)
e Use of Large Language Models for Extracting Knowledge

Components in CS1 Programming Exercises

Rose Niousha
University of California, Berkeley
Berkeley, USA
rose.n@berkeley.edu

Bita Akram
North Carolina State University
Raleigh, USA
bakram@ncsu.edu

ABSTRACT

This study utilizes large language models to extract foundational
programming concepts in programming assignments in a CS1
course. We seek to answer the following research questions: RQ1.
How effectively can large language models identify knowledge
components in a CS1 course from programming assignments? RQ2.
Can large language models be used to extract program-level knowl-
edge components, and how can the information be used to identify
students’ misconceptions? Preliminary results demonstrated a high
similarity between course-level knowledge components retrieved
from a large language model and that of an expert-generated list.

ACM Reference Format:

Rose Niousha, Muntasir Hoq, Bita Akram, and Narges Norouzi. 2024. Use
of Large Language Models for Extracting Knowledge Components in CS1
Programming Exercises. In Proceedings of the 55th ACM Technical Sympo-
sium on Computer Science Education V. 2 (SIGCSE 2024), March 20-23, 2024,
Portland, OR, USA. , 2 pages. https://doi.org/10.1145/3626253.3635592

1 INTRODUCTION AND BACKGROUND

An essential part of designing an inclusive Computing curriculum
is to identify essential topics that students will master. Educators
create lesson plans and design homework assignments based on
the breakdown of topics that must be covered in each course com-
ponent. The notion of course topics, also known as Knowledge
Components (KCs), is introduced within the Knowledge-Learning-
Instruction (KLI) framework [3]. KCs represent the competencies
students develop through programming exercises, offering pro-
found insights into learning and demonstrating achievement of
learning outcomes. The understanding of KCs empowers educators
to create more effective CS curricula. However, educators find it
challenging to identify which KCs should be part of the curriculum
and to what extent KCs are assessed in course assessment elements.

Recent advances in Artificial Intelligence (Al), particularly the
emergence of Large Language Models (LLMs), opened up a new

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0424-6/24/03.

https://doi.org/10.1145/3626253.3635592

Muntasir Hoq
North Carolina State University
Raleigh, USA
mhog@ncsu.edu

Narges Norouzi
University of California, Berkeley
Berkeley, USA
norouzi@berkeley.edu

avenue in Computing education research. Researchers have used
LLMs for generating course materials [6], program repair [4], and
IDE-integrated chatbots [5, 8]. LLMs have the potential to facilitate
curriculum development for educators and introduce innovative
teaching methods. In this work, we explore using LLMs to extract
KCs in programming assignments of a CS1 course to facilitate edu-
cators’ ability to evaluate the coverage of their designed curriculum.
We plan to extend the work to extract KCs present in student pro-
grams and tie missing expected KCs to misconceptions.

Prior work by Shi et al., KC-Finder, is an automated KC discovery
system to uncover KCs within a CS1 course in Java [7]. Shi et al.
demonstrated that KC-Finder successfully discovered KC candi-
dates, and students demonstrated improved mastery of the KCs
over time. However, the discovered KCs by KC-Finder lacked clearly
defined expert concepts and required substantial training data. We
address both issues by 1) automatically extracting KCs using LLMs
and 2) evaluating the effectiveness of KCs extracted through LLM
prompting compared to an expert ground-truth KC list. This study
can potentially utilize KC extraction using LLMs to identify student
misconceptions and provide personalized feedback.

2 METHODOLOGY AND PRELIMINARY
RESULTS

We used a Java programming dataset collected from a CS1 course
from the Spring 2019 semester of a public university in the US
using the CodeWorkout platform [1]. The course had 50 program-
ming exercises (5 assignments with 10 programming exercises in
each). We randomly selected one correct student submission for
each problem. We then extracted the problem statements for the
corresponding programs. We considered correct submissions since
incorrect student programs may lack an associated KC. Next, we
prompted two LLMs (Llama2! and GPT3.5%) with three scenarios:

I. Both Student Program and Problem Description.
II. Only Student Program.
III. Only Problem Description.

We performed prompt engineering and identified the prompt
most helpful in extracting KCs. This prompt, in case only the pro-
gram is passed to LLM, is: “List ONLY the Knowledge Component

!https://chat.Imsys.org/?arena
Zhttps://chat.openai.com/


https://doi.org/10.1145/3626253.3635592
https://doi.org/10.1145/3626253.3635592
https://chat.lmsys.org/?arena
https://chat.lmsys.org/?arena
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626253.3635592&domain=pdf&date_stamp=2024-03-15

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

name(s) for this code.”, and is modified to refer to the description or
both description and code in different ablation scenarios.

We aggregated the extracted KCs and removed semantic dupli-
cates to obtain a final list of KCs for the course. Since there were
three ablation scenarios and two types of LLMs, the process out-
lined in Figure 1 is repeated six times, resulting in six KC lists. Two
co-authors (CS1 instructors) labeled the dataset with the presented
KCs used as the ground-truth data. They first mutually labeled 10%
of the data to ensure consistency. Then, they divided the rest of the
data and labeled them individually. Due to the cumulative nature
of CS1, the importance of KCs dynamically changes over time, and
some KCs go into the background (become passive KCs) as they are
no longer the point of practice in the new problem. Thus, experts
only labeled seemingly active KCs for each problem.

