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Abstract

Mobile robots combine sensory information with mechanical actuation to move au-

tonomously through structured environments and perform specific tasks. The minia-

turization of such robots to the size of living cells is actively pursued for applications

in biomedicine, materials science, and environmental sustainability. Existing micro-

robots based on field-driven particles rely on knowledge of the particle position and

the target destination to control particle motion through fluid environments. Often,

however, these external control strategies are challenged by limited information and

global actuation where a common field directs multiple robots with unknown posi-

tions. In this Perspective, we discuss how time-varying magnetic fields can be used

to encode the self-guided behaviors of magnetic particles conditioned on local environ-

mental cues. Programming these behaviors is framed as a design problem: we seek

to identify the design variables (e.g., particle shape, magnetization, elasticity, stimuli-

response) that achieve the desired performance in a given environment. We discuss

strategies for accelerating the design process using automated experiments, computa-

tional models, statistical inference, and machine learning approaches. Based on the

current understanding of field-driven particle dynamics and existing capabilities for

particle fabrication and actuation, we argue that self-guided microrobots with poten-

tially transformative capabilities are close at hand.
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1 Introduction

Inspired by living cells, the development of mobile robots on the micron scale promises new

capabilities for advancing human health, renewable energy, and environmental sustainabil-

ity.1–8 Owing to their small size, such microrobots are capable of navigating through struc-

tured environments that are otherwise inaccessible—for example, through biological tissues,

battery materials, groundwater aquifers, etc. Within these environments, it is envisioned

that microrobots could be programmed to perform desired functions involving the localized

manipulation of information, matter, and energy. They should be capable of sensing, record-

ing, and transmitting information about their microenvironment for precision diagnostics.

They should be able to capture material cargo, transport it to targeted locations, and release

it on demand for therapeutic applications. They should exert stresses, emit light, and/or

generate heat so as to alter the local microstructure for applications in microsurgery and ma-

terial repair. Ultimately, synthetic microrobots aim to reproduce the functional capabilities

of living cells while operating also in extreme environments hostile to life. In one imagined

scenario, microrobots incorporated within the electrolyte of a lithium metal battery patrol

the electrode surface in search of lithium dendrites which they eliminate to prevent short

circuits and prolong battery life. Despite recent progress in our understanding and control

of self-propelled microparticles,2,9 the majority of these capabilities remain beyond the reach

of current technologies. These limitations are particularly severe for self-guided robots that

operate autonomously without external control systems.

To illustrate the challenge, consider a primitive robot based on a magnetic colloid driven

to roll on a surface by a time-varying magnetic field B(t) (Fig. 1). The goal of this robot is to

navigate a 2D reward landscape in pursuit of a local maximum—analogous to a chemotactic

bacterium in pursuit of chemical fuel. This simple task can be achieved with di↵erent levels of
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Figure 1: Schematic illustration of increasingly autonomous microrobots moving on a user-
defined reward landscape. These ‘robots’ are simply magnetic particles that roll across a
solid surface in a time-varying magnetic field B(t). (a) With knowledge of the particle
position, a human controller can direct the motion of a single marionette 13 to a desired
location; a second particle experiences the same field and moves to an undesired location.
(b) Using real-time feedback between the particle position (e.g., from microscopy) and the
applied field, a computer-based control system can direct the autonomous migration of a
single robot to the target location. (c) Self-guided robots use internal mechanisms of sensing
and control to navigate the reward landscape in a common time-varying field. The physical
intelligence14 of these systems is encoded in the design of the particle and the driving field
(see Section 3.1 for a concrete example based on topotaxis15).

autonomy.10 Using knowledge of the particle position, a human controller can determine the

orientation of a rotating field that directs the magnetic roller up the reward landscape (Fig.

1a). Greater autonomy is achieved by replacing the human with a computer-based controller

using the same sensors and actuators (Fig. 1b).11 In the absence of real-time sensing, planning

algorithms based on prior knowledge of the landscape and predictive models of the robot

dynamics can be used to identify e↵ective actuation schedules.12 In each case, the robot’s

behavior is determined by sensors and controllers external to the robot itself—for example,

a human operator with an optical microscope.

By contrast, self-guided robots use internal mechanisms of sensing and control to enable

autonomous navigation of structured environments without knowledge of the robot’s posi-

tion (Fig. 1c). Robot vacuum cleaners and self-driving cars provide familiar examples at

the macroscale; however, it remains challenging to miniaturize these technologies to the mi-
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croscopic dimensions of living cells. Instead, current microrobots achieve primitive forms of

sensing and control based on their physicochemical dynamics and the interactions with their

environment.16 This type of ‘physical intelligence’ at the microscale provides a feasible alter-

native to the ‘computational intelligence’ of macroscopic robots.14 Continuing the example

above, the dynamics of the magnetic roller is sensitive to the proximity and orientation of a

nearby surface. These hydrodynamic interactions provide a basis for self-guided navigation

across topographic landscapes—so-called topotaxis15—in which the desired behavior is en-

coded in the relevant design variables that influence the robot’s dynamics. The goal of this

Perspective is to identify strategies for accelerating the design of self-guided microbots that

exhibit increasing levels of physical intelligence.

We focus our discussion on a particular class of microrobots—namely, those powered and

directed by external magnetic fields.17–21 Currently, these magnetic microrobots are little

more than colloidal particles that swim, roll, or crawl through fluid environments under the

influence of time-varying fields. Such fields are not scattered or screened by common materi-

als (e.g., human tissue) and can therefore act remotely and specifically to actuate magnetic

particles introduced for that purpose. The physics of magnetic actuation and propulsion

is well understood and can therefore be used to accelerate the design of microrobots for

targeted functions. We consider application contexts characterized by global actuation and

limited information, in which a common time-varying field directs the operation of multiple

robots with unknown positions. In this context, the functional behavior of each microrobot

is determined both by its local environment and by the common field. For example, micro-

robots dispersed in the bloodstream might use local hydrodynamic cues like the fluid velocity

and its gradient to direct their self-guided navigation.

Encoding the behaviors of self-guided microrobots can be framed as a design problem

(Fig. 2). By carefully selecting the relevant design variables—for example, the waveform of

the driving field, the shape of the magnetic particle—one seeks targeted behaviors that can

be quantified by suitable performance metrics. In the context of self-guided navigation, we
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Figure 2: (a) The self-guided capabilities of magnetic microrobots are encoded in their mate-
rial properties (e.g., shape, magnetization, flexibility, stimuli-response) and in the waveform
of the time-varying magnetic field B(t). The selection of these design variables (“knobs”)
determines the dynamics of the robot in a specified environment as discuss in Section 2.
(b) Programming a self-guided robot can be framed as a design problem: we seek design
variables and performance metrics that maximize the expected utility, which accounts for
both design costs and the performance benefits. The design process can be accelerated using
computational models, automated experiments, statistical inference, and machine learning
as discussed in Section 3.

seek microrobots that move with a desired speed and direction in response to local gradients

in their environment (i.e., taxis). This design problem is challenging since the relationship

between microrobot design and performance is often high-dimensional, nonlinear, stochastic,

and unknown. Informed by experimental data, predictive models can provide useful approx-

imations to these relationships that guide the search for better designs. By contrast, life’s

microrobots were designed by a blind process of evolution by natural selection, which relies

on long time scales and massively parallel search to achieve their remarkable capabilities.

This di↵erence begs the question: what can we (humans) hope to achieve using intelligent

design22 over decades compared to life’s marvels forged by eons of evolutionary design work?

