
SGL: Spectral Graph Learning from Measurements
Zhuo Feng

Department of Electrical and Computer Engineering
Stevens Institute of Technology

Hoboken, NJ, USA
zhuo.feng@stevens.edu

Abstract—This work introduces a highly-scalable spectral
graph densification framework for learning resistor networks
with linear measurements, such as node voltages and currents.
We prove that given O(logN) pairs of voltage and current
measurements, it is possible to recover ultra-sparse N -node
resistor networks which can well preserve the effective resistance
distances on the graph. In addition, the learned graphs also
preserve the structural (spectral) properties of the original graph,
which can potentially be leveraged in many circuit design and
optimization tasks. We show that the proposed graph learning
approach is equivalent to solving the classical graphical Lasso
problems with Laplacian-like precision matrices. Through exten-
sive experiments for a variety of real-world test cases, we show
that the proposed approach is highly scalable for learning ultra-
sparse resistor networks without sacrificing solution quality.

Index Terms—spectral graph theory, graph Laplacian estima-
tion, graphical Lasso, convex optimization, resistor networks

I. INTRODUCTION

Recent years have seen a surge of interest in machine learn-
ing on graphs, with the goal of encoding high-dimensional
data associated with nodes, edges, or (sub)graphs into low-
dimensional vector representations that well preserve the orig-
inal graph structural (manifold) information. Graph learning
techniques have shown promising results for various important
applications such as vertex (data) classification, link prediction
(recommendation systems), community detection, drug discov-
ery, and electronic design automation (EDA) [12].

Modern graph learning involves the following two key tasks:
(1) graph topology learning for converting high-dimensional
node feature (attribute) data into a graph representation, and
(2) graph embedding for converting graph-structured data
(e.g. graph topology and node features) into low-dimensional
vector representations. For example, an increasingly popular
approach for analysing a data set in high-dimensional space
(e.g. images of hand-written digits) is to first construct a graph
connecting all the data points according to their similarities
measured in distances in certain metric space [2]; next, graph
embedding techniques are used to compute a low-dimensional
vector representation of each data point (graph vertex), so
that existing downstream machine learning or data mining
algorithms can be conveniently applied.

However, even the state-of-the-art graph learning methods
[2], [3] do not scale comfortably to large data sets due to
their high algorithm complexity. For example, recent graph

learning methods based on Laplacian matrix estimation [2], [3]
have shown very promising performance. However, solving the
required convex optimization problem has a time complexity
of O(N2) per iteration for N data points, which limits the
application of these techniques to only very small data sets
(e.g., with up to a few thousands data points).

For the first time, this paper introduces a spectral method
for learning resistor networks from linear voltage and current
measurements. Our approach is based on a scalable spec-
tral graph densification algorithm (SGL) for estimation of
attractive Gaussian Markov Random Fields (GMRFs). The
proposed SGL algorithm can efficiently solve the graphical
Lasso problem [4] with a Laplacian-like precision matrix by
iteratively including the most influential edges to dramatically
reduce spectral embedding distortions. A unique property of
the learned graphs is that the spectral embedding or effective-
resistance distances on the constructed graph will encode
the similarities between the original input data points (node
voltage measurements). To achieve high efficiency, SGL ex-
ploits a scalable spectral graph embedding scheme, which
allows each iteration to be completed in O(N logN) time,
whereas existing state-of-the-art methods [2], [3] require at
least O(N2) time for each iteration. Our analysis for sample
complexity shows that by leveraging the SGL algorithm it is
possible to accurately estimate a sparse resistor network with
only O(logN) voltage (and current) measurements (vectors).

The rest of this paper is organized as follows. Section II
introduces the proposed spectral graph learning (SGL) frame-
work is described in detail, which also includes the sample
and algorithm complexity analysis. Section III demonstrates
extensive experimental results for learning a variety of real-
world, large-scale graph problems, which is followed by the
conclusion of this work in Section IV.

