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Time-varying fields drive the motion of magnetic particles adsorbed on liquid drops due to inter-

facial constraints that couple magnetic torques to capillary forces. Such magneto-capillary particle

dynamics and the associated fluid flows are potentially useful for propelling drop motion, mixing

drop contents, and enhancing mass transfer between phases. The design of such functions benefits

from the development and validation of predictive models. Here, we apply methods of Bayesian data

analysis to identify and validate a dynamical model that accurately predicts the field-driven motion

of a magnetic particle adsorbed at the interface of a spherical droplet. Building on previous work,

we consider candidate models that describe particle tilting at the interface, field-dependent contri-

butions to the magnetic moment, gravitational forces, and their combinations. The analysis of each

candidate is informed by particle tracking data for a magnetic Janus sphere moving in a precessing

field at different frequencies and angles. We infer the uncertain parameters of each model, criticize

their ability to describe and predict experimental data, and select the most probable candidate, which

accounts for gravitational forces and the tilting of the Janus sphere at the interface. We show how

this favored model can predict complex particle trajectories with micron-level accuracy across the

range of driving fields considered. We discuss how knowledge of this “best” model can be used to

design experiments that inform accurate parameter estimates or achieve desired particle trajectories.

1 Introduction
Magnetic particles adsorbed at liquid interfaces can be actuated
by external fields to drive particle motion and fluid flow that
provide a basis for dynamic biphasic materials1–3 such as emul-
sions,4,5 foams,6,7 and bijels.8 In this context, we distinguish dif-
ferent types of magneto-capillary phenomena based on the nature
of the driving field, the role of interparticle interactions, and the
curvature of the interface. For an individual particle at a pla-
nar interface, field gradients are required to produce magnetic
forces that drive particle motion. In the absence of such gradi-
ents, time-varying fields can propel particle assemblies mediated
by magnetic and capillary interactions.9–13 Even at low Reynolds
numbers, such fields can produce non-reciprocal motions among
three or more particles that propel their motion across the in-
terface.11–13 At curved interfaces, spatially uniform fields move
individual particles by coupling magnetic and capillary torques
to produce forces that scale linearly with the interfacial curva-
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ture.14–16 Such magneto-capillary forces at curved interfaces are
potentially useful in addressing magnetic particles adsorbed onto
micron-scale droplets in emulsions. Their field-induced motion
and the associated fluid flow can serve to accelerate mass trans-
fer16 at the level of individual droplets and perhaps also propel
droplet motion through viscous environments.

The design of magneto-capillary particle dynamics to achieve
behaviors such as droplet mixing or propulsion benefits from the
development and validation of predictive models. Such models
allow for rapid screening of candidate designs—for example, dif-
ferent driving fields, particle shapes, and magnetic properties—to
identify and understand the conditions that produce desired func-
tions. Existing models of magneto-capillary particle motion on
curved interfaces are based on lattice Boltzmann simulations of
the Navier–Stokes equations14,17 or numerical integration of ap-
proximate dynamical equations.15,16 The former allows for direct
simulation of multiple particles of different shapes and/or sur-
face chemistries but requires significant computational resources,
which can slow the design process. Approximate models of parti-
cle dynamics make simplifying assumptions that significantly ac-
celerate model evaluation but require comparison with experi-
mental data to validate predictions and infer unknown param-
eters. Previously, we showed that models based on rigid capil-
lary constraints can explain the complex trajectories of magnetic
Janus spheres adsorbed at spherical interfaces subject to precess-
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ing fields.16 However, the quantitative accuracy of such models
remains uncertain thereby limiting their utility in the design of
useful functions.

Given one or more candidate models, Bayesian data analy-
sis18–20 provides a principled approach for inferring their pa-
rameters from experimental observations, assessing their descrip-
tive and predictive capabilities, and selecting the most plausible
among them. These methods of parameter estimation, model
criticism, and model selection require probabilistic descriptions
that provide the likelihood of observed data given the values of
model parameters. The uncertain parameters are described by
prior probability distributions that serve to constrain their values
based on relevant information. Using Bayes theorem, the likeli-
hood and the prior are combined to produce a posterior distri-
bution for model parameters, which summarizes their likely val-
ues and the associated uncertainty given the data. Importantly,
this process of Bayesian parameter estimation (or model train-
ing) assumes the validity of the candidate model, which must be
criticized on the basis of its predictive accuracy and internal con-
sistency to avoid drawing false conclusions.21,22 Ideally, a fitted
model should produce simulated data which is indistinguishable
from the observed data used to inform parameter estimation; dis-
crepancies between simulations and observations indicate limi-
tations in the descriptive capacity of the model. Additionally, a
useful model should produce accurate predictions of new obser-
vations under unfamiliar conditions not used in training. When
multiple candidate models survive such criticism, Bayesian model
selection can help to identify the more probable candidate given
the available data. This best model can then be used to guide the
design of future experiments for the purpose of achieving func-
tional behaviors (e.g., drop mixing) or enhancing knowledge of
the modeled system (e.g., reducing parameter uncertainty).