Mindful of Orgel’s rule that “evolution is cleverer than you are”, the answer could be disap-

pointing. Nevertheless, we are optimistic that recent advances in computation, automation,

and machine learning can significantly accelerate the design of self-guided microrobots with

useful—albeit primitive—capabilities.
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This Perspective is divided in two parts: the ‘forward problem’ of exploring the dynamics

of magnetic microrobots a↵orded by increasingly complex design spaces, and the ‘inverse

problem’ of identifying those designs that enable self-guided behaviors (Fig. 2b). In part

one, we review the physics of magnetic actuation and describe how spatiotemporal fields

are used to position and propel magnetic particles in viscous fluids. We highlight examples

from literature that illustrate the relevant design variables and their impact on particle

dynamics and robot capabilities. In part two, we discuss how predictive models trained and

validated on experimental data can be used to accelerate the design of self-guided behaviors.

In particular, we highlight the use of complex time-varying fields for encoding gradient-

driven taxis of magnetic particles. The design of these and other functions will require

the close integration of automated experiments, computer simulations, statistical inference,

and machine learning approaches. We outline strategies for navigating the growing space of

possible designs in pursuit of self-guided microrobots that respond intelligently to an growing

number of environmental stimuli.

2 Forward Problem: Understanding Microrobot Dy-

namics

External magnetic fields can be used to position, propel, and deform micron scale particles

immersed in viscous fluid environments. The dynamics of these primitive microrobots de-

pends on the particle’s magnetic response and its interactions with the external field and the

surrounding fluid (see Supporting Information, Section 2). In this brief review, we describe

how external fields and their gradients can be used to specify the position and orientation

of a magnetic particle in 3-dimensions. We discuss how time-varying fields can be used to

propel motion at low Reynolds numbers by coupling rotation and translation using asym-

metries in the particle shape or its environment. Beyond the field-driven dynamics of rigid

bodies, we consider the actuation of deformable particle assemblies held together by elastic,
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magnetic, and/or hydrodynamic interactions. Overall, this Section highlights the many de-

sign variables by which to control particle dynamics and thereby the self-guided capabilities

of magnetic microrobots.

2.1 Particle Positioning

One of the basic challenges of microrobotics is controlling the position and orientation of

a magnetic particle in three-dimensions. Arguably, the simplest approach uses structured

magnetic fields to achieve the passive levitation of non-magnetic particles in a paramagnetic

fluid. For example, the field produced by two permanent magnets in the anti-Helmholtz

configuration creates a bowl-shaped potential well that specifies the equilibrium particle

position (Fig. 3a).23,24 Typically, magnetic levitation experiments are conducted in aqueous

solutions of paramagnetic salts; however, stronger trapping forces can be achieved using

ferrofluids.25,26 By structuring the field using patterned magnet arrays, one can shape the

energy landscape to create “magnetic molds” that control the positions and orientations

of dispersed microparticles (Fig. 3b).27,28 A major limitation of this approach, however,

is its reliance on magnetic media, which are rarely encountered in the context of robotic

applications (e.g., in the human body).

To position magnetic microparticles in non-magnetic media, di↵erent strategies are re-

quired to account for the inevitable attraction of magnetic particles to high field regions

(see Supporting Information, Section 2). One approach uses micron-scale probes—so-called

magnetophoretic tweezers—to generate local field gradients that capture nearby particles

and move them using micropositioners (Fig. 3c).29,30 Alternatively, magnetic particles can

be adsorbed onto a fluid interface such that field gradients in 3-dimensions create local en-

ergy minima for particle positioning in 2-dimensions (Fig. 3d).34–36 At curved interfaces,

even uniform fields can be used to position ferromagnetic particles due to coupling between

magnetic and capillary torques.31,32 Achieving full control at-a-distance over the position

and orientation of a single magnetic particle in 3-dimensions requires multiple electromag-
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Figure 3: (a) A non-magnetic particle suspended in paramagnetic fluid levitates between
two permanent magnets where the field magnitude is minimal (so-called magnetic levitation
or MagLev).24 (b) Patterned magnetic surfaces direct the assembly of non-magnetic col-
loids in paramagnetic solutions of holmium nitrate, reproduced with permission from ref 27.
Copyright (2013) Springer Nature. (c) Magnetophoretic “tweezers” use micron-scale probes
to manipulate magnetic and non-magnetic objects with local field gradients.29 Shown here
is the capture and release of a 50 µm silica sphere in a paramagnetic fluid.30 Reproduced
with permission from ref 30. Copyright (2016) WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. (d) Ferromagnetic (FM, purple) and superparamagnetic (SPM, blue) particles
adsorbed at a liquid interface adopt stable positions in a non-uniform field as to minimize
the magnetic energy U(x). Here, the moment of the ferromagnetic Janus sphere is directed
parallel to the interface.31,32 (e) The OctoMag system (left) uses eight electromagnetics to
specify the field and its gradient at the site of a ferromagnetic particle.33 Using knowledge
of the particle position in 3D, control algorithms enable the directed motion of the particle
along prescribed trajectories (right). Reproduced with permission from ref 33. Copyright
(2010) IEEE.

netics with which to specify the field and its gradient at the particle location (Fig. 3e, left).33

Using real-time knowledge of the particle position, feedback control algorithms direct the

tuning of the electromagnets to guide particle motion to a targeted location or along specified

trajectories (Fig. 3e, right).33 Despite these impressive capabilities, it remains challenging
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to control the particle when its position is unknown (limited information) or to position

multiple particles independently using a common field (global actuation).

2.2 Torque-Driven Propulsion

To drive the rapid propulsion of micron-scale colloids using external magnetic fields, there

are significant advantages to using magnetic torques in spatially uniform fields as compared

to magnetic forces due to field gradients. A simple scaling argument reveals why. The

characteristic speed of a ferromagnetic sphere with diameter d and moment m in a magnetic

field of strength Be that decays over length L is U ⇠ mBe/3⇡⌘dL, obtained by balancing the

magnetic force and the viscous drag. A uniform field can rotate the same particle at angular

speeds of order ⌦ ⇠ mBe/⇡⌘d
3 by a similar argument. Perfect coupling between particle

rotation and translation—for example, frictional rolling on a solid surface—would lead to

propulsion speeds of order U ⇠ mBe/2⇡⌘d2, which exceeds that due to field gradients by

a large factor of L/d � 1. In practice, rotation-translation coupling with a nearby surface

is weaker due to hydrodynamic “slipping”; however, the same argument applies. Even far

from solid boundaries, asymmetric particle shapes can enable steady propulsion in uniform

time-varying fields due to hydrodynamic coupling between rotation and translation. Here,

we briefly review these and other modes of magnetic particle propulsion relevant to the

realization of magnetic microrobots.

2.2.1 Free Swimmers

We first consider the field-driven propulsion of “free swimmers”—that is, magnetic particles

that move through an unbounded fluid far from solid boundaries (and each other). In the

simplest case of a rigid ferromagnetic particle, the dynamics is described by a combination of

magnetic actuation and low-Reynolds number hydrodynamics. The characteristic Reynolds

number for micron-scale particles rotating in water due to 1 mT fields is Re = ⇢d
2⌦/⌘ ⇠

10�3 ⌧ 1, which implies that inertial e↵ects are negligible. In a quiescent fluid, the linear
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and angular velocity of the particle are linearly related to the magnetic force and torque by

the hydrodynamic mobility tensor, which depends on the size, shape, and orientation of the

particle as well as its position relative to nearby boundaries.37,38 For asymmetric particles in

an unbounded fluid, field-driven rotation can propel linear motion due to non-zero coupling

between particle rotation and translation.39

Figure 4: (a) The rotation of helical particles in a rotating field leads to directed trans-
lation due to hydrodynamic coupling between rotation and translation. Reproduced with
permission from ref 40. Copyright (2009) AIP Publishing. (b) Using time-varying fields,
the trajectory of a helical swimmer can be directed along complex preprogrammed paths.
Reproduced with permission from ref 41. Copyright (2009) American Chemical Society. (c)
The velocity of a ferromagnetic particle of irregular shape exhibits dynamical transitions
with increasing frequency of a rotating magnetic field.42 The particle’s 3D shape (right) is
reconstructed from optical microscopy images. Reproduced with permission from ref 42.
Copyright (2019) American Physical Society.

