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ABSTRACT
Graph learning plays an important role in many data mining and
machine learning tasks, such as manifold learning, data represen-
tation and analysis, dimensionality reduction, data clustering, and
visualization, etc. In this work, we introduce a highly-scalable spec-
tral graph densi�cation approach (GRASPEL) for graph topology
learning from data. By limiting the precision matrix to be a graph-
Laplacian-like matrix, our approach aims to learn sparse undirected
graphs from potentially high-dimensional input data. A very unique
property of the graphs learned by GRASPEL is that the spectral
embedding (or approximate e�ective-resistance) distances on the
graph will encode the similarities between the original input data
points. By leveraging high-performance spectral methods, sparse
yet spectrally-robust graphs can be learned by identifying and in-
cluding the most spectrally-critical edges into the graph. Compared
with prior state-of-the-art graph learning approaches, GRASPEL is
more scalable and allows substantially improving computing e�-
ciency and solution quality of a variety of data mining and machine
learning applications, such as manifold learning, spectral clustering
(SC), and dimensionality reduction (DR).
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1 INTRODUCTION
Graph learning is playing increasingly important roles in many ma-
chine learning and data mining applications. For example, a key step
of many existing machine learning methods requires converting
potentially high-dimensional data sets into graph representations:
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it is a common practice to represent each (high-dimensional) data
point as a node, and assign each edge a weight to encode the simi-
larity between the two nodes (data points). The constructed graphs
can be e�ciently leveraged to represent the underlying structure
of a data set or the relationship between data points [8, 15, 17].
However, how to learn meaningful graphs from large data set at
scale still remains a challenging problem.

Several recent graph learning methods leverage emerging graph
signal processing (GSP) techniques for estimating sparse graph
Laplacians, which show very promising results [4–6, 10]. For ex-
ample, [6] addresses the graph learning problem by restricting the
precision matrix to be a graph Laplacian andmaximizing a posterior
estimation of attractive Gaussian Markov Random Field (GMRF)
1, while an ✓1-regularization term is used to promote graph spar-
sity; [22] provides an error analysis for inferring sparse graphs
from smooth signals; [10] leverages approximate nearest-neighbor
(ANN) graphs to reduce the number of variables for optimization;
[12] introduces a graph Laplacian learning method by imposing
Laplacian spectral constraints.

However, even the state-of-the-art Laplacian estimation meth-
ods for graph learning do not scale well for large data set due to
their extremely high algorithm complexity. For example, solving
the optimization problem for Laplacian estimation in [4–6, 9] re-
quires $ (# 2) time complexity per iteration for # data entities and
nontrivial parameters tuning for controlling graph sparsity which
limits their applications to only very small data sets (e. g. with up
to a few thousands of data points); the method introduced in [2]
leverages Isomap manifold embedding [29] for graph construction,
which requires $ (# 3) time for manifold construction and thus
does not scale to large data set; the latest graph learning approach
[10] takes advantages of ANN graphs, but it still runs very slowly
for large data sets; the Laplacian estimation method with spectral
constraints requires a good graph structure to be provided in ad-
vance [12], which otherwise can be very costly when going through
exhaustive graph structure searches.

This work introduces a spectral graph densi�cation approach
(GRASPEL 2) for learning sparse graphs from data by leverag-
ing spectral graph algorithms. GRASPEL has a close connection
with prior GSP-based Laplacian estimation methods [4–6, 9, 10]
and graphical Lasso [7]. By treating "-dimensional data points
as" graph signals, GRASPEL allows e�ciently solving a convex
problem by iterative identifying and including the most spectrally-
critical candidate edges into the latest graph leveraging recent
nearly-linear time spectral methods [33]. Compared with prior
spectral graph sparsi�cation algorithms [26] that target pruning
edges from a given graph while preserving key graph spectral

