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Abstract—Hypergraphs allow modeling problems with multi-
way high-order relationships. However, the computational cost
of most existing hypergraph-based algorithms can be heavily
dependent upon the input hypergraph sizes. To address the
ever-increasing computational challenges, graph coarsening can
be potentially applied for preprocessing a given hypergraph by
aggressively aggregating its vertices (nodes). However, state-of-
the-art hypergraph partitioning (clustering) methods that incor-
porate heuristic graph coarsening techniques are not optimized
for preserving the structural (global) properties of hypergraphs.
In this work, we propose an efficient spectral hypergraph coars-
ening scheme (HyperSF) for well preserving the original spectral
(structural) properties of hypergraphs. Our approach leverages
a recent strongly-local max-flow-based clustering algorithm for
detecting the sets of hypergraph vertices that minimize ratio
cut. To further improve the algorithm efficiency, we propose a
divide-and-conquer scheme by leveraging spectral clustering of
the bipartite graphs corresponding to the original hypergraphs.
Our experimental results for a variety of hypergraphs extracted
from real-world VLSI design benchmarks show that the proposed
hypergraph coarsening algorithm can significantly improve the
multi-way conductance of hypergraph clustering as well as
runtime efficiency when compared with existing state-of-the-art
algorithms.

Index Terms—hypergraph coarsening, spectral graph theory,
graph clustering

I. INTRODUCTION

With an ascending trend in network size, it is indispensable
to develop highly-scalable methods for boosting the perfor-
mance of graph-related computations. To this end, graph coars-
ening is becoming a fundamental task in many graph-related
tasks, aiming to coarsen a given graph into a much smaller
one while preserving its essential structural properties [1]-
[3]. Indeed, many tasks related to very-large-scale integration
(VLSI) computer-aided design (CAD), numerical optimiza-
tion, community detection, and graph clustering have already
benefited from graph coarsening for improving solution quality
and runtime efficiency [4]-[7].

Several different types of graph coarsening techniques have
been proposed in the past decades. For example, heavy edge
matching based graph coarsening method, such as Metis [8],
has been widely used for graph partitioning; another popular
way for graph coarsening is based on algebraic multigrid
(AMG) inspired schemes [9], [10], which usually forms the
Galerkin operator for generating the coarsened graphs; [11]
recently introduces a graph neural network (GNN) based
framework to learn the edge weights of the coarsened graphs.
Among existing coarsening methods, spectral graph coarsen-
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ing has been proven to be highly effective due to the preserva-
tion of key graph spectral (structural) properties [12], [13]. A
variety of spectral graph coarsening schemes have been pro-
posed in recent years: [14] proposed a Kron reduction scheme
based on Schur complement; Purohit et al. [15] introduced
CoarseNet to coarsen graphs while preserving the largest
eigenvalue of its adjacency matrix such that the diffusion
characteristics of the original graph can be kept; Loukas and
Vandergheynst [13] proposed a theoretical framework based
on restricted spectral similarity, which is a modification of
the previous spectral similarity metric for spectral graph spar-
sification; Bravo-Hermsdorff and Gunderson [16] proposed a
probabilistic framework for graph coarsening, with the goal
of preserving the inverse Laplacian of the coarsened graph;
[17] introduces a spectral coarsening and scaling algorithm
for preserving the first few eigenvalues and eigenvectors of
the original graph Laplacian matrix.

Unlike simple graphs in which each edge only connects
to two vertices, hypergraphs are a more versatile format for
encapsulating multi-relational features. As a result, hypergraph
representation allows truthfully modeling the higher-order
relationships, whereas simple graphs may fail to retain such
information. For example, hypergraphs are more suitable than
simple graphs in applications related to VLSI placement, co-
authorship representations, and metabolic reactions [18], [19].

To coarsen a hypergraph, the state-of-the-art hypergraph
partitioning algorithms, such as Hmetis [20], Zoltan [21],
and Mondriaan [22] can be directly adopted. However, it is
not clear if such coarsening schemes can properly preserve
the global (structural) properties of the original hypergraphs.
Although it is possible to perform spectral clustering by
converting hypergraphs into simple graphs using clique or
star expansions [23], the multi-way relationships may not
be precisely represented. Moreover, although recent research
proposed new methods for constructing hypergraph Laplacians
[24], [25], there exist no efficient implementations suitable for
tackling large-scale hypergraph problems [26].

