSM cell traffic matrix from Salvatore Lucifora, Telecom Italia Mobile.
— big and pesa are structure symmetric matrices.
— wordnet3 is a directed multi-relational network.
— p2p-Gnutella31 and p2p-Gnutella05 are Gnutella peer to peer networks.
— email-Eu-core is a relatively denser social network that is generated with e-mail data from
a research institute.

— wiki-Vote is a relatively denser social network from the Wikipedia vote dataset.
— cit-HepTh is a high-energy physics theory citation network from arxiv.

7.2 Spectral Edge Sensitivities

Figure 6 shows the spectral sensitivities of all the off-subgraph edges (e1 to e19 represented with
blue color) in both directed and undirected graphs calculated using MATLAB’s eigs function and
the proposed method based on (37) using the LAMG solver, respectively. Meanwhile, the spectral
sensitivities of all the off-subgraph edges (e1 to e19) with respect to the dominant eigenvalues
(λmax or λ1) in both directed and undirected graphs are plotted. We observe that spectral sensi-
tivities for directed and undirected graphs are drastically different from each other. The reason is
that the spectral sensitivities for off-subgraph edges in the directed graph depend on the edge di-
rections. It is also observed that the approximate spectral sensitivities calculated by the proposed
t-step power iterations with the LAMG solver match the true solution very well for both directed
and undirected graphs.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:18 Y. Zhang et al.

Table 3. Results of Directed Graph Spectral Sparsification

Test Cases |VG | |EG |
|ES0 |

|EG |
|ES |
|EG |

time (s)
λmax,S0

λmax

gre_115 1.1E2 4.2E2 0.46 0.79 0.05 7.5E3
gre_185 1.8E2 1.0E3 0.25 0.62 0.14 1.1E4
harvard500 0.5E3 2.6E3 0.31 0.40 0.64 1.2E3
cell1 0.7E4 3.0E4 0.31 0.57 3.10 1.0E5
hor 0.4E3 3.7E3 0.23 0.52 0.52 270
pesa 1.2E4 8.0E4 0.27 0.51 8.80 5.3E8
big 1.3E4 0.9E5 0.27 0.49 12.86 4.1E11
gre_1107 1.1E3 5.6E3 0.26 0.39 0.24 1.6E3
wordnet3 7.7E4 1.3E5 0.60 0.85 50.00 223
p2p-Gnutella31 1.5E4 5.2E4 0.33 0.59 11.90 129
p2p-Gnutella05 3.4E3 1.4E4 0.29 0.56 2.64 240
mathworks100 1.0E2 5.5E2 0.20 0.50 0.04 30
email-Eu-core 1.0E3 2.5E4 0.06 0.65 2.03 590
wiki-Vote 7.1E3 1.0E5 0.08 0.54 8.92 3.9E3
cit-HepTh 2.7E4 3.5E5 0.09 0.25 30.30 427

Fig. 7. Runtime scalability for “gre_1107” (left), “big” (middle), “gre_115” (right).

7.3 Directed Graph Sparsification

Table 3 shows comprehensive results on directed graph spectral sparsification for a variety of real-
world directed graphs using the proposed method, where |VG |(|EG |) denotes the number of nodes
(edges) for the original directed graphG; |ES 0 | and |ES | denote the numbers of edges in the initial
subgraph S0 and final spectral sparsifier S . Notice that we will directly apply the MATLAB’s eigs
function if graph size is relatively small (|ES 0 | < 1E4); otherwise, we will apply LAMG solver for
better efficiency when calculating the generalized eigenvector ht. Note that a small diagonal entry
with value of 1e − 6 is added to all symmetrized undirected graphs during the calculation. We

report the total runtime for the eigsolver using either the LAMG solver or eigs function.
λmax,S0

λmax

denotes the reduction rate of the largest generalized eigenvalue of L+SuLGu
from initial sparsifier to

final sparsifier.