Obtain a final
list of KCs by
aggregating the
extracted KCs

Prepare a set of 50
programming exercises
from submissions of
CodeWorkout

Prompt LLMs with
three different
scenarios and obtain
asetof KCs

Figure 1: Process of Extracting the List of KCs using LLMs.

2.1 Impact of the Prompt

To assess the level of resemblance between the ground truth and
six KC lists, we calculated each Jaccard index.

I. Prompt with student program and problem description. The
Jaccardrd index for Llama2 and GPT3.5 were 67% and 83%,
respectively.

Prompt with only the student program: The Jaccard index for
Llama2 and GPT3.5 were 54% and 67%, respectively.

Prompt with only problem description: The Jaccard index for
Llama2 and GPT3.5 were 28% and 82%, respectively.

Overall, the results show that the KCs generated by LLMs most
closely resemble ground truth when prompted with student pro-
gram and problem description. However, in the third scenario,
where GPT3.5 was prompted with only the problem description,
the Jaccard index was very close to that of the first scenario. This
suggests that GPT3.5 when relying solely on the problem descrip-
tion, can yield responses with a level of similarity comparable to
the ideal case, which not only conserves tokens but also holds the
potential to reduce the associated cost of automation.

There were minor omissions in the LLMs compared to the ground
truth. For instance, the LLMs did not capture the KC “Chain Condi-
tionals” in the ground truth in any scenarios. Moreover, “Nested
Loops” were only captured by LLMs in the first scenario, but in the
other two scenarios, LLMs only captured “Loops” without specify-
ing the type of loops.

In the third scenario, Llama2 generated unrelated components
that were not KCs. Such components include “Lottery Ticket,”
rant Table Management,” “Temperature and Season,”, taken from
the scenario described in the question.

1L

1L

Restau-

1763

Rose Niousha, Muntasir Hogq, Bita Akram, & Narges Norouzi

2.2 Impact of the LLM

GPT3.5 consistently achieved a higher Jaccard index than Llamaz2.
This suggests that GPT’s responses are similar to the ground truth,
regardless of the specific prompt scenario. In addition, GPT3.5 had
more consistent naming for KCs compared to Llama2.

3 LIMITATIONS

When comparing GPT3.5 and Llama2, one significant difference is
that GPT’s system stores chat histories, making it easier to continue
working from where the last session ended. In contrast, Llama2’s
system does not have this feature. This difference may explain why
the KCs generated by Llama2 struggle with consistent KC naming
and sometimes generate unrelated components. Additionally, Our
study was limited to a single prompt per problem. We did not in-
vestigate potential variations in the outputs of the LLMs that might
occur when multiple prompts are applied to the same problem.

4 DISCUSSION AND FUTURE WORK

Our initial findings suggest that LLMs effectively identify course-
level KCs that closely match the expert labels. Our next step is to
utilize the KCs gathered in this study to evaluate how effectively
LLMs can identify KCs within a specific program and how the
absence of a KC in a student program connects to misconceptions
to provide immediate personalized feedback [2].

Additionally, future work will focus on improving the KC-extraction
methodology that is presented in this work. This includes further
prompt engineering and identifying the impact of including the
potential list of course-level KCs in the prompt to achieve a more
consistent and cohesive KC output from LLM. This enables instruc-
tors to get responses that use similar terminology as they present
in their course when providing student feedback.

5 ACKNOWLEDGMENTS

This research was supported by the National Science Foundation
(NSF) under Grants DUE-2236195 and DUE-2331965. Any opinions,
findings, and conclusions expressed in this material are those of
the authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Stephen H Edwards and Krishnan Panamalai Murali. 2017. CodeWorkout: short

programming exercises with built-in data collection. In ITiCSE’17. 188-193.

Muntasir Hogq, Jessica Vandenberg, Bradford Mott, James Lester, Narges Norouzi,

and Bita Akram. 2024. Towards Attention-Based Automatic Misconception Identi-

fication in Introductory Programming Courses. In SIGCSE’24 V. 2.

Kenneth R Koedinger, Albert T Corbett, and Charles Perfetti. 2012. The Knowledge-

Learning-Instruction framework: Bridging the science-practice chasm to enhance

robust student learning. Cognitive science 36, 5 (2012), 757-798.

Charles Koutcheme, Sami Sarsa, Juho Leinonen, Arto Hellas, and Paul Denny.

2023. Automated Program Repair Using Generative Models for Code Infilling. In

AIED’23. 798-803.

Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and

David J Malan. 2024. Teaching CS50 with AL (2024).

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic gen-

eration of programming exercises and code explanations using large language

models. In SIGCSE’22 V. 1. 27-43.

Yang Shi, Robin Schmucker, Min Chi, Tiffany Barnes, and Thomas Price. 2023. KC-

Finder: Automated Knowledge Component Discovery for Programming Problems.

International Educational Data Mining Society (2023).

[8] J.D. Zamfirescu-Pereira, Laryn Qi, Bjoern Hartmann, John DeNero, and Narges
Norouzi. 2023. Conversational Programming with LLM-Powered Interactive
Support in an Introductory Computer Science Course. In GAIED @NeurIPS’23.



	Abstract
	1 Introduction and Background
	2 Methodology and Preliminary Results
	2.1 Impact of the Prompt
	2.2 Impact of the LLM

	3 Limitations
	4 Discussion and Future Work
	5 Acknowledgments
	References