In this work, we propose a scalable hypergraph coarsening
framework that allows dramatically reducing the size of hyper-
graphs (number of vertices) by aggregating strongly-coupled
vertices through a localized flow-based clustering method. Our
approach allows preserving the key structural (spectral) prop-
erties of the original hypergraphs, which thus will substantially
expedite the numerical computations of existing hypergraph-
based algorithms without sacrificing solution quality. The



major contribution of this work has been summarized as
follows:

« We propose an efficient approach (HyperSF) for scal-
ing down the hypergraph size by aggregating strongly-
coupled nodes in local neighborhoods without impacting
the global structure of the hypergraph.

o A key component of our method is a local, directed graph
based max-flow algorithm for selecting the sets of vertices
that minimize the local conductance, which can dramat-
ically improve the quality of hypergraph coarsening.

« We introduce a divide-and-conquer scheme to signif-
icantly improve the algorithm scalability by carefully
bounding the size of each max s-t flow network that
is constructed using a set of hyperedges (node clusters)
based on spectral graph embeddings.

« We have conducted extensive experiments for a variety
of hypergraph test cases extracted from realistic VLSI
design problems, and obtained promising results when
compared with existing hypergraph coarsening methods.

The rest of the paper is organized as follows. In Sections II
and III, we discuss the related works and provide a background
introduction to the proposed method. In Section IV, we present
the proposed HyperSF method with detailed technical de-
scriptions and algorithm flows. In Section V, we demonstrate
extensive experimental results for a variety of real-word VLSI
design benchmarks, which is followed by the conclusion of
this work in Section VI.

II. RELATED WORKS

Existing hypergraph coarsening methods are based on either
vertex similarity or edge similarity [27]: the edge similarity
based coarsening techniques contract similar hyperedges with
large sizes into smaller ones that include only a few vertices,
which can be easily implemented but may impact the original
hypergraph structural properties during the clustering process;
the vertex-similarity based algorithms rely on checking the
distances between vertices for discovering strongly-coupled
(correlated) clusters, which can be achieved leveraging hyper-
graph embedding that maps each vertex into a low-dimensional
vector such that the Euclidean distance (coupling) between the
vertices can be easily computed in constant time.

A. Heuristic methods

The state-of-the-art hypergraph coarsening algorithms are
heuristic. For example, Hmetis, Zoltan, and Mondriaan utilize
a coarsening method incorporating a multi-level partitioner
to greedily bisect the hypergraph effectively [20]-[22]. They
leverage hyperedge inner product for contracting hyperedges
that share more vertices; another popular hypergraph parti-
tioner PaToH [28], uses the absorption matching metric in
its coarsening strategy. However, these simple metrics do not
capture the higher-order relationships in the hypergraph.

An algebraic distance criteria is introduced to improve
the previous works [27], while a relaxation-based method
is adopted for assigning a coordinate to each vertex and
subsequently computing the Euclidean distance between the
maximally-distanced vertices within a hyperedge. Then the

hyperedge weights are updated accordingly and integrated into
the Zoltan partitioner for improving hypergraph partitioning.
However, such a method does not immediately lead to a spec-
tral hypergraph coarsening framework since many heuristics
have been used for minimizing hypergraph cuts.

B. Spectral methods

Spectral methods provide a formidable methodology for
the theoretical computer science applications. Researchers
extensively studied spectral graph coarsening to develop high-
performance algorithms with lower complexity.

Prior work generalized the existing spectral graph coars-
ening methods for hypergraphs by converting the hyperedges
into simple graph edges using star or clique expansion [29].
However, these methods may result in lower performance due
to ignoring the multi-way relationship between the entities. A
more rigorous approach by Tasuku and Yuichi [30] generalized
spectral graph sparsification for hypergraph setting by sam-
pling the hyperedges according to the probability determined
based on the ratio of the hyperedge weight over the minimum
degree of two vertices inside the hyperedge.