Ablation study. Since the proposed method is iteratively adding edges for forming the sparsifier.
We demonstrate the performance of the runtime and generalized eigenvalue reductionwith respect
to the number of added edges in the sparsifier. Figure 7 shows the runtime scalability regarding to
the number of off-subgraph edges (|Eadded |) added in the final sparsifier for graph “gre_1107” (left),
“big” (middle) and “gre_115” (right). It shows that the runtime scales linearly with the added num-
ber of edges for all three graphs. Figure 8 shows how λmax (LGu

,LSu) is changing when including
different number of edges in the sparsifier. We can observe that λmax can be efficiently reduced

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:19

Fig. 8. Eigenvalue change with respect to added number of edges for “gre_115” (left) “gre_185” (right).

Table 4. Comparison of Spectral Sparsification Results

Test cases
GRASS [19] diGRASS (this work)

|ES′u
|

|EG′
u |

λmax (LG′
u
, LS′u)

|ES |
|EG |

λmax (LGu
, LSu)

|ES |
|EG |

λmax (LGu
, LSu)

gre_115 0.92 28 0.44 3760 0.43 522

gre_185 0.67 25 0.40 1140 0.41 170

gre_1107 0.86 9 0.43 2790 0.43 147

harvard500 0.36 13 0.39 5.22E5 0.66 125

p2p-Gnutella05 0.55 7 0.55 2.42E5 0.56 107

p2p-Gnutella31 0.59 6 0.59 1.4E5 0.59 224

big 0.60 7 0.60 8803 0.60 270

hor 0.31 17 0.30 209 0.30 34

wordnet3 0.78 8 0.79 5.94E4 0.85 513

when adding more edges in the sparsifier, especially at the early-stage of sparsifier construction. It
also demonstrates that the most spectrally-critical edges can be efficiently identified and included
at the early stage comparing to the edges that are less critical.

7.4 Comparison with Prior Method

Since there are no other existing directed graph sparsification methods to be compared, we com-
pare our proposedmethodwith the existing undirected graph sparsification tool GRASS [18, 19, 43].
To this end, we first convert directed graphs into undirected ones (G ′

u) using A + A� symmetriza-
tion. Then undirected graph sparsifiers S ′u will be computed by GRASS. In the last, the directed
graph sparsifiers can be constructed by recovering edge directions to the undirected sparsifier S ′u .
Note that a larger diagonal entry with value of 1e−4 is added to all symmetrized undirected graphs
during the calculation. The experimental results have been shown in Table 4, where λmax repre-
sents the largest generalized eigenvalue between the original graph and its final sparsifier. By keep-
ing similar numbers of edges in the sparsifiers, we observe that the proposed spectral sparsification
method consistently produces much better spectral sparsifiers than GRASS. Note that for graphs
“harvard500” and “wordnet3”, we cannot include more edges into the sparsifiers S ′u using GRASS,
implying that the final λmax (LGu

, LSu) cannot be further reduced; on the other hand, our method is
able to further reduce its condition number, achieving a much better spectral approximation level.

7.5 Directed Laplacian Solvers

Figure 9 shows the relative residual (res = ‖LGx − b‖/‖b‖) and runtime plots when spectral
sparsifiers are applied as the preconditioners for solving the Laplacians of directed graphs “hor”,

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:20 Y. Zhang et al.

Fig. 9. PCG convergence (the first row) and runtime (the second row) results for graphs “hor”, “gre_115” and
“gre_185”, respectively.

Fig. 10. GMRES convergence (the first row) and runtime (the second row) results for graphs “wordnet3”,
“harvard” and “big”, respectively.

“gre_115” and “gre_185”, respectively. As observed, the performance of the PCG solver has been
substantially improved by leveraging sparsifier-based preconditioners. Note that for graph “hor”
the plain PCG solver without using any preconditioner cannot converge to the desired accuracy
within the maximum number of iterations (500 iterations). Figure 10 shows the relative residual
and runtime plots when the preconditioners obtained via Incomplete LU (ILU) factorization of
the original directed graphs and their spectral sparsifiers are applied for “wordnet3”, “harvard500”
and “big”, respectively. “ILU(·)” and “LU(·)” indicate that ILU and LU decompositions have been
leveraged to construct the preconditioners, respectively. “nnz” denotes the number of nonzeros in
the preconditioners. The MATLAB’s built-in functions gmres, ilu, and lu with default settings
have been applied in our experiments. Note that the GMRES iterations with preconditioners show
much faster convergence for all test cases. It is also observed for each test case the preconditioner
computed using the directed sparsifier always has lowest number of nonzeros (nnz).

