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Abstract

Contact charge electrophoresis (CCEP) uses steady electric fields to drive the con-

tinuous, oscillatory motion of conductive particles and droplets between two or more

electrodes. These rapid oscillations can be rectified to direct the motion of objects

within microfluidic environments using low-power, dc voltage. Here, we compare high

precision experimental measurements of CCEP within a microfluidic system to equally

detailed theoretical predictions on the motion of a conductive particle between parallel

electrodes. We use a simple, capillary microfluidic platform that combines high-speed

imaging with precision electrical measurements to enable the synchronized acquisition

of both the particle location and the electric current due to particle motion. The

experimental results are compared to those of a theoretical model, which relies on a

Stokesian dynamics approach to accurately describe both the electrostatic and hydro-

dynamic problems governing particle motion. We find remarkable agreement between

theory and experiment, suggesting that particle motion can be accurately captured
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by a combination of classical electrostatics and low-Reynolds number hydrodynamics.

Building on this agreement, we o↵er new insight into the charge transfer process that

occurs when the particle nears contact with an electrode surface. In particular, we find

that the particle does not make mechanical contact with the electrode but rather that

charge transfer occurs at finite surface separations of > 0.1 µm by means of an electric

discharge through a thin lubricating film. We discuss the implications of these findings

on the charging of the particle and its subsequent dynamics.

Introduction

Contact charge electrophoresis (CCEP) refers to the charging of a conductive particle on

contact with an electrode surface and the subsequent motion of that particle in an electric

field.1–3 Unlike other forms of electrostatic or electrokinetic particle manipulation such as

dielectrophoresis4 or induced charge electrophoresis,5,6 CCEP requires only a static (dc)

electric field to produce continuous, oscillatory motion between two electrodes. Simple

back-and-forth motion via CCEP has been demonstrated for metallic particles7–9 and aque-

ous droplets10–15 in a variety of insulating fluids including air,16,17 silicone oil,11,12 mineral

oil,2,3,8,18 and lighter hydrocarbons such as hexane.2,19 Importantly, this basic oscillatory mo-

tion20 can be rectified to perform useful functions such as high-speed, directed transport of

particles within microfluidic channels3 as well as e�cient, low-power mixing of low Reynolds

number streams.2

During CCEP, particle dynamics are governed primarily by two processes: contact charg-

ing, the acquisition of charge by a conductive particle upon contact with an electrode; and

electrophoresis, the movement of the now-charged particle in the applied electric field. Based

on classical electrostatics, the charge q acquired by a conductive sphere of radius a on contact

with a single plane electrode subject to an applied field E0 is q = 2
3⇡

3""0a2E0, where " is

the dielectric constant of the surrounding medium;21,22 the presence of a second electrode

at finite separation H leads to additional contributions of order (a/H)3.1 At low particle
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Reynolds numbers, the resulting electrophoretic motion may be approximated by equating

the electrostatic force FE ⇡ qE0 to the hydrodynamic drag FH ⇡ 6⇡⌘au on the particle as

predicted by Stokes law. This simple model provides scaling relationships for the particle

charge (q ⇠ ""0a2E0), velocity (u ⇠ ""0aE2
0/⌘), oscillation frequency (! ⇠ u/H), and electric

current (I ⇠ q!) that have been confirmed through several previous studies.7–9,16

To improve upon these approximate scaling relationships, it is necessary to consider

the detailed electrostatic1 and hydrodynamic23 description of a particle moving between

two electrodes. These complementary problems have been solved independently for the

case of parallel electrodes using a Stokesian dynamics approach that captures both the far-

field, many-body interactions and the near-field (singular) contributions for nearly contacting

surfaces.1,23 These results can be combined to describe the detailed motion of a spherical

particle moving via CCEP between parallel electrodes.1

Here, we perform high resolution CCEP experiments to assess the validity of the theoret-

ical model and elucidate the details of contact charge transfer. Using synchronized optical

and electrical characterization, we collect data on both the particle trajectory h(t) and the

instantaneous electric current I(t) accompanying particle motion. These data allow for the

validation of both the electrostatic and hydrodynamic models for a spherical particle moving

via CCEP at low Reynolds numbers. Extending the electrostatic model to incorporate the

e↵ects of electrode curvature, we demonstrate remarkable agreement between the models

and the experimental data across the entire inter-electrode region. Interestingly, however,

we find that the amount of charge q acquired by the particle on contact is consistently less