Another family of spectral methods for hypergraphs ex-
plicitly builds the Laplacian matrix to analyze the critical
properties of hypergraphs [31]: Zhou et al. propose a method
to create the Laplacian matrix of a hypergraph and generalize
graph learning algorithms for hypergraph applications [24];
Chan et al. leverage the diffusion process to introduce a hyper-
graph Laplacian operator by measuring the flow distribution
within each hyperedge [25]; later, they present a mediator-
based diffusion algorithm to provide a well-approximated non-
linear quadratic formula for hypergraphs [26]. However, these
methods are only based on theoretical analysis, which do not
allow for practically-efficient implementations.

C. Flow-based methods

Many graph-related algorithms extensively exploit flow-
based techniques for various purposes. In [32], a graph parti-
tioner is proposed to split a graph into the balanced partitions
by minimizing the min-cut objective. Additionally, several
graph clustering methods find strongly coupled vertices in a
local neighborhood by solving a max s-t flow, min s-¢ cut
problem for a subgroup of entities to find clusters that min-
imize the ratio cut [33], [34]. Such algorithms guarantee the
solution quality with a reasonably fast runtime. For example,
the algorithm introduced in [35] accepts a small ratio of the
target cluster as the seed nodes and extends the network around
them to solve the max s-t flow, min s-t cut problem locally,
which subsequently clusters the vertices that minimize the
localized conductance.

III. BACKGROUND

A. Spectral graph theory for undirected graphs

For an undirected graph G = (V, E,w), V denotes a set of
nodes (vertices), I denotes a set of (undirected) edges, and
w denotes the associated edge weights. We define D to be a
diagonal matrix with D(i,7) being equal to the (weighted)



degree of node i, and A to be the adjacency matrix of
undirected graph G as follows:

Al ) = {w(i,j) if (i,j) € B 0

0 otherwise .

Then, the Laplacian matrix of the graph G can be calculated
by L = D — A, which satisfies the following conditions: (1)
The sum of each column or row equals zero; (2) All off-
diagonal elements are non-positive; (3) The graph Laplacian
is a symmetric diagonally dominant (SDD) matrix with non-
negative eigenvalues.

(Courant-Fischer Minimax Theorem) The k-th largest eigen-
value of the Laplacian matrix L € RIVI*IVI can be computed
as follows:

. ' Lx
min  max ——
dim(U)=k z€U x'T

z#0

Ak(L) = ; 2

which can be leveraged for computing the spectrum of the
Laplacian matrix L. Given a graph G = (V, E,w) with
the vertices partitioned into (S, S), the conductance of the
partition S is defined as follows:

w(S, S) _ 2o j)eEies,jes Wi J)
min (vol(S)7 UOZ(S)) min (UOZ(S), vol(S)) ’
3)
where the volume of the partition vol(.S) is defined as the sum
of the (weighted) degree of vertices in partition S, which can
be denoted as follows:

vol(S) = Z d(i). 4)

€S

Qq(S) =

The conductance of the graph [36] G can be defined as:

B(G) = B (S). 5)

min
vol(S)<vol(V)/2

It has been shown that the graph conductance ®(G) is closely
related to the spectral property of its graph G, which can be
revealed by the Cheeger’s inequality [36] as follows:

CUQ/2 S (I)(G) S 2&]2, (6)
where wo is the 2nd smallest eigenvalue of the normalized
Laplacian matrix L defined as L = D~'/2LD~1/2,

Based on the definition of the graph conductance, local
conductance concept has been utilized for graph partitioning
[37]. Given a reference node set R C V, the local conductance
regarding to the node set R can be defined as [37]:

Bp(S) = 2 j)eruics,igs W J) 7
vol(S N R) — dvol(SNR)’

where § is a locality parameter which controls the penalty for
including nearby nodes outside set R.

B. Spectral graph theory for hypergraphs

We denote a hypergraph H = (V, E'), where V is the set of
vertices and F is the set of hyperedges with unit weight. We

specify n := |V| and m := | E| to be the numbers of vertices
and hyperedges, respectively. We define a vertex degree to be:
d, == EeeE:veew(e)v 3

where w(e) is the hyperedge weight. We define the hypergraph
volume for node set S C V to be:

vol(S) := Lyesdy. 9)
Then, the conductance of a given set .S is defined as:
cut(S, S)

@(S) = - ~ ’
min{vol(S), vol(S)}

(10)

where cut(S, 5’) is the number of crossing hyperedges between
S and S. We use all or nothing splitting function to compute
the cut that is penalizing the hyperedges the same way
regardless of how splitting them. The hypergraph conductance

is defined as ®y := min ®(S5). Nate et al. introduce
0gscv
hypergraph local conductance (HLC) as [37]:

cut (S, S)
vol(S N R) — dwol(SNR)’

where R is the set of seed vertices given as the input.