Here, we apply methods of Bayesian data analysis to iden-
tify and validate a dynamical model that accurately predicts the
field-driven motion of a magnetic particle adsorbed at the inter-
face of a spherical droplet. In addition to previous models of
magneto-capillary dynamics,15,16 we consider candidate models
that describe particle tilting at the interface, field-dependent con-
tributions to the magnetic moment, gravitational forces, and their
combinations. The analysis of each candidate model is informed
by particle tracking data for a magnetic Janus sphere moving in
a precessing field at different frequencies and angles. For each
candidate, we divide the experiments into batches and estimate
the most probable parameters and their uncertainties. The fitted
models are criticized to assess (i) their capacity for describing the
data, (ii) the consistency of parameter estimates across batches,
and (iii) the accuracy of model predictions. For the few models
that survive criticism, we use Bayesian model selection to iden-
tify the most probable candidate, which accounts for the effects
of gravity and tilting of the Janus sphere at the interface. We
show how this favored model can predict complex particle tra-
jectories with micron-level accuracy across the range of driving
fields considered. Additional experiments on tilted particles re-
veal star-shaped trajectories, which were previously unobserved
but are well explained by the model. We discuss how knowl-
edge of this “best” model can be used to design experiments that

inform accurate parameter estimates or achieve desired particle
trajectories.

2 Methods
2.1 Experimental Data

Our analysis is based on data from a previous experimental study
on the field-driven dynamics of magnetic Janus particles adsorbed
at the interface of a water drop in decane (Fig. 1a).16 The parti-
cles are 4 µm polystyrene spheres coated on one hemisphere with
a magnetic Ni layer and functionalized with a hydrophilic surface
treatment to direct their orientation at the interface.15,23 Previ-
ous analysis of their field-driven motion suggests that these par-
ticles have a permanent magnetic moment, m ⇡ 3⇥ 10�14 A m2,
directed parallel to the Janus equator and to the water-decane
interface (Fig. 1a).15 Prior to each experiment, a single adsorbed
particle sediments under gravity to the lower pole of a spheri-
cal drop where it is imaged by an optical microscope. Applica-
tion of a precessing magnetic field with frequency w and angle
j drives the particle to move across the interface and approach
one of two possible attractors—termed, pole-orbiting and zig-zag,
respectively.16 The particle moves either along circular trajecto-
ries around the lower pole of the drop (pole-orbiting; Fig. 1c)
or along sawtooth trajectories around the drop equator (zig-zag;
Fig. 1c).

We analyze particle tracking data for a series of experiments
conducted at different frequencies w and angles j of the pre-
cessing field for a single particle-drop pair (Fig. 1). The goal of
the analysis is to develop and validate a quantitative model for
the magneto-capillary dynamics of particles moving on curved
interfaces in time-varying magnetic fields. Ideally, the model
should be capable of describing the transient particle trajectories
for all experimental designs (i.e., values of w and j) to within
a specified precision using a minimal number of fitting parame-
ters. As we will show, the model proposed previously16 to de-
scribe the particle dynamics is inadequate in reproducing quan-
titatively the tracking data although it agrees qualitatively with
the experimental results. In the following section, we describe
several extensions of this base model that account for previously
neglected effects due to gravity, particle tilting at the interface,
field-dependent contributions to the magnetic moment, and com-
binations thereof.

2.2 Candidate Models

Base model: Magnetocapillary dynamics

The base model accounts for the magnetic, capillary, and hydro-
dynamic forces/torques acting on a rigid spherical particle ad-
sorbed at the interface of a spherical drop (see also ESI, Section
1.1†).15,16 In a spatially uniform field B(t), the magnetic torque
m⇥B acts to align the particle’s magnetic moment parallel to the
field, and there is no magnetic force on the particle. The mo-
ment m is approximated by a constant vector fixed to the particle
directed parallel to the water-oil interface. Capillary forces and
torques act to constrain particle motion, allowing two degrees of
particle translation on the interface and one degree of particle ro-
tation normal to the interface.16 For a spherical drop of radius
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Fig. 1 (a) Schematic illustration of the experimental setup: a magnetic Janus particle is adsorbed at the interface of a water drop in decane and
moves under the influence of a precessing field B(t) with angular frequency w and precession angle j. (b) Experimental image with measured trajectory
of the particle (gray markers) overlaid with the prediction of the best fit model (orange curve). Scale bar is 20 µm. (c) Particle position x and y as
a function of time t for a particular experiment (gray markers) as compared to predictions of the best fit model (orange curves). (d) Experiments are
conducted at different frequencies w and angles j for a single particle-drop pair. Experiments at frequencies below 14 Hz are randomly assigned to
batches 1-5 indicated by the drop color. Measured trajectories (gray markers) are classified as “pole-orbiting” or “zig-zag” based on their asymptotic
behaviors.16