II. SGL: A SPECTRAL LEARNING APPROACH

Suppose we are given M linear measurements of N -
dimensional voltage and current vectors stored in data matrices
X ∈ RN×M and Y ∈ RN×M . The i-th column vector
X(:, i) corresponds to a voltage response (graph signal) vector
due to the i-th current excitation vector Y (:, i). Motivated
by recent graph learning research [2], we propose a scalable
spectral method (SGL) for graph Laplacian matrix estimation
by exploiting the voltage (X) and current (Y) measurements.978-1-6654-3274-0/21/$31.00 ©2021 IEEE

ar
X

iv
:2

10
4.

07
86

7v
1

 [c
s.L

G
]

16
 A

pr
 2

02
1

A. Graph Learning via Laplacian Estimation

Similar to the graphical Lasso problem [4], the recent graph
signal processing (GSP) based Laplacian estimation methods
[2] aim to learn graph structures such that graph signals will
vary smoothly across connected neighboring nodes [2]. To
quantify the smoothness of a graph signal vector x over a
undirected graph G = (V,E,w), the following Laplacian
quadratic form can been adopted:

x>Lx =
∑

(s,t)∈E

ws,t(x (s)− x (t))
2
, (1)

where L = D − W denotes the graph Laplacian matrix,
ws,t = W (s, t) denotes the weight for edge (s, t), while
D and W denote the degree and the weighted adjacency
matrices, respectively. The GSP-based graph learning targets
the following convex optimization task [2]:

max
Θ

: F = log det(Θ)− 1

M
Tr(X>ΘX)− β‖Θ‖1, (2)

where Θ = L+ I
σ2 , L denotes the set of valid graph Laplacian

matrices, Tr(•) denotes the matrix trace, I denotes the identity
matrix, and σ2 > 0 denotes prior feature variance. In addition,
‖ • ‖ denotes the entry-wise `1 norm, so β‖Θ‖1 becomes the
sparsity promoting regularization term. Since Θ = L + I

σ2 is
a symmetric and positive definite (PSD) matrix (or M matrix)
with non-positive off-diagonal entries, this formulation will
lead to the estimation of attractive GMRFs [2], [9].

B. Gradient Estimation via Sensitivity Analysis

We can express the graph Laplacian matrix as follows

L =
∑

(s,t)∈E

ws,tes,te
>
s,t (3)

where es ∈ RN denotes the standard basis vector with all zero
entries except for the s-th entry being 1, and es,t = es − et.
Substituting (3) into the objective function F in (2), and taking
the partial derivative with respect to ws,t leads to:

∂F

∂ws,t
=

N∑
i=1

1

λi + 1/σ2

∂λi
∂ws,t

− 1

M
‖X>es,t‖22 − 4β, (4)

where the eigenvectors corresponding to the ascending eigen-
values λi are denoted by ui for i = 1, ..., N , which satisfies:

Lui = λiui. (5)

Note that the last two terms in (4) both imply constraints on
graph sparsity: including more edges will result in a greater
trace Tr(X>ΘX). Consequently, we can safely choose to set
β = 0 in the rest of this work, which will not impact the
ranking of influential edges and thus the solution quality of
the proposed SGL algorithm.

Theorem II.1. The spectral perturbation δλi due to the
inclusion of a candidate edge (s, t) can be estimated by:

δλi = δws,t
(
u>i es,t

)2
. (6)

Proof. Consider the following spectral perturbation analysis:

(L+ δL) (ui + δui) = (λi + δλi) (ui + δui) , (7)

where a perturbation δL that includes a new edge connection
is applied to L, resulting in perturbed eigenvalues and eigen-
vectors λi + δλi and ui + δui for i = 1, ..., N , respectively.
Keeping only the first-order terms leads to:

Lδui + δLui = λiδui + δλiui. (8)

Write δui in terms of the original eigenvectors ui for for i =
1, ..., N :

δui =
N∑
i=1

αiui. (9)

Substituting (9) into (8) leads to:

L
N∑
i=1

αiui + δLui = λi

N∑
i=1

αiui + δλiui. (10)

Multiplying u>i to both sides of (10) leads to:

δλi = δws,t
(
u>i es,t

)2
. (11)

For a connected graph, we construct the following subspace
matrix for spectral graph embedding with the first r − 1
nontrivial Laplacian eigenvectors

Ur =

[
u2√

λ2 + 1/σ2
, ...,

ur√
λr + 1/σ2

]
. (12)

According to Theorem II.1, (4) can be approximated as:

ss,t =
∂F

∂ws,t
≈ ‖U>r es,t‖22−

1

M
‖X>es,t‖22 = zembs,t −

1

M
zdatas,t ,

(13)
where zembs,t = ‖U>r es,t‖22 and zdatas,t = ‖X>es,t‖22 denote
the `2 distances in the spectral embedding space and the
data (voltage measurement) vector space, respectively. The
partial derivative (ss,t) in (13) can be regarded as each edge’s
sensitivity that can be leveraged for solving the optimization
task in (2) using gradient based methods, such as the general
stagewise algorithm for group-structured learning [11].

C. Convergence Analysis of the SGL Algorithm

If we define the spectral embedding distortion ηs,t of an
edge (s, t) to be:

ηs,t = M
zembs,t

zdatas,t

. (14)

Since zembs,t is equivalent to the effective resistance Reff
s,t on

the graph when σ2 → +∞ and r → N , we can rewrite the
spectral embedding distortion as

ηs,t = ws,tR
eff
s,t, (15)

where ws,t = M
zdata
s,t

. (15) implies that ηs,t becomes the
edge leverage score for spectral graph sparsification [10].

Prior work shows that every undirected graph has a nearly-
linear-sized spectral sparsifier with O(N logN) edges which
can be obtained by sampling each edge with a probability
proportional to its edge leverage score [10]; on the other
hand, the proposed SGL graph learning framework can be
regarded as a spectral graph densification procedure that
aims to construct a graph with O(N logN) edges such that the
spectral embedding (effective-resistance) distances will encode
the `2 distances between the original data points (voltage
measurements). The global (maximum) optimal solution of (2)
can be obtained when the maximum edge sensitivity (smax) in
(13) becomes zero or equivalently when the maximum spectral
embedding distortion (ηmax) in (14) becomes one.

D. Sample Complexity of the SGL Algorithm

We analyze the required number of voltage vectors (mea-
surements) for accurate graph learning via the SGL approach.
Assume that σ2 → +∞. Denote the ground-truth graph by
G∗, and define its edge weight matrix W∗ to be a diagonal
matrix with W∗(i, i) = wi, and its injection matrix as:

B∗(i, p) =


1 if p is i-th edge’s head
−1 if p is i-th edge’s tail
0 otherwise .

(16)

Then the Laplacian matrix of the ground-truth graph G∗ in
(3) can also be written as L∗ = B>∗ W∗B∗. Consequently, the
effective resistance Reff

∗ (s, t) between nodes s and t becomes:

Reff
∗ (s, t) = e>s,tL

+
∗ es,t = ‖W

1
2
∗ B∗L

+
∗ es,t‖22, (17)

where L+
∗ denotes the Moore–Penrose pseudoinverse of L∗.

According to the Johnson-Lindenstrauss Lemma, the effective-
resistance distance for every pair of nodes satisfies [10]:

(1− ε)Reff
∗ (s, t) ≤ ‖X>es,t‖22 ≤ (1 + ε)Reff

∗ (s, t), (18)

where the voltage measurement matrix X ∈ RN×M is con-
structed by going through the following steps:

1) Let C be a random ± 1√
M

matrix of dimension M ×
|E|, where |E| denotes the number of edges and M =
24 log N

ε2 denotes the number of voltage measurements;

2) Obtain Y = CW
1
2
∗ B∗, with the i-th row vector denoted

by y>i ;
3) Solve L∗xi = yi for all rows in C (1 ≤ i ≤ M), and

construct X using xi as its i-th column vector.
Consequently, given M ≥ O(logN/ε2) voltage vectors (mea-
surements) obtained through the above procedure, a (1 ± ε)-
approximate effective-resistance distance can be computed by
R̃eff
∗ (s, t) = ‖X>es,t‖22 for any pair of nodes (s, t) in the

original graph G∗. Consider the following close connection
between effective resistances and spectral graph properties:

Reff
s,t = ‖U>N es,t‖22, where UN =

[
u2√
λ2

, ...,
uN√
λN

]
. (19)

Consequently, using O(logN) measurements (sample voltage
vectors) would be sufficient for SGL to learn an N -node graph
for well preserving the original graph spectral properties.