HLCR(S) = (11)

IV. SPECTRAL HYPERGRAPH COARSENING
A. Overview of our method

Let H = (V,E) be the given hypergraph dataset; our
coarsening algorithm aims to generate H, = (Vs, F), where
H, is spectrally-similar to H. We create a spectral coarsening
scheme that consists of the following steps:

o Step A will produce an initial set of node clusters within
each hyperedge leveraging undirected graph embedding.
« Step B will aggregate spectrally-similar vertices in a local
neighborhood using a flow-based clustering method [37].

Fig. 1 shows the proposed HyperSF framework, which
consists of four key phases: phase (1) constructs the bipartite
graph based on the original hypergraph; phase (2) maps the
vertices into a low-dimensional space leveraging spectral graph
embedding; phase (3) applies spectral graph clustering to
split the vertices within each hyperedge to create the initial
node clusters; phase (4) solves the max s-t flow, min s-¢ cut
problem on a directed graph converted from local hyperedges
to determine the final set of nodes for aggregation.

B. Step A: Initial spectral graph clustering

We apply star expansion to model the hypergraph with a
pairwise relationship between the vertices so that the eigen-
vectors of the graph Laplacian matrix can be leveraged for
spectral graph embedding (vector representation of vertices).
Since we want to cluster highly related vertices in a local
neighborhood so that the coarsened graph will preserve the
structural properties of the original hypergraph. This requires
to approximate the first few (low-frequency) eigenvectors
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Fig. 1: Overview of the proposed HyperSF framework

related to the key spectral properties of the graph. To achieve
this goal, we leverage the following scalable low-pass filtering
algorithm to effectively remove high-frequency graph signal
components and subsequently map the each vertex into a k-
dimensional vector, where k denotes the number of smoothed
testing vectors (graph signals).

Let v be a random vector in which each element corre-
sponds to a vertex in the graph. u can be considered as a
linear combination of many eigenvectors. Existing iterative
methods like Gauss-Seidel and Jacobi relaxation procedures
can be leveraged as low-pass graph filters for removing highly
oscillating components in u, which will produce smoothed
vectors that correspond to the linear combination of the first
few eigenvectors:

u = E?:l’)/ixi = 0= Z?zlv}xi n <« n, (12)

where ~; and ~; are the weighting coefficients, and u is
the smoothed vector that is obtained after applying a few
steps of the Gauss-Seidel iterations on u. Applying the above
filtering (smoothing) function for k different random vectors
(orthogonal to the all-one vector) will result in k& smoothed
vectors K = (u™)..u() that allow embedding the graph
into a k-dimensional space. Next, we repeatedly apply spectral

clustering for each hyperedge (sorted with descending cardi-
nalities) to find node clusters based on their embedding vectors
(smoothed vectors) and the hypergraph coarsening (reduction)
ratio. When processing each hyperedge, it is important to
flag the nodes that have already been processed, and skip
the following hyperedges that include the flagged nodes.
Algorithm 1 provides the details of the proposed initial spectral
graph clustering scheme (Step A-3 shown in Fig. 1).

C. Step B: Flow-based hypergraph local clustering

In this section, we improve the quality of the initial spectral
graph clustering by incorporating a flow-based low clustering
technique [37] for aggregating vertices with minimal impact
on the global hypergraph structure.

1) Flow-based hypergraph clustering: Semi-supervised
clustering methods utilize flow-based techniques to find a
cluster of vertices strongly connected to the seed nodes R,
which repeatedly solve max s-t flow, min s-¢ cut problem to
minimize HLC.