The speed of magnetic propulsion depends sensitively on particle shape as well as the

frequency and waveform of the time-varying field. The canonical example is a long heli-

cal particle with a permanent magnetic moment oriented perpendicular to its axis (Fig.

4a,b).17,40,41 Application of a rotating field causes the particle to rotate and translate in a

direction specified by the external field and the particle chirality. In this way, microrobots
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can be driven to trace complex trajectories in 3-dimensions41 and to transport colloidal

cargo using microholders.43 At low frequencies, the particle rotates in synchrony with the

applied field, thereby “screwing” through the fluid at a constant speed. Importantly, the

propulsion speed depends on particle shape—for example, on the radius and pitch of the

helix. While some shapes are more e↵ective than others, any low symmetry particle with a

magnetic moment will swim along the axis of the rotating field (Fig. 4c).42,44 With increasing

rotation frequency, particles exhibit one or more bifurcations in their rotational dynamics

that alter the speed—and sometimes the direction—of propulsion (Fig. 4c). The nonlinear

dynamics governing the orientation of low symmetry particles in 3D is nontrivial and allows

for multiple stable solutions. For example, the asymmetric particle in Figure 4c shows two

stable modes of rotation-translation in a common rotating field at intermediate frequencies.

As discussed in Section 2.3 below, additional types of free swimming become possible for

flexible particles with internal degrees of freedom.

2.2.2 Surface Rollers

The presence of nearby boundaries introduces new mechanisms for rotation-translation cou-

pling that enable torque-driven propulsion of high symmetry particles. Figure 5a illustrates

the specific case of a ferromagnetic sphere “rolling” across a planar substrate as directed by

a rotating magnetic field.15,45 The particle speed increases linearly with rotation frequency

up to some critical value, above which the hydrodynamic resistance to rotation exceeds the

magnetic torque. At higher frequencies (! > !c), repeated “slipping” of the moment rela-

tive to the field leads to fluctuating torques that drive particle translation at slower speeds.

Notably, this hydrodynamic model suggests that the maximum speed Umax and the criti-

cal frequency !c depend on the surface separation � (Fig. 5a, dashed curve). Decreasing

this separation—for example, using gravitational or magnetic forces—can act to strengthen

rotation-translation coupling thereby enhancing propulsion at constant frequency ! < !c.46

Small separations, however, also increase the resistance to rotation thereby decreasing the
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critical frequency !c. These competing e↵ects lead to a maximum propulsion speed at surface

separations equal to ca. 1% of the particle diameter (Fig. 5a). By changing the orientation

of the rotating field, multiple spheres can trace complex trajectories across the 2D surface

(Fig. 5b). Such magnetic rollers provide a basis for microrobots that move along blood vessel

walls to perform theranostic functions within the human vasculature.47

Figure 5: (a) Predicted rolling speed U for a ferromagnetic sphere in a rotating magnetic
field with frequency !. The di↵erent curves correspond to di↵erent surface separations �.
See Supporting Information for details. (b) Multiple ferromagnetic rollers trace rectangular
trajectories on a solid substrate as directed by a rotating field with changing orientation.
Reproduced with permission from ref 45. Copyright (2017) Springer Nature. (c) Superpara-
magnetic particles of asymmetric shape (here, a two sphere doublet) translate across along
a solid substrate in a precessing field. Reproduced with permission from ref 48. Copyright
(2008) American Physical Society.

Superparamagnetic particles can also be driven to “roll” on surfaces but require anisotropic

polarizability or high frequency fields to induce the necessary torques. Figure 5c shows one

example in which an asymmetric colloidal doublet translates across a surface under the

influence of a precessing magnetic field.48 At su�ciently high frequencies, even superpara-

magnetic spheres with isotropic polarizability can be driven roll due to the finite time scale
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of magnetization ⌧m.49,50 Application of a rotating field creates a time-averaged magnetic

torque, hTmi = µ0↵H
2
e!⌧m/(1 + !

2
⌧
2
m), which reaches its maximum value when the angular

frequency equals the relaxation rate (!⌧m = 1).

In the examples above, the direction of particle motion is dictated by that of the applied

field (see, for example, Fig. 5b). To enable self-guided propulsion in the plane, driving fields

of higher symmetry are required—for example, an oscillating field normal to the surface.

Such fields can power particle propulsion along any direction of a solid substrate due to

asymmetric particle shapes51 or spontaneous symmetry breaking.52 For example, ferromag-

netic spheres with non-negligible inertia (e.g., 60 µm Ni) break axial symmetry and roll

across a solid surface in an oscillating field of appropriate magnitude and frequency.52 While

such motion is prohibited for smaller microspheres in viscous fluids, anisotropic particles

can also be driven to swim (not necessarily roll) across planar surfaces in linearly oscillating

fields.51 Alternatively, the asymmetry necessary for propulsion at low Reynolds number can

be introduced using the surface topography of the underlying substrate.53

2.3 Shape-Changing Microrobots

To achieve increasingly complex tasks, magnetic microrobots benefit from internal degrees

of freedom that enable new behaviors conditioned on the current state of the robot.54 For

rigid particles discussed in the previous section, the robot’s dynamical state is described

by only few variables—for example, the 2D orientation of a ferromagnetic sphere and its

height above a plane wall. The particle position in the plane and its orientation about the

magnetic moment are irrelevant to the particle dynamics by symmetry. Connecting multiple

particles together using flexible linkers or other interparticle interactions provides a basis for

shape-changing robots that can adopt many possible configurations to achieve new modes

of propulsion, cargo capture-transport-release, and the ability to assemble-disassemble on

demand. In this section, we discuss some illustrative examples of composite, multi-particle

robots and their capabilities.
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2.3.1 1D Chains

Linear chains of magnetic particles connected by flexible linkers enable new modes of propul-

sion as well as the ability to manipulate micron-scale cargo. When subject to oscillating

fields, flexible magnetic chains attached to microscopic cargo exhibit traveling waves of elas-

tic deformation that enable free swimming and cargo transport at low Reynolds numbers

(Fig. 6a).55 Without the attached cargo, chains of superparamagnetic particles break sym-

metry in a precessing field to adopt helical conformations that swim along the field axis (Fig.

6b).56 More generally, particle chains flex and fold in time-varying fields to form dynamic

conformations balancing magnetic, elastic, and hydrodynamic interactions among the par-

ticles.57,58 In particular, the formation of circular coils in rotating fields provides a basis for

“microlassos” that can wrap around a micron-scale particle, transport it via surface rolling,

and release it on demand by changing the driving field (Fig. 6c).59

Even in the absence of flexible linkers, dipole-dipole interactions direct the dynamic as-

sembly and propulsion of linear particle chains in time-varying magnetic fields.21 Superpara-

magnetic spheres moving above a planar surface assemble to form linear chains due to time-

averaged dipolar interactions in an elliptically polarized, rotating magnetic field.50 Addi-

tional hydrodynamic interactions among the rotating particles leads these colloidal “worms”

to crawl across the surface much faster than the individual particles alone. Similarly, pre-

cessing fields can induce the assembly of linear particle chains that move and interact as

directed by the frequency, precession angle, and orientation of the applied field (Fig. 6d).60

Notably, the ability to dynamically assemble and disassemble multi-particle robots on de-

mand by changing the driving field is potentially useful for introducing (removing) them to

(from) hard-to-reach places.