(ca. 66%) than that predicted by theory. We propose a charging mechanism that helps to

rationalize these discrepancies and o↵ers new insights on the dynamics of contact charge

transfer.
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Figure 1: (a) Experimental schematic. A conductive sphere (radius a = 14 µm) is immersed
in mineral oil (dielectric constant, " = 2.5; viscosity, ⌘ = 0.027Pa s) and positioned between
two copper wire electrodes separated by a distance H = 145 µm. The curvature of the
electrodes is characterized by their two principle radii, Rx = 510 µm and Ry = 255 µm.
Application of a steady electric field E0 = V0/H causes the particle to oscillate continuously
between the electrodes. (b) Bright-field micrographs taken at regular intervals of 250µs of
a 28 µm particle oscillating at an applied voltage, V0 = 765V. (c) Synchronized particle
trajectory h(t) and electrical current I(t) obtained from high speed imaging (ca. 105 frames
per second) and the current preamplifier, respectively, for V0 = 765V.
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Experiment

CCEP experiments were conducted within an “o↵-the-shelf” microfluidic device24 as illus-

trated in Figure 1a. Briefly, two copper wires (OD ⇡ 0.5mm) were bent into hairpin geome-

tries and inserted into a square glass capillary through which mineral oil was flowed (Sigma-

Aldrich M5904 with measured dielectric constant " = 2.5 and viscosity ⌘ = 0.027Pa s). The

entire device was enclosed inside an aluminum Faraday cage to minimize electrical noise and

placed under an optical microscope in transmission mode for visualization. During a typi-

cal experiment, a suspension of silver-coated hollow glass spheres in mineral oil (Cospheric

M-40, a = 14 µm, approximately 0.05 wt% in mineral oil) was flowed into the channel with

electrodes energized until a single particle was captured on the electrode surface as observed

by optical microscopy. Clean mineral oil, having been filtered via 0.45 µm syringe filter,

was then used as a purge stream to remove unwanted particles. A single data collection

period was initiated by energizing the electrodes to a desired voltage, collecting data, then

de-energizing the system for a minimum of one minute before repeating a measurement.

Logarithmically-spaced voltages were applied in ascending order from the minimum capable

of sustaining reliable oscillation (V0 ⇡ 300V or E0 ⇡ 2.1V µm�1) to the maximum achievable

by the voltage source (V0 ⇡ 1100V or E0 ⇡ 7.6V µm�1). Each field setting was replicated

five times, where each replicate contained approximately 102 particle transits between the

two electrodes.

Particle location and electrical current data were collected simultaneously by high-speed

video (Phantom V310, acquisition at ca. 105 frames per second) and precision current pream-

plifier (DL Instruments 1211, rise time < 250 µs) as described previously.2,3 Importantly,

position and electrical data were synchronized to a common start time which corresponds

to 1 s after the field was applied. Particle location data were extracted using standard im-

age tracking routines in MATLAB;25 electrical data were smoothed using MATLAB’s cubic

smoothing spline function to facilitate further manipulation.
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Theory

To describe the motion of a conductive particle moving via CCEP through a dielectric

fluid, we require (i) the electrostatic charge q acquired by the particle upon contact with

the electrode, (ii) the electrostatic force FE acting on the charged particle, and (iii) the

hydrodynamic drag force FH that determines its velocity. Here, we review the Stokesian

dynamics approach developed previously1 and extend it to account for the finite curvature

of the electrodes.

We consider a conductive sphere of radius a positioned at some point along the shortest

path connecting the two curved electrodes (Figure 1a). Owing to the linearity of the Laplace

equation, the sphere charge q and dipole moment p are linearly related to the potential on

the sphere less the external potential (���1) and to the external field (E1) at the sphere’s

center as 2

64
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p

3

75 =

2

64
Cq� CqE
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where C is the symmetric capacitance tensor (Cp� = CqE), which can be accurately ap-

proximated for the case of two parallel electrodes.1 Note that the symmetry of the problem

ensures that the dipole moment and the electric field are both oriented along the z-direction

(i.e., p = pez and E
1 = E1

ez). As described below, knowledge of the external field E1

and the capacitance tensor C enable one to compute all relevant electrostatic quantities such

as the charge, force, and current (Figure 2).

To account for e↵ects due to finite electrode curvature, we use the capacitance tensor

C obtained for parallel electrodes but the external potential �1 and field E1 for ‘weakly

curved’ electrodes where the electrode separation is small relative to their curvature (H ⌧

R). In this limit, the potential �1 and field E1 in the absence of the sphere evaluated at
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its center (z = h) are
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where E0 = V0/H is the characteristic field strength, and  = H(R�1
x

+ R�1
y
)/2 is a di-

mensionless parameter characterizing the mean curvature of the electrodes (see Supporting

Information). This approximation gives the leading order correction to the parallel electrode

solution in the limit of weak curvature (Figure 2a).

When the sphere makes electrical contact with either electrode, charge flows to/from

the sphere until its potential is equal to that of the electrode (e.g., � = V0/2 for the lower

electrode). The equilibrium charge acquired by the sphere can then be computed using

equation (1) where the capacitance coe�cients are evaluated at contact (e.g., h ! a�H/2

for the lower electrode). For the experimental geometry, the equilibrium charge is qeq = 2.04qs

where qs = 4⇡""0a2E0 is a characteristic charge scale used throughout the analysis.