R, these constraints are summarized by the kinematic condition
U = R(WWW⇥n), which relates the particle’s linear velocity U to its
angular velocity WWW and the unit normal vector n directed out from
the drop. At low Reynolds numbers (Re= raU/h ⇡ 7⇥10�6 ⌧ 1),
inertial effects are negligible, and the particle velocity is linearly
related to the applied force/torque by the hydrodynamic resis-
tance tensor. We approximate the components of this tensor by
that of a solid sphere of radius a in an unbounded fluid of vis-
cosity h . 16 With these preliminaries, the angular velocity of the
particle is given by

WWW =

✓
ddd �nn

8pha3 +6phaR2 +
nn

8pha3

◆
· (m⇥B) (1)

where ddd is the identity matrix. Due to the kinematic constraint,
the dynamical state of the system can be specified by the 3D ori-
entation of the particle-drop complex as parameterized by Euler
angles or the unit quaternion.24 Equation (1) describes the evolu-
tion of this orientation—and the associated particle position—due
to the time-varying field B(t). The model is integrated numeri-
cally using the DifferentialEquations.jl library in Julia.25

The base model is fully specified by ten parameters: the particle
radius a, the drop radius R, the average fluid viscosity h , the mag-
netic moment m, the magnitude B, frequency w, and angle j of
the precessing field, as well as the initial position and orientation
of the particle at the interface. Of these, eight are independent
since the dynamics depends on the expression mB/h rather than
the component parameters. Some of the parameter values are
known a priori: a = 2 µm, h = 8.7⇥ 10�4 Pa s, B = 5 mT. Others
are specified by the experiment design—namely, the precession
angle j and the angular frequency w. Still other parameters are

uncertain but remain constant from one experiment to the next:
the drop radius R and the magnetic moment m. The remaining
parameters are uncertain and vary from one experiment to the
next—namely, the initial position and orientation of the particle
on the drop. As detailed below, the uncertain parameters are fit-
ted to the data using Bayesian inference.

To understand the limits of the base model, it is instructive to
consider more closely the assumptions on which it relies. The
accuracy of the rigid capillary constraint implies that capillary
effects are much stronger than magnetic effects as described by
the dimensionless parameter ga2/mB ⇡ 103 � 1, where g = 51
mN/m is the interfacial tension. The approximation used for the
resistance tensor assumes (i) that the Janus particle is adsorbed
symmetrically at the interface, (ii) that the viscosity contrast be-
tween the two liquids is small (ca. 6% for water-decane), and
(iii) that the particle is much smaller than the drop such that
curvature effects are negligible (a/R ⇡ 0.02 ⌧ 1).26 While these
assumptions appear to be reasonably accurate, it is possible that
the Janus particle adsorbs at an angle thereby tilting the direction
of the magnetic moment relative to the interface. Moreover, the
base model neglects additional forces due to gravity which may
be non-negligible as suggested by the dimensionless parameter
MgR/mB ⇡ 0.05, where M is the buoyant mass of the particle, and
g is the acceleration due to gravity. Finally, the particle’s magnetic
moment may not be constant due to additional contributions in-
duced by the external field.

In analyzing the base model and its extensions, we also ac-
count for imperfections in the experimental measurements. In
particular, the axis of the precessing field is not exactly parallel to
the imaging direction, thereby distorting particle trajectories pro-
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Fig. 2 Candidate models. (a) The base model assumes an permanent
magnetic moment m of unknown magnitude oriented parallel to the liq-
uid interface. (b) The angle model allows the permanent moment to
tilt by an angle µ relative to the interface due to asymmetric particle
adsorption. (c) The paramagnetic model instead considers field-induced
contributions to the magnetic moment as characterized by the polarizabil-
ity difference Da = a?�ak between directions pependicular and parallel
to the Janus axis. (d) The gravity model includes the gravitational force
on the particle which depends on its buoyant mass M. Combinations of
the extended models (b-d) are also considered.

jected onto the imaging plane. For example, pole orbiting trajec-
tories appear displaced from the drop center and distorted from
their ideal circular shape. We introduce two angular parameters
common to all experiments that describe the tilt of the field axis
with respect to the imaging direction. By contrast, the gravity
direction is assumed parallel to the imaging direction for models
that include gravity. Finally, because imaging is not synchronized
with the driving field, the initial phase of the precessing field in
each experiment is unknown and treated as a fitting parameter.