2.3.2 2D Sheets & 3D Swarms

Guided by time-averaged dipole-dipole interactions, magnetic particles assemble to form 2D

crystals in the plane of a rotating field (Fig. 7a).61,62 Once formed, these dynamic assemblies

16



Figure 6: (a) A flexible chain of superparamagnetic particles attached to a red blood cell
swims in an oscillating field due to a periodic sequence of non-reciprocal deformations. Re-
produced with permission from ref 55. Copyright (2005) Springer Nature. (b) In a precessing
field, a flexible magnetic chain coils into helix that screws through the viscous fluid as repro-
duced by computational models. Reproduced with permission from ref 56. Copyright (2020)
National Academy of Sciences. (c) A magnetic “microlasso” in a rotating field coils around
a colloidal particle, rolls the cargo along the surface, and releases it in a targeted location.
Reproduced with permission from ref 59. Copyright (2017) American Chemical Society. (d)
Linear chains of suparparamagnetic particles assemble in a precessing field and move along
a solid wall as directed by the field.60 Scale bar is 25 µm. Reproduced with permission from
ref 60. Copyright (2019) Wiley-VCH GmbH, Weinheim.

can be driven to move across planar substrates—for example, by rotating the constituent

particles in an elliptically polarized, rotating field63 or by “rolling” the particle-assembly in a

rotating field tilted out of plane.64 The former enables cargo transport across active colloidal

“carpets”;63 the latter allows for the di↵erential propulsion of various “microwheels”64 across

patterned “microroads” (Fig. 7b).53 In addition to dipole-dipole interactions, assemblies of

field-driven particles can be held together within 3D swarms or “critters” by the hydro-

dynamic flows they create.45,65 A key advantage of these dynamic assemblies for robotic

application is their reconfigurability: the same components can assemble in di↵erent ways

to complete di↵erent tasks as directed by the driving field (Fig. 7c).66,67
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Figure 7: (a) Time-averaged dipolar interactions in the plane of a rotating field mediate
the condensation and coalescence of superparamagnetic particle crystals.62 Colors denote
the local orientation order parameter  6. Reproduced with permission from ref 62. Copy-
right (2018) American Physical Society. (b) “Microwheels” assemble in a rotating field and
roll across patterned surfaces at di↵erent speeds that depend on the wheel shape and the
surface topography. Wavelength of the topographic pattern is 10 µm. Reproduced with
permission from ref 53. Copyright (2019) AAAS. (c) Swarms of hematite particles form
dynamical phases with di↵erent functions depending on the driving field: (left) liquid phase
in a oscillating field, (middle) motile chain phase in a rotating field parallel to the surface,
(right) vortex phase in a rotating field perpendicular to the surface. Scale bars are 50 µm.
Reproduced with permission from ref 66. Copyright (2019) AAAS. (d) A magneto-elastic
sheet patterned with magnetic domains and flexible hinges folds into a microscale ‘bird’ that
‘flaps’ and ‘hovers’ in the external field. Reproduced with permission from ref 68. Copyright
(2019) Springer Nature.

The assembly information69 encoded in the field can be augmented by additional design

variables that specify the position, orientation, and connectivity of magnetic domains within

flexible assemblies. The field-induced actuation of magnetic particles embedded within non-
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linear elastomers enables complex changes in material shape.70 At the millimeter scale, these

shape-changing materials have been used to create soft robots that move through diverse

environments using di↵erent modes of propulsion such as undulatory swimming through liq-

uids71 and rolling or walking on solid surfaces.72 By patterning the local magnetization and

bending modulus, magneto-elastic materials can be programmed to fold spontaneously under

external fields to create shape-changing origami on the micron scale (Fig. 7d).68 Notably, the

elastic component of these composite materials can be designed to respond to a variety of

environmental stimuli such as temperature, osmotic pressure,73 and light,74 thereby altering

the dynamics of field-driven robots. This ability to respond to local stimuli within hetero-

geneous environments provides a basis for “intelligent” robots that use internal feedback

mechanisms75 to direct self-guided functions such as gradient-driven navigation.16 The in-

gredients required to create such robots are largely available; the remaining challenge is one

of design. Which of the many possible driving fields, robot shapes, magnetization patterns,

responsive materials, etc. should one select to create microrobots with desired capabilities?

Answering this question will require advances in engineering design that leverage automation

and computation to accelerate the development of self-guided microrobots.

3 Inverse Problem: Designing Self-Guided Microrobots

Mobile robots use sensors and actuators to navigate their environment and perform desired

functions. Their ability to conduct the appropriate action given relevant sensory infor-

mation is determined by their control system—that is, by the “brains” of the robot. For

magnetic microrobots, these key elements—sensor, actuator, controller—are often external

to the particle itself (Fig. 2a,b).76 Using microscopy information (sensor), a computer algo-

rithm (controller) alters the driving magnetic field (actuator) to achieve the desired particle

response. Where feasible, these micron-scale robots based on external control systems en-

able useful capabilities such as drug delivery,33 colloidal assembly,11,77 cargo capture,78 and
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multimodal locomotion.66 However, as noted above, this external control paradigm becomes

infeasible when faced with the challenges of limited information and global actuation—for

example, the control of many particles with unknown positions. In this section, we con-

sider the design of self-guided microrobots in which sensors, actuators, and controllers are

embedded (often implicitly) within the particles themselves and in the driving field. Pro-

gramming the behaviors of these systems can be framed as a design problem, where we seek

to identify which of the many possible robot designs exhibits the desired performance. We

discuss strategies for accelerating the design process using physics-based models, automated

experiments, Bayesian data analysis, and machine learning approaches.

3.1 Framing the Design Problem

3.1.1 Quantifying Performance

The design process begins by identifying the functional capability one aims to achieve. As a

specific example, we consider the design of microrobots that navigate autonomously across a

solid surface in 2-dimensions as directed by the local surface topography—so-called topotaxis

(Fig. 8).15 Depending on the context, we may seek robots that move up, down, left, or right

relative to the local surface incline with respect to the gravity direction. Importantly, we want

these microrobots to be self-guided : particles should move “uphill”, for example, as directed

by their respective environments and not by external control systems. We emphasize that

topotaxis is one of many possible autonomous capabilities that could be targeted for design.

Other types of gradient-driven taxis (e.g., rheotaxis,79 viscotaxis,80 chemotaxis,16,81 etc.)

as well as conditional “if-then” operations such as cargo capture and release are discussed

below.

Having identified the desired behavior, one must specify performance metrics that assess

whether and to what extent that behavior is achieved in a specified context. For gradient-

driven taxis, relevant performance metrics include the speed and direction of particle migra-

tion relative to the magnitude and direction of the applied gradient. In the linear response
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Figure 8: Topotaxis: ferromagnetic spheres immersed in a viscous fluid above an solid surface
migrate up topographic gradients in a spatially uniform, time-varying field B(t) specifically
designed for that purpose. The time-averaged particle velocity hUi is proportional to the
surface gradient G defined relative to a symmetry axis of the driving field (dotted line).
Reproduced with permission from ref 15. Copyright (2021) Royal Society of Chemistry.

regime, the particle migration velocity hUi is linearly proportional to the gradient vector G

as hUi = R ·G, where the matrix R concisely summarizes the particle response. Ideally, per-

formance metrics should be observable quantities that are readily measured in experiment.