1If the precision matrix of a GMRF is an M-matrix with all non-negative o�-diagonal
elements, we call it an attractive GMRF [5, 25].
2The source code is available at: https://github.com/Feng-Research/GRASPEL
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properties, GRASPEL aims at iteratively densifying graphs such
that the learned graphs will have spectral embedding (or e�ective-
resistance) distances encoding the similarities between the original
input data points. Comparing with state-of-the-art graph construc-
tion methods, GRASPEL is more scalable for estimation of attractive
Gaussian Markov Random Fields (GMRFs) even for very large data
set. We summarize the contribution of this work as follows:
• We propose a spectral graph densi�cation approach (GRASPEL)
that allows e�cient estimation of attractive Gaussian Markov Ran-
dom Fields (GMRFs) leveraging the latest spectral graph theory. The
key to achieving high e�ciency is a spectral embedding scheme for
�nding spectrally-critical edges, allowing each GRASPEL iteration
to be completed in $ (# log# ) instead of $ (# 2) time.
• We introduce a novel convergence criterion for GRASPEL it-
erations based on graph spectral stability: when the maximum
embedding distortion becomes relatively small, or equivalently the
graph spectrum becomes su�ciently stable, GRASPEL iterations
can be terminated.
•Our experiment results show that the graphs learned usingGRASPEL
can lead to more e�cient and accurate spectral clustering (SC) as
well as dimensionality reduction (DR).

2 BACKGROUND
Given " observations on # data entities in a data matrix - =
[G1, ..., G" ] 2 R#⇥" , each column vector of - can be considered
as a signal on a graph. For example, the USPS data set including
9, 298 images of handwritten digits with each image having 256
pixels will result in a feature matrix - 2 R#⇥" with # = 9, 298
and" = 256. The recent GSP-based graph learning methods [4] es-
timate graph Laplacians from - for achieving the following desired
characteristics:

Smoothness of graph signals. The graph signals correspond-
ing to the real-world data should be su�ciently smooth on the
learned graph structure: the signal values will only change grad-
ually across connected neighboring nodes. The smoothness of a
signal G over an undirected graph ⌧ = (+ , ⇢,F) can be measured
with the following Laplacian quadratic form:

G>!G =
’

(?,@)2⇢
F?,@ (G (?) � G (@))2, (1)

whereF?,@ denotes the weight of edge (?,@), ! = ⇡�, denotes the
Laplacian, ⇡ denotes the diagonal (degree) matrix, and, denotes
the adjacency matrix of ⌧ , respectively. The smaller value of (1)
indicates the smoother signals across the edges in the graph. The
smoothness (&) of a set of signals- over graph⌧ is computed using
the matrix trace [9] & (- , !) = )A (->!- ), where )A (•) denotes
the matrix trace.

Sparsity of the estimated graph. Graph sparsity is another
critical consideration in graph learning. One of the most important
motivations of learning a graph is to use it for downstream data
mining or machine learning tasks. Therefore, desired graph learn-
ing algorithms should allow better capturing and understanding
the global structure (manifold) of the data set, while producing
su�ciently sparse graphs that can be easily stored and e�ciently
manipulated in the downstream algorithms, such as graph cluster-
ing, partitioning, dimension reduction, data visualization, etc.

Prior methods. Consider an # -dimensional random vector G
following a multivariate Gaussian distribution G ⇠ # (0, ⌃) with
probability density:

5 (G) =
exp

⇣
� 1
2G

>⌃�1G
⌘

(2c)# /2 det(⌃) (1/2)
/ det(⇥)1/2 exp

✓
�1
2
G>⇥G

◆
, (2)

where ⌃ = E[GG>] � 0 denotes the covariance matrix, and⇥ = ⌃�1

denotes the precision matrix (inverse covariance matrix). Prior
graph topology learningmethods aim at estimating sparse precision
matrix ⇥ from potentially high-dimensional input data:

(A) The graphical Lasso method aims at estimating a sparse
precision matrix ⇥ using the following convex optimization based
on maximum likelihood estimation of 5 (G) [7]:

max
⇥

: log det(⇥) �)A (⇥() � V k⇥k1, (3)

where ⇥ denotes a non-negative de�nite precision matrix, ( de-
notes a sample covariance matrix, and V denotes a regularization
parameter. The �rst two terms together can be interpreted as the
log-likelihood under a GaussianMarkov Random Field (GMRF). k•k
denotes the entry-wise ✓1 norm, so V k⇥k1 becomes the sparsity
promoting regularization term. This model learns the graph struc-
ture by maximizing the penalized log-likelihood. When the sample
covariance matrix ( is obtained from" i.i.d (independent and iden-
tically distributed) samples - = [G1, ..., G" ] where - ⇠ # (0, ()
has an # -dimensional Gaussian distribution with zero mean, each
element in the precision matrix ⇥8, 9 encodes the conditional depen-
dence between variables -8 and - 9 . For example, ⇥8, 9 = 0 implies
that the corresponding variables -8 and - 9 are conditionally inde-
pendent, given the rest.

