Check for
Updates

Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Scalable Graph Topology Learning via Spectral Densification

Yongyu Wang
Michigan Technological University
Houghton, Michigan, USA
yongyuw@mtu.edu

ABSTRACT

Graph learning plays an important role in many data mining and
machine learning tasks, such as manifold learning, data represen-
tation and analysis, dimensionality reduction, data clustering, and
visualization, etc. In this work, we introduce a highly-scalable spec-
tral graph densification approach (GRASPEL) for graph topology
learning from data. By limiting the precision matrix to be a graph-
Laplacian-like matrix, our approach aims to learn sparse undirected
graphs from potentially high-dimensional input data. A very unique
property of the graphs learned by GRASPEL is that the spectral
embedding (or approximate effective-resistance) distances on the
graph will encode the similarities between the original input data
points. By leveraging high-performance spectral methods, sparse
yet spectrally-robust graphs can be learned by identifying and in-
cluding the most spectrally-critical edges into the graph. Compared
with prior state-of-the-art graph learning approaches, GRASPEL is
more scalable and allows substantially improving computing effi-
ciency and solution quality of a variety of data mining and machine
learning applications, such as manifold learning, spectral clustering
(SC), and dimensionality reduction (DR).

CCS CONCEPTS

« Computing methodologies — Spectral methods; Learning
paradigms.

KEYWORDS

graph topology learning; spectral graph theory; spectral clustering;
dimensionality reduction

ACM Reference Format:

Yongyu Wang, Zhiqiang Zhao, and Zhuo Feng. 2022. Scalable Graph Topol-
ogy Learning via Spectral Densification. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining (WSDM °22), Feb-
ruary 21-25, 2022, Tempe, AZ, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3488560.3498480

1 INTRODUCTION

Graph learning is playing increasingly important roles in many ma-
chine learning and data mining applications. For example, a key step
of many existing machine learning methods requires converting
potentially high-dimensional data sets into graph representations:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WSDM °22, February 21-25, 2022, Tempe, AZ, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9132-0/22/02...$15.00
https://doi.org/10.1145/3488560.3498480

Zhiqiang Zhao
Stevens Institute of Technology
Hoboken, New Jersey, USA
zzhao76@stevens.edu

1099

Zhuo Feng
Stevens Institute of Technology
Hoboken, New Jersey, USA
Zhuo.Feng@stevens.edu

it is a common practice to represent each (high-dimensional) data
point as a node, and assign each edge a weight to encode the simi-
larity between the two nodes (data points). The constructed graphs
can be efficiently leveraged to represent the underlying structure
of a data set or the relationship between data points [8, 15, 17].
However, how to learn meaningful graphs from large data set at
scale still remains a challenging problem.

Several recent graph learning methods leverage emerging graph
signal processing (GSP) techniques for estimating sparse graph
Laplacians, which show very promising results [4-6, 10]. For ex-
ample, [6] addresses the graph learning problem by restricting the
precision matrix to be a graph Laplacian and maximizing a posterior
estimation of attractive Gaussian Markov Random Field (GMRF)
1 while an # -regularization term is used to promote graph spar-
sity; [22] provides an error analysis for inferring sparse graphs
from smooth signals; [10] leverages approximate nearest-neighbor
(ANN) graphs to reduce the number of variables for optimization;
[12] introduces a graph Laplacian learning method by imposing
Laplacian spectral constraints.

However, even the state-of-the-art Laplacian estimation meth-
ods for graph learning do not scale well for large data set due to
their extremely high algorithm complexity. For example, solving
the optimization problem for Laplacian estimation in [4-6, 9] re-
quires O(N?) time complexity per iteration for N data entities and
nontrivial parameters tuning for controlling graph sparsity which
limits their applications to only very small data sets (e. g. with up
to a few thousands of data points); the method introduced in [2]
leverages Isomap manifold embedding [29] for graph construction,
which requires O(N?) time for manifold construction and thus
does not scale to large data set; the latest graph learning approach
[10] takes advantages of ANN graphs, but it still runs very slowly
for large data sets; the Laplacian estimation method with spectral
constraints requires a good graph structure to be provided in ad-
vance [12], which otherwise can be very costly when going through
exhaustive graph structure searches.

This work introduces a spectral graph densification approach
(GRASPEL 2) for learning sparse graphs from data by leverag-
ing spectral graph algorithms. GRASPEL has a close connection
with prior GSP-based Laplacian estimation methods [4-6, 9, 10]
and graphical Lasso [7]. By treating M-dimensional data points
as M graph signals, GRASPEL allows efficiently solving a convex
problem by iterative identifying and including the most spectrally-
critical candidate edges into the latest graph leveraging recent
nearly-linear time spectral methods [33]. Compared with prior
spectral graph sparsification algorithms [26] that target pruning
edges from a given graph while preserving key graph spectral

UIf the precision matrix of a GMRF is an M-matrix with all non-negative off-diagonal
elements, we call it an attractive GMRF [5, 25].
2The source code is available at: https://github.com/Feng-Research/GRASPEL

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488560.3498480&domain=pdf&date_stamp=2022-02-15

Research Paper

properties, GRASPEL aims at iteratively densifying graphs such
that the learned graphs will have spectral embedding (or effective-
resistance) distances encoding the similarities between the original
input data points. Comparing with state-of-the-art graph construc-
tion methods, GRASPEL is more scalable for estimation of attractive
Gaussian Markov Random Fields (GMRFs) even for very large data
set. We summarize the contribution of this work as follows:

e We propose a spectral graph densification approach (GRASPEL)
that allows efficient estimation of attractive Gaussian Markov Ran-
dom Fields (GMREFs) leveraging the latest spectral graph theory. The
key to achieving high efficiency is a spectral embedding scheme for
finding spectrally-critical edges, allowing each GRASPEL iteration
to be completed in O(N log N) instead of O(N?) time.

e We introduce a novel convergence criterion for GRASPEL it-
erations based on graph spectral stability: when the maximum
embedding distortion becomes relatively small, or equivalently the
graph spectrum becomes sufficiently stable, GRASPEL iterations
can be terminated.