E. Key Steps in the SGL Algorithm
To achieve good efficiency in graph learning that may

involve a large number of nodes, the proposed SGL algorithm
can iteratively identify and include the most influential edges
into the latest graph until no such edges can be found, through
the following key steps.

1) Step 1: Initial Graph Construction: (13) implies that
by iteratively identifying and adding the most influential
edges (with the highest sensitivities) into the latest graph,
the graph spectral embedding (or effective-resistance) distance
will encode the `2 distances between the original data vector
space (averaged among M measurements). To gain faster
convergence of SGL, sparsified k-nearest-neighbor (kNN)
graphs [8] can be leveraged as the initial graphs. However,
choosing an optimal k value (the number of nearest neighbors)
for constructing the kNN graph can still be challenging for
general graph learning tasks: choosing a too large k allows
well approximating the global structure of the manifold for the
original data points (voltage measurements), but will result in
a rather dense graph; choosing a too small k may lead to many
small isolated graphs, which may slow down the iterations.

Since circuit networks are typically very sparse (e.g. 2D or
3D meshes) in nature, the voltage or current measurements
(vectors) usually lie near low-dimensional manifolds, which
allows finding a proper k for our graph learning tasks. To
achieve a good trade-off between complexity and quality, in
SGL the initial graph will be set up through the following
steps: (1) Construct a connected kNN graph with a relatively
small k value (e.g. 5 ≤ k ≤ 10), which will suffice
for approximating the global manifold corresponding to the
original measurement data; (2) Sparsify the kNN graph by
extracting a maximum spanning tree (MST) that will serve
as the initial graph. Later, SGL will gradually improve the
graph by iteratively including the most influential off-tree
edges selected from the kNN graph until convergence.

2) Step 2: Spectral Graph Embedding: Spectral graph
embedding directly leverages the first few nontrivial eigen-
vectors for mapping nodes onto low-dimensional space [1].
The eigenvalue decomposition of Laplacian matrix is usually
the computational bottleneck in spectral graph embedding,
especially for large graphs. To achieve good scalability, we can
exploit fast multilevel eigensolvers that allow computing the
first few Laplacian eigenvectors in nearly-linear time without
loss of accuracy [16].

3) Step 3: Influential Edge Identification: Once the first
few Laplacian eigenvectors are available, we can efficiently
identify the most influential off-tree edges by looking at
each candidate edge’s sensitivity score defined in (13). In
the proposed SGL approach, each candidate off-tree edge
(in the kNN graph) will be sorted according to its edge
sensitivity. Only a few most influential edges that have the
largest sensitivities computed by (13) will be included into the
latest graph. Note that when r � N , the following inequality
holds for any edge (s, t):

‖U>r es,t‖22 = zembs,t < ‖U>N es,t‖22 ≤ Reff(s, t), (20)

implying that the sensitivities (ss,t) computed using the first
r eigenvectors will always be smaller than the actual ones.
Obviously, using more eigenvectors for spectral embedding
will lead to more accurate estimation of edge sensitivities. For
typical circuit networks, sensitivities computed using a small
number (e.g. r < 5) of eigenvectors will suffice for identifying
the most influential edges.

4) Step 4: Convergence Checking: In this work, we propose
to exploit the maximum edge sensitivities computed by (13)
for checking the convergence of SGL iterations. If there exists
no additional edge that has a sensitivity greater than a given
threshold (smax ≥ tol), the SGL iterations can be terminated.
It should be noted that choosing different tolerance (tol) levels
will result in graphs with different densities. For example,
choosing a smaller threshold will require more edges to be
included so that the resultant spectral embedding distances
on the learned graph can more precisely encode the distances
between the original data points.