We formalize the hypergraph coarsening problem into a
semi-supervised clustering task to aggregate the strongly-
connected vertices that allow minimizing (11). To this end, the
flow-based clustering method utilizes the output of the initial



Algorithm 1 Initial spectral graph clustering

Input: Hypergraph H = (V, E), n = |V|, m = |E|, and embedding
dimension k;
Output: A set of vertex clusters R;

1: Construct the bipartite graph GG corresponding to the hypergraph
H by applying the star model ;
2: Generate k different random vector related to G
3: Perform smoothing function to remove the high frequency com-
ponents;
4: Map the graph vertices into a k-dimensional space using the
smoothed vectors;
: Sort the hyperedges according to their cardinality:
ler| > le2| > ... > |eml];
: for i <~ 1 to m do
R® + cluster the vertices in e; using k-means method;
: end for
: Return R .

W
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Fig. 2: Hypergraph to directed graph conversion

spectral graph clustering (Algorithm 1) and treats each cluster
as a seed node set R. For each seed node set, we repeatedly
solve a max s-t flow, min s-¢ cut problem to decide a set of
node clusters that minimizes the localized conductance. To this
end, we first create the auxiliary hypergraph by introducing
a source vertex s and sink vertex ¢. Next, we replace each
hyperedge with a directed graph by creating a network: for
each vertex r € R we introduce an edge (s,r), whereas for
each j € R we introduce an edge (4, t); we also introduce two
auxiliary vertices (e.g. the green squares shown in Fig. 2) a
and o’ and create a directed edge from a to a’. In the last, for
each vertex {v € e}.cpg, we introduce a directed edge (a,v)
and a directed edge (v, a’). We show how to build the directed
graph model for a given set of hyperedges in Fig. 2.

We initialize S = R and iteratively update S to minimize
HLC by repeatedly solving the max s-t flow, min s-t cut
problem on the created auxiliary hypergraph to minimize the
hypergraph cut [38]:

cut*™(S) = cut1(S) +voly (SN R) + dvoly (SO R). (13)

In the last, we aggregate the output set of vertices obtained
from flow-based methods that minimize the localized conduc-
tance to produce a smaller hypergraph with fewer vertices
while preserving the key structural properties of the original
hypergraph. We flag the nodes that are already clustered to
avoid assigning the same node to different clusters.

2) Flow-based local clustering: An algorithm is local if
the input is a small portion of the original dataset. The
aforementioned flow-based hypergraph clustering algorithm
can be made strongly local when expanding the network
around the seed nodes R, which will obviously benefit the
proposed hypergraph coarsening framework: (1) applying the
max s-t flow, min s-¢ cut problem on the local neighborhood of
the seed nodes restricts node-aggregation locally and keeps the
global hypergraph structure intact; (2) such a local clustering
scheme will significantly improve the algorithm efficiency due
to the small-scale input dataset.

To achieve flow-based local clustering of hypergraph nodes,
we first construct a sub-hypergraph H;, by iteratively expand-
ing the hypergraph around the seed node set R and then
repeatedly solve the hypergraph cut problem to minimize
HLC until no significant changes in local conductance are
observed. Let H = (V,E) be the hypergraph. We define
E(S) = Uyevwe{e}.cx E(v) for any set S C V. We denote
H. = (VU {s,t},EU E*"), where E' is the terminal edge
set. We aim to construct a sub-hypergraph H, to replace H.
that minimizes HLC by repeatedly solving a local version of
(13). To this end, we set up an oracle to discover a set of best
neighborhood vertices for a given vertex v:

K:(U) = {U € V}(u,v)Ee,eEE' (14)

We let the oracle accept a set of seed nodes R and return
K(R) = Uyegrk(v). By utilizing the best neighborhood of the
seed nodes k(R), we build a local hypergraph H;, = (V, U
{s,t},Er U E$'), where Vi, = RUK(R) and Ef, = {e €
E | Vi, € e}. We create the local auxiliary hypergraph of
H, by introducing the source node s and sink node ¢, so that
Est C E*, and repeatedly solve the max s-t flow, min s-t
cut problem to minimize HLC. The algorithm continuously
expands Hp and includes more vertices and hyperedges from
H_ by solving (13) for the local hypergraph H..