© Our experiment results show that the graphs learned using GRASPEL

can lead to more efficient and accurate spectral clustering (SC) as
well as dimensionality reduction (DR).

2 BACKGROUND

Given M observations on N data entities in a data matrix X =
[x1, ..., xp] € RN*M each column vector of X can be considered
as a signal on a graph. For example, the USPS data set including
9,298 images of handwritten digits with each image having 256
pixels will result in a feature matrix X € RN*M with N = 9,298
and M = 256. The recent GSP-based graph learning methods [4] es-
timate graph Laplacians from X for achieving the following desired
characteristics:

Smoothness of graph signals. The graph signals correspond-
ing to the real-world data should be sufficiently smooth on the
learned graph structure: the signal values will only change grad-
ually across connected neighboring nodes. The smoothness of a
signal x over an undirected graph G = (V, E, w) can be measured
with the following Laplacian quadratic form:

*TLx= Y wpglx(p) = x (@)%
(p.q) €E

®

where wy, 4 denotes the weight of edge (p, q), L = D—W denotes the
Laplacian, D denotes the diagonal (degree) matrix, and W denotes
the adjacency matrix of G, respectively. The smaller value of (1)
indicates the smoother signals across the edges in the graph. The
smoothness (Q) of a set of signals X over graph G is computed using
the matrix trace [9] Q(X,L) = Tr(XT LX), where Tr(e) denotes
the matrix trace.

Sparsity of the estimated graph. Graph sparsity is another
critical consideration in graph learning. One of the most important
motivations of learning a graph is to use it for downstream data
mining or machine learning tasks. Therefore, desired graph learn-
ing algorithms should allow better capturing and understanding
the global structure (manifold) of the data set, while producing
sufficiently sparse graphs that can be easily stored and efficiently
manipulated in the downstream algorithms, such as graph cluster-
ing, partitioning, dimension reduction, data visualization, etc.

1100

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Prior methods. Consider an N-dimensional random vector x
following a multivariate Gaussian distribution x ~ N(0,X) with
probability density:

exp (—%xTZ’lx)
(27m)N/2 det()(1/2)

fo) = o det(©)'/? exp (_%XTGX)’ @)

where ¥ = E[xx "] > 0 denotes the covariance matrix, and © = 37!
denotes the precision matrix (inverse covariance matrix). Prior
graph topology learning methods aim at estimating sparse precision
matrix © from potentially high-dimensional input data:

(A) The graphical Lasso method aims at estimating a sparse

precision matrix © using the following convex optimization based
on maximum likelihood estimation of f(x) [7]:

m@f)lX :log det(©) — Tr(©S) - flI©]|, (3)
where © denotes a non-negative definite precision matrix, S de-
notes a sample covariance matrix, and f denotes a regularization
parameter. The first two terms together can be interpreted as the
log-likelihood under a Gaussian Markov Random Field (GMREF). || o ||
denotes the entry-wise £; norm, so $||©||; becomes the sparsity
promoting regularization term. This model learns the graph struc-
ture by maximizing the penalized log-likelihood. When the sample
covariance matrix S is obtained from M i.i.d (independent and iden-
tically distributed) samples X = [xi, ..., xp] where X ~ N(0,S)
has an N-dimensional Gaussian distribution with zero mean, each
element in the precision matrix ©; j encodes the conditional depen-
dence between variables X; and X;. For example, ©; ; = 0 implies
that the corresponding variables X; and X are conditionally inde-
pendent, given the rest.

(B) The GSP-based Laplacian estimation methods have been
recently introduced for more efficiently solving the following con-
vex problem [5, 13]:

m@é)iX : F(®) =logdet(®) — ﬁTr(XTGX) - Bllell;, (4)

where © = L + 21, L denotes the set of valid graph Laplacian
o

matrices, I denotes the identity matrix, and 6® > 0 denotes prior
feature variance. It can be shown that the three terms in (4) are
corresponding to log det(®), Tr(@S) and f||®||, in (3), respectively.
When each column vector in the data matrix X 3 is treated as a graph
signal vector, there is a close connection between formulation (4)
and the graphical Lasso problem. Since © = L + #I corresponds to
symmetric and positive definite (PSD) matrices (or M matrices) with
non-positive off-diagonal entries, this formulation will lead to the
estimation of attractive GMRFs [5, 25]. In case X is non-Gaussian,
(4) can be understood as Laplacian estimation based on minimizing
the Bregman divergence between positive definite matrices induced
by the function © — —log det(©) [25].