The charge on the sphere is balanced by equal and opposite charge, ql and qu, distributed

over the ‘lower’ and ‘upper’ electrodes, respectively, such that q + ql + qu = 0. The excess

charge on the electrodes due to the presence of the sphere can be expressed in terms of the

sphere charge q and dipole moment p as
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✓
1

2
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◆
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p, (4)
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as derived in the Supporting Information. The movement of the charged particle across the

channel results in the redistribution of this excess charge between the two electrodes via the

external circuit. Assuming the sphere charge is constant during its transit from one electrode
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Figure 2: (a). Electric field E1 along the axis connecting the two electrodes as approximated
by equation (3). Here, the electrode curvature is  = 1

2H(R�1
x

+ R�1
y
) = 0.427 (as in

experiment), and the field is scaled by E0 = V0/H. (b) Capacitance coe�cients as a function
of sphere position, h/H, as approximated using the Stokesian dynamics approach.1 Here,
the electrode separation is H/a = 10.36 (as in experiment), and the coe�cients are scaled
by 4⇡""0anE0 with n = 1, 2, 3.
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to the other, the measured current I is related to the sphere velocity u = dh/dt as

I = u
dql
dh

= �u
dqu
dh

. (6)

This relation is used below to estimate the instantaneous charge on the particle from the

measured current I and velocity u.

To determine the electric force FE that drives the motion of the particle, we first compute

the electrostatic free energy as

UE =
1

2
(q(�+ �1)� pE1) , (7)

assuming that the applied voltage V0 and the sphere charge q are held constant during its

motion across the channel (see Supporting Information). Here, the charge q, the external

potential �1, and field E1 are known; the sphere potential � and dipole moment p are

obtained from equation (1) using the Stokesian dynamics approximation for the capacitance

tensor C.1 The force on the sphere (in the z-direction) can then be computed as

FE = �
✓
dUE

dh

◆

q,V0

, (8)

where the charge q and the voltage V0 are held constant.

Neglecting inertial e↵ects, the electric driving force FE is balanced by a hydrodynamic

drag force FH , which is linearly proportional to the sphere velocity u as

FH = �6⇡⌘au�(h), (9)

where �(h) > 1 is a dimensionless factor that describes the increase in hydrodynamic drag

due to the presence of the electrodes. This expression is valid in the limit of small Reynolds

numbers, Re = ⇢ua/⌘ ⌧ 1, while the experimental measurements correspond to Re ⇡
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0.01 � 0.1. The drag coe�cient � can be accurately approximated using the Stokesian

dynamics approach detailed by Swan and Brady23 for a single sphere between two parallel

walls (see below). Importantly, in the absence of external flows (i.e., for a sphere moving in

a quiescent fluid), this approximation – which neglects e↵ects due to electrode curvature –

is consistent with that used above to evaluate the capacitance tensor C.

Balancing the the electrostatic driving force with the hydrodynamic drag force, we obtain

the following dynamical equation for the position of the sphere

u =
dh

dt
=

FE(q, h)

6⇡⌘a�(h)
. (10)

This equation neglects e↵ects due to particle inertia, which are small relative to the viscous

drag as described by the Stokes number, St = mu/6⇡⌘a2 ⌧ 1, where m is the mass of the

particle. In experiments, the silver-coated glass sphere is almost neutrally buoyant, and the

Stokes number is similar in magnitude to the Reynolds number, St ⇠ Re ⌧ 1.

Results and Discussion

Sphere Charge

To determine the charge q on the sphere during each transit, we measured the instantaneous

particle velocity u and electric current I when the particle was exactly halfway across the

channel (i.e., at h = 0). Combined with the theoretical predictions outlined above, these

measurements allowed for two independent estimates of the sphere charge. Owing to the

symmetry of the electrodes about h = 0, the electrostatic force FE and the electric current

I are both linearly proportional to the sphere charge at the center of the channel – that is,

FE = ↵qE0 and I = ↵qu/H for h = 0 where ↵ is a dimensionless factor computed using

the theory outlined above. Note that at other locations in the channel (h 6= 0) there are

additional contributions to the force and the current due to the field-induced dipole on the
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sphere that do not depend on the charge q.