5) Step 5: Spectral Edge Scaling: Assume that σ2 in (12)
approaches +∞ and the normalized input right-hand-side
(current) vectors (Y = [y1, ..., yM]) corresponding to the M
voltage measurements (X = [x1, ..., xM]) are orthogonal to
the all-one vector. Then for each original voltage vector xi
and its corresponding current vector yi we have:

‖xi‖22 = y>i (L+
∗)2yi, for i = 1, ...,M. (21)

Next, for each yi we compute the voltage vector x̃i using the
estimated Laplacian L obtained via SGL iterations:

Lx̃i = yi => ‖x̃i‖22 = y>i (L+)2yi, for i = 1, ...,M. (22)

To more precisely match the original graph spectral properties,
each edge weight can be adjusted as follows:

ws,t = w̃s,t ∗

√√√√ 1

M

M∑
i=1

‖x̃i‖22
‖xi‖22

, (23)

where w̃s,t denotes the initial edge weight obtained via the
previous SGL iterations. Since solving the ultra-sparse Lapla-
cian matrix L can be accomplished in nearly linear time [7],
[14], the proposed scaling scheme is highly efficient.

F. Algorithm Flow and Complexity

The detailed SGL algorithm flow has been shown in Al-
gorithm 1. All the aforementioned steps in SGL can be
accomplished in nearly-linear time by leveraging recent high-
performance algorithms for kNN graph construction [8], spec-
tral graph embedding for influential edge identification [13],
[16], and fast Laplacian solver for edge scaling [7], [14].
Consequently, each SGL iteration can be accomplished in
nearly-linear time, whereas the state-of-the-art methods require
at least O(N2) time [2].

Algorithm 1 The SGL Algorithm Flow
Input: The voltage measurement matrix X ∈ RN×M , input
current measurement matrix Y ∈ RN×M , k for initial kNN
graph construction, r for constructing the projection matrix
in (12), the maximum edge sensitivity tolerance (tol), and
the edge sampling ratio (0 < β ≤ 1). Output: The learned
graph G = (V,E,w).

1: Construct a kNN graph Go = (V,Eo, wo) based on X .
2: Extract an MST subgraph T from Go.
3: Assign G = T = (V,E,w) as the initial graph.
4: while smax ≥ tol do
5: Compute the projection matrix Ur with (12) for the

latest graph G.
6: Sort off-tree edges (s, t) ∈ Eo \ E according to their

sensitivities computed by ss,t = ∂F
∂ws,t

using (13).
7: Include an off-tree edge (s, t) into G if its ss,t > tol

and it has been ranked among the top dNβe edges.
8: Record the maximum edge sensitivity smax.
9: end while

10: Do spectral edge scaling using X and Y via (21)-(23);
11: Return the learned graph G.

III. EXPERIMENTAL RESULTS

The proposed SGL algorithm has been implemented in
Matlab. The test cases in this paper have been selected from
a great variety of matrices that have been used in circuit
simulation and finite element analysis problems. Since the
prior state-of-the-art graph learning algorithms [2] have been
developed based on a standard convex solver [5], the runtime
would be excessively long (over many thousands of seconds)
even for the smallest test case (|V | = 4, 253) reported in
this paper. Therefore, we will only compare with the graph
construction method based on the standard kNN algorithm.
All of our experiments have been conducted using a single
CPU core of a computing system with a 3.4 GHz Quad-Core
Intel Core i5 CPU and 24 GB memory.