(B) The GSP-based Laplacian estimationmethods have been
recently introduced for more e�ciently solving the following con-
vex problem [5, 13]:

max
⇥

: � (⇥) = log det(⇥) � 1
"
)A (->⇥- ) � V k⇥k1, (4)

where ⇥ = ! + 1
f2 � , ! denotes the set of valid graph Laplacian

matrices, � denotes the identity matrix, and f2 > 0 denotes prior
feature variance. It can be shown that the three terms in (4) are
corresponding to log det(⇥),)A (⇥() and V k⇥k1 in (3), respectively.
When each column vector in the datamatrix- 3 is treated as a graph
signal vector, there is a close connection between formulation (4)
and the graphical Lasso problem. Since ⇥ = ! + 1

f2 � corresponds to
symmetric and positive de�nite (PSD) matrices (or Mmatrices) with
non-positive o�-diagonal entries, this formulation will lead to the
estimation of attractive GMRFs [5, 25]. In case - is non-Gaussian,
(4) can be understood as Laplacian estimation based on minimizing
the Bregman divergence between positive de�nite matrices induced
by the function ⇥ 7! � log det(⇥) [25].

Express the Laplacianmatrix of an undirected graph⌧ = (+ , ⇢,F)
as follows:

! =
’

(?,@)2⇢
F?,@4?,@4

>
?,@ (5)

3For each of the # row vectors - (8, :) 2 R1⇥" where 8 = 1, ...,# , the following
two-step data pre-processing will be performed: (1) - (8, :) = - (8, :) � `8 , where `8
denotes the sample mean of - (8, :) ; (2) Feature normalization - =

p
"-/k- k2 .
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where 4? 2 R# denotes the standard basis vector with all zero
entries except for the ?-th entry being 1, and 4?,@ = 4? � 4@ . The as-
cending Laplacian eigenvalues and the corresponding eigenvectors
are denoted by _8 and D8 for 8 = 1, ...,# , respectively, which satisfy:

!D8 = _8D8 . (6)

Rewrite the objective function in (4) as follows:

� = log det
✓
! + 1

f2
�

◆
� 1
"
)A (->!- ) � )A (->- )

"f2
� V k!k1 . (7)

3 A SPECTRAL LEARNING APPROACH
Taking the partial derivative with respect to the weight F?,@ of
edge (?,@) leads to:

m�

mF?,@
=

#’
8=2

1
_8 + 1/f2

m_8
mF?,@

� 1
"

k->4?,@ k22 � 4V, (8)

Since the last two terms in (8) are all �xed (constant) values for a
given data matrix - where V can be considered as an additional
o�set added to all data pairs (candidate edges), we can drop the third
term by simply setting V = 0, which will not impact the ranking of
candidate edges in graph learning. The above simpli�cation implies
the second term alone will e�ectively penalize graph density for
estimating Laplacian-like precision matrix: including more edges
will result in a greater trace )A (->⇥- ).

De�ne the following eigensubspace matrix*A 2 R#⇥(A�1) for
spectral graph embedding:

*A =

"
D2p

_2 + 1/f2
, ...,

DAp
_A + 1/f2

#
, (9)

which includes the �rst A � 1 weighted nontrivial Laplacian eigen-
vectors as its column vectors. Choosing V = 0 and A = # , then the
edge spectral sensitivity B?,@ can be derived as follows:

B?,@ =
m�

mF?,@
=

#’
8=2

1
_8 + 1/f2

m_8
mF?,@

� 1
"

k->4?,@ k22

= I4<1
?,@ � 1

"
I30C0?,@ ,

(10)

where I4<1
?,@ = k*>

# 4?,@ k
2
2 and I30C0?,@ = k->4?,@ k22 denote the ✓2

distances in the spectral embedding space and the original data
space, respectively. In practice, choosing a small A (e.g. 2  A ⌧ # )
according to the gaps between the �rst few eigenvalues will su�ce.

R����� 1. When f2 ! +1 and A = # , I4<1
?,@ becomes the

e�ective-resistance distance '4 5 5?,@ = 4>?,@!
+4?,@ = k*>

A 4?,@ k22 = I4<1
?,@

between nodes ? and @ on the graph, where !+ 2 R#⇥# denotes the
Moore–Penrose pseudoinverse of the Laplacian matrix !.

De�ne the embedding distortion of a candidate edge (?,@) by

[?,@ = "
I4<1
?,@

I30C0?,@

. (11)

Also de�ne spectrally-critical edge to be a candidate edge (?,@)
that has a large embedding distortion [?,@ . Therefore, if an edge
candidate has a large embedding distortion, any small perturbation
to this edge can change the objective function � signi�cantly.