By analogy to chess programs, they should focus on desired outcomes (e.g., wins) without

prescribing the path to that outcome. In topotaxis, performance is measured in terms of

the particle displacement after some time (i.e., the time-averaged motion) rather than the

instantaneous particle velocity, which can fluctuate in di↵erent directions.

3.1.2 Choosing Design Variables

Design variables refer to the di↵erent “knobs” that one can tune to influence robot per-

formance. Examples include particle shape82,83 and composition84 as well as the waveform

of the time-varying magnetic field. These quantities can be represented by continuous or

categorical variables that together form a space of possible designs—the so-called design

space (Fig. 9a). As the full space of all possible designs is Vast (i.e., Very much greater than

ASTronomical22), we make slices and projections to create a manageable space of reduced

dimensionality. We fix some variables under our control (slice) and ignore others (projec-

tion). For example, we may choose a convenient particle shape to make our robot thereby

excluding the possibilities a↵orded by alternative shapes. We may choose to ignore the time

of day or the temperature of the room as these variables are thought to have negligible
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Figure 9: (a) A design space of three variables d = [d1, d2, d3]T is reduced to a lower dimen-
sional space by slicing and projecting. Each point in the original space is characterized by
its utility (colored markers). Here, we fix the value of variable d2 (slice) and ignore variable
d3 altogether (project). The resulting 1-dimensional design space can then be explored in
pursuit of “good” (high utility) designs. (b) Periodic magnetic field B(t) with frequency !
selected at random from the space of 6N+3 dimensional design space of Fourier components
with N = 5 harmonics. (c) Periodic magnetic field B(t) selected at random from the design
space of possible fields with m = 4 fold rotational symmetry about the z-axis.

impact on robot performance. Together, the many ignored or uncontrolled design variables

contribute to the many types of “noise” present in experimental observations.

Choosing the design space is among the most important decisions in solving a design

problem—here, in programming a self-guided microrobot. Ideally, the design space should be

as simple (low dimensional) as possible to facilitate exploration but su�ciently expressive to

encompass non-trivial solutions. The problem of topotaxis provides an instructive example.

To start, we focus our attention on a single ferromagnetic sphere moving through a viscous

liquid above an inclined plane under the influence of a time-varying, spatially uniform field

(Fig. 8). The design space is chosen to describe the possible driving fields while fixing

other details of the experiment such as particle shape. We use a truncated Fourier series to

represent the time-periodic field in terms of its frequency ! and its Fourier components. In
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this way, a static field with N harmonics in 3-dimensions is represented by a design space

with 6N+3 dimensions for a specified frequency !. Figure 9b shows one of the many possible

driving fields selected at random from a design space with N = 5 harmonics. We conjecture

that there exist some designs in this space that will drive autonomous particle migration as

directed by the inclined substrate.

Symmetries in the driving field, the magnetic particle, and its environment can be helpful

in reducing the design space while preventing undesired particle motions. For self-guided nav-

igation in 2-dimensions, the applied field should not drive particle motion along a privileged

direction when the environment is isotropic (e.g., no topotaxis on a level substrate). To pre-

vent such field-directed motions, we can use time-periodic fields that exhibitm-fold rotational

symmetry about an axis normal to the 2D environment. In particular, we consider fields

for which a shift in phase is equivalent to a rotation in space: R3('m)B(!t) = B(!t� 'm),

where R3('m) describes a coordinate rotation about the z-axis by an angle 'm = 2⇡/m for

a specified integer m  3. Simple examples of such fields include an oscillating field along

the z axis and a rotating field in the xy plane; however, the space of possibilities becomes

significantly richer with the inclusion of higher harmonics (Fig. 9c shows one example for

m = 4). Importantly, the migration of particles energized by these fields is due either to

asymmetries in the particle environment (taxis) or to symmetry-breaking instabilities52 and

not directed by the applied field. This freedom of particles to move in di↵erent directions in a

common field is a defining characteristic of self-guided microrobots. Moreover, by restricting

the space of possible fields to satisfy the above symmetry, we significantly reduce the number

of design variables thereby facilitating the design process.

3.1.3 Balancing Costs and Benefits

Having identified a space of candidate designs, we must now quantify our preferences for some

designs over others. The distinction between better and worse designs is inherently subjective

and reflects the wants, priorities, and capabilities of the designer as well as the demands of the
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targeted application. In general, the value of a particular design can be quantified—or rather

defined—by a utility function, which assigns a numeric score to each design in accordance

with our preferences. Informed by performance metrics associated with each design, the

utility function must balance the often conflicting demands of performance along with the

costs of implementing the design (Fig10a). Continuing our example of topotaxis, good

designs for the driving field propel particle motion accurately up the incline but also quickly

up the incline. The utility function must weigh these competing desiderata to determine a

single value for each candidate design. In our previous study, we use the following function

to favor particle migration in the up-hill x-direction

u(d,y) =
�x

1 + (10�y/�x)2
(1)

where d is the design variable specifying the driving field, and y = [�x,�y] is the observed

performance specifying the average particle displacement per cycle along directions parallel

�x and perpendicular �y to the surface incline (Fig10b). The chosen factor of 10 sets the

relative importance between the magnitude and direction of the displacement. In general,

the utility can depend also on the design variable d—for example, when some designs require

more time or resources than others.

To program the microrobot, we seek to identify one or more designs d from among the

space of possibilities that maximize the utility function u(d,y) as informed by the perfor-

mance metrics y. In this way, our initial design goal has been reformulated as an opti-

mization problem: find the design that maximizes the utility. In practice, the search for

a global optimum of a complex objective function in a high dimensional space can be a

neverending challenge—particularly, when the function is costly to evaluate (e.g., requiring

an experiment). For this reason, its often wise and expeditious to lower our expectations

and abandon the pursuit of “optimal” designs in favor of those “good enough” to achieve

the desired capability. In the context of topotaxis, we constrain the initial design process
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Figure 10: (a) Graphical representation of the design problem: The relationship between
an experimental design d and a measurement outcome y is described by the conditional
probability distribution q(y | d), which is unknown to the experimenter. The value of
an experiment is described by a utility function u(d,y) that depends on the design (e.g.,
the cost of performing the experiment) and the measurement outcome (e.g., the benefit
of the observed performance). We seek designs that maximize the expected utility U(d) =R
u(d,y)q(y | d)dy. (b) For topotaxis on an inclined substrate, the utility function (1) favors

driving fields that direct particle motion “up” the incline quickly and accurately (contours).
The solid curve illustrates the particle trajectory up the incline.

to consider only spherical particles despite the fact that some anisotropic particles are likely

to exhibit better performance (e.g., faster gradient-driven migration) in the driving field.

This process of “satisficing”85 is all the more reasonable when we acknowledge that the de-

sign optimization problem outlined above is a quantitative fiction of our own creation. We

choose the design variables, performance metrics, and utility function that quantify—albeit

approximately—our goals and capabilities. If we choose wisely, this design framework can

be a useful guide in accelerating the development of autonomous microrobots.

3.2 Accelerating the Design of Microrobots

3.2.1 Generate-and-Test

Arguably the simplest algorithm for solving a design problem is the Edisonian approach of

repeated trial-and-error. In this approach, we select many candidate designs spanning the
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space of possibilities. For each candidate, we implement the design in experiment, evaluate

its performance, and quantify its utility. The process continues until an acceptable solution

is found or until resources are exhausted. In its simplest form, designs are selected and

evaluated independently of one another. Candidate designs may be sampled at random or

selected from a regular grid in design space. The observed performance of one design does

not alter the selection of other subsequent designs. As a result, the search algorithm can be

conducted in parallel to accelerate the exploration of design space.