A. Experimental Setup

To generate the voltage and current measurement samples,
the following procedure has been applied: (1) we first ran-
domly generate M current source vectors with each element
sampled using a standard normal distribution; (2) each current
vector will be normalized and orthogonal to the all-one vector;
(3) M voltage vector measurements will be obtained by
solving the original graph Laplacian matrix with the M current
vectors as the (right-hand-side) input vectors; (4) the voltage
and current vectors will be stored in matrices X = [x1, ..., xM]
and Y = [y1, ..., yM] ∈ RN×M , respectively, which will be
used as the input data of the proposed SGL algorithm. By
default, M = 50 is used for generating the voltage and current
measurements. We choose k = 5 for constructing the kNN
graph for all test cases. We set r = 5 for constructing the
projection matrix in (12). The edge sampling ratio β = 10−3

0 10 20 30 40
Number of Iterations

-14

-12

-10

-8

-6

-4

-2
lo

g
s m

ax

Figure 1. The decreasing maximum sensitivities (“2D mesh” graph)

fe_4elt2 result

0 20 40 60 80 100
-140

-120

-100

-80

-60

-40

-20

5NN

SGL

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

5NN Density: 2.89 SGL Density: 1.09

True Eigenvalues

Ap
pr
.E
ig
en
va
lu
es

True EigenvaluesSGL Iterations
Figure 2. The objective function values (“fe 4elt2” graph)

has been used. The SGL iterations will be terminated if
smax < tol = 10−12. When approximately computing the
objective function value (2), the first 50 nonzero Laplacian
eigenvalues are used.

To clearly visualize each graph, the spectral graph drawing
technique has been adopted [6]: when creating the 2D graph
layouts, each entry of the first two nontrivial Laplacian eigen-
vectors (u2, u3) corresponds to the x and y coordinates of each
node (data point), respectively. We assign the nodes with the
same color if they belong to the same node cluster determined
by spectral graph clustering [15].

B. Comprehensive Results for Graph Learning

a) Algorithm Convergence: As shown in Figure 1, for the
“2D mesh” graph (|V | = 10, 000, |E| = 20, 000) learning task,
SGL requires about 40 iterations to converge to smax ≤ 10−12

when starting from an initial MST of a 5NN graph.
b) Comparison with kNN Graph: As shown in Figure

2, for the “fe 4elt2” graph (|V | = 11, 143, |E| = 32, 818)
learning task, SGL converges in about 90 iterations when

starting from an initial MST of a 5NN graph. For the 5NN
graph, we do the same edge scaling using (21)-(23). As shown
in Figures 2 and 3, the SGL-learned graph achieves a more
optimal objective function value and a much better spectral
approximation than the 5NN graph. As observed, the SGL-
learned graph has a density similar to a spanning tree, which
is much sparser than the 5NN graph.

fe_4elt2 result

0 20 40 60 80 100
-140

-120

-100

-80

-60

-40

-20

5NN

SGL

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

5NN Density: 2.89 SGL Density: 1.09

True Eigenvalues

Ap
pr
.E
ig
en
va
lu
es

True EigenvaluesSGL Iterations

Figure 3. The comparison with a 5NN graph (“fe 4elt2” graph)

c) Learning Circuit Networks: As shown in Figures 4
and 6 for the “airfoil” (|V | = 4, 253, |E| = 12, 289), the
“crack” (|V | = 10, 240, |E| = 30, 380), and the “G2 circuit”
(|V | = 150, 102, |E| = 288, 286) graphs, SGL can con-
sistently learn ultra-sparse graphs which are slightly denser
than spanning trees while preserving the key graph spectral
properties. In Figure 7, we observe highly correlated results
when comparing the effective resistances computed on the
original graphs with the graphs learned by SGL.

d) Learning Reduced Networks: As shown in Figure
8, by randomly choosing a small portion of node voltage
measurements (without using any currents measurements in Y
matrix) for graph learning, SGL can learn spectrally-similar
graphs of much smaller sizes: when 20% and 10% node
voltage measurements are used for graph learning, 5× and
10× smaller resistor networks can be constructed, respectively,
while preserving the key spectral (structural) properties of the
original graph.

e) Learning with Noisy Measurements: We show the
results of the “2D mesh” graph learning with noisy voltage
measurements. For each SGL graph learning task, each in-
put voltage measurement (vector) x̃ will be computed by:
x̃ = x+ζ‖x‖2ε, where ε denotes a normalized Gaussian noise
vector, and ζ denotes the noise level. As shown in Figure 9,
the increasing noise levels will result in worse approximations
of the original spectral properties. It is also observed that even
with a very significant noise level of ζ = 0.5, the graph learned
by the proposed SGL algorithm can still preserve the first
few Laplacian eigenvalues that are key to the graph structural
(global) properties.