3.1 Spectral Graph Densi�cation
Consider the (: + 1)-th GRASPEL iteration for identifying the
most spectrally-critical (top) candidate edge to be included into
the latest graph ⌧: = (+: , ⇢: ,F: ) 4. Suppose all $ (# 2) candidate
edges are initialized with very small (near-zero) weights. In each
GRASPEL iteration, the top candidate edge with the largest spectral
sensitivity will be identi�ed and assigned with a much larger edge
weight, which is equivalent to adding the candidate edge into the
latest graph. According to (10), including such an edge into ⌧:
will signi�cantly improve the objective function and decrease the
spectral embdding distortion. To avoid storing $ (# 2) candidate
edges, GRASPEL leverages a nearly-linear time spectral densi�ca-
tion scheme that has been shown in Figure 1.

Spectral graph sparsi�cation (priorwork). Priorwork proves
that every undirected graph has a sparsi�ed graph with$ ( # log#

n2 )
edges that can be obtained by sampling each edge (?,@) with a
probability (leverage score) ?4 proportional to its e�ective resis-

tance ?4 / '45 5
?,@

'?,@
= F?,@'

4 5 5
?,@ , where '?,@ = 1/F?,@ denotes the

original resistance and '4 5 5?,@ denotes the e�ective resistance. The
sparsi�ed Laplacian satis�es the following inequalities [26]:

8G 2 R# (1 � n)G>!G  G>!̃G  (1 + n)G>!G, (12)

where ! and !̃ denote the original and sparsi�ed graph Laplacians,
respectively.

Spectral graph densi�cation (thiswork). For a candidate edge
that has been selected according to its spectral sensitivity during a
GRASPEL iteration, by setting its edge weight asF?,@ / 1

I30C0?,@
, the

spectral embedding distortion [?,@ / F?,@'
4 5 5
?,@ becomes the lever-

age score for spectral graph sparsi�cation [26]. Therefore, GRASPEL
iterations can be considered as a spectral graph densi�cation proce-
dure that aims to include $ (# log# ) spectrally-critical edges with
large spectral sensitivities (embedding distortions). Moreover, upon
convergence the spectral embedding (e�ective-resistance) distances
on the graphs learned by GRASPEL will encode the ✓2 distances
between the original data points, which is key to manifold learning
and dimensionality reduction problems [1, 2].

Convergence analysis. The global optimal solution can be ob-
tained when (10) becomes zero or there exists no edge with [ > 1
for inclusion to the latest graph. Therefore, the GRASPEL iterations
can be terminated when the maximum embedding distortion [<0G
becomes small enough (e.g. [<0G  10), or equivalently, when the
graph spectrum become su�ciently stable (The �rst few eigenval-
ues/eigenvectors will not be signi�cantly perturbed by adding new
candidate edges).

Algorithm complexity. The subspace matrix*A with 2  A ⌧
# can be computed in $ (# log# ) time [33], which allows the
spectral embedding distortion [?,@ of each candidate edge (?,@) to
be estimated in constant time $ (1). Therefore, each top candidate
edge can be identi�ed in $ (# log# ) time (see details in Section
4), which is much faster than the state-of-the-art graph topology
learning methods [4–6, 9, 10] which require at least $ (# 2) time in
each iteration.

4Assume that |+: | = |+ | = # (every data point is connected in⌧: ).
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Figure 1: Spectral graph densi�cation in GRASPEL iterations.

4 DETAILED STEPS IN GRASPEL
GRASPEL will iteratively identify and add the top candidate edges
into the latest graph so that the spectral embedding distortion can be
greatly mitigated, until no such edges can be found (as illustrated in
Figure 1). The detailed GRASPEL algorithm �ow for graph learning
has been described in Algorithm 1, and summarized as follows.

Step 1: Initial graph construction. As aforementioned, (ap-
proximate) kNN graphs can be constructed as the initial graph, since
they can be obtained e�ciently [18], while being able to approxi-
mate the local data proximity [23]. However, the optimal : value
(the number of nearest neighbors) is usually problem dependent
and can be very di�cult to �nd. In this work, GRASPEL will start
with creating an (approximate) kNN graph using a relatively small
: value (e.g. : = 2 to 5), which will su�ce for approximating the
local structure of the manifold, and strive to iteratively improve the
approximation of the global manifold structure by adding a small
portion of spectrally-critical edges through solving the proposed
GRASPEL iterations.

