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Recent spectral graph sparsification research aims to construct ultra-sparse subgraphs for preserving the origi-
nal graph spectral (structural) properties, such as the first few Laplacian eigenvalues and eigenvectors, which
has led to the development of a variety of nearly-linear time numerical and graph algorithms. However, there
is very limited progress for spectral sparsification of directed graphs. In this work, we prove the existence
of nearly-linear-sized spectral sparsifiers for directed graphs under certain conditions. Furthermore, we in-
troduce a practically-efficient spectral algorithm (diGRASS) for sparsifying real-world, large-scale directed
graphs leveraging spectral matrix perturbation analysis. The proposed method has been evaluated using a
variety of directed graphs obtained from real-world applications, showing promising results for solving di-
rected graph Laplacians, spectral partitioning of directed graphs, and approximately computing (personalized)
PageRank vectors.
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1 INTRODUCTION

Graph-based analysis is an essential technique that has been widely adopted in many electronic
design automation (EDA) problems, such as the tasks for logic synthesis and verification,
layout optimization, static timing analysis (STA), network partitioning/decomposition, circuit
modeling and simulation, and so on. In recent years, several research problems for simplifying
large graphs leveraging spectral graph theory have been extensively studied by mathematics
and theoretical computer science (TCS) researchers [5, 12, 13, 23, 26, 35, 40]. Recent spectral
graph sparsification research allows constructing nearly-linear-sized subgraphs that can well
preserve the spectral (structural) properties of the original graph, such as the the first few
eigenvalues and eigenvectors of the graph Laplacian. The related results can potentially lead to
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the development of a variety of nearly-linear time numerical and graph algorithms for solving
large sparse matrices and partial differential equations (PDEs), graph-based semi-supervised
learning (SSL), computing the stationary distributions of Markov chains and personalized PageR-
ank vectors, spectral graph partitioning and data clustering, max flow and multi-commodity flow
of undirected graphs, nearly-linear time circuit simulation and verification algorithms, and so on
[10, 12, 13, 18, 22, 24, 40, 41, 43].

However, there is not a unified approach that allows for truly-scalable spectral sparsification
of directed graphs. For example, the state-of-the-art sampling-based methods for spectral sparsifi-
cation are only applicable to undirected graphs [24, 38, 41]; the latest theoretical breakthrough
in spectral sparsification of directed graphs [11] can only handle strongly-connected directed
graphs,! which inevitably limits its applications when confronting real-world graphs, since many
directed graphs may not be strongly connected, such as the graphs used in chip design automation
(e.g., timing analysis) tasks as well as the graphs used in machine learning and data mining tasks.

Consequently, there is still a pressing need for the development of highly-robust (theoretically-
rigorous) and truly-scalable (nearly-linear complexity) algorithms for reducing real-world large-
scale directed graphs while preserving key graph spectral (structural) properties. In summary, we
make the following contributions:

(1) We prove the existence of nearly-linear-sized spectral sparsifiers for directed graphs whose
symmetrized undirected graphs only contain non-negative edge weights and introduce a
practically-efficient yet unified spectral sparsification approach (diGRASS) that allows sim-
plifying real-world, large-scale (un)directed graphs with guaranteed preservation of the orig-
inal graph spectra.

(2) We show that leveraging a scalable spectral matrix perturbation analysis for constructing
ultra-sparse subgraphs will allow us to well preserve the key eigenvalues and eigenvectors
of the original directed graph Laplacians.

(3) Our approach is applicable to a much broader range of directed graphs when comparing
with the state-of-the-arts that may only be applicable to specific types of graphs, such as
undirected or strongly-connected directed graphs.

(4) Through extensive experiments for real-world directed graphs, diGRASS has been leveraged
for computing PageRank vectors, spectral partitioning of directed graphs, and solving di-
rected graph Laplacian matrices.

The spectrally-sparsified directed graphs constructed by diGRASS will potentially lead to the
development of much faster numerical and graph-related algorithms. For example, spectrally-
sparsified social (data) networks allow for more efficient modeling and analysis of large social
(data) networks; spectrally-sparsified neural networks allow for more scalable model training and
processing in emerging machine learning tasks; spectrally-sparsified web-graphs allow for much
faster computations of personalized PageRank vectors; spectrally-sparsified integrated circuit net-
works will lead to more efficient partitioning, modeling, simulation, optimization and verification
of large chip designs, and so on.

The rest of this article is organized as follows. Section 2 describes recent works related to spec-
tral algorithms for directed graphs and the key idea of the proposed method. Section 3 introduces
the background of the (un)directed graphs and spectral graph sparsification. Section 4 introduces a
novel theoretical framework for unified spectral sparsification of directed graphs. Section 5 intro-
duces a practically-efficient algorithm for spectral directed graph sparsification. Section 6 describes

LA strongly connected directed graph is a directed graph in which any node can be reached from any other node along
with direction.
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several important applications of the proposed diGRASS algorithm. Section 7 demonstrates com-
prehensive experiment results of diGRASS for a variety of real-world, large-scale directed graphs,
which is followed by the conclusion of this work in Section 8.

2 RELATED WORKS

This section firstly provides a simple overview of undirected graph sparsification. Then we in-
trouduce the existing directed graph symmetrization methods that convert directed graphs into
undirected ones such that existing sparsification algorithms on undirected graphs can be directly
utilized. At last, prior theoretical directed graph sparsification algorithms are introduced briefly.

2.1 Graph Sparsification

Graph sparsification aims at finding a subgraph (sparsifier) that has the same set of vertices but
much fewer edges than the original graph. There are several types of graph sparsifiers proposed
for undirected graphs. Graph spanners [2-4, 34] are trying to preserve the pair-wise shortest-path
distance between the original graph and the sparsifier. Cut sparsifiers [7, 21] are targeting pre-
serving the cut values between cuts. Spectral sparsification methods preserve the graph spectral
(structural) properties, such as distances between vertices, effective resistances, cuts in the graph,
as well as the stationary distributions of Markov chains [12, 13, 40]. Therefore, spectral graph
sparsification is a much stronger notion than cut sparsification, and more spectral related sparsi-
fication methods are proposed in recent years, such as spectral preservation of pseudoinverse for
the graph Laplacian [29] and linear-sized sparsifier [28].

2.2 Directed Graph Symmetrization

When dealing with directed graphs, it’s natural to convert directed graphs into undirected ones so
that existing undirected graph algorithms can be subsequently leveraged. The related transforming
procedures are called symmetrization methods. We will review three existing graph symmetriza-
tion methods, including the A + AT ? symmetrization, bibliometric symmetrization methods, and
the random-walk symmetrization.

— A + AT symmetrization simply ignores the edges’ directions, which is the simplest and most
efficient way for directed graph symmetrization. However, edge directions may play an important
role in directed graphs. As shown in Figure 1, edges (8,1) and (4, 5) seem to have the equal im-
portance in the symmetrized undirected graph A + AT. However, in the original directed graph,
edge (8, 1) is much more important than edge (4, 5), since removing edge (8, 1) will lead to the loss
of more connections in the directed graph. For example, removing edge (4, 5) will only affect the
walks from node 4 to any other nodes as well as walks from any other nodes to node 5. However,
if we remove edge (8,1) in the directed graph, it will affect the walks from node 8 to any other
nodes and the walks to node 1; there will also be no access from nodes 5, 6, 7, and 8 to nodes 1, 2, 3,
and 4.