Express the Laplacian matrix of an undirected graph G = (V, E, w)
as follows:

_ T
L= Z Wp.qp.qp.q)

(p.q) €E

3For each of the N row vectors X (i,:) € R™*M where i = 1,..., N, the following
two-step data pre-processing will be performed: (1) X (i,:) = X (i,:) — p;, where y;
denotes the sample mean of X (i, :); (2) Feature normalization X = VMX/1X]l2 -

Research Paper

where ¢, € RN denotes the standard basis vector with all zero
entries except for the p-th entry being 1, and e g = ep — eq. The as-
cending Laplacian eigenvalues and the corresponding eigenvectors
are denoted by A; and u; for i = 1,..., N, respectively, which satisfy:

Lu; = Aju;. (6)
Rewrite the objective function in (4) as follows:
1 1 Tr(XTX
F=logdet(L+—I| - —=Tr(XTLX) - IrX_X) - BILlly. (D)
o? M o2

3 A SPECTRAL LEARNING APPROACH

Taking the partial derivative with respect to the weight wy 4 of
edge (p, q) leads to:

N
oF 1 oA 1
= § 75—~ X epgl; —48 (®)
owpg L Ai+tl/o?owpg M

Since the last two terms in (8) are all fixed (constant) values for a
given data matrix X where f§ can be considered as an additional
offset added to all data pairs (candidate edges), we can drop the third
term by simply setting f = 0, which will not impact the ranking of
candidate edges in graph learning. The above simplification implies
the second term alone will effectively penalize graph density for
estimating Laplacian-like precision matrix: including more edges
will result in a greater trace Tr(X ' ©X).

Define the following eigensubspace matrix U, € RN x(r=1) for
spectral graph embedding:

uz
U, =) eeey s
\//12+1/(72 \/)Lr+1/62

which includes the first » — 1 weighted nontrivial Laplacian eigen-
vectors as its column vectors. Choosing f = 0 and r = N, then the
edge spectral sensitivity sp 4 can be derived as follows:

Ur

©

N
oF 1 A 1
= =D~ L el
Wpg i+1/0% dwpq (10)
_ emb _ i data
=%q T pfpa
where zf,fgb = ||U]\T]ep,q||§ and Zgﬁlt“ = ||XTep,q||§ denote the £,

distances in the spectral embedding space and the original data
space, respectively. In practice, choosing a small r (e.g. 2 < r < N)
according to the gaps between the first few eigenvalues will suffice.

REMARK 1. When 62 — +o0 andr = N, z;;fgb becomes the
eff _
RPaq -

zemb
Pq
between nodes p and q on the graph, where L* € RN*N denotes the

Moore—Penrose pseudoinverse of the Laplacian matrix L.

effective-resistance distance ej-,':qLJrep,q = ||U,Tep,q||% =

Define the embedding distortion of a candidate edge (p, q) by

emb
_ 2P

Mp.a =M gara-
e
Also define spectrally-critical edge to be a candidate edge (p, q)
that has a large embedding distortion 7 4. Therefore, if an edge
candidate has a large embedding distortion, any small perturbation
to this edge can change the objective function F significantly.

(11)

1101

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

3.1 Spectral Graph Densification

Consider the (k + 1)-th GRASPEL iteration for identifying the
most spectrally-critical (top) candidate edge to be included into
the latest graph Gy = (Vi, Ex, wy) 4. Suppose all O(N?) candidate
edges are initialized with very small (near-zero) weights. In each
GRASPEL iteration, the top candidate edge with the largest spectral
sensitivity will be identified and assigned with a much larger edge
weight, which is equivalent to adding the candidate edge into the
latest graph. According to (10), including such an edge into G
will significantly improve the objective function and decrease the
spectral embdding distortion. To avoid storing O(N?) candidate
edges, GRASPEL leverages a nearly-linear time spectral densifica-
tion scheme that has been shown in Figure 1.

Spectral graph sparsification (prior work). Prior work proves
that every undirected graph has a sparsified graph with O(N 1§2g N)
edges that can be obtained by sampling each edge (p, q) with a
probability (leverage score) p. proportional to its effective resis-

Ry eff
tance p, o< Ry = Wp,gRpq » where R, o = 1/wp g denotes the

original resistance and R;f /" denotes the effective resistance. The
sparsified Laplacian satisfies the following inequalities [26]:

Vx e RN (1-e)x"Lx < x"Lx < (1+€)x ' Lx,

(12)

where L and L denote the original and sparsified graph Laplacians,
respectively.

Spectral graph densification (this work). For a candidate edge
that has been selected according to its spectral sensitivity during a
GRASPEL iteration, by setting its edge weight as wp 4 o #, the

spectral embedding distortion 7 4 o« wp,qR;{;f becomes the lever-
age score for spectral graph sparsification [26]. Therefore, GRASPEL
iterations can be considered as a spectral graph densification proce-
dure that aims to include O(N log N) spectrally-critical edges with
large spectral sensitivities (embedding distortions). Moreover, upon
convergence the spectral embedding (effective-resistance) distances
on the graphs learned by GRASPEL will encode the #; distances
between the original data points, which is key to manifold learning
and dimensionality reduction problems [1, 2].

Convergence analysis. The global optimal solution can be ob-
tained when (10) becomes zero or there exists no edge with > 1
for inclusion to the latest graph. Therefore, the GRASPEL iterations
can be terminated when the maximum embedding distortion 7m,ax
becomes small enough (e.g. max < 10), or equivalently, when the
graph spectrum become sufficiently stable (The first few eigenval-
ues/eigenvectors will not be significantly perturbed by adding new
candidate edges).

Algorithm complexity. The subspace matrix U, with 2 < r <
N can be computed in O(N log N) time [33], which allows the
spectral embedding distortion 17, 4 of each candidate edge (p, q) to
be estimated in constant time O(1). Therefore, each top candidate
edge can be identified in O(N log N) time (see details in Section
4), which is much faster than the state-of-the-art graph topology
learning methods [4-6, 9, 10] which require at least O(N?) time in
each iteration.