Step 2: Spectral graph embedding. Spectral graph embedding
directly leverages the �rst few nontrivial eigenvectors for project-
ing nodes onto a low-dimensional subspace [1]. The eigenvalue
decomposition of Laplacian matrix is usually the computational
bottleneck in spectral graph embedding, especially for large graphs
[3, 24, 31]. To achieve good scalability, nearly-linear time Laplacian
solvers [11] or multilevel Laplacian solvers [33] can be exploited for
much faster eigenvector (eigenvalue) computations without loss of
accuracy.

Step 3: Spectrally-critical edge identi�cation. Once Lapla-
cian eigenvectors are available for the latest graph, through the
following phases GRASPEL will identify spectrally-critical edges
by looking at each candidate edge’s spectral sensitivity B?,@ de�ned
in (10). However, an exhaustive search among all node pairs would
require $ (# 2) evaluations. To gain much higher e�ciency, the
following two-phase search strategy has been proposed.

Phase A: candidate edge identi�cation with Fiedler vectors. Our
approach for identifying spectrally-critical edges starts with sort-
ing nodes according to the Fiedler vector that can be computed in

Algorithm 1 The GRASPEL Algorithm Flow
Input: A data matrix (- = [G1, ...G" ] 2 R#⇥" ) with # data

points in"-dimensional, embedding distortion tolerance (1  C>; ),
window size for edge sampling (0 < n  50%), edge sampling ratio

(0 < Z  1), and the number of edges to be selected in each
iteration (0 < B). Output: The spectrally-learned graph ⌧ .

1: Construct an initial 2NN graph⌧ using approximate kNN al-
gorithms.

2: while [<0G � C>; do
3: Embed the latest graph ⌧ using its Fiedler vector and sort

the nodes into a 1D array �=>34 ;
4: Obtain node set #C>? ( #1>C ) by including only the top (bot-

tom) dn# e nodes in �=>34 ;
5: Sample each of the dB/Z e edges by randomly choosing one

node from #C>? and another node from #1>C ;
6: Form an edge set ⇢B4; using edges with large distortions

([ � C>;) and set the largest edge embedding distortion as
[<0G .

7: if |⇢B4; | � B then
8: Add the top B edges from ⇢B4; into ⌧ ;
9: else
10: Add all the edges in ⇢B4; into ⌧ ;
11: end if
12: end while
13: Return the learned graph ⌧ .

nearly-linear time leveraging fast Laplacian solvers [11, 27]. This
scheme is equivalent to including only the �rst nontrivial Laplacian
eigenvector into *A (choosing A = 2) in (9) for spectral graph em-
bedding. Subsequently, we can search candidate edge connections
between the top and bottom few nodes in the 1D sorted node array.
According to (10), only a small portion of node pairs with large
embedding distances needs to be examined as candidate edges.

Phase B: embedding distortion estimation with multiple eigenvec-
tors. With the �rst A Laplacian eigenvectors computed in the previ-
ous spectral embedding step, each node of the latest graph will be
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associated with an A -dimensional embedding vector, which allows
the spectral embedding distortion of each candidate (spectrally-
critical) edge to be quickly estimated. As aforementioned, the spec-
tral embedding distances computed with the �rst A eigenvectors
can well approximate the e�ective-resistance distance thus the edge
sensitivity in the proposed optimization task (10). Only the candi-
date edges with top embedding distortions will be added into the
latest graph. Since I4<1

?,@ = k*>
A 4?,@ k22 < k*>

# 4?,@ k
2
2, only the lower

bound of embedding distortions can be estimated.
Step 4: Spectral stability checking. In this work, the edge

embedding distortions are adopted for checking the spectral sta-
bility of the learned graph. If there exists no additional edge that
has an embedding distortion greater than a given tolerance level
(C>; ), GRASPEL iterations can be terminated. Note that choosing a
smaller distortion tolerance will require more GRASPEL iterations
(edges), which enables the embedding distances on the learned
graph to more precisely encode the distances between the original
data points.

5 EXPERIMENTS
In this section, extensive experiments have been conducted to evalu-
ate the performance of the proposed GRASPEL algorithm for SC and
DR applications. More details about the SC algorithm �ow, data sets
and the performance evaluation metrics used in our experiments
can be found in the appendix sections.