— Bibliographic symmetrization [37] adopts AAT + AT A as the adjacency matrix after sym-
metrization to take the in-going and out-going edges into consideration. However, it cannot be
scaled to large-scale graphs since it will create much denser undirected graphs after symmetriza-
tion. Also, disconnected graphs can be created due to the AAT + ATA symmetrization, as shown
in Figure 1.

— Random-walk symmetrization [11] is based on random walks and allows normalized cut
to be preserved after symmetrization. This is also a new symmetrization approach used in recent
work for defining the Laplacian matrix of directed graphs. When defining the Laplacian matrix, we

%The definition for the adjacency matrix of (un)directed graphs A is introduced in Section 4.
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Fig. 1. Converting a directed graph G in (a) into undirected ones using A + AT, AAT + ATA, and the pro-
posed L(;Lg as shown in Figures (b)-(d), respectively.

can apply the random walk for aperiodic graphs, or lazy random walk scheme for periodic graphs.
In [11], Cheeger’s inequality has been extended to directed graphs and plays a significant role
in spectral analysis of directed graphs. It connects Cheeger constant (conductance) with spectral
properties (eigenvalues of the graph Laplacian) of a graph. It also provides the bound for the small-
est eigenvalue of the directed graph Laplacian. However, the related theoretical results can only
be applied to strongly-connected aperiodic directed graphs, which are rare to find in real-world
applications.

2.3 Directed Graph Sparsification Algorithms

Refs. [13] and [12] expanded the scope and work on not only strongly-connected graphs but also
Eulerian graphs. However, there are obvious limitations with this approach. For example, a random
graph needs to be converted into an Eulerian graph via an Eulerian scaling procedure by introduc-
ing additional edges, changing the directions of the edges, or reweighing the edges, which may
jeopardize the original graphs’ spectral properties [13]. In addition, the Eulerian scaling is very tim-
ing consuming for large-scale graphs. Lastly, even though the complexity of algorithms is nearly
linear-time, it is still not fast in practice for different applications, such as solving asymmetric
linear systems, computing the stationary distribution of a Markov chain or computing expected
commute time in a directed graph, and so on.

In [9], the authors design cut sparsifiers and sketches for directed graphs. Cut is a property that
connects between undirected and directed graphs. How to construct cut sparsifiers for directed
graphs really depends on cut balance, which is the ratio between incoming and outgoing edges in
any given cut.

3 BACKGROUND
3.1 Definitions and Preliminaries

Undirected graph. Consider a weighted, undirected graph G = (V, E, w) withn = |V|and m = |E|,
where V denotes a set of vertices, n denotes the number of vertices, E denotes a set of edges, m
denotes the number of edges, and w denotes a weight function that assigns a positive weight to
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each edge. The adjacency matrix of graph G can be defined as follows:

o(p,q) if(p.q) €E
Ag(p.q) = 1
c(p.9) {O if otherwise . ®
The Laplacian matrix can be computed by
Lg = Dg - Ag, (2

where Dg is a diagonal matrix with elements Dg(p.p) = X+, @(p, t). For any real vector x €
R", the Laplacian quadratic form of graph G is defined as x" Lgx = 2p.q)ce @(p, @) (x(p) — x(q)).
Recall that the undirected graph Laplacian is defined in Equation (2). Alternatively, the undirected
graph Laplacian can also be written as [38]

Lc = B'"WB, (3)
where matrix W is the diagonal matrix with W(p, p) to be the node degree for node p and matrix
B is shown as

1 if v is pth edge’s head;
B(p,v) =4—-1 ifvis pth edge’s tail; (4)
0  otherwise .

Directed graph. Consider a directed graph G = (V, Eg, wg) with V denoting the set of vertices,
E¢ representing the set of directed edges, and wg denoting the associated edge weights. Letn = |V,
m = |Eg| be the size of node and edge set. In the following, we denote the diagonal matrix by Dg
with Dg(i, i) being equal to the (weighted) outdegree of node i, as well as the adjacency matrix of
G by A(;:

o Jwe(ij) if(i,)) € Eg
Ac(i,)) = { . (5)
0 otherwise .
Then the directed Laplacian matrix can be constructed as follows [13, 14]:
Lg = Dg — A{. (6)

The directed graph Laplacian matrix can also be constructed as Lg = BTWC, where W and B
are defined the same as above, while matrix C is a signed edge-vertex incidence (injection) matrix
defined as follows:

1 ifovis pth edge’s head;
C(p,v) =40 ifois pth edge’s tail; (7)
0 otherwise.

For better illustration, we have summarized the most-frequently used symbols in our article in
Table 1.1t can be shown that any directed (undirected) graph Laplacian constructed using Equation
(6) will satisfy the following properties: (I) Each column (and row) sum is equal to zero; (IT) All
off-diagonal elements are non-positive; (III) The Laplacian matrix is asymmetric (symmetric) and
indefinite (positive semidefinite).

3.2 Spectral Graph Sparsification

Spectral sparsifier was first introduced by Spielman and Teng [40]. Given an undirected graph
with n vertices and m edges, a nearly-linear time algorithm was introduced for building (1 + ¢€)
spectral sparsifiers with O(nlog n/e?) edges in [38]. S is said to be a (1 + €) spectral sparsifier of G
if the following inequality holds for any x € R":

(1-€)x"Lox < x"Lsx < (1+¢€)x"Lgx, (8)
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Table 1. Summary of Symbols Used in This Article

Before symmetrization After symmetrization

G = (V,Eg, wg): (un)directed graph | G, = (V, Eg,, g, ): undirected graph
S = (V, Es, wg): sparsifier of G Sy = (V,Es,, ws,): sparsifier of G,

V: node set V: node set

n = |V|: number of nodes n = |V|: number of nodes

Eg: edge set Eg,: edge set

mg = |Eg|: number of edgesin Eg | mg, = |Eg, |: number of edges in G,
Es: edge set of its sparsifier Es,: edge set of the symmetrization’s sparsifier
mg = |Es|: number of edges in Eg ms, = |Es,|: number of edges in Eg,
Lg: Laplacian matrix of G Lg,: Laplacian matrix of G,

Ls: Laplacian matrix of sparsifier S | Lg,: Laplacian matrix of sparsifier S,

where Lg and Lg denote the symmetric diagonally dominant (SDD) Laplacian matrices of
graphs G and S, respectively. The key to the analysis of spectral sparsifier S, which is the improved
construction of Equation (8), is to observe the following equation [6]:
T
L
X sx <x"Lgx < 0x ' Lgx, %)

o
where x € R". Relative condition number can be defined as k(Lg, Ls) < o2, implying that a smaller
relative condition number or o corresponds to a higher (better) spectral similarity between two
graphs.

