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ABSTRACT

Identifying misconceptions in student programming solutions is an
important step in evaluating their comprehension of fundamental
programming concepts. While misconceptions are latent constructs
that are hard to evaluate directly from student programs, logical er-
rors can signal their existence in students’ understanding. Tracing
multiple occurrences of related logical bugs over different problems
can provide strong evidence of students’ misconceptions. This study
presents preliminary results of utilizing an interpretable state-of-
the-art Abstract Syntax Tree-based embedding neural network to
identify logical mistakes in student code. In this study, we show a
proof-of-concept of the errors identified in student programs by
classifying correct versus incorrect programs. Our preliminary re-
sults show that our framework is able to automatically identify
misconceptions without designing and applying a detailed rubric.
This approach shows promise for improving the quality of instruc-
tion in introductory programming courses by providing educators
with a powerful tool that offers personalized feedback while en-
abling accurate modeling of student misconceptions.

ACM Reference Format:

Muntasir Hoq, Jessica Vandenberg, Bradford Mott, James Lester, Narges
Norouzi, and Bita Akram. 2024. Towards Attention-Based Automatic Miscon-
ception Identification in Introductory Programming Courses. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 2
(SIGCSE 2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3626253.3635575

1 INTRODUCTION

To effectively support students’ learning of introductory program-
ming, it is essential to identify and address their misconceptions of
fundamental concepts in a timely manner [7]. However, the dispro-
portionate growth in the number of Computer Science (CS) students
compared to teaching staff makes it infeasible to monitor student
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programs to infer misconceptions in real-time [1]. Automated iden-
tification of student misconceptions could be an efficient way to
provide individualized feedback either through teachers or auto-
matically. However, automated identification of misconceptions
is challenging as misconceptions are primarily latent constructs
that cannot be assessed directly. Nevertheless, misconceptions lead
to logical errors in student code [2]. Tracing patterns of student
errors over time can lead to effectively identifying misconceptions
in student programs [4].

Prior studies have attempted semi-automated misconception
discovery by highlighting patterns using association rules [3, 5].
However, these studies only focused on simple association rules
that fall short in analyzing more complex tasks, i.e., programming
[8]. One recent study [8] utilized deep learning models to identify
misconceptions automatically. However, their approach required
manual labeling of data using an expert-designed rubric. Moreover,
their methodology detects misconceptions on a per-rubric-item
basis within the student code. This approach does not effectively
address misconceptions that may span across multiple rubric items
or in cases where rubric items are missing. In this study, we take
an initial step towards the automated identification of student mis-
conceptions by showing preliminary results from a deep learning
model that can automatically identify multiple logical errors in
students’ code. In our approach, we build a classifier to group stu-
dent programs into correct vs. incorrect categories. The dataset is
labeled automatically by running programs through a set of test
cases. Our framework uses a modified version of a state-of-the-art
interpretable deep learning model, Subtree-based Attention Neural
Network (SANN) [6]. We use the attention layer of SANN to high-
light program snippets in student code that are most influential in
classifying code as correct vs. incorrect. A preliminary evaluation
of this approach suggests that these patterns are closely associated
with logical errors in student code. We demonstrate the outcomes
of our framework in this study.

2 DATASET AND METHODOLOGY

We use a publicly-available dataset! collected from the CodeWork-
out platform. The dataset contains student programming solutions
in Java for 50 programming problems from a CS1 course. These
submissions were scored in a range of [0,1] based on the number of
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test cases passed. To train our model, we categorized the data into
correct or incorrect for a binary classification. In this experiment,
we work with one problem named “caughtSpeeding” containing
1,574 student programs (correct: 617, incorrect: 957). Uncompil-
able solutions were excluded from the dataset due to their inability
to generate Abstract Syntax Trees (ASTs) and chose not to con-
sider syntactical errors in this study. Using SANN, we map student
programs’ AST representations to their corresponding condensed
vector representation. SANN leverages an attention mechanism
that enables us to understand which program subtrees are respon-
sible for the model output, providing interpretability power. While
the original SANN model used a genetic search optimization pro-
cess to break down the AST into non-overlapping subtrees of fixed
sizes given a specific task, we modified the original SANN model to
incorporate all possible subtrees with various sizes. This decision
was made because subtrees of various sizes can represent logical
errors, and thus, a fixed-size subtree might not comprehensively
encapsulate a single error. Furthermore, logical errors can have a
hierarchical nature, where a larger subtree representing a logical
error can include another subtree representing a smaller error.

3 RESULTS AND DISCUSSION

In this study, we train the modified SANN model on student pro-
gram correctness (incorrect: 0, correct: 1). We divide the dataset
into train, validation, and test sets (60%, 20%, 20%). We set the em-
bedding size to 64 and kept the other parameters with their default
values. The accuracy of the model on the test set is 91%.

Write a function in Java that implements the following logic: You are
driving a little too fast, and a police officer stops you. Write code to
compute the result, encoded as an int value: O=no ticket, 1=small ticket,
or 2=big ticket. If speed is 60 or less, the result is 0. If speed is between
61 and 80 inclusive, the result is 1. If speed is 81 or more, the result is 2.
Unless it is your birthday--on that day, your speed can be 5 higher in all
cases.

int caughtSpeeding(int speed, boolean isBirthday)

speed = speed -

53

return e;

if (speed >= Glspeed <= 89'.

return 1;

return 2;

Figure 1: Incorrect student solution for caughtSpeeding.

Using the trained model, we extract attention weights for each
possible subtree to highlight the most influential subtrees for the
predictions made by the model. We hypothesized that subtrees
representing logical errors should receive high weights by the at-
tention mechanism. We did a proof of concept to investigate our
hypotheses further. Based on our observations, the attention mech-
anism correctly identifies erroneous parts of incorrect programs.
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Figure 1 illustrates one instance of an incorrect student solution
with three errors to the caughtSpeeding problem. The errors are
marked in orange, and their corrected versions are marked in white
in the figure. As shown, the model successfully identifies all of the
errors in the code. This study is a stepping stone to a generalized
programming misconception identifier for CS1. This automated
approach has the potential to help enhance instruction quality by
enabling educators to pinpoint and address individual student mis-
conceptions, thus promoting a more effective and tailored learning
experience.

4 LIMITATIONS AND FUTURE DIRECTIONS

The results of this preliminary study show promise for utilizing our
model to highlight logical errors in students’ solutions. This can
serve as a first step towards automated identification of students’
misconceptions and highlight key areas of difficulty when their
progress is tracked over time. Utilizing the results of this model,
we plan to employ clustering techniques to group similar logical
errors to facilitate feedback propagation for instructors. Further-
more, an aggregated report on students’ common logical errors and
misconceptions could assist educators in identifying and assessing
the most challenging concepts, prompting a reevaluation of the
corresponding course materials. In the future, we plan to formally
evaluate the effectiveness of our model by comparing its results
against a set of ground truth logical errors identified by experts
for each problem. Our results show our model’s effectiveness in
identifying logical errors from solutions to a single problem. We
plan to evaluate the generalizability of our model by applying it to
a dataset that contains solutions to multiple problems. Furthermore,
our model can identify the absence of an important programming
construct (i.e., a student missing a part of the solution) by high-
lighting the whole Abstract Syntax Tree for that part. We plan to
incorporate information from correct solutions to identify missing
constructs in incorrect solutions as well.
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