5.1 Experiment Setup
Data preparation. Since this work primarily focuses on learning
graphs from high-dimensional data points, the proposed method
can be orthogonal to existing research related to deep learning
based SC methods: an autoencoder can be �rst applied to transform
the input data into more optimal features that can subsequently
become the input of GRASPEL for learning graphs in SC. For fair
comparisons with other state-of-the-art graph learning methods,
we directly use the raw data as input without any additional pre-
processing steps.
Input parameters.When applying Algorithm 1 to our data sets
for the graph learning tasks shown in this section, we randomly
sample candidate edges that connect between the top and bottom
0.05|+ | (n = 0.05) nodes in the 1D sorted array according to the
Fiedler vector, which allows GRASPEL to quickly identify the most
spectrally-critical edges. Note that choosing a smaller n value will
allow more e�cient edge sampling for estimating global graph
(manifold) structural properties, while choosing a greater n value
will require more samples but may lead to better preservation of
mid-to-short range graph (manifold) structural properties. When
estimating the spectral distortion of each candidate edge we com-
pute the �rst few (2  A  10) Laplacian eigenvectors for the
spectral graph embedding step. We consider the edge sampling
ratio 0.0 < Z < 1.0 and add a few edges (1  B  0.05|+ |) to the
latest graph in each GRASPEL iteration. f = 103 in (9) has been
used for computing ⇥ in all experiments.
Results visualization.When creating the 3D spectral graph draw-
ings (layouts), each entry of the �rst three nontrivial Laplacian
eigenvectors (D2,D3,D4) corresponds to the G , ~ and I coordinates
of each node (data point), respectively. The ground-truth label of
each data point is shown using its corresponding color. The edges
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Figure 2: The �rst 20 Laplacian eigenvalues (top), spectral
drawings (middle) and the embedding distortions (bottom)
of the graph learned through GRASPEL iterations.

are omitted in the layouts to better reveal the structure of the data
points (manifolds).
Computing platform. The following experiments are performed
using MATLAB R2020b running on a Laptop with 10th Intel(R)
Core(TM) i5 CPU and 8GB RAM.

5.2 Experiment Results
Spectral stability (convergence) checking. As shown in Figure
2, for the USPS data set, when starting from a 2NN initial graph
GRASPEL identi�es one additional edge to be included in each
iteration and requires only 11 iterations (5 seconds) to e�ectively
mitigate the maximum embedding distortion by over 1, 000⇥. The
rapidly improved NMI (Normalized Mutual Information) and ACC
(clustering accuracy) in SC imply signi�cantly improved graph qual-
ity [19]. Comparing with the state-of-the-art graph construction
algorithm [10], our method is over 400⇥ faster while achieving
much better solution in spectral (embedding) clustering tasks.
Spectral clustering results. Comprehensive results of SC using
four graph learning (construction) methods are shown in Table 1.
As observed, GRASPEL consistently achieves the state-of-the-art
ACC/NMI results in SC. The graph density (|⇢ |/|+ |) results are also
reported in Table 2, while the runtime reported in Table 3 includes
the total time for eigendecomposition of the Laplacian matrix and
k-means clustering. In Table 4, the runtime of the consensus method
includes the time for consensus information calculation and edge
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pruning, while the runtime of GRASPEL includes the total time for
spectral graph densi�cation. As observed, GRASPEL consistently
achieves the state-of-the-art graph density and runtime results for
SC tasks.

Table 1: Spectral Clustering (SC) Results

ACC(%)/ NMI
Data Set Standard k-NN Consensus [21] LSGL [10] GRASPEL
COIL20 75.72/0.86 81.60/0.90 85.49/0.95 86.46/0.94
PenDigits 74.36/0.79 71.08/0.79 74.53/0.77 82.40/0.79
USPS 64.31/0.79 68.54/0.81 81.50/0.84 91.50/0.89
MNIST 64.20/0.74 - - 74.63/0.78

Table 2: Graph density results

Graph density ( |⇢ |/ |+ |)
Data Set Standard k-NN Consensus [21] LSGL [10] GRASPEL
COIL20 6.12 5.06 11.99 1.39
PenDigits 6.76 6.70 186.52 2.96
USPS 7.30 6.58 29.97 1.70
MNIST 7.46 - - 1.72

Table 3: SC runtime results

Spectral clustering (SC) time (seconds)
Data Set Standard k-NN Consensus [21] LSGL [10] GRASPEL
COIL20 0.03 0.03 0.08 0.02
PenDigits 0.18 0.16 4.42 0.17
USPS 0.72 0.56 7.05 0.28
MNIST 252.59 - - 3.06