4 A THEORETICAL FRAMEWORK FOR UNIFIED SPECTRAL SPARSIFICATION

In this section, we provide an innovative method to convert a directed graph into an undirected
one with the proposed LgLj symmetrization. We will also introduce the spectral properties of the
new symmetrization scheme, as well as the proof for the existence of nearly-linear-sized spectral
sparsifier for a directed graph under certain conditions.

4.1 Our Contribution: The LgL{ Symmetrization Scheme [44]

For directed graphs, the subgraph S can be considered spectrally similar to the original graph G
if the condition number or the ratio between the largest and smallest singular values of L{Lg
is close to 1, where L{ denotes the Moore-Penrose pseudoinverse of Ls. Spectral sparsification of
directed graphs is equivalent to finding an ultra-sparse subgraph S such that the condition number
of (L§Lg) " (L{Lg) is small enough. Note that the singular values of L{Lg are the square roots of
eigenvalues of (L{Lg)"(L{Lg), and (L{Lg)T(L{Lg) can be written into L{(LsLg )*Lg. Although
Lé(LSLST )"Lg is not equal to (LSLST )+(LgLé), they do share the same eigenvalues under special
conditions according to the following theorem [20]:

THEOREM 1. Consider matrices X € R™>" and Y € R™>™ withm’ < n’. Then the n’ eigenvalues
of YX are the m’ eigenvalues of XY together with n’ — m’ zeroes; that is pyx(t) = t" =™ pxy(t). If
m’ = n’ and at least one of X orY is nonsingular, then XY and YX are similar.

Based on Therorem 1, L (LsLg )*Lg and (LsL{ )" (LgL(,) will share the same eigenvalues. Under
this condition, spectral sparsification of directed graphs is equivalent to finding an ultra-sparse
subgraph S such that the condition number of (LsLg )*(LgL(,) is small enough. Theorem 2 shows
both LgL{ and LsLg are the Laplacian matrices of some undirected graphs.
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Fig. 2. Edge coupling during directed Laplacian symmetrization.

THEOREM 2. For any (un)directed graph G = (V, Eg, wg) and its Laplacian Lg, its symmetrized
undirected graph G, = (V,Eg,,wg,) can be obtained via Laplacian symmetrization Lg, = Lng,
where Lg, is positive semi-definite (PSD) and will have the all-one vector as its null space.

Proor. The row sum of the Laplacian matrix equals to zero, which can be proved as follows:

Lo, i)+ ) La, (i)
JsJj#i

= > Le(L KLl k) + Y " La( k)La(i, k)
k

J-j#i k (10)

= > Lo,k [La( k) + > LaGi k)| =0,
k Jg#i
which indicates the all-one vector is the subspace of the null space of Lg,. Meanwhile, the column
sum of Lg, equals to zero, which can be proved by the same way. Also, it’s very straightforward
to prove Lg, is PSD since x ' Lg,x = x " LgLix = |[L{x|| > 0 holds for any real vector x € RV
It can be shown that G,, will contain negative edge weights under the following condition:

Z (Ag(k,1)Dg(k, j) + Dg (i, k)Ac(j. k)) >
k

(11)
> Aalk. DAG(K. ).
k

The edges will be coupled together and cause a denser graph in Lg,, if a node has more than
one outgoing edge. As an example shown in Figure 2, when edge e2 is added into the initial graph
G that includes a single edge el, an extra edge (shown in red dashed line) coupling with el will
be created in the resultant undirected graph G,; similarly, when an edge e3 is further added, two
extra edges coupling with el and e2 will be created in G,,. When the last edge e4 is added, It forms
a clique. O

4.2 Why not L Lg Symmetrization?

LGLE symmetrization is a novel spectrum-preserving Laplacian symmetrization procedure for
converting directed graphs into undirected ones. On the other hand, LLLg does not work for this
purpose since LLLg does not correspond to the Laplacian of an undirected graph. Since the row
sum of Lg is not zero, the row sum of the LELG will not be zero shown as follows:

(LGLa)(i i) + ), (LiLe)G, )
J-J#EL

= D Lok Lotk )+ Y > La(k, ilLo(k.))
k k

JoJj#i

(12)

= > Lok, D) [Lalk, ) + )" La(k,j)| # 0.
k

JoJ#i
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Although LELG is a PSD matrix, the all-one vector is not its null space, and existing methods for
spectral sparsification of undirected graphs [5, 43] cannot be exploited for sparsifying directed
graphs.

4.3 Existence of Nearly-linear-sized Spectral Sparsifier

In this section, we prove the existence of nearly-linear-sized spectral sparsifier for directed graphs
under the condition that their corresponding undirected graphs (obtained through the proposed
Laplacian symmetrization scheme) only contain non-negative edge weights.

LEMMA 3. Let € > 0, and uy,uy, ..., uy denote a set of vectors in R" that allow expressing the
identity decomposition as [5]
Z uiuiT = idgn, (13)
1<i<m

where idgn € R™" denotes the identity matrix. Then there exists a series of non-negative coefficients
{t:}7, such that |{t;|t; # 0}| = O(n/€®), and

(1-e)x"idpx < Z tix uu x
i

(14)

IA

(1+e)x"idgnx. Vx e R".

THEOREM 4. For an undirected graph G, = (V,Eg,, wg,) converted from a directed graph G =
(V,Eg,wg) via Laplacian symmetrization Lg, = LgL{, there exists a (1 + €)-spectral sparsifier
Su = (V,Es,, ws,) that can be constructed with O(n/€*) PSDs such that the corresponding undirected
graph Laplacian Ls, = LsL{ satisfies the following condition for any x € RIVI [27]:

(1-e)x"Lg,x < x'Lg,x <(1+ €)x' Lg,x. (15)

Proor. Lemma (3) proves the existence of the sparsifier for an undirected graph with non-
negative edge weights. Given a directed graph G with mg edges, it can be shown that the Lapla-
cian of the symmetrized undirected graph G,, can be expressed as combination of mg PSD matrices
rather than mg, PSD matrices. The key of our approach is to construct a set of vectors uy, . . ., Up,
in RIV! such that u; can be expressed as an identity decomposition shown in Equation (13). Since
Lg, and its Moore—Penrose inverse (pseudoinverse) LEU can be written as

n-1 n-1 1
11T + 7. T
Lo, = ) AT, 1g, = 7Y% (16)
j=1 =173

where vectors u/ and A{ are the eigenvector and eigenvalue, respectively, it can be shown that
n-1
+ T :
Le,Lg, = Z wuj = idig,, (7
=1

where idy, is the identity on im(Lg,) = ker(Lg,)". In the following, we show how to construct
vectors u; for i = 1,...,mg. The undirected Laplacian after symmetrization can be written as
Lg, = BTW,B with W, = WCC™W. Consequently, Upym,, matrix with u; fori = 1,...,mg as its
column vectors can be constructed as

Unxng = [0t -, Umg ] = L BTW. (18)
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It can be shown that Uyym, will satisfy the following equation:

mg
UnXmGUI-Il—XmG = Z uiuiT = LGu*./ZBT\NOBLGu+T/2 (19)
i=1 .