Studies by Faivre et al. on the magnetic propulsion of randomly shaped microparticles

illustrate the benefits of parallel search for particle design (Fig. 4c).42,86–88 The Authors

synthesize populations of magnetic particles with irregular shapes thereby sampling a large

design space of possible shapes.86 These designs are evaluated in parallel by observing the

linear propulsion of many particles subject to a common rotating field. Using video mi-

croscopy, they identify particles that exhibit desired behaviors—for example, particles that

swim the fastest87 or that reverse direction upon changes in the driving frequency.42 The 3-

dimensional shapes of these high performing particles are reconstructed from 2D microscopy

images42 and copied using 3D printing to create magnetic microrobots with enhanced swim-

ming abilities.88 A logical next step is the repeated iteration of particle selection and copying

to enable the directed evolution of ever better designs.

Notably, the generate-and-test algorithm requires no understanding of the relationship

that connects the specified design variables to the observed performance metrics. Like biolog-

ical evolution, this blind search process achieves “competence without comprehension”22,89—

for example, it reveals particle shapes that swim fast without understanding how such perfor-

mance is achieved. This lack of comprehension can be an asset when the algorithm discovers

surprising solutions that challenge our expectations and prior biases. For example, some

randomly selected particles with irregular shapes actually swim faster than human designs

based on helical or propeller-type shapes.87 On the other hand, our ability to understand

how “good” designs achieve their performance can help to further accelerate the pace of
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design. Indeed, Faivre and co-workers explain their experimental observations of particle

propulsion using dynamical models based on magnetic actuation and low Reynolds number

hydrodynamics.88 As Nikolai Tesla famously criticized Edison’s trial-and-error approach,

“just a little theory and calculation would have saved him 90 percent of the labour.” Like

Tesla, we argue strongly for the value of models, which can anticipate experiment outcomes

and guide the search through design space.

3.2.2 Model-Predictive Design

Generative models that predict the outcomes of imagined experiments can be used in place

of experimental data to guide the design process (Fig. 11a). Such models take as input

the specified design variables and return as output the predicted performance metrics that

enable the evaluation of candidate designs. To be useful for this purpose, models should

provide reasonably accurate predictions of experimental outcomes at lower “costs” than

the experiments themselves (e.g., in terms of time and other resources). As an illustrative

example, we return to the design of time-varying fields for directing the topotatic migration of

ferromagnetic spheres.15 Using dynamical models of particle motion, we can predict in silico

how the particle will move along an inclined surface in a specified driving field. Importantly,

such simulations can be performed in a small fraction of the time required to conduct an

analogous experiment. It is therefore possible to evaluate millions of candidate designs for the

driving field and select the most promising from the design space of rotationally symmetric

fields.15 This approach is identical to the generate-and-test algorithm of the preceding section

applied now to model predictions rather than experimental observations.

When possible, model-predictive design based on accurate and e�cient models can iden-

tify solutions more quickly and with deeper understanding than experimental trial-and-error

alone. Physics-based models of particle dynamics provide idealized descriptions that make

explicit assumptions about which features of the system are important (e.g., magnetic mo-

ment, fluid viscosity) and which are not (e.g., inertial e↵ects, phase of the moon). Models
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Figure 11: (a) Graphical representation of model predictive design. The relationship between
an experimental design d and the outcome ỹ of a simulated experiment is described by the
conditional distribution p(ỹ | d, | ✓,M) for model M with parameters ✓. The value of the
simulated experiment is described by a utility function u(d, ỹ). We seek designs that maxi-
mize the expected utility as predicted by the model. (b) Optimization of the expected utility
U(d) using the covariance matrix adaptation evolution strategy (CMA-ES).90 Colors repre-
sent design spaces of varying dimensionality, reduced from the original 7-dimensional space
by principal component analysis (PCA). The optimization is initialized from 50 randomly
selected designs (light curves); bold curves show the average performance. (c) Time-periodic
magnetic field B(t) with 6-fold rotational symmetry designed to drive topotactic particle
migration up inclined surfaces. (d) Simulated xy trajectory of a ferromagnetic sphere driven
by the field in (c). Reproduced with permission from ref 15. Copyright (2021) Royal Society
of Chemistry.

of topotaxis may neglect the real e↵ects of Brownian motion and surface roughness on par-

ticle dynamics as well as those due to hydrodynamic and magnetic interactions between

neighboring particles. Nevertheless, these idealized models make useful albeit approximate

predictions that guide the search for e↵ective driving fields as evidenced by subsequent ex-
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periments.15

In contrast to experimental measurements that provide uncertain and incomplete infor-

mation, model-based simulations provide a comprehensive description of particle dynamics

in 3-dimensions, which can be analyzed to deepen our understanding. From models of

topotaxis, we learn that the speed of particle migration up an inclined substrate grows as

the square of the driving frequency, reaching its maximal value when the particle’s moment

can just keep pace with the changing magnetic field. Such insights from the model can be

used to tailor the design space and direct further improvements in microrobot performance.

In particular, simulation results can be used to reduce the dimensionality of the design space

thereby facilitating its exploration in experiment. Using simulated data for topotaxis, we

showed that principle component analysis (PCA) can reduce the design space for the driving

field from 7 to 3 dimensions without significantly reducing design performance.15 The result-

ing 3-dimensional space can now be explored using automated experiments to identify high

performing designs that account for additional physics neglected by the model (Fig. 11b-d).

Of course, model-predictive design is not always possible when models are uncertain, in-

accurate, expensive, and/or absent all together. In the sections that follow, we address these

di↵erent scenarios in turn. Simulations of system performance often depends on model pa-

rameters (e.g., magnetic moment, surface separation) that are uncertain or unknown thereby

limiting the precision of model predictions. Methods of Bayesian data analysis provide a prin-

cipled approach for learning model parameters from experimental data and quantifying the

uncertainty of model predictions (Section 3.2.3). When physics-based models are absent or

infeasible, the design process can benefit from machine learning approaches based on surro-

gate models informed by experimental data (Section 3.2.4). Ultimately, the best approach for

any given problem is a thoughtful mixture of all-of-the-above that respects known physics,

incorporates available data, and enables e�cient computation.
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3.2.3 Design Under Uncertainty

In the context of magnetic microrobots, we are fortunate to have strong physics-based models

with which to guide the design process. Such models involve physical parameters such as the

particle radius and the fluid viscosity that must be specified to predict the particle dynamics.

When these parameters are unknown or uncertain, they must be estimated from experimental

data. Bayesian inference91–93 uses probability theory to describe our uncertain knowledge

of model parameters ✓ and provides a normative framework for changing our beliefs about

their likely values in response to observed data y. More explicitly, Bayes’ theorem describes

how the prior distribution p(✓ | M) for the parameters is updated to obtain the posterior

distribution p(✓ | y,M) conditioned on the data

p(✓ | y,M) =
p(y | ✓,M)p(✓ | M)

p(y | M)
(2)

Here, the likelihood function p(y | ✓,M) provides a probabilistic description of the observed

data that accounts for stochastic variation (i.e., noise) due to thermal fluctuations, parti-

cle dispersity, heterogeneous environments, and measurement error among other possible

sources. For parameter estimation, the so-called evidence p(y | M) in the denominator is

simply a normalizing constant for the posterior distribution. Importantly, all of these dis-

tributions are conditioned on the assumption that the observed data y are generated by

the proposed model M . As discussed below, it is essential to challenge this assumption and

confirm the (approximate) validity of the model at each stage of the design process.

Estimating model parameters using Bayes’ theorem (2) is often easy in principle but

challenging in practice. For all but the simplest models, the posterior distribution cannot be

calculated analytically and instead requires numerical methods of probabilistic programming.