f) Sample Complexity and Runtime Scalability: Figure 10
shows how the sample complexity (number of measurements)
may impact the graph learning quality. As observed, with
increasing number of samples (measurements), substantially
improved approximation of the graph spectral properties can
be achieved. In the last, we show the runtime scalability of the

0 10 20 30 40
40

60

80

100

120

-0.02 -0.01 0 0.01 0.02 0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.02 -0.01 0 0.01 0.02 0.03

-0.02

-0.01

0

0.01

0.02

0.03

Original graph density: 2.89

Learned graph density: 1.04
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

O
rig

in
al
Ei
ge
nv
al
ue

s

Approximate Eigenvalues

Iterations

100 Noiseless Measurements

Figure 4. The results for learning the “airfoil” graph

Iterations Original graph density: 2.97

Learned graph density: 1.03

O
rig

in
al

Ei
ge

nv
al

ue
s

Approximate Eigenvalues

100 Noiseless Measurements

Figure 5. The results for learning the “crack” graph

proposed SGL algorithm. The runtime includes the total time
of Step 2 to Step 5 but does not include the time for Step 1.
Note that modern kNN algorithms can achieve highly scalable
runtime performance [8].

IV. CONCLUSIONS

This work proposes a spectral algorithm (SGL) for learning
resistor networks from linear voltage and current measure-
ments. Our approach iteratively identifies and includes the
most influential edges to the latest graph. We show that the
proposed graph learning approach is equivalent to solving
the classical graphical Lasso problems with Laplacian-like
precision matrices. A unique feature of SGL is that the learned
graphs will have spectral embedding or effective-resistance
distances encoding the similarities between the original input
data points (node voltages). To achieve high efficiency, SGL

Iterations Original graph density: 2.97

Learned graph density: 1.03

O
rig

in
al
Ei
ge
nv
al
ue

s

Approximate Eigenvalues

0 5 10 15 20
-500

-450

-400

-350

-300

-250

0 0.005 0.01 0.015 0.02
0

0.005

0.01

0.015

0.02

0.025

100 Noiseless Measurements

Figure 6. The results for learning the “G2 circuit” graph

2D mesh

Approximate Effective Resistances

airfoil

fe_4elt2

O
rig

in
al

Ef
fe

ct
iv

e
Re

sis
ta

nc
es

crack

100 Noiseless Measurements

Figure 7. The effective resistances correlations (scatter plots)

exploits a scalable spectral embedding scheme to allow each
iteration to be completed in O(N logN) time, whereas exist-
ing state-of-the-art methods require at least O(N2) time for
each iteration. We also provide a sample complexity analysis
showing that it is possible to accurately recover a resistor
network with only O(logN) voltage measurements (vectors).

V. ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation under Grants CCF-2041519 (CAREER), CCF-
2021309 (SHF), and CCF-2011412 (SHF).

REFERENCES

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–
1396, 2003.

0 0.005 0.01 0.015 0.02
0

5

10

15

20

25

30
0 0.005 0.01 0.015 0.02

0

5

10

15

20

25

30

-0.01 -0.005 0 0.005 0.01 0.015
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

G2_Circuit (100 Measurements of 20% & 10% Node Voltages)

Eigenvalues Scatter Plot

(30K Nodes & 31K Edges)

Original Graph
(150K Nodes & 288K Edges)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(15K Nodes & 16K Edges)

Eigenvalues Scatter Plot

Corr. Coef.: 0.999

Corr. Coef.: 0.994

Figure 8. The reduced graphs learned by SGL (“G2 circuit”)

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

Noise Level: 10%

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1
Noise Level: 0%

Original Eigenvalues

Ap
pr
ox
im

at
e
Ei
ge
nv
al
ue

s

Noise Level: 25%

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

0.08

0.1

Noise Level: 50%

2D Mesh Network

Figure 9. The graphs learned with noises (“2D mesh” graph)

[2] X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs
from data: A signal representation perspective. IEEE Signal Processing
Magazine, 36(3):44–63, 2019.