+/5 +T/2 .
= LG“ /ZLGULGU /2 = ldLG“
According to Lemma 3, we can always construct a diagonal matrix T € R™™ with ¢; as its ith

diagonal element. Then there will be at most O(n/€?) positive diagonal elements in T, which allows
constructing Lg, as

Ls, = BTW/'TW/'B (20)
that corresponds to the directed subgraph S for achieving (1 + €)-spectral approximation of G as
required by Equation (15).

Since matrix W, is a symmetric positive semidefinite matrix and T is a symmetric diagonal
matrix, Lg, can be further written into
1 4 4 1 1 4 1 g\ T
Ls, = B"WZT:T?WZB = (BngTi) (BngTz) . (21)
Therefore, the Laplacian of the directed graph Lg can be expressed as
1
Ls = BTWZTz. (22)
Also, the following inequality holds for any x € RIV!

(1- e)xTidLGux < Z tigu < (1+ e)xTidLGux. (23)
i

Since };; tiuju] = UTUT and we have

+ + T
UTU™ = (LEBTW) T (L BTW) o
_1'2 /2
=LJ’Ls, L,
while Equation (23) can be proved through the following steps based on the Courant-Fischer
Theorem:

TUTUT
l1-€e< yT—y <1l+e Vyce€im(Lg,)
y'y
Y L Ls Ly .
&= l-e<—————<1+e Vyeim(lg,)
yy
L2 L L LPLE x (25)
X Su
= lmex— e PO O c1he WxL1
XTLéuLéux
TLS X
4:)1—6ST—“S1+6 Vx 11
x"Lg,x

& (1-e)x'Lg,x<x'Lg,x < (1+e)x'Lg,x VxL1

Equation (25) demonstrates that S,, is a (1 + €)-spectral sparsifier of graph G, under specific
conditions. O
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Theorem 4 proves that there exists an undirected graph S,, and the connection between graph S,
and the original directed graph G. The next key step is to show that Lg, can be factorized into the
product of a directed graph Laplacian Lg and its transpose. Also, Theorem 4 does not immediately
imply a sparse structure in Lg. To prove the existence of nearly-linear-sized spectral sparsifier
for a directed graph, we further assume the undirected graph G, obtained through the proposed
Laplacian symmetrization only contains edges with non-negative weights. Next, the following
Lemma 5 can be exploited to prove the existence of nearly-linear-sized Lg based on Equation (22):

LEMMA 5. [SparseCholesky Algorithm [25]] Given an n X n undirected Laplacian matrix L, with
O(m) non-positive off-diagonal elements (non-negative edge weights), the SparseCholesky Algorithm
[25] runs in expected time O(mlog® n) and computes a permutation I1, a lower triangular matrix £
with O(mlog® n) nonzero entries, and a diagonal matrix D such that with probability 1 — m, we
have

1 3
EXTLUX <x'Zx SEXTLHX, (26)
where Z = TILDLTII", and Z has a sparse Cholesky factorization.

Reference [25] provides a nearly-linear time algorithm for constructing £ using the sparsified
Cholesky factorization method, which is a process of constructing clique structure of the Schur
complement. More importantly, [25] demonstrates that £ is a lower diagonal matrix which always
corresponds to a feed-forward directed graph. As a result, we can conclude that given a Laplacian
matrix of an undirected graph with non-negative edge weights, it can be always factorized into
the product of a nearly-linear-sized directed Laplacian matrix and its transpose through the LDLT
decomposition (sparsified Cholesky factorization).

Combining Theorem 4 and Lemma 5 will allow us to prove the following main theorem.

THEOREM 6. For any given directed graph G = (V,Eg,wg), when its undirected graph
Gy = (V,Eg,,wg,) obtained via the proposed Laplacian symmetrization only contains non-negative
edge weights, there exists a (1 + €)-spectral sparsifier S = (V, Es, ws) with O(nlog’ n/€?) edges.

However, the above theorem has its own limitations. For example, when comparing with the
works of [11, 13, 14] which can preserve the cut in the sparsifier, ours cannot.

5 DIGRASS: A PRACTICALLY-EFFICIENT ALGORITHM FOR SPECTRAL
SPARSIFICATION OF DIRECTED GRAPHS

To apply our theoretical results to deal with real-world directed graphs, the following concerns
should be addressed in advance:

— The undirected graph LgL may become too dense to compute and thus may impose high
cost during spectral sparsification.
As we introduced in Section 4.1, the LGLE symmetrization scheme will create extra edges if
anode has more than one outgoing edge in L, as shown in Figure 2. Under this condition, it
may be possible to directly perform symmetrization on L if L is relatively sparse. However,
for general cases where Lg may be very dense, the generated L, will be much denser due to
the edge coupling effect, which will inevitably impose high computational and memory cost
for following spectral sparsification procedure. To achieve a general algorithmic framework
for handling directed graph with various densities, it is necessary to solve this issue during
the framework design.

— It can be quite challenging to convert the sparsified undirected graph to its corresponding
directed sparsifier Ls, even when Lg, is available.
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There is no guarantee that the Lg is an one-to-one correspondence to Lg,. For example, it
is possible that multiple Lg correspond to the same symmetrized undirected graph Lapla-
cian Lg . So it can be challenging to convert the Ls, back to Lg, even when Lg, is available.
While the coupling edges generated during symmetrization will make the situation even
harder.

To address the above concerns for unified spectral graph sparsification, we propose a practically-
efficient framework with following desired features: (1) our approach does not require to explicitly
compute LgL} but only the matrix-vector multiplications; (2) our approach can effectively iden-
tify the most spectrally-critical edges for dramatically decreasing the relative condition number;
(3) although our approach requires to compute LsLg , the Ls, matrix density can be effectively con-
trolled by carefully pruning spectrally-similar edges through the proposed edge similarity check-
ing scheme.

5.1 Initial Sparsifier Construction

Motivated by the recent research on low-stretch spanning trees [1, 17] and spectral perturbation
analysis [18, 43] for nearly-linear-time spectral sparsification of undirected graphs, we propose
a practically-efficient algorithm for sparsifying general directed graphs by first constructing the
initial subgraph sparsifiers of directed graphs through the following steps:

— Step 1: Compute D™'(Ag + Al) as a new adjacency matrix, where D denotes the diagonal
matrix with each element equal to the row (column) sum of (Ag + Aj}). Recent research
shows such split transformations can effectively reduce graph irregularity while preserving
critical graph connectivity, distance between node pairs, the minimal edge weight in the path,
as well as outdegrees and indegrees when using push-based and pull-based vertex-centric
programming [33].

— Step 2: Construct a maximum spanning tree (MST) based on D™ (Ag + A(;), which allows
effectively controlling the number of outgoing edges for each node so that the resultant
undirected graph after symmetrization will not be too dense.

— Step 3: Recover the direction of each edge in the MST and make sure each node of its spar-
sifier has at least one outgoing edge if there are more than one in the original graph for
achieving stronger connectivity in the initial directed sparsifier.