Algorithm 2 Flow-based hypergraph clustering

Input: Hypergraph H = (V, E), R C R, and ¢;
Output: A set of vertices S that minimizes HLC(S);

: Assign the seed nodes S <+ R;

1

2: AHLC < 00

3: while Agrc > € do

4:  Identify the best neighborhood of seed nodes x(.S);
5. Update S according to x(S) to construct Hr;

6:  Add a source node s and sink node ¢ to Hy;

7:  Repeatedly solve the max s-t flow, min s-t cut problem by

minimizing (13) for Hr; ]

8:  AmLc + HLC(S)Y — HLC(S)’;

9: end while

10: Return S.

In Algorithm 2 we present the details of the flow based local
clustering technique. It accepts the original hypergraph H =



(V, E), a set of seed nodes in R C R, and the convergence
parameter €, which will output a set of strongly connected
vertices S that minimizes HLC.

D. Divide-and-conquer

To further improve the flow-based algorithm efficiency,
we leverage a divide-and-conquer approach to partition the
dataset into different parts with strongly connected vertices and
perform the flow-based method separately in each partition. To
this end, we use Metis as a standalone partitioning tool to split
the undirected bipartite graph corresponding to the original
hypergraph. The flow-based method produces the clusters in
a parallel way that expedites the proposed node-aggregation
procedure. Additionally, the number of partitions determines
the runtime and quality of the algorithm. Our method allows
a flexible trade-off between algorithm efficiency and solution
accuracy, which can be achieved by adjusting the size of
each partition. For example, choosing smaller partitions will
result in a higher runtime efficiency but negatively impact
hypergraph clustering (coarsening) solution. In Algorithm 3,
we illustrate the entire procedure for spectral hypergraph
coarsening.

Algorithm 3 The HyperSF algorithm flow

Input: Hypergraph H = (V, E), n = |V|, m = |E|;
Output: Coarsened hypergraph H. = (V., E), where |V;| < n;

1: Call Algorithm 1 to compute R via spectral embedding of
bipartite graph G}

2: {p € V}cp <« Apply Metis partitioning to obtain a set of
vertices in the same region;

3: for j < 1to |P| do

4: R+ RcrnN {p}ﬂgp;

5: fori<—1to‘f{) do

6: Choose a set of seed nodes S < RY;

7: S < Call Algorithm 2 to reach a set of strongly connected
vertices; R

8: Aggregate {v € S}tgcvs

9:  end for -

10: end for

11: Return H., where |V.| < n.

E. Algorithm complexity of HyperSF

The runtime complexity of Step A for the graph-based
spectral clustering is O(E) since we only perform the node
clustering within each hyperedge; the runtime complexity
of Step B is O (kvoly(R)*(1+ ¢ 1)?), where k is the
maximum hyperedge cardinality. Accordingly, the worst-
case runtime complexity of the entire HyperSF algorithm is
O (nkPvolg (R)*(1 +€71)3).

V. EXPERIMENTAL RESULTS

We conduct extensive experiments to analyze the perfor-
mance of the proposed spectral hypergraph coarsening method
using a set of VLSI-related datasets “ibm01” to “ibm18” . By
testing other hypergraph coarsening techniques on the same

Thttps://visicad.ucsd.edu/UCLAWeb/cheese/ispd98.html

data sets, we can provide a fair comparison among different
approaches. We have implemented HyperSF in Julia by in-
corporating the graph spectral embedding technique with the
local hypergraph flow-based clustering. All experiments ran on
a laptop with 8 GB of RAM and a 2.2 GHz Quad-Core Intel
Core i7 processor. An implementation of our algorithm and
the code for reproducing our experimental results are available
online at https://github.com/aghdaei/HypersSF.

A. The results of spectral hypergraph coarsening

We compare the performance of the proposed spectral
hypergraph coarsening method (HyperSF) with other hyper-
graph coarsening frameworks. We compare our algorithm with
non-spectral coarsening methods used in hypergraph parti-
tioning methods to investigate our algorithm’s performance
thoroughly. To the best of our knowledge, the state-of-the-art
hypergraph partitioners leverage heuristic-based hypergraph
coarsening frameworks to contract the hyperedges based on
edge similarity criteria. In addition, we also construct the
bipartite graph of the original hypergraph and use the existing
spectral methods to reduce the hypergraph size. We used the
average conductance of all clusters to evaluate the performance
of HyperSF when comparing with the other hypergraph coars-
ening algorithms. According to the Cheeger’s inequality, a
smaller average conductance implies a better graph coarsening
solution.