7.6 (Personalized) PageRank Computations

Figure 11 shows the application of the proposed directed graph sparsification for computing (per-
sonalized) PageRank vectors with c = 0.85, where the correlation of (personalized) PageRank

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:21

Fig. 11. (Personalized) PageRank Results.

Table 5. Spectral Partitioning Results

Testcase pesa gre_115 gre_185 gre_1107 harvard500 hor big email-Eu-core
|ES |
|EG |

0.95 0.79 0.73 0.81 0.66 0.58 0.75 0.62

np 154 5 15 80 14 98 493 120
np/|VG | 0.013 0.043 0.081 0.072 0.028 0.226 0.037 0.121
cut(G) 149 148 576 939 9,670 1,037 1,037 29,438
θ (G) 0.068 6.290 12.457 3.688 90.740 12.862 0.314 242.189
cut(S) 165 107 308 662 9,748 492 778 12,898
θ (S) 0.072 4.468 6.804 2.439 87.385 6.181 0.236 157.706

results using the original graphs (x-axis) and sparsifiers (y-axis) are plotted for graphs “ibm32”
(left), “mathworks100” (middle) and “gre_1107” (right), respectively. Note that a few steps of GS
smoothing have been applied to remove the high-frequency errors to obtain the smoothed (per-
sonalized) PageRank vectors when using the sparsified graphs. We observe that the (personalized)
PageRank vectors obtained from sparsifiers can well approximate the results computed with the
original graphs.

7.7 Directed Graph Partitioning

Table 5 shows the detailed partitioning results on different graphs. Since there is no clear clue
for spectral directed graph partitioning, we choose to perform spectral partitioning on the sym-
metrized undirected graphGu and Su , where two-way spectral partitioning are applied by utilizing
the Fiedler Vector of its Laplacian matrix. np is the number of nodes that share the different parti-
tions when comparing the partitioning results on graphGu and Su , where a smaller np indicates a
more similar partitioning results between two graphs, thus a better spectral similarity between the
original graph and the sparsifier. np/|VG | can be considered as the percentage of the mismatched
node over all node set. cut is the cut value between two partitions, which is equivalent to the num-
ber of edges connecting two partitions. θ is the ratio cut [42] value that can be computed with the

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:22 Y. Zhang et al.

Fig. 12. The partitioning results between Gu (left) and its sparsifier Su (right) for the “ibm32” graph.

Fig. 13. The partitioning results between Gu (left) and its sparsifier Su (right) for the “peta” graph.

Fig. 14. The partitioning results between Gu (left) and its sparsifier Su (right) for the “gre_1107” graph.

following equation given the partition Vi and Vj :

θ =
cut(Vi ,Vj)

|Vi |
+
cut(Vi ,Vj)

|Vj |
. (44)

Figures 12, 13, 14, and 15 show the partitioning results on the symmetrized graphGu and its sym-
metrized sparsifier Su for “ibm”, “peta”, “gre_1107”, and “big” graphs. As observed, very similar
partitioning results have been obtained, indicating well preserved spectral properties within the
spectrally-sparsified directed graph.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:23

Fig. 15. The partitioning results between Gu (left) and its sparsifier Su (right) for the “big” graph.

8 CONCLUSIONS

This article proves the existence of nearly-linear-sized spectral sparsifiers for directed graphs under
the condition that their corresponding undirected graphs (obtained through the proposed Lapla-
cian symmetrization scheme) only contain non-negative edge weights, and proposes a practically-
efficient yet unified spectral graph sparsification framework. Such a novel spectral sparsification
approach allows sparsifying real-world, large-scale directed and undirected graphs with guaran-
teed preservation of the original graph spectral properties. By exploiting a highly-scalable (nearly-
linear complexity) spectral matrix perturbation analysis framework for constructing nearly-linear
sized (directed) subgraphs, it enables us to well preserve the key eigenvalues and eigenvectors of
the original (directed) graph Laplacians. The proposed method has been validated using various
kinds of directed graphs obtained from public domain sparse matrix collections, showing promis-
ing spectral sparsification results for general directed graphs.