[3] H. E. Egilmez, E. Pavez, and A. Ortega. Graph learning from data under
laplacian and structural constraints. IEEE Journal of Selected Topics in
Signal Processing, 11(6):825–841, 2017.

[4] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[5] M. Grant, S. Boyd, and Y. Ye. Cvx: Matlab software for disciplined
convex programming, 2009.

[6] Y. Koren. On spectral graph drawing. In International Computing and
Combinatorics Conference, pages 496–508. Springer, 2003.

[7] I. Koutis, G. Miller, and R. Peng. Approaching Optimality for Solving
SDD Linear Systems. In Proc. IEEE FOCS, pages 235–244, 2010.

[8] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs.
IEEE transactions on pattern analysis and machine intelligence, 2018.

[9] M. Slawski and M. Hein. Estimation of positive definite m-matrices and
structure learning for attractive gaussian markov random fields. Linear
Algebra and its Applications, 473:145–179, 2015.

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2
10 Measurements

Original Eigenvalues

Ap
pr
ox
im

at
e
Ei
ge
nv
al
ue

s

fe_4elt2 Network

0 0.05 0.1 0.15
0

0.05

0.1

0.15
50 Measurements

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4
5 Measurements

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

25 Measurements

Figure 10. The effect of the number of measurements (“fe 4elt2” graph)

Runtime Scalability (Excluding kNN Construction Time)

Ru
nt
im

e
(s
ec
on

ds
)

Number of Nodes

Figure 11. The runtime scalability of the SGL algorithm

[10] D. Spielman and N. Srivastava. Graph Sparsification by Effective
Resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011.

[11] R. J. Tibshirani. A general framework for fast stagewise algorithms.
The Journal of Machine Learning Research, 16(1):2543–2588, 2015.

[12] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and
S. Han. GCN-RL Circuit Designer: Transferable Transistor Sizing with
Graph Neural Networks and Reinforcement Learning. arXiv preprint
arXiv:2005.00406, 2020.

[13] Z. Zhao and Z. Feng. Effective-resistance preserving spectral reduction
of graphs. In Proceedings of the 56th Annual Design Automation
Conference 2019, DAC ’19, pages 109:1–109:6, New York, NY, USA,
2019. ACM.

[14] Z. Zhao, Y. Wang, and Z. Feng. SAMG: Sparsified Graph Theoretic
Algebraic Multigrid for Solving Large Symmetric Diagonally Dominant
(SDD) Matrices. In Proceedings of the 36th International Conference
on Computer-Aided Design (ICCAD). ACM, 2017.

[15] Z. Zhao, Y. Wang, and Z. Feng. Nearly-linear time spectral graph
reduction for scalable graph partitioning and data visualization. arXiv
preprint arXiv:1812.08942, 2018.

[16] Z. Zhao, Y. Zhang, and Z. Feng. Towards scalable spectral embedding
and data visualization via spectral coarsening. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining,
pages 869–877, 2021.

	I Introduction
	II SGL: A Spectral Learning Approach
	II-A Graph Learning via Laplacian Estimation
	II-B Gradient Estimation via Sensitivity Analysis
	II-C Convergence Analysis of the SGL Algorithm
	II-D Sample Complexity of the SGL Algorithm
	II-E Key Steps in the SGL Algorithm
	II-E1 Step 1: Initial Graph Construction
	II-E2 Step 2: Spectral Graph Embedding
	II-E3 Step 3: Influential Edge Identification
	II-E4 Step 4: Convergence Checking
	II-E5 Step 5: Spectral Edge Scaling

	II-F Algorithm Flow and Complexity

	III Experimental Results
	III-A Experimental Setup
	III-B Comprehensive Results for Graph Learning

	IV Conclusions
	V Acknowledgments
	References