Angle model: Effect of particle tilting

In the simplest extension of the base model, we consider that
the Janus particle adsorbs onto the water-decane interface at an
angle thereby tilting its magnetic moment out of the plane of the
interface. The particle dynamics is still described by equation (1);
however, the magnetic moment m now has components parallel
and perpendicular the interface. We parameterize the magnetic
moment m in terms of its magnitude m and the tilt angle µ such
that m ·n = msin µ.

Paramagnetic model: Effect of field-induced moment

In addition to the permanent magnetic moment considered in the
base model, we consider that the moment has an additional field-
induced contribution of the form m = mp + aaa · B, where mp is
the permanent moment, and aaa is the magnetic polarizability ten-
sor. As in the base model, the permanent magnetic moment is
directed parallel to the Janus equator and to the water-decane in-

terface. We assume that the polarizability tensor shares the sym-
metry of the Janus particle with components ak and a? parallel
and perpendicular to the Janus director. Notably, only the differ-
ence between these components a? �ak is needed to compute
the additional contribution to the magnetic torque. With this one
added parameter (Da), the particle dynamics is still described by
equation (1).

Gravity model: Effect of gravity

In the gravity model, we consider the gravitational force on the
particle as well as the magnetic torque. Subject to the capillary
constraint, the angular velocity of the particle is given by

WWW =

✓
ddd �nn

8pha3 +6phaR2 +
nn

8pha3

◆
·
⇥
(m⇥B)+RM(n⇥g)

⇤
(2)

as derived in the ESI, Section 1.2†. The gravitational field g is
antiparallel to the imaging direction and approximately parallel
to the axis of the precessing field B(t). While the field magnitude
is known, the buoyant mass of the particle M is treated as an
uncertain parameter with an estimated value of M ⇡ 2⇥ 10�11

g based on the composition of the particle and the surrounding
fluids. Owing to the heavy metal coating on one hemisphere,
the particle also experiences a gravitational torque; however, its
contribution is expected to be much smaller than that of the force
considered here (by a factor of a/R ⌧ 1). We therefore neglect
this additional torque.

Correlated Gaussian noise

The deterministic models outlined above are augmented by addi-
tive Gaussian noise w(t) with zero mean and covariance

hw(t)w(t 0)i= s2 exp(�|t � t 0|/t) (3)

where s is the noise magnitude, and t is the correlation time.
Such noise is added to the computed particle positions x(t) and
y(t) to describe the observed particle trajectories projected onto
the xy-plane. With the addition of noise, we obtain a full prob-
ability model for the observed tracking data that describes the
likelihood of experiment outcomes conditioned on the model pa-
rameters. This probabilistic description of the observed data is
a prerequisite for applying methods of Bayesian parameter esti-
mation and model selection.19,20 Our use of the correlated noise
model (3) (as opposed to white noise) is motivated by analysis of
the residuals between the experimental data and predictions of
the deterministic model.19 The autocorrelation of the residuals
decays in time at a characteristic rate comparable to the slower of
the two intrinsic rates of the system: the precession frequency w
and the magnetic relaxation rate15 km = mB/6phaR2. We specify
the correlation rate as t�1 = min(km,w) and the noise magnitude
as s = 1 pixel (0.58 µm). In the present experiments, the imaging
frame rate is typically much faster than the relaxation rate result-
ing in highly correlated measurements. By accounting for these
correlations, the noise model (3) gives conservative estimates for
parameter uncertainty that depend on the effective number of data
points tmax/t independent of the frame rate.
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2.3 Parameter Estimation & Model Criticism

Bayesian inference

We use Bayesian inference to estimate the most probable param-
eter values for each of the candidate models and their combi-
nations using data from 20 experiments conducted at different
precession frequencies w and angles j (Fig. 1c, multi-color). An
additional 10 experiments are set aside for use in validating the
fitted models (Fig. 1c, gray). The duration of each time series is
truncated to three times the respective correlation time to facil-
itate comparison of parameter estimates between experiments.
The posterior distribution for the parameters (denoted collec-
tively as q) conditioned on the data D and model M is evaluated
using Bayes theorem

p(q |D,M) =
p(D | q ,M)p(q | M)

p(D | M)
(4)

Here, the likelihood function p(D | q ,M) describes the probabil-
ity of observing the data D under model M given knowledge of
the parameter values q . The prior distribution p(q | M) describes
knowledge of the uncertain parameter values before considering
the data. For example, the prior for the magnetic moment m
is approximated by a log-normal distribution with a median of
3 ⇥ 10�14 A m2 and an interquartile range spanning 1.4 times
more or less.15 Other priors are detailed in the ESI, Section 2†.

We use numerical optimization to identify the most probable
parameter estimates that maximize the logarithm of the posterior
distribution (4). Starting from many (⇠100) initial parameter
guesses, we use automatic differentiation27 to evaluate function
gradients and the L-BFGS algorithm to ascend to local maxima. In
pursuit of the global optimum, we use Latin hypercube sampling
to distribute the initial parameter guesses over the high probabil-
ity regions of the prior distribution. This procedure reliably con-
verges to the same posterior mode for different realizations of the
initial guesses, suggesting that the global optimum is identified.