5.2 Spectral Sensitivity of Off-subgraph Edges

As aforementioned, when the condition number of L;“ULGu is small, the condition number of L;LG
will be small, which represents that graph S is a good spectral sparsifier for graph G. To this end,
we will exploit the following spectral perturbation analysis framework for computing spectral
sensitivity of each off-subgraph edges. For the generalized eigenvalue problem

Lg,vi = AiLs,vi, fori=1,...,n (27)
let matrix V = [vy, ..., vy]. Then v; and ; can be constructed to satisfy the following orthogonality
requirement:

Lo < {gj’ T - {éﬁ o -
Consider the following first-order generalized eigenvalue perturbation problem:
Lg, (vi + 6vi) = (4 + 84;)(Ls, + OLs, )(vi + Svi), (29)
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where a small perturbation éLs, in Lg, is introduced, leading to the perturbed generalized eigen-
values and eigenvectors A; + d4; and v; + dv;i. By only keeping the first-order terms, Equation (29)
becomes

LGu5Vi = A1L3“5Vi + AiéLSuVi + 5A1LSUV1. (30)

Let 6vi = X ¥ijvj, then Equation (30) can be expressed as

J

J

Z l//i’jLG“Vj = AiLs“ (Z l//i’jVj) + AiéLs“Vi + 5/1iLSuVi- (31)

Based on the orthogonality properties in Equation (28), multiplying v; to both sides of Equation
(31) results in

Ai(SLs“Vi + S/IiLSuVi =0, (32)
which further leads to
OA;
)L—il = —v{ 5L, vi. (33)

Then the task of spectral sparsification of general (un)directed graphs will require to recover as few
as possible off-subgraph edges to the initial directed subgraph S such that the largest eigenvalues,
or the condition number of L;u Lg, can be dramatically reduced. Expand SLs, with only the first-
order terms as

SLs, = SLsLg + LgSLg, (34)

where 6Ls = wg(p,q)epqep ' for (p,q) € Eg \ Es, ep € R" denotes the vector with only the p-
th element being 1 and others being 0, and e, 4 = e, — eq. The spectral sensitivity for each
off-subgraph edge (p, q) can be expressed as

gp,q = V;r (5L5L;— + Ls(sL;r) Vi. (35)

It is obvious that Equation (35) can be leveraged to rank the spectral importance of each off-
subgraph edge. Consequently, spectral sparsification of general graphs can be achieved by only
recovering a few dissimilar off-subgraph edges with large spectral sensitivity values. In this work,
the following method based on t-step power iterations is proposed for efficient computation of
dominant generalized eigenvectors

Ve ~hy = (L;ULGu)tho, (36)

where hy denotes a random vector. When the number of power iterations is small (e.g., t < 3), hy
will be a linear combination of the first few dominant generalized eigenvectors corresponding to
the largest few eigenvalues. Then the spectral sensitivity for the off-subgraph edge (p, q) can be
approximately computed by

{pq ~ h{ (SLsL{ + LsSL{ ) hy. 37)

The computation of h; through power iterations requires solving the linear system of equations
Ls,x = b for t times. Note that only Ls, needs to be explicitly computed for generalized power
iterations. The Lean Algebraic Multigrid (LAMG) [30] solver is leveraged for computing hy,
which can handle undirected graphs with negative edge weights and has an empirical O(|Es,|)
complexity for solving Laplacian matrices Ls, .
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Elimination & aggregation

Fig. 3. LAMG setup phase.

5.3 Lean Algebraic Multigrid (LAMG)

The setup phase of LAMG contains two main steps [30], as shown in Figure 3. First, a nodal elim-
ination procedure is performed to eliminate disconnected and low-degree nodes. Next, a node
aggregation procedure is applied for aggregating strongly connected nodes according to the fol-
lowing affinity metric ¢, for nodes u and v:

L Km)Xw P
= TR, 2, X(w, )XV, 9, X(v,7) 38)
with (x,y) = ZI,lex(k) -y(k).

where X = (xV, ..., x®) is computed by applying a few Gauss-Seidel (GS) relaxations using K
initial random vectors to the linear system equation Ls x = 0. Let X represent the approximation
of the true solution x after applying several GS relaxations to Ls,x = 0. Due to the smoothing
property of GS relaxation, the latest error can be expressed as e; = x — X, which will only contain
the smooth components of the initial error, while the highly oscillating modes will be effectively
damped out [8]. Nodes u and v are considered strongly connected to each other if X(u,:) and
X(v,:) are highly correlated for all the K test vectors (or a larger c,,, value), which thus should be
aggregated to form a coarse level node.

Once the multilevel hierarchical representations of the original graph (Laplacians) have been
created, algebraic multigrid (AMG) solvers can be built and subsequently leveraged to solve
large Laplacian matrices efficiently.

5.4 Edge Spectral Similarities

The proposed spectral sparsification algorithm will first sort all off-subgraph edges according
to their spectral sensitivities in descending order (p1, q1), (P2, q2), ... and then select top few off-
subgraph edges to be recovered to the initial subgraph. To avoid recovering redundant edges into
the subgraph, it is indispensable to check the edge similarities: only the edges that are not similar
to each other will be added to the initial sparsifier. To this end, we exploit the following spec-
tral embedding scheme for distinguishing off-subgraph edges leveraging approximate dominant
generalized eigenvectors hy computed by Equation (36):

Vp.q(he) = Z Wp. g b (epyqe;qk + ep,qke;,q) hy, (39)
3

where (p, qx) are the directed edges sharing the same head with (p, q) but different tails. Then the
proposed scheme for checking the spectral similarity of two off-subgraph edges will include the
following steps:

Step 1: Perform ¢-step power iterations with r = O(log n) initial random vectors nY, . hgr) to

compute r approximate dominant generalized eigenvectors Y, ..., hﬁr);
Step 2: For each edge (p, ), compute an r-dimensional spectral embedding vector s, ¢ € R" with

5p.q(1) = UYp.g(h");
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Step 3: Check the similarity of two off-subgraph edges (p;, g;) and (p;, q;) with

[1spiai = Spy.gl]
max(|sp,,q 1> [lsp,.q;11)°
If SpectralSim(i, j) < o for a given threshold o, edge (p;, q;) is considered spectrally dissimilar to

(pj, qj)- Given a list of candidate off-subgraph edges, Algorithm 2 is proposed for edge similarity
checking.