4 Assume that |Vi.| = |V| = N (every data point is connected in Gg).

Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Step 2. Spectral
graph embedding

-l | God 2%

L S
Step 1. Initial
graph construction

Ve = 2
Node s,
embedding = 5, Data vectors
vectors Se
e
p1 0
0 Step 3A. Check

embedding distortion

New edge
-0
- 0
‘1" ° (¢ ° Gk’
. e o o \\ . ,, . .
o 0
- f V -\ 2o
o () 0 0
0 0]
Step 3B. Add Step 4. Check

spectrally-critical edge ~ €mbedding stability

Figure 1: Spectral graph densification in GRASPEL iterations.

4 DETAILED STEPS IN GRASPEL

GRASPEL will iteratively identify and add the top candidate edges
into the latest graph so that the spectral embedding distortion can be
greatly mitigated, until no such edges can be found (as illustrated in
Figure 1). The detailed GRASPEL algorithm flow for graph learning
has been described in Algorithm 1, and summarized as follows.

Step 1: Initial graph construction. As aforementioned, (ap-
proximate) kNN graphs can be constructed as the initial graph, since
they can be obtained efficiently [18], while being able to approxi-
mate the local data proximity [23]. However, the optimal k value
(the number of nearest neighbors) is usually problem dependent
and can be very difficult to find. In this work, GRASPEL will start
with creating an (approximate) kNN graph using a relatively small
k value (e.g. k = 2 to 5), which will suffice for approximating the
local structure of the manifold, and strive to iteratively improve the
approximation of the global manifold structure by adding a small
portion of spectrally-critical edges through solving the proposed
GRASPEL iterations.

Step 2: Spectral graph embedding. Spectral graph embedding
directly leverages the first few nontrivial eigenvectors for project-
ing nodes onto a low-dimensional subspace [1]. The eigenvalue
decomposition of Laplacian matrix is usually the computational
bottleneck in spectral graph embedding, especially for large graphs
[3, 24, 31]. To achieve good scalability, nearly-linear time Laplacian
solvers [11] or multilevel Laplacian solvers [33] can be exploited for
much faster eigenvector (eigenvalue) computations without loss of
accuracy.

Step 3: Spectrally-critical edge identification. Once Lapla-
cian eigenvectors are available for the latest graph, through the
following phases GRASPEL will identify spectrally-critical edges
by looking at each candidate edge’s spectral sensitivity s 4 defined
in (10). However, an exhaustive search among all node pairs would
require O(N?) evaluations. To gain much higher efficiency, the
following two-phase search strategy has been proposed.

Phase A: candidate edge identification with Fiedler vectors. Our
approach for identifying spectrally-critical edges starts with sort-
ing nodes according to the Fiedler vector that can be computed in

1102

Algorithm 1 The GRASPEL Algorithm Flow

Input: A data matrix (X = [x1,..xp] € RNVN*My with N data
points in M-dimensional, embedding distortion tolerance (1 < tol),
window size for edge sampling (0 < € < 50%), edge sampling ratio

(0 < ¢ £ 1), and the number of edges to be selected in each

iteration (0 < s). Output: The spectrally-learned graph G.

1: Construct an initial 2NN graph G using approximate kNN al-
gorithms.

2: while nax > tol do

3. Embed the latest graph G using its Fiedler vector and sort
the nodes into a 1D array I, 4.5

4 Obtain node set N;op (Npo;) by including only the top (bot-
tom) [eNT] nodes in I, 4,;

5. Sample each of the [s/{] edges by randomly choosing one
node from N;op and another node from Np,;;

6: Form an edge set Eg.; using edges with large distortions
(n = tol) and set the largest edge embedding distortion as

Nmax-
7. if |Egef| = s then
8: Add the top s edges from Eg,; into G;
9: else
10: Add all the edges in E,; into G;
11: endif

12: end while
13: Return the learned graph G.

nearly-linear time leveraging fast Laplacian solvers [11, 27]. This
scheme is equivalent to including only the first nontrivial Laplacian
eigenvector into U, (choosing r = 2) in (9) for spectral graph em-
bedding. Subsequently, we can search candidate edge connections
between the top and bottom few nodes in the 1D sorted node array.
According to (10), only a small portion of node pairs with large
embedding distances needs to be examined as candidate edges.
Phase B: embedding distortion estimation with multiple eigenvec-
tors. With the first r Laplacian eigenvectors computed in the previ-
ous spectral embedding step, each node of the latest graph will be

Research Paper

associated with an r-dimensional embedding vector, which allows
the spectral embedding distortion of each candidate (spectrally-
critical) edge to be quickly estimated. As aforementioned, the spec-
tral embedding distances computed with the first r eigenvectors
can well approximate the effective-resistance distance thus the edge
sensitivity in the proposed optimization task (10). Only the candi-
date edges with top embedding distortions will be added into the
latest graph. Since z;”gb = ||UrTep,q||§ < ||U1—\'—,ep)q||2, only the lower
bound of embedding distortions can be estimated.

Step 4: Spectral stability checking. In this work, the edge
embedding distortions are adopted for checking the spectral sta-
bility of the learned graph. If there exists no additional edge that
has an embedding distortion greater than a given tolerance level
(tol), GRASPEL iterations can be terminated. Note that choosing a
smaller distortion tolerance will require more GRASPEL iterations
(edges), which enables the embedding distances on the learned
graph to more precisely encode the distances between the original
data points.

5 EXPERIMENTS

In this section, extensive experiments have been conducted to evalu-
ate the performance of the proposed GRASPEL algorithm for SC and
DR applications. More details about the SC algorithm flow, data sets
and the performance evaluation metrics used in our experiments
can be found in the appendix sections.