We then approximate the posterior by a multivariate normal
distribution centered on the most likely parameter estimates. To
determine the covariance matrix of this distribution, we use auto-
matic differentiation to compute the Hessian matrix of the log-
posterior evaluated at the mode. Under the so-called Laplace
approximation,19 the covariance matrix is equal to the negative
inverse of this Hessian matrix. When the true posterior has a sin-
gle well defined mode, this approximation provides an accurate
and concise description of the likely parameter values and their
respective uncertainties.

To accelerate the process of parameter estimation, we divide
the data into 5 batches of 4 experiments and analyze each batch
independently of the others. By focusing on 4 experiments at a
time rather than 20, the dimensionality of the parameter space
is reduced significantly (e.g., from 84 to 20 in the base model)
thereby facilitating numerical optimization. Moreover, the re-
spective posteriors conditioned on each batch are more likely to
have a single mode to which the optimization algorithm reliably
converges. As detailed below, these distributions can be com-
pared and combined to produce the final parameter estimates. In
this way, batching provides a scalable approach to analyzing large
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Fig. 3 Model criticism. (a) Posterior predictions for the x-component of
particle position for the base model (blue curves) and the angle+gravity
model (orange curves) as compared to experimental data (black markers).
The experiment is from batch 2 with precession angle j = 1.0 rad and
frequency w/2p = 0.28 Hz (Fig. 1b). (b) Histogram of average absolute
error for simulated trajectories like those shown in (a); the measured
error for the experimental trajectories is plotted as a vertical line. The
right-tailed p-value for the base model is much less than 0.05 indicating
a poor description of the data. (c) Marginal posteriors for the magnetic
moment m and the buoyant mass M for two batches (solid vs. dashed
contours) as estimated using the paramagnetic+gravity model (blue) and
the angle+gravity model (orange). The distributions for each model are
annotated by the pairwise z-score of equation (5).

amounts of experimental data with large numbers of models pa-
rameters. Here, we assign experiments to batches at random as il-
lustrated in Figure 1c. The batch size of 4 experiments is selected
to accelerate computation and produce unimodal posteriors well
described by the Laplace approximation.

Posterior predictive checks

The fitted models are criticized to assess (1) the model descrip-
tion of the experimental data, (2) the consistency of parameter
estimates across batches, and (3) the accuracy of model predic-
tions for unseen data. First, at the batch level, we perform poste-
rior predictive checks (PPCs) that compare observed data to sim-
ulated data produced by the fitted model. Using the Laplace ap-
proximation for the posterior, we sample ⇠1000 parameter val-
ues and simulate noisy particle trajectories to produce an ensem-
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ble of model predictions. Figure 3a illustrates such predictions
for one component of the particle position generated using two
different models. Visually, the predictions of the angle+gravity
model “look like” the experimental data, while those of the base
model do not. To quantify this distinction, we first compute the
average absolute error between each simulated trajectory and the
noise-free trajectory computed using the most probable param-
eter values. Figure 3b shows histograms of these errors for the
two different models measured in units of particle diameters. We
then compute the analogous error for the experimental trajectory
and compare it to the distribution of simulated errors. Failure
of the experiment error to conform to expectations of the fitted
model is quantified using a p-value, which describes the probabil-
ity of obtaining an error greater than or equal to that observed in
experiment assuming that the model is correct. A small p-value
(often p < 0.05) indicates that the fitted model does not provide
a self-consistent description of the experimental data. Continuing
the example above, the small p-value for the base model in Figure
3b suggests that this model is unable to describe the experimen-
tal data at the level of accuracy specified by the noise model. By
contrast, the angle+gravity model passes the PPC to provide one
consistent description of the data—but not the only one.

Model consistency between batches

Further support for a candidate model is obtained by compar-
ing the batch-level parameter estimates for consistency. When a
model is sufficiently accurate, parameter estimates from differ-
ent batches of experimental data should agree with one another
within the uncertainty of the posterior distributions. Figure 3c
shows examples of parameter estimates for two batches using two
models that are more or less consistent. The degree of consistency
can be quantified by a pairwise z-score

zi j =
h
(µ j �µi)

T (Si +S j)
�1(µ j �µi)

i1/2
(5)

where µi and Si are the posterior mean and covariance matrix of
batch i. The z-score measures the distance between the two pa-
rameter estimates scaled by the uncertainty. Small z-scores of or-
der one suggest consistent parameter estimates between batches
while large z-scores indicate inconsistencies.