SpectralSim(i, j) = 1 (40)

5.5 Algorithm Flow and Complexity of diGRASS

Algorithm 1 shows the algorithm flow for directed graph sparsification, where Lg is the Laplacian
matrix for original graph, Lg is the Laplacian matrix of initial spanning tree, do, is the user-defined
outgoing degree for nodes, and Ajjpi; is the desired maximum generalized eigenvalue. Algorithm 2

ALGORITHM 1: The diGRASS Algorithm Flow

Input: L, Ls, dout, Alimit> @, ©
Output: Ls
1: Compute the dominant generalized eigenvector hy, and its eigenvalue Apa;
2: while Amax > Alimit do
3 Compute the spectral sensitivity {;, 4 of each off-subgraph edge (p, q) € Eg\s;
4:  Sort edge spectral sensitivities in descending order and include the top a% off-subgraph
edges into the candidate edge list Ejigt = [(P1,q1)s (P25 q2)s ---];
5. Form the final edge list Ej;s that only includes spectrally-dissimilar off-subgraph edges ob-
tained by using Edge_Simﬂarities_Checking(]::hst, Lg, Ls, dout> 0);
6:  Update S = S + Ejjs; and compute the latest dominant generalized eigenvector hy, and its

eigenvalue imax based on Lg and Lg ;
7: if Anax < Amax then
8: Update S = S, hy = hy, Amax = Amax
9: endif
10: end while
11: Return Lg.

ALGORITHM 2: Edge_Similarities_Checking

Input: Elists Lg, Ls, dout» o
Output: Ejjg

1: Perform t-step power iterations with r = O(logn) initial random vectors h(()l), o ,hgr) to compute r
h(r)

shy s

: Compute a r-dimensional embedding vector sy, 4, € R” for V(p;, q;) € Elist:

+ let Ejigt = [(p1, q1)1;

: for i=2:|Ej;5| do

Calculate the spectral similarity score SpectralSim(i, j) between (p;, ¢;) and every edge (p;, g;) in Elist:

approximate dominant generalized eigenvectors h(l), e

'U_'lvhwl\')

if SpectralSim(i, j) < g and dp;, dg; < dout for V(pj, q;) € Ejist then
Eiisy = [Enist (Pi> 901

end if

: end for

10: Return Ejjg ;

© ® 3 o
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obtains the edges after checking edges similarities for the off-subgraph edges, where Ej is the set
of off-subgraph edges; Eig; is the set of edges that will be added into sparsifier; d, is the outgoing
degree for node p. The complexity has been summarized as follows:

(a) Generate an initial subgraph S from the original directed graph in O(mlog n) or O(m+nlogn)
time;

(b) Compute the approximate dominant eigenvector hy and the spectral sensitivity of each off-
subgraph edge in O(m) time;

(c) Recover a small amount of spectrally-dissimilar off-subgraph edges into the latest subgraph
S according to their spectral sensitivities and similarities in O(m) time;

(d) Repeat steps (b) and (c) until the desired condition number or spectral similarity is achieved.

6 APPLICATIONS OF DIRECTED GRAPH SPARSIFICATION
6.1 Directed Laplacian Solver

Recent research has focused on developing more efficient algorithms for solving undirected Lapla-
cians [22, 24]. In this work, we will focus on solving asymmetric Laplacian matrices that correspond
to directed graphs: solving the following linear system equations Lgx = b, where the right-hand-
side (RHS) vector b lies in the left singular vector space, will be equivalent to solving the following
problem:

LoLiLE x =b. (41)

Lety = L *x, then we will first solve Lg,y = b. Once y is obtained, we can get the solution x = Ljy.
Since Lg, is a much denser matrix, Lg, should not be explicitly formed when solving Lg,y = b. To
this end, iterative methods such as the preconditioned conjugate gradient (PCG) method can be
leveraged for solving Lg,y = b with Lg, as the preconditioner. Note that only Ls, will be explicitly
computed during PCG iterations.

The directed graph sparsifier can also be directly leveraged as a preconditioner for solving
Lgx = b using existing iterative methods, such as the generalized minimal residual (GMRES)
method [36]. GMRES is a widely-adopted Krylov-subspace iterative method for solving asymmet-
ric matrices. Given an initial solution vector xo, GMRES gradually improves the solution xy, of the
mth iteration by minimizing the residue as follows:

Xm= argmin Loz b, (42)
z€X0+Km(Lg,10)

where ry = b — LgXg, and K, (Lg, r9) = span{ry, Lgro, Léro, R Lg_lro} denotes the Krylov sub-

space.

6.2 (Personalized) PageRank Vectors

The idea of PageRank is to give a measurement of the importance for each web page. For example,
PageRank algorithm aims at finding the most popular web pages, while the personalized PageRank
algorithm aims at finding the pages that users will most likely visit. To state it mathematically, the
PageRank vector 7 satisfies the following equation:

T = (cA(T;DG_1 +(1=c)ve1 M), (43)

where 0 < ¢ < 1is the damping constant, and vector vy with non-negative coordinates, satisfying

17vy = 1, is the personalization vector. The original, non-personalized definition of the PageRank
is described when vy = %1. Meanwhile, DE,I can not be defined if there exist nodes that have no

outgoing edges. To deal with such situation, a self-loop with a small edge weight can be added for
each node.
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Fig. 4. Eigenvalues of Lg, for the directed graph in Figure 5 .

Fig. 5. Spectral partitioning of directed (left) and undirected graphs (right). The nodes within the same
cluster are assigned the same color.

6.3 Directed Graph Partitioning

It has been shown that partitioning and clustering of directed graphs can play very significant
roles in a variety of applications related to machine learning [31], data mining and circuit synthe-
sis and optimization [32], and so on. However, the efficiency of existing methods for partitioning
directed graphs strongly depends on the complexity of the underlying graphs [31]. For an undi-
rected graph, the eigenvectors corresponding to the first few smallest eigenvalues can be utilized
for the spectral partitioning purpose [39]. For a directed graph G on the other hand, the eigenvec-
tors corresponding to the first few different smallest eigenvalues of Laplacian Lg, will be required
for directed graph partitioning. The eigenvalues according to the symmetrization of the directed
graph in Figure 5 have a few multiplicities, which are shown in Figure 4. The partitioning result of
the directed graph in Figure 5 will depend on the eigenvectors that correspond to eigenvalues of
11, Has Has f1s. As shown in Figure 5, the spectral partitioning results can be quite different between
the directed and undirected graph with the same set of nodes and edges.

7 EXPERIMENTAL RESULTS

The proposed algorithm for spectral sparsification of directed graphs has been implemented using
MATLAB and C++. Extensive experiments have been conducted to evaluate the proposed method
with various types of directed graphs obtained from public-domain datasets [15]. To ensure that
every node in the graph has at least one out-going edge, we delete the nodes with no out-going
edges in the graph.

7.1 Dataset Description

The datasets are from SuiteSparse Matrix Collection [16]. If a node has only incoming edges or is
isolated with the rest of nodes, this bode will be removed from the graph. The statistics of datasets
are summarized in Table 2. The detailed description for each graph is shown as follows:

—gre_115, gre_185, and gre_1107 are from the Harwell-Boeing collection, which describe the
simulation of computer systems.
— hor is from the Harwell-Boeing Collection and it describes a flow network.
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Table 2. Statistics of Datasets

Dataset V]| |EG| % Dataset V| |EG| %
gre_115 1.1E2  4.2E2 3.3 wordnet3 7.7E4  13E5 1.7
gre_185 1.8E2 1.0E3 5.6 p2p- 34E3 14E4 4.1
gre_1107 1.1E3  5.6E3 5.1 Gnutella05
harvard500 0.5E3 2.6E3 5.2 p2p- 1.5E4 52E4 3.7
celll 0.7E4  3.0E4 43 Gnutella31
hor 0.4F3 3.7E3 93 email-Eu- 1.0E3 2.5E4 25.3
pesa 1.2E4  8.0E4 6.7 core
big 13E3 09E5 6.9 wiki-Vote 7.1E3  1.0E5 147
cit-HepTh 2.7E4  35E5 13.0
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Fig. 6. The spectral sensitivity scores of off-subgraph edges (el to e19 in blue) for the undirected (left) and
directed graph (right).