To this end, we compute the following average local con-
ductance ® of the node clusters produced by each method:

& — =518 HLC(57).
S|

1) Spectral methods: Although there is no existing spectral
hypergraph coarsening framework to compare with HyperSF,
we can apply star and clique models to construct the cor-
responding undirected bipartite graphs associated with the
hypergraph. Once a simple graph is constructed, the traditional
spectral graph coarsening methods [17] can be leveraged for
aggregating the spectrally-similar vertices and generating a
smaller undirected graph. Once the node clusters are produced,
we can compute HLC of each node set and thus & for the
original hypergraph. Fig. 3 shows the computed average local
conductance ® of spectral hypergraph coarsening methods for
all test sets using the same coarsening ratio. The results show
that HyperSF always achieves the lowest ® for all the datasets.

15)

2) Non-spectral methods: In this section, we compare the
performance of HyperSF with two non-spectral hypergraph
coarsening approaches. The first method directly applies Metis
on the undirected graphs converted from the original hyper-
graph (using star and clique expansions) and aggregates the
vertices within each partition to create a smaller hypergraph.
The second method utilizes a popular hypergraph partitioning
tool, Hmetis, to aggregate strongly-connected vertices in each
partition. To provide a fair comparison, we apply the same
coarsening ratio in different methods such that all coarsened
hypergraphs H; = (Vi, Es) will have the same size |Vl
In Fig. 4, we show the performance of Metis (using star
and clique models), Hmetis, and HyperSF by computing the
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average local conductance ® for all test cases. We observe
that HyperSF always achieves significantly better coarsening
results.
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TABLE I shows the average local conductance ® of differ-
ent methods using the same hypergraph reduction ratio (RR).
We reduce the number of nodes in each original hypergraph
by 75% (e.g., for a hypergraph with 100 nodes, the coarsened
hypergraph will have only 25 nodes). For simplicity, we denote
the star and clique models by S and C, respectively. The
experimental results confirm that HyperSF can significantly
improve the average local conductance compared with other
hypergraph coarsening methods for all test cases.

B. Cut preservation after hypergraph coarsening

To further evaluate the performance of the proposed hy-
pergraph coarsening algorithm, we calculate the cut before
and after coarsening. Before coarsening: Hmetis bisects the
original hypergraph into two partitions and returns the number

189
w==®== Hmetis (HyperSF)

Hmetis (Original)

187

186

185

Cut

182

181 . . , .
5 10 15 20 25 30
Reduction Ratio (%)

Fig. 5: Cut preservation after hypergraph coarsening

of hyperedges intersecting between two partitions; after coars-
ening: HyperSF first produces a smaller hypergraph that is
used as the input of Hmetis; then the node partitioning results
are mapped back to the original hypergraph for computing the
cut. Fig. 5 shows the cuts before and after applying HyperSF
using various reduction ratios (RRs) for the dataset “ibm01”.
While Hmetis bisects the original hypergraph by cutting 182
hyperedges, only 2%-3% relative difference in cut is observed
when bisecting the coarsened hypergraph, which implies the
coarsened hypergraphs obtained using HyperSF can very well
preserve the original cut.

C. Hypergraph k-way partitioning

The goal of this experiment is to study the performance
of the proposed algorithm for k-way hypergraph partitioning
tasks. We use HyperSF as a standalone hypergraph partitioner
and Hmetis as the baseline to evaluate the performance and
efficiency. HyperSF aims to aggregate the spectrally-similar
vertices to preserve the structural properties of the original
hypergraph by ignoring the criteria heavily used in modern
balanced partitioning methods. For example, Hmetis iteratively
bisects the hypergraph and minimizes the hypergraph cut for
achieving a balanced partitioning result. To achieve a fair
comparison of hypergraph partitioning between HyperSF and
Hmetis, we consider an imbalance parameter (UBfactor) that
is defined to be the upper bound of the ratio between the
maximum volume and the average volume. For instance, given
UBfactor=9 and Nparts = 4 for partitioning a hypergraph
with n vertices, the partitioner will produce a set of partitions
so that the ratio between the maximum volume and the average
volume will be bounded by 1.09 x n/4. We restrict the size of
each partition by including UBfactor to HyperSF, which will
effectively set a limit on the size of each partition: if a vertex
intends to join a partition with full capacity, it will be assigned
to the nearest partition by measuring the Euclidean distance
between that node and its neighborhood partition. However,
adding UBfactor will inevitably impact the solution quality
due and lead to increased HLC.