Table 4: Graph learning (construction) time

Graph construction time (seconds)
Data Set Consensus [21] LSGL [10] GRASPEL
COIL20 2.43 13.56 0.29
PenDigits 172.51 1,085.43 2.04
USPS 574.28 2,074.78 3.37
MNIST - - 208.89

Spectral embedding results. In Figure 3, we show the �rst
few Laplacian eigenvalues and 3D spectral drawings of the graphs
learned with di�erent distortion tolerance levels for a subset (includ-
ing all the 24, 462 handwritten digits from 0 to 6) of the MNIST data
set and the test set of the Fashion MNIST data set (see Appendix
A.2 for details) including 10, 000 article images from style 0 to 9 [32].
As observed, when starting from an initial 2NN graph, GRASPEL
has dramatically mitigated the embedding distortions by adding
only a few edges into the initial 2NN graph. By examining the �rst
few Laplacian eigenvalues, we notice that the initial 2NN graph of
the MNIST data set has nine connected components (that equals to
the number of zero eigenvalues); with only 10 extra edges added

via GRASPEL iterations, a well-connected graph can be formed for
preserving the structure of the original data set. For the Fashion
MNIST data set, the initial 2NN graph has six connected compo-
nents, which becomes a well-connected graph with only seven
edges added through GRASPEL iterations. It is also observed that
when starting with initial 2NN graphs a few GRASPEL iterations
have already dramatically improved clustering results: the NMI has
been improved from 0.012 to 0.873 for the MNIST data set, 0.599
to 0.626 for the Fashion MNIST data set, and 0.04 to 0.840 for the
Pendigit data set; the ACC has been improved from 16.1% to 90.7%
for the MNIST data set, 43.9% to 55.5% for the Fashion MNIST data
set, and 15.2% to 89.4% for the Pendigit data set.

Implications for dimensionality reduction. For the MNIST
data set, we observe relatively large gaps between the 6th and 7th
Laplacian eigenvalues, implying that the intrinsic dimensionality
of the GRASPEL-learned graphs (manifolds) is approximately �ve,
whereas for the FashionMNIST data set the intrinsic dimensionality
is approximately six. It is also observed that the GRASPEL iterations
with di�erent number (A ) of Laplacian eigenvectors for spectral
graph embedding using (9) and distortion computations always
lead to similar gaps between eigenvalues. Consequently, we expect
the GRASPEL-learned graphs to play an important role in revealing
the intrinsic dimensionality of a data set and potentially lead to the
development of highly-e�cient tools for dimensionality reduction
and data visualization.

Resistance-distance correlation. For the full USPS data set
we evaluate graph learning quality by checking if the e�ective-
resistance distances on the learned graph will properly encode
the ✓2 distances between the original data points. To this end, we
randomly pick up 1, 000 node pairs and compute their e�ective-
resistance distances. To avoid choosing nearby nodes, we �rst sort
nodes according to the Fiedler vector and then pick up the node
pairs (=C>? ,=1>C ) from the node sets #C>? and #1>C formed with
the top and bottom 5%|+ | sorted nodes, respectively. Then, these
e�ective-resistance distances are compared with the corresponding
✓2 distances between the original data points by checking the Pear-
son correlation coe�cient. In Figure 4, we observe that the e�ective-
resistance distances on the graph learned via 100 GRASPEL itera-
tions (27 seconds) exhibit the highest correlation (' = 0.352) with
the ✓2 distance between the original data points, while the 3NN or
4NN graphs which are much denser only achieve ' = 0.063 and
' = 0.093, respectively. It is also observed that increasing : from 3
to 4 for constructing the kNN graph only improves the resistance
correlation but not necessarily the clustering quality (e.g. NMI and
ACC metrics), whereas the graph learned by GRASPEL iterations
achieves the best results considering all aspects.

Multilevel t-SNE visualization. The t-Distributed Stochastic
Neighbor Embedding (t-SNE) has become one of the most popular
visualization tools for high-dimensional data analytic tasks [14, 16].
However, its high computational cost limits its applicability to large
scale problems. To improve the scalability of t-SNE, a multilevel
algorithm based on kNN graph coarsening has been introduced
[33], which allows performing t-SNE for a much smaller set of rep-
resentative data points corresponding to the nodes in the coarsened
graphs. However, it would be quite challenging to determine the
optimal : for constructing kNN graphs.
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Figure 3: The �rst few eigenvalues (top) and spectral drawings (bottom) of the kNN and GRASPEL-learned graphs.
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Figure 5: Multilevel t-SNE visualizations of the original (left) and reduced (right) MNIST data set.