— harvard500 is a web connectivity matrix from Cleve Moler.

— celll is a GSM cell traffic matrix from Salvatore Lucifora, Telecom Italia Mobile.

— big and pesa are structure symmetric matrices.

— wordnet3 is a directed multi-relational network.

— p2p-Gnutella31 and p2p-Gnutella05 are Gnutella peer to peer networks.

— email-Eu-core is a relatively denser social network that is generated with e-mail data from
a research institute.

— wiki-Vote is a relatively denser social network from the Wikipedia vote dataset.

— cit-HepTh is a high-energy physics theory citation network from arxiv.

7.2 Spectral Edge Sensitivities

Figure 6 shows the spectral sensitivities of all the off-subgraph edges (el to €19 represented with
blue color) in both directed and undirected graphs calculated using MATLAB’s eigs function and
the proposed method based on (37) using the LAMG solver, respectively. Meanwhile, the spectral
sensitivities of all the off-subgraph edges (el to e19) with respect to the dominant eigenvalues
(Amax or Ay) in both directed and undirected graphs are plotted. We observe that spectral sensi-
tivities for directed and undirected graphs are drastically different from each other. The reason is
that the spectral sensitivities for off-subgraph edges in the directed graph depend on the edge di-
rections. It is also observed that the approximate spectral sensitivities calculated by the proposed
t-step power iterations with the LAMG solver match the true solution very well for both directed
and undirected graphs.
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Table 3. Results of Directed Graph Spectral Sparsification

Test Cases [Vl |EG| lézoﬂ ||£Z || time (s) AB"Z,—Z,?O
gre_115 1.1E2 4.2E2 0.46 0.79 0.05 7.5E3
gre_185 1.8E2 1.0E3 0.25 0.62 0.14 1.1E4
harvard500 0.5E3 2.6E3 0.31 0.40 0.64 1.2E3
cell1 0.7E4 3.0E4 0.31 0.57 3.10 1.0E5
hor 0.4E3 3.7E3 0.23 0.52 0.52 270
pesa 1.2E4 8.0E4 0.27 0.51 8.80 5.3E8
big 1.3E4 0.9E5 0.27 0.49 12.86 4.1E11
gre_1107 1.1E3 5.6E3 0.26 0.39 0.24 1.6E3
wordnet3 7.7E4 1.3E5 0.60 0.85 50.00 223
p2p—GnuteHa3l 1.5E4 5.2E4 0.33 0.59 11.90 129
p2p-Gnutella05  3.4E3 1.4E4 0.29 0.56 2.64 240
mathworks100 1.0E2 5.5E2 0.20 0.50 0.04 30
email-Eu-core 1.0E3 2.5E4 0.06 0.65 2.03 590
wiki-Vote 7.1E3 1.0E5 0.08 0.54 8.92 3.9E3
cit-HepTh 2.7E4 3.5E5 0.09 0.25 30.30 427
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Fig. 7. Runtime scalability for “gre_1107” (left), “big” (middle), “gre_115" (right).

7.3 Directed Graph Sparsification

Table 3 shows comprehensive results on directed graph spectral sparsification for a variety of real-
world directed graphs using the proposed method, where |V|(|Eg|) denotes the number of nodes
(edges) for the original directed graph G; |Ego| and |Es| denote the numbers of edges in the initial
subgraph S° and final spectral sparsifier S. Notice that we will directly apply the MATLAB’s eigs
function if graph size is relatively small (|Eso| < 1E4); otherwise, we will apply LAMG solver for
better efficiency when calculating the generalized eigenvector hy. Note that a small diagonal entry
with value of le — 6 is added to all symmetrized undirected graphs during the calculation. We

AmavaO

report the total runtime for the eigsolver using either the LAMG solver or eigs function.
denotes the reduction rate of the largest generalized eigenvalue of L{ Lg, from initial sparsifier to
final sparsifier.

Ablation study. Since the proposed method is iteratively adding edges for forming the sparsifier.
We demonstrate the performance of the runtime and generalized eigenvalue reduction with respect
to the number of added edges in the sparsifier. Figure 7 shows the runtime scalability regarding to
the number of off-subgraph edges (|Eqq4eq]) added in the final sparsifier for graph “gre_1107" (left),
“big” (middle) and “gre_115” (right). It shows that the runtime scales linearly with the added num-
ber of edges for all three graphs. Figure 8 shows how A,,4x(Lg,, Ls, ) is changing when including
different number of edges in the sparsifier. We can observe that 4,4, can be efficiently reduced

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.



diGRASS: Directed Graph Spectral Sparsification 102:19

><104 ><105

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
|ES|/|EG| IESIIIEGI

Fig. 8. Eigenvalue change with respect to added number of edges for “gre_115" (left) “gre_185” (right).

Table 4. Comparison of Spectral Sparsification Results

GRASS [19] diGRASS (this work)
Test cases o] s | sl
IEGIZA Amax(LG(,’ LS{]) |E;;| Amax(LGu’ LSU) |Eé| Amax(LGu, LSu)
gre_115 0.92 28 0.44 3760 0.43 522
gre_185 0.67 25 0.40 1140 0.41 170
gre_1107 0.86 9 0.43 2790 0.43 147
harvard500 0.36 13 0.39 5.22E5 0.66 125
p2p-Gnutella05 || 0.55 7 0.55 2.42E5 0.56 107
p2p-Gnutella31 0.59 6 0.59 1.4E5 0.59 224
big 0.60 7 0.60 8803 0.60 270
hor 0.31 17 0.30 209 0.30 34
wordnet3 0.78 8 0.79 5.94E4 0.85 513

when adding more edges in the sparsifier, especially at the early-stage of sparsifier construction. It
also demonstrates that the most spectrally-critical edges can be efficiently identified and included
at the early stage comparing to the edges that are less critical.

7.4 Comparison with Prior Method

Since there are no other existing directed graph sparsification methods to be compared, we com-
pare our proposed method with the existing undirected graph sparsification tool GRASS [18, 19, 43].
To this end, we first convert directed graphs into undirected ones (G,) using A + A" symmetriza-
tion. Then undirected graph sparsifiers S;, will be computed by GRASS. In the last, the directed
graph sparsifiers can be constructed by recovering edge directions to the undirected sparsifier S,,.
Note that a larger diagonal entry with value of 1e—4 is added to all symmetrized undirected graphs
during the calculation. The experimental results have been shown in Table 4, where A,,,, repre-
sents the largest generalized eigenvalue between the original graph and its final sparsifier. By keep-
ing similar numbers of edges in the sparsifiers, we observe that the proposed spectral sparsification
method consistently produces much better spectral sparsifiers than GRASS. Note that for graphs
“harvard500” and “wordnet3”, we cannot include more edges into the sparsifiers S;, using GRASS,
implying that the final A,,4x(Lg,, Ls,) cannot be further reduced; on the other hand, our method is
able to further reduce its condition number, achieving a much better spectral approximation level.