TABLE I: The average local conductance (®) comparison between HyperSF and other coarsening methods

Hypergraphs \'% E RR (%) Spectral (S§) Spectral (C) Metis (S) Metis (C) Hmetis  HyperSF
ibmO1 12752 14111 75 0.94 0.81 0.84 0.78 0.65 0.44
ibm02 19601 19584 75 0.94 0.84 0.83 0.79 0.69 0.52
ibm03 23136 27401 75 0.95 0.86 0.85 0.79 0.67 0.48
ibm04 27507 31970 75 0.95 0.84 0.84 0.78 0.68 0.47
ibm05 29347 28446 75 0.90 0.81 0.81 0.79 0.65 0.55
ibm06 32498 34826 75 0.95 0.84 0.85 0.80 0.68 0.51
ibm07 45926 48117 75 0.94 0.84 0.84 0.79 0.68 0.48
ibm08 51309 50513 75 0.94 0.82 0.83 0.78 0.68 0.48
ibm09 53395 60902 75 0.95 0.85 0.85 0.80 0.69 0.47
ibm10 69429 75196 75 0.93 0.82 0.84 0.79 0.68 0.48
ibml1 70558 81454 75 0.95 0.84 0.85 0.78 0.69 0.46
ibm12 71076 77240 75 0.94 0.84 0.86 0.80 0.71 0.50
ibml3 84199 99666 75 0.95 0.85 0.86 0.80 0.69 0.48
ibm14 147605 152772 75 0.94 0.84 0.83 0.78 0.67 0.48
ibml5 161570 186608 75 0.95 0.84 0.87 0.80 0.71 0.47
ibm16 183484 190048 75 0.94 0.84 0.85 0.80 0.70 0.50
ibm17 185495 189581 75 0.94 0.84 0.86 0.81 0.73 0.51
ibml8 210613 201920 75 0.94 0.82 0.83 0.78 0.68 0.46
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Fig. 6: K-way conductance analysis for different number of
partitions with respect to the imbalance parameter

Since the partitions are no longer strictly balanced, the
cut objective will not be meaningful for assessing the per-
formance. Consequently, we use the k-way conductance as
the metric to compare the performance of both methods.
The k-way conductance can be computed by finding the
maximum (node cluster) conductance over all partitions [39].
Fig. 6 shows the result of conducting a hypergraph k-way
partitioning on the “ibm01” dataset to compute the k-way
conductance with Hmetis and HyperSF. Both hypergraph par-
titioners split the vertices into Nparts = [630, 750, 835, 970]
through multiple experiments and imposed the same imbalance
factor between the partitions. We observe a smaller k-way
conductance when using HyperSF compared to Hmetis for
various partitioning and imbalance parameter settings.

D. Runtime analysis

We compared the runtime of HyperSF with Hmetis for all
the test cases to evaluate the algorithm scalability. As shown
in Fig. 7, the gap between the Hmetis and HyperSF keeps
increasing as the hypergraph sizes increase. Fig. 8 shows up
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Fig. 7: Runtime comparison for all test cases
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Fig. 8: Runtime speedups for all test cases



to 6.6 x runtime speedup achieved by HyperSF, which further
highlights the superior runtime efficiency of HyperSF over
Hmetis.

VI. CONCLUSION

In this work, we propose an efficient spectral hypergraph
coarsening algorithm (HyperSF) for aggressively reducing the
size of hypergraphs without impacting the key spectral (struc-
tural) properties. Our approach leverages an initial spectral
clustering procedure and a flow-based local clustering scheme
for detecting the sets of strongly-coupled hypergraph ver-
tices. Our results for a variety of hypergraphs extracted from
real-world VLSI design benchmarks show that the proposed
HyperSF can significantly improve the solution quality and
runtime efficiency when compared with prior state-of-the-art
hypergraph coarsening algorithms.
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