For a small number of model parameters (typically,  4), the posterior can be computed on

a discrete grid of candidate parameter values and interpolated to approximate expectations
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of the form

E(X | y,M) =

Z
X p(✓ | y,M) d✓ (3)

where X is some quantity of interest (e.g., a model parameter or prediction). With addi-

tional parameters, sampling methods such as Markov Chain Monte Carlo (MCMC) can be

used to generate random parameter samples from the posterior distribution and compute ap-

proximate expectations. There exist a growing number of probabilistic programming tools

(e.g., Stan,94 PyMC3,95 Julia96) that provide e�cient implementations of these sampling

techniques. Alternatively, one can seek to approximate the posterior in terms of simpler dis-

tributions (e.g., the multivariate normal) using the Laplace approximation91 or variational

inference.97

The Bayesian paradigm is particularly useful in analyzing tracking data for multiple par-

ticles that exhibit di↵erent sources of stochastic variation. In the context of topotaxis, the

analysis of particles moving on topographic landscapes may require one to consider di↵er-

ences among the particles (e.g., their magnetic moments and heights above the substrate),

di↵erences in their environments (e.g., the direction and magnitude of the local inline), ef-

fects of Brownian motion, and measurement error in particle tracking. These many layers

of uncertainty that contribute to the observed data can be described using Bayesian hier-

archical models. Figure 12 provides an illustrative example of this modeling framework as

applied to the acoustic levitation and propulsion of particles in a standing acoustic field.98

This example includes two levels of noise: one due to the heterogeneity of the acoustic field

(i.e., the sound wave is louder here and softer there), and another due to measurement error

in the particle response. Bayesian analysis of this hierarchical model enables the accurate

characterization of the heterogeneous acoustic field using noisy measurements of many parti-

cles. Moreover, by modeling the particle population, we improve the precision of parameter

estimates for each individual particle.

Generative models required for Bayesian inference enable posterior predictions of simu-
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Figure 12: Bayesian inference and design for quantifying acoustic particle levitation.98 (a)
Experimental schematic of a resonant acoustic cell containing polystyrene tracer spheres. (b)
Application of an acoustic field causes the spheres to levitate to the nodal plane as observed
by optical microscopy. Scale bar is 15 µm. (c) Graphical representation of the hierarchical
model. The observed size yijk at time point ti of particle j in experiment i depends on
particle-level parameters �ij (e.g., the local acoustic field), the experiment design di (e.g.,
the applied frequency), as well as cell-level parameters ✓ (e.g., the resonant frequency). (d)
Cell-level parameters ✓ can be learned using a minimal number of experiments through
an iterative cycle of observation, inference, and design. (e) After two experiments (solid
markers), the predicted dependence of the decay rate � on the applied frequency ! (purple
curves, left y-axis) shows two hypotheses: the resonant frequency of the cell is ca. 3.45 MHz
or 3.7 MHz. The next experiment 3 is chosen to maximize the expected utility (black curve,
right y-axis) and thereby discriminate between these competing interpretations of the data.
This iterative process converges to accurate estimates of the cell-level parameters using few
automated experiments. Reproduced with permission from ref 98. Copyright (2021) Royal
Society of Chemistry.

lated data ỹ conditioned on observed data y

p(ỹ | y,M) =

Z
p(ỹ | ✓,M) p(✓ | y,M) d✓ (4)

Importantly, these predictions are only as accurate as the model p(ỹ | ✓,M) and as precise
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as the parameter estimates p(✓ | y,M). It is therefore necessary to criticize the fitted model

by assessing its ability to describe the observed data and to predict future data yet to be

observed. The process of Bayesian model criticism asks the basic question: does simulated

data from the fitted model “look like” the observed data from experiment? If we cannot

distinguish the observed data from an ensemble of simulated data, then the model should be

provisionally accepted.99,100 Alternatively, when model predictions di↵er systematically from

the observed data, we must decide whether to reject the model and seek better alternatives

or to proceed cautiously with greater appreciation of the model’s limits. Such posterior

predictive checks (PPCs) can be quantified using the formalism of hypothesis testing, where

the null hypothesis states that the observed data is generated by the fitted model.

Given a fitted model that passes our PPCs and faithfully describes the observed data,

we can now put it to use in guiding the design process. In particular, we seek the design

that maximizes the expected utility as predicted by our probabilistic model conditioned on

the observed data y

U(d) =

Z
u(d, ỹ) p(ỹ | d,y,M) dỹ (5)

Here, the utility function u(ỹ,d) depends on the design d and the predicted outcome ỹ

of a future experiment as described by the posterior predictive distribution p(ỹ | d,y,M).

Importantly, this process of observation, inference, and design can be iterated to guide

the execution of successive experiments and improve design performance.101 Recently, we

demonstrated this Bayesian design approach to quantify the levitation and propulsion of

colloidal particles in acoustic fields.98 In that work, the utility function was chosen to learn

model parameters using the fewest number of experiments (i.e., to maximize the information

provided by each experiment) by tuning design variables such as the frequency and magnitude

of the applied field. By using a di↵erent utility function, the same approach can guide the

design processes to the desired performance—for example, to maximize the expected intensity

of the resonant acoustic field. Whether for knowledge or performance, the Bayesian design

framework provides a principled approach for navigating uncertainty and incorporating new
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data in pursuit of the design objective(s).

3.2.4 Machine Learning with Surrogate Models

When physics-based models are unavailable or prohibitively expensive to evaluate, we can

substitute heuristic models trained on experimental data to describe the relationship between

design variables and the observed quantities of interest. In the Bayesian paradigm, such

surrogate models provide a probabilistic description of the observed data conditioned on the

model parameters.102 In this sense, they are no di↵erent from physics-based models. For

example, we might adopt a surrogate model in which the observed outputs depend linearly

on the specified inputs with additive Gaussian noise. Given experimental data, we can

train the model to learn unknown parameters (i.e., the linear coe�cients relating inputs

to outputs) and make probabilistic predictions using the methods of Bayesian inference

outlined above. Owing to the simplicity of the model, this inference problem can be solved

analytically using linear algebra. The result—known as linear regression—is one of many

methods of probabilistic machine learning that seek to learn predictive relationships from

available data.

The surrogate models of machine learning di↵er from physics-based models in regards

to their interpretation, extrapolation, and computation. Physics-based models are typically

constructed from components that exist independently of the system as a whole. The mag-

netic moment that appears in a model of topotaxis is—approximately—the same magnetic

moment one would infer for the same particle in a di↵erent context. By contrast, the pa-

rameters of surrogate models cannot—in general—be interpreted as meaningful quantities

independent of the model as a whole. Moreover, the predictions of surrogate models are most

accurate on the domain of the training data and can produce nonsensical results when applied

outside of that domain. In short, these models are good at interpolation but bad at extrapo-

lation. Accurate physics-based models can extrapolate beyond the domain of observed data

to make useful predictions in unfamiliar contexts. Unfortunately, the computational cost of
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such models can become prohibitively expensive as systems grow in complexity. By con-

trast, a major focus of machine learning is the development of general-purpose models and

algorithms (e.g., neural networks and backpropagation) that enable e�cient learning and

prediction based on large data sets. The following examples help to illustrate how these

machine learning approaches can be used to guide experimental design (Fig. 13).