5.1 Experiment Setup

Data preparation. Since this work primarily focuses on learning
graphs from high-dimensional data points, the proposed method
can be orthogonal to existing research related to deep learning
based SC methods: an autoencoder can be first applied to transform
the input data into more optimal features that can subsequently
become the input of GRASPEL for learning graphs in SC. For fair
comparisons with other state-of-the-art graph learning methods,
we directly use the raw data as input without any additional pre-
processing steps.

Input parameters. When applying Algorithm 1 to our data sets
for the graph learning tasks shown in this section, we randomly
sample candidate edges that connect between the top and bottom
0.05|V| (¢ = 0.05) nodes in the 1D sorted array according to the
Fiedler vector, which allows GRASPEL to quickly identify the most
spectrally-critical edges. Note that choosing a smaller € value will
allow more efficient edge sampling for estimating global graph
(manifold) structural properties, while choosing a greater € value
will require more samples but may lead to better preservation of
mid-to-short range graph (manifold) structural properties. When
estimating the spectral distortion of each candidate edge we com-
pute the first few (2 < r < 10) Laplacian eigenvectors for the
spectral graph embedding step. We consider the edge sampling
ratio 0.0 < ¢ < 1.0 and add a few edges (1 < s < 0.05|V]) to the
latest graph in each GRASPEL iteration. ¢ = 103 in (9) has been
used for computing © in all experiments.

Results visualization. When creating the 3D spectral graph draw-
ings (layouts), each entry of the first three nontrivial Laplacian
eigenvectors (ug, u3, u4) corresponds to the x, y and z coordinates
of each node (data point), respectively. The ground-truth label of
each data point is shown using its corresponding color. The edges

1103

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

x10™* 5
'I(a) (c) tol=100 (9 iterations)
08 * * ¥

* *

*
06 *
*

20

0015 . 002

(d)

0.01 (b) ! 0.01
0.005 ° 0 2 -'.“.u., .
0 5 -0.01
0005 Eg PR—r" .
001 - - . , 008 N
" NMI=0.612 ~ K T NMI=0.883 ~ K
027 ACC=40.4% . o | o™ ACC=90.7% _— on % 4
04 s 02 “~ e 0
e . 002 o .
2NN Graph 2NN Graph + 9 Edges
12 T T T T T
10 1
3
£ 87 1
=
(o)} L]
Q 6
4 L 4
2 1 1 1 1 1
0 2 4 6 8 10 12
Iterations

Figure 2: The first 20 Laplacian eigenvalues (top), spectral
drawings (middle) and the embedding distortions (bottom)
of the graph learned through GRASPEL iterations.

are omitted in the layouts to better reveal the structure of the data
points (manifolds).

Computing platform. The following experiments are performed
using MATLAB R2020b running on a Laptop with 10th Intel(R)
Core(TM) i5 CPU and 8GB RAM.

5.2 Experiment Results

Spectral stability (convergence) checking. As shown in Figure
2, for the USPS data set, when starting from a 2NN initial graph
GRASPEL identifies one additional edge to be included in each
iteration and requires only 11 iterations (5 seconds) to effectively
mitigate the maximum embedding distortion by over 1,000x. The
rapidly improved NMI (Normalized Mutual Information) and ACC
(clustering accuracy) in SC imply significantly improved graph qual-
ity [19]. Comparing with the state-of-the-art graph construction
algorithm [10], our method is over 400X faster while achieving
much better solution in spectral (embedding) clustering tasks.

Spectral clustering results. Comprehensive results of SC using
four graph learning (construction) methods are shown in Table 1.
As observed, GRASPEL consistently achieves the state-of-the-art
ACC/NMI results in SC. The graph density (|E|/|V|) results are also
reported in Table 2, while the runtime reported in Table 3 includes
the total time for eigendecomposition of the Laplacian matrix and
k-means clustering. In Table 4, the runtime of the consensus method
includes the time for consensus information calculation and edge

Research Paper

pruning, while the runtime of GRASPEL includes the total time for
spectral graph densification. As observed, GRASPEL consistently
achieves the state-of-the-art graph density and runtime results for
SC tasks.

Table 1: Spectral Clustering (SC) Results

ACC(%)/ NMI
Data Set | Standard k-NN | Consensus [21] | LSGL [10] | GRASPEL
COIL20 75.72/0.86 81.60/0.90 85.49/0.95 | 86.46/0.94
PenDigits 74.36/0.79 71.08/0.79 74.53/0.77 | 82.40/0.79
USPS 64.31/0.79 68.54/0.81 81.50/0.84 | 91.50/0.89
MNIST 64.20/0.74 - - 74.63/0.78
Table 2: Graph density results
Graph density (|E|/|V])
Data Set | Standard k-NN | Consensus [21] | LSGL [10] | GRASPEL
COIL20 6.12 5.06 11.99 1.39
PenDigits 6.76 6.70 186.52 2.96
USPS 7.30 6.58 29.97 1.70
MNIST 7.46 - - 1.72
Table 3: SC runtime results
Spectral clustering (SC) time (seconds)
Data Set |Standard k-NN | Consensus [21] | LSGL [10] | GRASPEL
COIL20 0.03 0.03 0.08 0.02
PenDigits 0.18 0.16 4.42 0.17
USPS 0.72 0.56 7.05 0.28
MNIST 252.59 - - 3.06

Table 4: Graph learning (construction) time

Graph construction time (seconds)
Data Set | Consensus [21] | LSGL [10] | GRASPEL
COIL20 243 13.56 0.29
PenDigits 172.51 1,085.43 2.04
USPS 574.28 2,074.78 3.37
MNIST - - 208.89