REFERENCES

[1] Ittai Abraham and Ofer Neiman. 2012. Using petal-decompositions to build a low stretch spanning tree. In Proceedings
of the 44th Annual ACM Symposium on Theory of Computing (STOC). ACM, 395–406.

[2] Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi Jebelli, Stephen
Kobourov, and Richard Spence. 2020. Graph spanners: A tutorial review. Computer Science Review 1, 37 (2020), 100253.

[3] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. 1993. On sparse spanners of weighted
graphs. Discrete and Computational Geometry 9, 1 (1993), 81–100.

[4] Surender Baswana and Sandeep Sen. 2007. A simple and linear time randomized algorithm for computing sparse
spanners in weighted graphs. Random Structures and Algorithms 30, 4 (2007), 532–563.

[5] Joshua Batson, Daniel Spielman, and Nikhil Srivastava. 2012. Twice-ramanujan sparsifiers. SIAM Journal on Comput-

ing 41, 6 (2012), 1704–1721.
[6] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. 2013. Spectral sparsification of graphs:

Theory and algorithms. Communications of the ACM 56, 8 (2013), 87–94.
[7] András A Benczúr and David R Karger. 1996. Approximating st minimum cuts in Õ (n 2) time. In Proceedings of the

28th Annual ACM Symposium on Theory of Computing (STOC). ACM, 47–55.
[8] William L. Briggs, Van Emden Henson, and Steve F. McCormick. 2000. A Multigrid Tutorial. Vol. 72. Siam.
[9] Ruoxu Cen, Yu Cheng, Debmalya Panigrahi, and Kevin Sun. 2021. Sparsification of directed graphs via cut balance.

In Proceedings of the 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[10] P. Christiano, J. Kelner, A. Madry, D. Spielman, and S. Teng. 2011. Electrical flows, laplacian systems, and faster ap-
proximation of maximum flow in undirected graphs. In Proceedings of the ACM STOC. 273–282.

[11] Fan Chung. 2005. Laplacians and the cheeger inequality for directed graphs. Annals of Combinatorics 9, 1 (2005), 1–19.
[12] Michael B. Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B. Rao, and Aaron Sidford. 2018.

Solving directed laplacian systems in nearly-linear time through sparse LU factorizations. In Proceedings of the 2018

59th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, 898–909.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

102:24 Y. Zhang et al.

[13] Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron Sidford, and Adrian Vladu. 2017.
Almost-linear-time algorithms for markov chains and new spectral primitives for directed graphs. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 410–419.
[14] Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian Vladu. 2016. Faster algo-

rithms for computing the stationary distribution, simulating random walks, and more. In Proceedings of the 2016 IEEE

57th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 583–592.
[15] T. Davis and Y. Hu. 2011. The university of florida sparse matrix collection. ACM Transactions on Mathematical Soft-

ware 38, 1 (2011), 1.
[16] Timothy A Davis and Yifan Hu. 2011. The university of florida sparse matrix collection. ACM Transactions on Mathe-

matical Software 38, 1 (2011), 1–25.
[17] Michael Elkin, Yuval Emek, Daniel A Spielman, and Shang-Hua Teng. 2008. Lower-stretch spanning trees. SIAM Jour-

nal on Computing 38, 2 (2008), 608–628.
[18] Zhuo Feng. 2016. Spectral graph sparsification in nearly-linear time leveraging efficient spectral perturbation analysis.

In Proceedings of the 53rd Annual Design Automation Conference. ACM, 57.
[19] Zhuo Feng. 2020. Grass: Graph spectral sparsification leveraging scalable spectral perturbation analysis. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems 39, 12 (2020), 4944–4957.
[20] Roger A. Horn and Charles R. Johnson. 2012. Matrix Analysis. Cambridge University Press.
[21] David R. Karger. 1994. Random sampling in cut, flow, and network design problems. In Proceedings of the 26th Annual

ACM Symposium on Theory of Computing. 648–657.
[22] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. 2014. An almost-linear-time algorithm for

approximatemax flow in undirected graphs, and its multicommodity generalizations. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 217–226.