Figure 3c shows the marginal posteriors for the the magnetic
moment m and the buoyant mass M for two batches analyzed us-
ing two different models. For the angle+gravity model, the over-
lapping distributions produce a z-score of 3.23, while the para-
magnetic+gravity model leads to non-overlapping distributions
with z12 = 11.4. The large z-score of the paramagnetic+gravity
model suggests that inferences drawn from the two batches are
inconsistent with one another. Such inconsistencies may indi-
cate that the model is wrong—for example, it uses the descrip-
tive ability of one physical effect (e.g., paramagnetic anisotropy)
to describe a different effect (e.g., particle tilting). Alternatively,
inconsistencies between batches may indicate that the model is
overfitting each batch, in which case larger batch sizes may re-
solve the inconsistency.

Cross-validation

The candidate models are further criticized using cross-validation
in which parameters inferred from one batch are used to pre-
dict data in other batches. We use the most probable parameter
estimates from each batch to make noise-free predictions of ex-
periments in other batches and compute the root mean square
(RMS) error for each prediction. Ideally, a good model should
make accurate predictions of unseen data not used in model train-
ing. Moreover, if a model is consistent from batch to batch, we
can combine the batch-level parameter distributions into a global
posterior of the form

p(q |D,M) =
p(q | M)

p(D | M)

B

’
b=1

p(Db | q ,M) (6)

where p(Db | q ,M) is the likelihood for data Db. When the batch-
level posterior p(q | Db,M) is approximated by the Laplace ap-
proximation and the prior p(q | M) is normally distributed, the
combined posterior of equation (6) can be evaluated analytically
(see ESI, Section 3 for details†). We use the mean of this poste-
rior approximation to initialize one final optimization of the log-
posterior given all the data. We take the resulting optimum as our
final parameter estimate, which is used to make predictions for all
experiments, including batches and long-time data excluded dur-
ing inference (Fig. 1c, gray).

Bayesian model selection

Finally, we use Bayesian model selection to evaluate the (relative)
probability of each candidate model based on the global poste-
rior (6) conditioned on data from the combined batches. Using
this multivariate normal approximation, we evaluate the model
likelihood p(D | M) analytically by integrating equation (6) with
respect to the parameters q (see ESI, Section 3 for details†). As-
suming that each model is equally probable a priori, the posterior
probability for any model Mi is directly proportional to its likeli-
hood p(D | Mi). The most probable model is that with the largest
likelihood.

3 Results and Discussion
Posterior predictive checks (PPCs) show that the simplest models
fail to describe the experimental data from one or more batches
(Fig. 4a). The p-values computed for the base, angle, param-
agnetic, and gravity models are all much smaller than one for
at least one of the five batches considered. These models lack
the descriptive power necessary to reproduce data from multi-
ple experiments simultaneously. By contrast, composite models
that combine multiple effects—for example, angle+gravity—pass
the PPC for all batches and remain viable candidates for fur-
ther criticism and comparison. We find that the effects of grav-
ity on particle motion cannot be neglected—particularly, for low
driving frequencies w ⌧ Mg/6phaR ⇠ 5 rad/s. However, the
addition of either a paramagnetic contribution to the particle’s
magnetic moment (paramagnetic) or a tilt to its orientation at
the interface (angle) is sufficient to reproduce the experimental
observations. In other words, there are three models that de-
scribe the data: angle+gravity, paramagnetic+gravity, and an-
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gle+paramagnetic+gravity. It remains to determine which of
these candidate models is favored over the others.
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Fig. 4 (a) Results of posterior predictive checks (PPCs) for each of
the eight models and five batches of four experiments. Each marker
corresponds to one experiment; colors denote different batches. The
vertical line shows the 5% significance threshold accounting for multiple
comparisons—namely, p = 0.05/20.28 The last three models pass the
PPC with no p-values smaller than the threshold. (b) Between batch
z-scores of equation (6) for each of the eight models and 20 batch-batch
pairs. Colors denote different batch pairs.

Of the three candidate models that pass the PPCs, the an-
gle+gravity (ag) model shows the highest degree of consistency
between parameters inferred from different batches (Fig. 4b).
The average z-score is 4.35 as compared to 14.6 and 6.75 for the
paramagnetic+gravity (pg) and angle+paramagnetic+gravity
(apg) models, respectively. In other words, by using the ag-model
to analyze different subsets of the experimental data, we are led
to similar conclusions about common parameter values such as
the tilt angle µ or the magnetic moment m. Such consistency pro-
vides further support for this model as well as other aspects of
the analysis such as the Laplace approximation and the choice of
batch size. For the pg-model, the higher z-scores indicating lower
levels of consistency between batches suggests that this model is
less capable of describing the data from all experiments.

The apg-model shows less consistency between batches despite
containing the ag-model as a limiting case (i.e., when Da = 0).