Spectral embedding results. In Figure 3, we show the first
few Laplacian eigenvalues and 3D spectral drawings of the graphs
learned with different distortion tolerance levels for a subset (includ-
ing all the 24, 462 handwritten digits from 0 to 6) of the MNIST data
set and the test set of the Fashion MNIST data set (see Appendix
A2 for details) including 10, 000 article images from style 0 to 9 [32].
As observed, when starting from an initial 2NN graph, GRASPEL
has dramatically mitigated the embedding distortions by adding
only a few edges into the initial 2NN graph. By examining the first
few Laplacian eigenvalues, we notice that the initial 2NN graph of
the MNIST data set has nine connected components (that equals to
the number of zero eigenvalues); with only 10 extra edges added

1104

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

via GRASPEL iterations, a well-connected graph can be formed for
preserving the structure of the original data set. For the Fashion
MNIST data set, the initial 2NN graph has six connected compo-
nents, which becomes a well-connected graph with only seven
edges added through GRASPEL iterations. It is also observed that
when starting with initial 2NN graphs a few GRASPEL iterations
have already dramatically improved clustering results: the NMI has
been improved from 0.012 to 0.873 for the MNIST data set, 0.599
to 0.626 for the Fashion MNIST data set, and 0.04 to 0.840 for the
Pendigit data set; the ACC has been improved from 16.1% to 90.7%
for the MNIST data set, 43.9% to 55.5% for the Fashion MNIST data
set, and 15.2% to 89.4% for the Pendigit data set.

Implications for dimensionality reduction. For the MNIST
data set, we observe relatively large gaps between the 6th and 7th
Laplacian eigenvalues, implying that the intrinsic dimensionality
of the GRASPEL-learned graphs (manifolds) is approximately five,
whereas for the Fashion MNIST data set the intrinsic dimensionality
is approximately six. It is also observed that the GRASPEL iterations
with different number (r) of Laplacian eigenvectors for spectral
graph embedding using (9) and distortion computations always
lead to similar gaps between eigenvalues. Consequently, we expect
the GRASPEL-learned graphs to play an important role in revealing
the intrinsic dimensionality of a data set and potentially lead to the
development of highly-efficient tools for dimensionality reduction
and data visualization.

Resistance-distance correlation. For the full USPS data set
we evaluate graph learning quality by checking if the effective-
resistance distances on the learned graph will properly encode
the ¢, distances between the original data points. To this end, we
randomly pick up 1,000 node pairs and compute their effective-
resistance distances. To avoid choosing nearby nodes, we first sort
nodes according to the Fiedler vector and then pick up the node
pairs (nzop, Npo;) from the node sets Niop and Ny, formed with
the top and bottom 5%|V| sorted nodes, respectively. Then, these
effective-resistance distances are compared with the corresponding
£, distances between the original data points by checking the Pear-
son correlation coefficient. In Figure 4, we observe that the effective-
resistance distances on the graph learned via 100 GRASPEL itera-
tions (27 seconds) exhibit the highest correlation (R = 0.352) with
the £, distance between the original data points, while the 3NN or
4NN graphs which are much denser only achieve R = 0.063 and
R = 0.093, respectively. It is also observed that increasing k from 3
to 4 for constructing the kNN graph only improves the resistance
correlation but not necessarily the clustering quality (e.g. NMI and
ACC metrics), whereas the graph learned by GRASPEL iterations
achieves the best results considering all aspects.

Multilevel t-SNE visualization. The t-Distributed Stochastic
Neighbor Embedding (t-SNE) has become one of the most popular
visualization tools for high-dimensional data analytic tasks [14, 16].
However, its high computational cost limits its applicability to large
scale problems. To improve the scalability of t-SNE, a multilevel
algorithm based on kNN graph coarsening has been introduced
[33], which allows performing t-SNE for a much smaller set of rep-
resentative data points corresponding to the nodes in the coarsened
graphs. However, it would be quite challenging to determine the
optimal k for constructing kNN graphs.

Research Paper

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

A subset of the MNIST dataset including 24,462 handwritten digits from 0 to 6

-3
y %10
0.03 - % * 71 003 ’ I ' * X
(a) . * (c) tol=100 (10 iterations) , * * (e) tol=20 (29 iterations) , * *
0.8 . . * ¥
* x ¥ ¥ *
06 002 o * 0.02 L EF
*
* -
0.4 | ﬂ
001 I 0.01
*
02 L **** \Largegap .
0 ol . . ol
o 5 10 16 20 5 10 15 20 0 20
_— 6 - ¢
/////// /\\\\ o o ¢ - 5
02— 5 P i P
(b) ™ T(d) o () .
0 1.
4 s R 2005 4
-02 . 0
04 B .) 005 .
- //\ 1 -0.01
08 _— \\ 2 s N 2015 2
-08 7 ™ — ~ —
> NMI=0.012 b s ~ "
° 1 NMI=0.878 = ~
4 ACC= 16:1% 1% / 08 0005 - —— 1 o~ NMI=0.873 e |
10° \ / o™ \ACC 93 8% oo1 - ACC=00.7% "o *”
° o157 —"""001 o R .
001" 001
2NN Graph 2NN Graph + 10 Edges 2NN Graph + 29 Edges
The test set of the Fashion MNIST dataset including 10,000 article images from style 0 to 9
0.01 0.02 0.03
i -==° * -
(a) * 0,015 (c) tol=100 : *: 002 (e) tol=10 :___*.: N
0.005 0.01 * :* : i i
* o T 0.01 PR x__
* 0.005 . x
ol e e w e * Large gap . Large gap
0 2 4 6 8 o 0 A 4 s s 10 0 2 4 6 8 10
T N
- 9 —
N o //// \ 8
/// 8 002 2 N
/ (f) 7
02 7 (d) 7
o 6
0 s | 6
02) . 002 5
5 5
-04 . 4 . .. 4 -0.04 ¢
. = P V / 3
3 \ 3 006 — N
0.04 . 2
NMI=0.599 2 S =
uz\ ACC=43.9% 06 . 4N NMI=0.611 2 0 NMIz0.626 <55 °%
W e ™ . o0 ACCES2% ‘ T Accesssn ,
-0 0 — o - e
-0.02 °
2NN Graph 2NN Graph + 7 Edges 2NN Graph + 66 Edges
A subset of the Pendigit dataset including 5,278 handwritten digits (O to 6)
k 2
1500 @ 7 2000 © - - 000 -)
a y tol=100 (17 iterations) o (€) tol=10 (22 iterations) -
b 1500 11500 W*M
1000 el et
o e o
A 1000 et 1000 o
" P il
500 x ¥ Rt
o 500 * 500 ¥
* W*% *M
0 ot 0 ot 0 Lot
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
6
NMI=0.791 004 = 5
08 NMI=0.040 002 ACC=74.2% NMI=0.840
ACC=15.2% ACC=89.4% 4
044 (b) TR 001 002
0
0.2 0 8
-0.01
0 002 -0.02
0.04 0.02