In this work, we �rst learn a sparse graph (topology)with GRASPEL
starting from an initial 2NN graph of the MNIST data set. Then
a spectral graph coarsening procedure [33] is applied to produce
hierarchical coarse-level graph representations. In the last, t-SNE
visualization can be obtained by directly using the data points cor-
responding to the nodes of the coarsest graph. Figure 5 shows the
visualization and runtime results of the standard t-SNE (with tree-
based acceleration) [30] and the multilevel t-SNE algorithm. When
using a 5- graph coarsening (reduction) ratio, we achieve 10.0⇥
speedup for MNIST without loss of visualization quality.

6 CONCLUSION
In this work, we present a spectral approach (GRASPEL) for graph
topology learning from potentially high-dimensional input data.
We show that the graph topology learning problem can be solved

through spectral graph densi�cation by iteratively including the
most spectrally-critical edges into the latest graph to mitigate the
graph embedding distortion. Unlike traditional approaches which
require at least $ (# 2) time in each iteration, each GRASPEL it-
eration allows identifying the most spectrally-critical edges in
$ (# log# ) time. When comparing with state-of-the-art graph
learning approaches, our approach shows more scalable runtime
performance and always leads to substantially improved solution
quality in SC and DR tasks.
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A APPENDIX
A.1 Spectral Clustering Algorithm Flow

Algorithm 2 Spectral Clustering Algorithm
Input: A graph⌧ = (+ ,⇢,F) and the number of clusters A .

Output: Clusters⇠1,...,⇠A .
1: Compute the adjacency matrix �, and diagonal matrix ⇡ ;
2: Obtain the unnormalized Laplacian matrix !=⇡-�;
3: Compute the eigenvectors D1,...,DA that correspond to the bottom A

nonzero eigenvalues of !;
4: Construct*A 2 R#⇥A , with A eigenvectors of ! stored as columns;
5: Perform k-means algorithm to partition the rows of*A into A clusters

and return the result.

A.2 Data Sets Description
COIL20: a data set contains 1, 440 gray-scale images of 20 objects,
and each object on a turntable has 72 normalized gray-scale images
taken from di�erent degrees. The image size is 32x 32 pixels.
PenDigits: a data set consists of 7,494 images of handwritten digits
from 44 writers, using the sampled coordination information. Each
digit is represented by 16 attributes.
USPS: a data set includes 9, 298 scanned hand-written digits from
0 to 9 on the envelops from U.S. Postal Service with 256 attributes.
MNIST: a data set consists of 70,000 images of handwritten digits.
Each image has 28-by-28 pixels in size. This database can be found
at website (http://yann.lecun.com/exdb/mnist/).
Fashion-MNIST: is a dataset of Zalando’s article images consisting
of a training set of 60, 000 examples and a test set of 10, 000 examples
[32]. Each example is a 28x28 grayscale image, associated with a
label from 10 classes.

A.3 Algorithms for Comparison
Standard kNN: the most widely used a�nity graph construction
method. Each node is connected to its : nearest neighbors.
Consensus of kNN (cons-kNN) [21]: the state-of-the-art neigh-
borhood selectionmethods to construct the a�nity graphs. It selects
strong neighborhoods to improve the robustness of the graph by
using the consensus information from di�erent neighborhoods in
a given kNN graph.
LSGL [10]: a method to automatically select the parameters of the
model introduced in [9] given a desired graph sparsity level. The
default settings have been used in our experiments.

A.4 Evaluation Metric
The ACC metric measures the agreement between the clustering
results generated by clustering algorithms and the ground-truth
labels. The ACC can be computed by:

�⇠⇠ =

=Õ
8=1

X (~8 ,<0? (28 ))

=
, (13)

where = is the number of samples in the data set, ~8 is the ground-
truth label provided by the data sets, and 28 is clustering result
obtained from the algorithm. X (G,~) is a delta function de�ned as:
X (G,~)=1 for G = ~, and X (G,~)=0, otherwise.<0? (•) is a permu-
tation function that maps each cluster index 28 to a ground truth
label, which can be realized using the Hungarian algorithm [20].
The NMI metric is in the range of [0, 1], while a higher NMI
value indicates a better matching between the algorithm generated
result and ground truth result. For two random variables % and & ,
normalized mutual information is de�ned as [28]:

#"� =
� (%,&)p
� (%)� (&)

, (14)

where � (%,&) denotes the mutual information between % and & ,
while � (%) and � (&) are entropies of % and & .
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