This observation is indicative of overfitting whereby the added
parameter—here, the polarizability difference Da—adopts differ-
ent values from batch to batch as to reduce the batch-level error.
In addition to inconsistent parameter estimates, this type of over-
fitting leads also to inaccurate predictions as detailed below. The
chosen batch size of 4 experiments is sufficient to infer as many
global parameters from the data (e.g., the moment m, angle µ,
mass M, drop radius R of the ag-model). However, the analysis
of more complicated models with more global parameters would
likely benefit from larger batch sizes.

Based on cross-validation, the ag-model shows the smallest av-
erage prediction error (0.33 particle diameters) across all experi-
ments including unseen data excluded during parameter estima-
tion (Fig. 5a). Only the apg-model which contains the ag-model
as a limiting case performs as well. Competing models such as
pg and g exhibit nearly twice the error in the predicted parti-
cle trajectories. Figures 5b and 5c illustrate the average predic-
tion errors for the ag- and pg-models as a function of the de-
sign variables w and j. The ag-model is characterized by small
prediction errors over the entire design space, including unfamil-
iar conditions excluded during parameter estimation (gray mark-
ers). By contrast, the pg-model exhibits comparatively large er-
rors for conditions near the transition region between the pole-
orbiting and zig-zag behaviors. These results highlight the chal-
lenge of discriminating between competing models using limited
data. Despite the different physics they contain, both the ag- and
pg-models can provide accurate descriptions of the pole-orbiting
and zig-zag behaviors. Only by considering all the data—in par-
ticular, the transition region between the two behaviors—do the
deficiencies of the pg-model become clear.

Further support for the ag-model is provided by Bayesian
model selection, which favors this model decisively over the other
candidates considered. In particular, the ag-model is ca. 109 times
more probable than the next best apg-model. The latter is judged
to be less likely despite containing the favored ag-model as a lim-
iting case. To understand this result, we decompose the model
likelihood as the product of two components

p(D | M) = p(D | q̂ ,M)⇥ p(q̂ | M)

p(q̂ | D,M)
(7)

The first term is simply the likelihood function evaluated at the
most probable parameter values q̂ . The addition of more param-
eters tends to increase this quantity by enhancing the descriptive
capacity of the model. The second term describes the ratio be-
tween prior and posterior densities evaluated at the parameter
estimate q̂ . This quantity is typically less than one and becomes
smaller still with the addition of superfluous parameters. Because
it favors simpler models, the logarithm of this ratio is sometimes
referred to as the Occam factor. In comparing the ag and apg
models, the added parameter does not alter the log-likelihood,
but it does decrease the Occam factor thereby favoring the sim-
pler ag model (Tab. 1). By contrast, the pg model is strongly
disfavored on the basis of both contributions.

To summarize, the ag-model provides an accurate, self-
consistent description of all experimental data using physically
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Fig. 5 Cross-validation. (a) Table of average prediction errors across
all 30 experiments using each of the eight candidate models with pa-
rameters inferred from different batches (1 to 5) and their combination
(all). The reported errors denote the average absolute error between the
experimental data and noise-free model predictions using the most prob-
able parameter estimates. (b,c) Prediction errors as a function of the
frequency w and angle j of the precessing field for the (b) angle+gravity
and (c) parametric+gravity models. Parameter values are inferred from
the 20 experiments marked with black ⇥⇥⇥’s; gray circles denote exper-
iments excluded during parameter estimation. The contour plot uses
bilinear interpolation between experiments with the colormap from (a).

reasonable parameter estimates. The buoyant mass of the par-
ticle is inferred to be M = 0.70⇥ 10�11 g (±20%), as compared
to the prior estimate of 1.2 ⇥ 10�11 g based on the stated size
and composition of the Janus sphere. The inferred magnetic mo-
ment is m = 2.2⇥ 10�14 A m2 (±10%), which is close a previous
estimate of 2.9⇥ 10�14 A m2 for similar particles.15 Importantly,

model ln p(M |D) ln p(M | q̂ ,D) Occam factor

ag 0.0 104.2 �104.2
apg �21.6 104.2 �125.8
pg �139.4 31.4 �170.8

Table 1 Bayesian model selection. The top three candidate models are
ranked by the logarithm of the model likelihood ln p(D |M). This quantity
is further discomposed into two additive contributions: log-likelihood
ln p(D | q̂ ,M) evaluated at the most probable parameter estimates q̂ and
the Occam factor, defined as ln[p(q̂ | M)/p(q̂ |D,M)]. All quantities are
shifted by a common factor such that the model log-likelihood is zero for
the favored ag model.

these estimates for M and m depend on the accuracy of our es-
timate for the hydrodynamic resistance to translation lt = 6pha
because the dynamics depends on the ratios m/lt and M/lt . En-
hanced (diminished) resistance at the interface would lead us to
underestimate (overestimate) the bouyant mass M and the mag-
netic moment m; however, the predictions of the model would
remain unaffected. The moment is tilted relative to the interface
by an angle µ =�8.8� (±10%), where the negative value implies
a contribution directed into the drop center. The origin of this
tilt, however, remains unclear. In one interpretation, the moment
is aligned parallel to the equator of the Janus sphere, and the
particle itself tilts at the interface due to pinning of the three-
phase contact line.29 Alternatively, the Janus sphere may adsorb
in its preferred orientation while its internal magnetic moment
tilts with respect to the Janus equator.