-0.4

2NN Graph

Figure 3: The first few eigenvalues (top) and spectral drawings (bottom) of the kNN and GRASPEL-learned graphs.

0,02 -0.02

2NN Graph + 17 Edges

1105

0.02

-0.02 -0.02

2NN Graph + 22 Edges

Research Paper

NMI=0.834
ACC=75.3%

NMI=0.822
ACC=72.4%

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

Resistance Correlation: R = 0.093

*

0.1 0.2 0.1

3NN Graph

0.4

Figure 4: The Pearson correlation coefficients of resistance

4NN Graph

0.15

2NN Graph + 100 Edges

distances on the kNN and GRASPEL-learned graphs.

MNIST data set

t-SNE time: 1773.6s

t-SNE time: 176.9s

80 80
0
1
60 60 - A 2
» 3
40 4
40 5
6
20 7
20 8
9
dip 0
1 or :
-20 2
3
4 20 F A2
-40 5
6
60 7 -40
8
9
-80 - L vl 60 — : - + g 5 §
-80 60 -40 -20 0 20 40 60 80 60 -40 20 0 20 40 60 80

original data set

5X reduction

Figure 5: Multilevel t-SNE visualizations of the original (left) and reduced (right) MNIST data set.

In this work, we first learn a sparse graph (topology) with GRASPEL

starting from an initial 2NN graph of the MNIST data set. Then
a spectral graph coarsening procedure [33] is applied to produce
hierarchical coarse-level graph representations. In the last, t-SNE
visualization can be obtained by directly using the data points cor-
responding to the nodes of the coarsest graph. Figure 5 shows the
visualization and runtime results of the standard t-SNE (with tree-
based acceleration) [30] and the multilevel t-SNE algorithm. When
using a 5X graph coarsening (reduction) ratio, we achieve 10.0x
speedup for MNIST without loss of visualization quality.

6 CONCLUSION

In this work, we present a spectral approach (GRASPEL) for graph
topology learning from potentially high-dimensional input data.
We show that the graph topology learning problem can be solved

1106

through spectral graph densification by iteratively including the
most spectrally-critical edges into the latest graph to mitigate the
graph embedding distortion. Unlike traditional approaches which
require at least O(N?) time in each iteration, each GRASPEL it-
eration allows identifying the most spectrally-critical edges in
O(Nlog N) time. When comparing with state-of-the-art graph
learning approaches, our approach shows more scalable runtime
performance and always leads to substantially improved solution
quality in SC and DR tasks.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation
under Grants CCF-2041519 (CAREER), CCF-2021309 (SHF), and
CCF-2011412 (SHF).

Research Paper

REFERENCES

(1]

[2

—

(3]

[4

=

(71

8

=

=

[10]

[11

[12]

(13

[14]

[15

[16]

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373-1396, 2003.

C. Carey. Graph Construction for Manifold Discovery. PhD thesis, University of
Massachusetts Amherst, 2017.

W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. Parallel spectral cluster-
ing in distributed systems. IEEE transactions on pattern analysis and machine
intelligence, 33(3):568-586, 2011.

X.Dong, D. Thanou, P. Frossard, and P. Vandergheynst. Learning laplacian matrix
in smooth graph signal representations. IEEE Transactions on Signal Processing,
64(23):6160-6173, 2016.

X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs from data: A
signal representation perspective. IEEE Signal Processing Magazine, 36(3):44-63,
2019.

H. E. Egilmez, E. Pavez, and A. Ortega. Graph learning from data under laplacian
and structural constraints. IEEE Journal of Selected Topics in Signal Processing,
11(6):825-841, 2017.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432-441, 2008.

T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for semi-
supervised learning. In Proceedings of the 26th annual international conference on
machine learning, pages 441-448. ACM, 2009.

V. Kalofolias. How to learn a graph from smooth signals. In Artificial Intelligence
and Statistics, pages 920-929, 2016.

V. Kalofolias and N. Perraudin. Large scale graph learning from smooth signals.
International Conference on Learning Representations (ICLR 2019), 2019.

I. Koutis, G. Miller, and R. Peng. Approaching Optimality for Solving SDD Linear
Systems. In Proc. IEEE FOCS, pages 235-244, 2010.

S. Kumar, J. Ying, J. V. de Miranda Cardoso, and D. Palomar. Structured graph
learning via laplacian spectral constraints. In Advances in Neural Information
Processing Systems, pages 11651-11663, 2019.