[23] Pavel Kolev and Kurt Mehlhorn. 2015. Approximate spectral clustering: Efficiency and guarantees. arXiv preprint
arXiv:1509.09188.

[24] I. Koutis, G. Miller, and R. Peng. 2010. Approaching optimality for solving SDD linear systems. In Proceedings of the

IEEE FOCS. 235–244.
[25] Rasmus Kyng and Sushant Sachdeva. 2016. Approximate Gaussian elimination for laplacians-fast, sparse, and simple.

In Proceedings of the 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 573–582.
[26] Yin Tat Lee and He Sun. 2017. An sdp-based algorithm for linear-sized spectral sparsification. In Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing. 678–687.
[27] Yin Tat Lee and He Sun. 2017. An sdp-based algorithm for linear-sized spectral sparsification. In Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing. 678–687.
[28] Yin Tat Lee and He Sun. 2018. Constructing linear-sized spectral sparsification in almost-linear time. SIAM Journal

on Computing 47, 6 (2018), 2315–2336.
[29] Huan Li and Aaron Schild. 2018. Spectral subspace sparsification. In Proceedings of the 2018 IEEE 59th Annual Sympo-

sium on Foundations of Computer Science (FOCS). IEEE, 385–396.
[30] O. Livne and A. Brandt. 2012. Lean algebraic multigrid (LAMG): Fast graph Laplacian linear solver. SIAM Journal on

Scientific Computing 34, 4 (2012), B499–B522.
[31] Fragkiskos D. Malliaros and Michalis Vazirgiannis. 2013. Clustering and community detection in directed networks:

A survey. Physics Reports 533, 4 (2013), 95–142.
[32] Giovanni De Micheli. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill Higher Education.
[33] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Transforming irregular graphs for GPU-friendly

graph processing. In Proceedings of the 23rd International Conference on Architectural Support for Programming Lan-

guages and Operating Systems. ACM, 622–636.
[34] David Peleg and Alejandro A Schäffer. 1989. Graph spanners. Journal of Graph Theory 13, 1 (1989), 99–116.
[35] Richard Peng, He Sun, and Luca Zanetti. 2015. Partitioning well-clustered graphs: Spectral clustering works. In Pro-

ceedings of the 28th Conference on Learning Theory (COLT). 1423–1455.
[36] Youcef Saad andMartin H. Schultz. 1986. GMRES: A generalizedminimal residual algorithm for solving nonsymmetric

linear systems. SIAM Journal on Scientific and Statistical Computing 7, 3 (1986), 856–869.
[37] Venu Satuluri and Srinivasan Parthasarathy. 2011. Symmetrizations for clustering directed graphs. In Proceedings of

the 14th International Conference on Extending Database Technology. ACM, 343–354.
[38] Daniel Spielman and Nikhil Srivastava. 2011. Graph sparsification by effective resistances. SIAM Journal on Computing

40, 6 (2011), 1913–1926.
[39] D. Spielman and Shanghua Teng. 1996. Spectral partitioning works: Planar graphs and finite element meshes. In

Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 96–105.
[40] Daniel Spielman and ShangHua Teng. 2011. Spectral sparsification of graphs. SIAM Journal on Computing 40, 4 (2011),

981–1025.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

diGRASS: Directed Graph Spectral Sparsification 102:25

[41] D. Spielman and S. Teng. 2014. Nearly linear time algorithms for preconditioning and solving symmetric, diagonally
dominant linear systems. SIAM Journal on Matrix Analysis and Applications 35, 3 (2014), 835–885.

[42] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and Computing 17, 4 (2007), 395–416.
[43] Z. Feng. 2018. Similarity-aware spectral sparsification by edge filtering. In Proceedings of the 55th Design Automation

Conference (DAC). IEEE.
[44] Ying Zhang, Zhiqiang Zhao, and Zhuo Feng. 2019. Towards scalable spectral sparsification of directed graphs. In

Proceedings of the 2019 IEEE International Conference on Embedded Software and Systems (ICESS). IEEE, 1–2.

Received 3 March 2022; revised 19 May 2023; accepted 6 December 2023

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.