The ag-model predicts new types of particle motion which are
borne out by additional experiments on particles with large tilt
angles. For tilted particles, the zig-zag trajectories found at lower
precession angles and/or frequencies are displaced from the drop
equator towards the lower (upper) pole when the moment is di-
rected into (out from) the drop. While we cannot control the tilt
angle of Janus spheres at the drop interface, additional experi-
ments like those of Figure 1d revealed flower-shaped trajectories
anticipated by the ag-model (Fig. 6). Such trajectories were not
predicted previously for particles with zero tilt angle;16 however,
they are well explained by the present ag-model. Using same
the bouyant mass and magnetic moment as estimated above, we
infer a tilt angle of 51� directed into the interface for the data
in Figure 6; the average error is 0.79 particle diameters. Such
asymmetric, zig-zag trajectories provide further evidence for the
ag-model, which was selected above on the basis of more sub-
tle quantitative evidence. These trajectories are potentially use-
ful for droplet mixing16 and/or propulsion in time-varying fields;
however, further work is needed to control the orientation of the
particle’s magnetic moment relative to the interface.

In addition to physical insights into magneto-capillary particle
dynamics, the present analysis provides useful lessons in apply-
ing Bayesian methods to analyze time-series data using dynam-
ical models. Posterior predictive checks (PPCs) are necessary to
ensure that candidate models have the descriptive capacity to re-
produce the data on which they are trained. Inferences made us-
ing models that fail such PPCs are unreliable and may lead to false
conclusions. Model parameters should be inferred using data
from multiple experiments simultaneously to increase the statisti-
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Fig. 6 Flower-shaped trajectory (gray) of a tilted particle in a precessing
field with angular frequency, w/2p = 0.73 Hz, and precession angle, j =
0.4 rad. The data is well described by the predictions (orange) of the
ag-model using previous estimates for the magnetic moment and the
buoyant mass. The estimated drop position and radius is shaded in blue.

cal power of model criticism and avoid overfitting. Grouping ex-
periments into batches allows for scaling inference to larger data
sets and enables further criticism based on cross-validation. The
combination of efficient integration algorithms and automatic dif-
ferentiation greatly accelerates the search for optimal parameter
estimates that maximize the posterior probability. Given multi-
ple interpretations of the experimental data, the Bayes model ra-
tio provides a useful metric by which to discriminate between
competing models. Finally, correlated noise models with user-
specified parameters can provide useful approximations of miss-
ing physics that help to identify predictive descriptions that are
good enough.30

4 Conclusions
We have developed and experimentally validated a dynamical
model that accurately predicts the field-driven motion of a mag-
netic Janus sphere on the curved interface of a liquid drop. The
particle dynamics is governed by a balance of magnetic, viscous,
and gravitational forces/torques subject to rigid capillary con-
straints imposed by the interface. Through quantitative compar-
ison of model predictions and experimental observations, we ac-
curately infer unobserved quantities such as the magnitude and
orientation of the particle’s magnetic moment. The analysis of
this specific problem offers general lessons for the analysis of time
series data using dynamical models for the purpose of parameter
estimation, model criticism, and model selection.

Looking forward, predictive models of magneto-capillary par-
ticle dynamics provide opportunities for designing future experi-
ments that deepen our knowledge or enhance functional capabil-
ities. By carefully choosing the experimental conditions, one can
accurately infer model parameters using limited data from few ex-

periments (see reference 31 for details). This process of Bayesian
experimental design is guided by model predictions that antici-
pate the likely outcomes of hypothetical experiments and iden-
tify designs that advance a user-specified objective—for example,
to maximize the information gain about uncertain model param-
eters.32 In the present context, the different batches of experi-
ments provide different amounts of information about the model
parameters: as large as 8680 bits for batch 4 and as small as 676
bits for batch 3 (see ESI, Sec. 4†). Bayesian design guides the
selection of better—that is, more informative—experiments. Ide-
ally, this process can be automated within iterative cycles of ob-
servation, inference, and design that converge rapidly to accurate
parameter estimates.31,33 Alternatively, by changing the objective
function, the same iterative process can be used to identify design
conditions (e.g., the time-varying field) that achieve desired ca-
pabilities such as drop mixing and propulsion despite uncertainty
in the model parameters. In this way, predictive models serve
to accelerate the design of active colloids34 and microrobots35,36

with increasingly autonomous capabilities such as self-propulsion
and self-guided navigation.37
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