Cronin et al. used a “curious” algorithm to guide the discovery of oil-in-water droplets

that exhibit life-like behaviors such as self-propulsion and division (Fig. 13a).103 By varying

the composition of the oil phase (the design variable), droplets are observed to swim at dif-

ferent speeds and divide more or fewer times (the performance metrics). As the mechanisms

of drop propulsion and division are uncertain, the relationship between the design variables

and the performance metrics was approximated by a simple linear model. Guided by the

model, the curious algorithm seeks to choose a sequence of designs that sample uniformly

the space of observed performance metrics. In contrast to methods of exploration that sam-

ple random designs, the curious algorithm explores the space of possible behaviors to avoid

oversampling degenerate designs that produce similar results. Using their fully automated

“dropfactory”, the authors perform ⇠6000 experiments to reveal the bounds of achievable

performance and the diversity of drop behaviors. The experimental results discover patterns

of behavior that stimulate hypotheses about drop propulsion and division by which to guide

further understanding and design.

Muios-Landin et al. apply model-free reinforcement learning to identify actuation policies

that direct the thermophoretic propulsion of a Brownian microparticle to a targeted location

(13b).104 Each candidate policy specifies the propulsion direction from eight possibilities for

each of the 5⇥5 coarse-grained particle locations. To identify the optimal design from these

200 possibilities, a series of automated experiments is conducted to iteratively improve the

initial policy using an algorithmic reward system. After ⇠7 hours of learning by repeated

trial and error, the system converges to an optimal policy that allows the particle to navigate

obstacles and reach the targeted location despite the confounding e↵ects of Brownian motion.
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Figure 13: (a) An automated platform explores the self-propulsion and division of oil droplets
in water.103 Within a series of automated experiments, the design variables (i.e., the drop
composition) are selected by a “curious algorithm” that seeks to sample uniformly the space
of observed behaviors—namely, the drop speed and division count. Reproduced with per-
mission from ref 103. Copyright (2020) AAAS. (b) Automated experiments based on rein-
forcement learning identify optimal policies that guide thermophoretic propulsion of a 2µm
particle around obstacles (red) to a specified goal (green). Reproduced with permission from
ref 104. Copyright (2021) AAAS. (c) The SciNet model uses an encoder-decoder architec-
ture to identify concise representations of physical systems. Using time series data on the
positions of the Sun and Mars viewed from Earth (✓S, ✓M), the model learns a new heliocen-
tric representation based on the angles �E and �M . Reproduced with permission from ref
105. Copyright (2020) American Physical Society.
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Notably, this type of reinforcement learning does not rely on generative models of the particle

dynamics but rather repeated experience to achieve the desired performance. Subsequent

analysis of the learned policies can o↵er useful insights into the underlying physics and the

“free-floating rationale”22 that enable the systems performance. The authors suggest the

next step is a more robust policy, one that does not rely on global position as states, and

instead uses local sensing.

Ultimately, we would like machine-based learning algorithms that discover “real pat-

terns”106 hidden in experimental data and explain these patterns in terms of physical laws.107

There has been significant progress in the algorithmic extraction of dynamical equations from

experimental data108—for example, learning Newtons laws from the chaotic dynamics of a

double pendulum.109 These approaches make assumptions about the representation of the

system dynamics in terms of state variables governed by di↵erential equations. Recently,

Iten and co-workers105 used a di↵erent approach—a neural network architecture modeled

on the human reasoning process—to directly learn e�cient representations of experimental

data without such prior assumptions (Fig. 13c). In their model (SciNet), experimental ob-

servations are first compressed into a simpler representation (encoding), which is then used

to answer questions or make predictions about the system (decoding). The Authors demon-

strate the capabilities of this approach using toy problems from di↵erent areas of physics.

The SciNet model learns the relevant parameters of a damped pendulum (i.e., the frequency

and damping factor) as well as conservation laws governing particle collisions. Based on time

series data for the angular position of the Sun and Mars viewed from Earth, the SciNet model

learns a heliocentric representation with which to e�ciently describe planetary dynamics of

the solar system (Fig. 13c, right). While the extension of these methods to problems of

increasing complexity remains to be demonstrated, the ability to interpret and understand

e�cient representations learned from experimental data has the potential to accelerate the

design of self-guided microrobots among other physical systems.
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4 Outlook

Guided by the example of topotactic rollers, we can envision many related opportunities for

self-guided microrobots that sense and respond to their local environment. The dynamics of

rigid particles in viscous fluids is sensitive to variations in the fluid velocity, viscosity, and the

proximity of solid boundaries. With suitable design, such environmental cues can be used

to direct the self-guided motions of magnetic particles in time-varying fields. Interesting

design targets include microrobots that swim up viscosity gradients (viscotaxis80), against

fluid flows (rheotaxis79), or towards solid boundaries. Together these capabilities would

enable self-guided robots that can navigate microfluidic networks such as the human vascular

system. Additional sensing capabilities can be introduced using responsive particles that

modulate their size, shape, or elasticity in response to local stimuli such as pH or temperature.

Beyond gradient driven taxis, self-guided microbots could be designed to exhibit condi-

tional “if-then” responses whereby di↵erent environments trigger di↵erent dynamical behav-

iors. For example, a pH responsive microbot might swim toward solid boundaries in acidic

conditions and away from such boundaries in basic conditions due to pH-dependent changes

in particle shape. With each additional behavior, the design challenge grows, likely requiring

more design variables (“knobs”) tuned to greater precision. Navigating this growing space

of possible designs will benefit from modularity whereby complex behaviors are decomposed

into simpler, independent components.

The pursuit of microrobots with increasing physical intelligence will further benefit from

particles with memory110 whose behavior is conditioned on internal states as well as the

local environment. For example, a primitive microrobot designed for capturing cargo might

exhibit di↵erent dynamics conditioned on two states: ‘empty’ and ‘full’. In this way, it may

be possible to design self-guided microrobots that swim ‘upstream when ‘empty in search of

cargo and ‘downstream when ‘full to return home. Such speculation raises important ques-

tions about the limits of encoding complex behaviors in the current space of possible designs.

Which behaviors are possible? Which require the a↵ordances of new design variables?
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Ultimately, the creation of microrobots that mimic—even primitively—the autonomous

capabilities of living cells requires advances in the design of material systems that convert

input signals from the environment into output actions to achieve desired functions.16 His-

torically, robotic systems have relied on sensors, actuators, and controllers based on digital

electronics. This paradigm will continue to contribute to the development of colloidal robots

operating in structured fluid environments.8,111 However, there is growing interest in a com-

plementary perspective in which robotic functionality is embedded within the constituent

materials themselves—so-called physical intelligence.14 Such material systems function as

analog computers that map input signals to output responses by way of their nonlinear

physicochemical dynamics. Programming the desired input-output relationships is achieved

through the design of these systems and their dynamics. This design problem—like that

of many material systems—is challenging because the dimensionality of the design space is

large, and the models used to predict performance are imperfect and uncertain.

Despite these challenges, the realization of self-guided microrobots with programmable

functions—particularly those powered and directed by magnetic fields—appears close at

hand. Using available materials and fabrication strategies, the design space of possible robots

with prescribed shape, magnetization, composition, elasticity, and stimuli response has be-

come su�ciently expressive as to encompass (most likely) a variety of primitive functions

conditioned on the local environment. By expanding the design space to include complex

time-varying fields, even simple magnetic particles are capable of autonomous navigation

directed by topographic landscapes15 and other gradients. It remains to determine which

of the many possible designs will achieve the desired functions. The pace of the design

process will continue to accelerate by leveraging advances in experiment automation, model

computation, statistical inference, and machine learning. Like Gipedo wishing his puppet

Pinocchio to life, we are optimistic that the magnetic “marionettes” of today will soon be

freed from their external controllers to enable new opportunities for autonomous microrobots

in material science, environmental sustainability, and biomedicine.
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