B. Lake and]J. Tenenbaum. Discovering structure by learning sparse graphs.
2010.

G. C. Linderman and S. Steinerberger. Clustering with t-sne, provably. arXiv
e-print, arXiv:1706.02582, 2017.

Y. Liu, Q. Gao, Z. Yang, and S. Wang. Learning with adaptive neighbors for image
clustering. In IJCAI pages 2483-2489, 2018.

L. v. d. Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of machine
learning research, 9(Nov):2579-2605, 2008.

1107

(17]

(18]
(19]

[20

[21

)
&,

[29]
(30]
(31]
(32]

(33]

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

M. Maier, U. V. Luxburg, and M. Hein. Influence of graph construction on graph-
based clustering measures. In Advances in neural information processing systems,
pages 1025-1032, 2009.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2(331-340):2, 2009.

A. Y. Ng, M. L Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. NIPS, 14(2):849-856, 2001.

C. H. Papadimitrou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. 1982.

V. Premachandran and R. Kakarala. Consensus of k-nns for robust neighborhood
selection on graph-based manifolds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1594-1601, 2013.

M. G. Rabbat. Inferring sparse graphs from smooth signals with theoretical
guarantees. In 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6533-6537. IEEE, 2017.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear
embedding. science, 290(5500):2323-2326, 2000.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on pattern analysis and machine intelligence, 22(8):888-905, 2000.

M. Slawski and M. Hein. Estimation of positive definite m-matrices and structure
learning for attractive gaussian markov random fields. Linear Algebra and its
Applications, 473:145-179, 2015.

D. Spielman and N. Srivastava. Graph Sparsification by Effective Resistances.
SIAM Journal on Computing, 40(6):1913-1926, 2011.

D. A. Spielman and S.-H. Teng. Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. SIAM Journal on
Matrix Analysis and Applications, 35(3):835-885, 2014.

A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for
combining multiple partitions. Journal of machine learning research, 3(Dec):583—
617, 2002.

J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. science, 290(5500):2319-2323, 2000.

L. Van Der Maaten. Accelerating t-SNE Using Tree-based Algorithms. The Journal
of Machine Learning Research, 15(1):3221-3245, 2014.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395-416, 2007.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, 2017.
Z.Zhao, Y. Zhang, and Z. Feng. Towards scalable spectral embedding and data

visualization via spectral coarsening. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages 869-877, 2021.

Research Paper

A APPENDIX
A.1 Spectral Clustering Algorithm Flow

Algorithm 2 Spectral Clustering Algorithm

Input: A graph G = (V, E, w) and the number of clusters r.
Output: Clusters Cy,...,Cr.

1: Compute the adjacency matrix A, and diagonal matrix D;

2: Obtain the unnormalized Laplacian matrix L=D-A;

3: Compute the eigenvectors uy,...,u, that correspond to the bottom r
nonzero eigenvalues of L;

4: Construct U, € RN*" with r eigenvectors of L stored as columns;

5: Perform k-means algorithm to partition the rows of U, into r clusters
and return the result.

A.2 Data Sets Description

COIL20: a data set contains 1,440 gray-scale images of 20 objects,
and each object on a turntable has 72 normalized gray-scale images
taken from different degrees. The image size is 32x 32 pixels.
PenDigits: a data set consists of 7,494 images of handwritten digits
from 44 writers, using the sampled coordination information. Each
digit is represented by 16 attributes.

USPS: a data set includes 9, 298 scanned hand-written digits from
0 to 9 on the envelops from U.S. Postal Service with 256 attributes.

MNIST: a data set consists of 70,000 images of handwritten digits.

Each image has 28-by-28 pixels in size. This database can be found
at website (http://yann.lecun.com/exdb/mnist/).
Fashion-MNIST: is a dataset of Zalando’s article images consisting
of a training set of 60, 000 examples and a test set of 10, 000 examples
[32]. Each example is a 28x28 grayscale image, associated with a
label from 10 classes.

1108

WSDM ’22, Feb. 21-25, 2022, Virtual Event, Tempe, AZ, USA

A.3 Algorithms for Comparison

Standard kNN: the most widely used affinity graph construction
method. Each node is connected to its k nearest neighbors.
Consensus of KNN (cons-kNN) [21]: the state-of-the-art neigh-
borhood selection methods to construct the affinity graphs. It selects
strong neighborhoods to improve the robustness of the graph by
using the consensus information from different neighborhoods in
a given kNN graph.

LSGL [10]: a method to automatically select the parameters of the
model introduced in [9] given a desired graph sparsity level. The
default settings have been used in our experiments.

A.4 Evaluation Metric

The ACC metric measures the agreement between the clustering
results generated by clustering algorithms and the ground-truth
labels. The ACC can be computed by:

n
2. 6(yi, map(ci))
ACC = 121—,
n
where n is the number of samples in the data set, y; is the ground-
truth label provided by the data sets, and ¢; is clustering result
obtained from the algorithm. §(x, y) is a delta function defined as:
d(x,y)=1 for x = y, and §(x, y)=0, otherwise. map(e) is a permu-
tation function that maps each cluster index ¢; to a ground truth
label, which can be realized using the Hungarian algorithm [20].
The NMI metric is in the range of [0, 1], while a higher NMI
value indicates a better matching between the algorithm generated
result and ground truth result. For two random variables P and Q,

normalized mutual information is defined as [28]:
I(P,Q)
VH(P)H(Q)

where I(P, Q) denotes the mutual information between P and Q,
while H(P) and H(Q) are entropies of P and Q.

(13)

(14)