7.5 Directed Laplacian Solvers

Figure 9 shows the relative residual (res = ||Lgx — b||/||b||) and runtime plots when spectral
sparsifiers are applied as the preconditioners for solving the Laplacians of directed graphs “hor”,
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Fig.9. PCG convergence (the first row) and runtime (the second row) results for graphs “hor”, “gre_115” and
“gre_185", respectively.
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Fig. 10. GMRES convergence (the first row) and runtime (the second row) results for graphs “wordnet3”,
“harvard” and “big”, respectively.

“gre_115” and “gre_185", respectively. As observed, the performance of the PCG solver has been
substantially improved by leveraging sparsifier-based preconditioners. Note that for graph “hor”
the plain PCG solver without using any preconditioner cannot converge to the desired accuracy
within the maximum number of iterations (500 iterations). Figure 10 shows the relative residual
and runtime plots when the preconditioners obtained via Incomplete LU (ILU) factorization of
the original directed graphs and their spectral sparsifiers are applied for “wordnet3”, “harvard500”
and “big”, respectively. “ILU(-)” and “LU(:)” indicate that ILU and LU decompositions have been
leveraged to construct the preconditioners, respectively. “nnz” denotes the number of nonzeros in
the preconditioners. The MATLAB’s built-in functions gmres, ilu, and lu with default settings
have been applied in our experiments. Note that the GMRES iterations with preconditioners show
much faster convergence for all test cases. It is also observed for each test case the preconditioner
computed using the directed sparsifier always has lowest number of nonzeros (nnz).

7.6 (Personalized) PageRank Computations

Figure 11 shows the application of the proposed directed graph sparsification for computing (per-
sonalized) PageRank vectors with ¢ = 0.85, where the correlation of (personalized) PageRank

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 4, Article 102. Publication date: February 2024.



diGRASS: Directed Graph Spectral Sparsification

102:21

0.6 » 003

2 S04 ko

304 ° w02

®© © ©

& B0z s

ks 0.2 k<] ’ ks 0.1

£ £ £

) 0 0

0 0.2 04 0.6 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3

PR for graph G PR for graph G PR for graph G

(a) The correlation of PageRank between itself and its sparsifier for graphs “ibm32" (left), “mathworks100"
(middle) and “gre_1107" (right) after smoothing

06 @ »
2 ) B 3 o
204 5 04 >
[ T I}
Q S Q
2 @ 2 0.05
Soz2 802 s
o [any
o E o
a g a g [
0 01 02 03 04 05 0 o1 02 03 04 05 0 002 004 006 008 0.1

PPR for graph G

PPR for graph G

PPR for graph G

(b) The correlation of personalized PageRank between itself and its sparsifier for graph “ibm32" (left), “math-
works100" (middle) and “gre_1107" (right) after smoothing

Fig. 11. (Personalized) PageRank Results.

Table 5. Spectral Partitioning Results

Testcase | pesa | gre_115 | gre_185 | gre_1107 | harvard500 | hor | big |email-Eu-core
% 0.95 0.79 0.73 0.81 0.66 0.58 | 0.75 0.62
np 154 5 15 80 14 98 493 120
np/|Vgl | 0.013 | 0.043 0.081 0.072 0.028 0.226 | 0.037 0.121
cut(G) 149 148 576 939 9,670 1,037 | 1,037 29,438
0(G) |0.068 | 6.290 12.457 3.688 90.740 12.862 | 0.314 242.189
cut(S) 165 107 308 662 9,748 492 778 12,898
0(S) 0.072 | 4.468 6.804 2.439 87.385 6.181 | 0.236 157.706

results using the original graphs (x-axis) and sparsifiers (y-axis) are plotted for graphs “ibm32”
(left), “mathworks100” (middle) and “gre_1107" (right), respectively. Note that a few steps of GS
smoothing have been applied to remove the high-frequency errors to obtain the smoothed (per-
sonalized) PageRank vectors when using the sparsified graphs. We observe that the (personalized)
PageRank vectors obtained from sparsifiers can well approximate the results computed with the

original graphs.

7.7 Directed Graph Partitioning

Table 5 shows the detailed partitioning results on different graphs. Since there is no clear clue
for spectral directed graph partitioning, we choose to perform spectral partitioning on the sym-
metrized undirected graph G, and S,,, where two-way spectral partitioning are applied by utilizing
the Fiedler Vector of its Laplacian matrix. np is the number of nodes that share the different parti-
tions when comparing the partitioning results on graph G,, and S,,, where a smaller np indicates a
more similar partitioning results between two graphs, thus a better spectral similarity between the
original graph and the sparsifier. np/|Vi| can be considered as the percentage of the mismatched
node over all node set. cut is the cut value between two partitions, which is equivalent to the num-
ber of edges connecting two partitions. 0 is the ratio cut [42] value that can be computed with the
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Fig. 12. The partitioning results between G, (left) and its sparsifier Sy, (right) for the “ibm32” graph.

Fig. 13. The partitioning results between G, (left) and its sparsifier S, (right) for the “peta” graph.

Fig. 14. The partitioning results between G, (left) and its sparsifier S, (right) for the “gre_1107” graph.

following equation given the partition V; and V;:

cut(Vi, V) cut(Vi,V))

= +
Vil Vil

Figures 12, 13, 14, and 15 show the partitioning results on the symmetrized graph G, and its sym-
metrized sparsifier S, for “ibm”, “peta”, “gre_1107", and “big” graphs. As observed, very similar
partitioning results have been obtained, indicating well preserved spectral properties within the
spectrally-sparsified directed graph.

(44)
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Fig. 15. The partitioning results between G, (left) and its sparsifier S, (right) for the “big” graph.

8 CONCLUSIONS

This article proves the existence of nearly-linear-sized spectral sparsifiers for directed graphs under
the condition that their corresponding undirected graphs (obtained through the proposed Lapla-
cian symmetrization scheme) only contain non-negative edge weights, and proposes a practically-
efficient yet unified spectral graph sparsification framework. Such a novel spectral sparsification
approach allows sparsifying real-world, large-scale directed and undirected graphs with guaran-
teed preservation of the original graph spectral properties. By exploiting a highly-scalable (nearly-
linear complexity) spectral matrix perturbation analysis framework for constructing nearly-linear
sized (directed) subgraphs, it enables us to well preserve the key eigenvalues and eigenvectors of
the original (directed) graph Laplacians. The proposed method has been validated using various
kinds of directed graphs obtained from public domain sparse matrix collections, showing promis-
ing spectral sparsification results for general directed graphs.
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