With these preliminaries the charge on the sphere can be estimated from the experimental

data as

qh =
6⇡⌘au�

↵E0
and qe =

HI

↵u
, (11)

where the estimate qh is based on knowledge of the hydrodynamic drag force, whereas qe

is based on the electric current. Here, the particle velocity u and electric current I are

measured experimentally at h = 0, the dimensionless parameters � = 1.38 and ↵ = 0.936

are computed based on theory,1,23 and the other quantities (⌘, a, H, V0) are known. For

each applied voltage, we collected five data sets each containing ⇠200 transits of the particle

across the channel; these data were averaged to obtain estimates of the sphere charge q as a

function of the applied voltage (Figure 3).
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Figure 3: Sphere charge q vs. applied voltage V0. The charge is estimated using equation
11 (denoted qh and qe) for particles traveling in the positive z-direction (denoted +) and
the negative z-direction (denoted �). The vertical lines denote 95% confidence intervals on
the mean charge. The solid black curve represents the best fit to the data while the dashed
curve shows the theoretical prediction.

The data in Figure 3 are divided into four groups based on the method used to estimate

the charge (qh vs. qe in equation (11)) and the direction of travel across the channel (q+ vs.
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q� corresponding to u > 0 or u < 0, respectively). First, we note that the two independent

estimates of the sphere charge agree well with one another (i.e., qh ⇡ qe); however, there

are often significant variations between the charge acquired on contact with the upper and

lower electrodes (i.e., q+ 6= q�). Importantly, these variations are not due to di↵erences

in the sign of the charge q. By changing the polarity of the applied voltage (±V0), the

sphere acquires positive or negative charge of comparable magnitude when it contacts the

same electrode (e.g., the upper electrode). Instead, di↵erences between q+ and q� are likely

due to small imperfections or debri on the electrode surfaces that may influence the charge

transfer process (see below).

Aside from these variations, the sphere charge increases linearly with the applied voltage

in agreement with model predictions (Figure 3, black curve). Interestingly, however, the

measured charge is consistently lower (by ⇠ 66%) than the equilibrium charge predicted by

theory (Figure 3, dashed curve). We1 and others9,14,15 have observed similar evidence for

incomplete charging in previous studies conducted at low Reynolds numbers (Re ⌧ 1). By

contrast, analogous studies performed at high Reynolds numbers (e.g., in air16 or with mm-

sized particles and strong fields7) show strong agreement between the measured charge and

the predicted equilibrium charge. These observations suggest that hydrodynamic e↵ects may

play an important role in the dynamics of charge transfer during sphere-electrode ‘contacts’

(see below).

Electrostatics

Given the charge on the sphere during each transit, we can use the measured current and

position data to rigorously evaluate the validity of the electrostatic model outline above. We

first introduce the charge di↵erence, �q = ql�qu, which measures the di↵erence in the excess

charge on the two electrodes due to the presence of the sphere. Using equations (4) and (5)
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for the electrode charges, the charge di↵erence is found to depend on the sphere charge q as

�q(h) = A(h)q +B(h)qs, (12)

where A(h) and B(h) are dimensionless functions of the sphere position h. Owing to the

symmetry of the electrodes about h = 0, A(h) is an odd function and B(h) is an even

function of the sphere position h. The charge di↵erence can be obtained from experiment

by integrating the measured current and making use of equation (6) to obtain

�q (h(t)) = �q(0) + 2

Z
t

t0

I(t0)dt0, (13)

where h(t0) = 0 and the sphere charge q is assumed constant for t0 < t0 < t. Here, �q(0) =

B(0)qs cannot be determined directly from experiment and is therefore estimated by theory

to be B(0) = 0.167 for the present electrode geometry. Using equation 13, we computed the

charge di↵erence �q(h) from the measured current at several locations across the channel.

This function was then decomposed into odd and even contributions to determine the A

and B coe�cients presented in Figure 4. The experimental measurements are in excellent

agreement with the theoretical predictions. Thus, provided that the sphere is su�ciently far

from the electrodes (surface separations greater than a particle radius), its charge remains

constant, and the electric force and current are well described by classical electrostatics.

Hydrodynamics

Similarly, we can use equation (10) to estimate the hydrodynamic drag coe�cient �(h) as

a function of the sphere position h within the channel. Using the measured charge (i.e.,

the average of estimates qe and qh) and the sphere position, the electrostatic force is first

computed using equation (8). Equating this force to the hydrodynamic drag force, we then

obtain the drag coe�cient from the measured particle velocity. The result of this analysis

is illustrated in Figure 5 which compares the measured values of �(h) to those obtained
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Figure 4: A and B coe�cients defined by equation (12). The open markers are experimental
measurements; the solid curves are the model predictions. The vertical lines represent 95%
confidence intervals on the mean value; confidence intervals for A are smaller than the
markers and therefore omitted.
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from the hydrodynamic theory for a sphere between parallel walls.23 There is quantitative

agreement between theory and experiment throughout the channel; the small deviations are

readily attributed to the e↵ects of electrode curvature neglected by the model.

Figure 5: Hydrodynamic drag coe�cient � vs. sphere position h. The open markers are
experimental measurements; the solid curves are the model predictions.

Contact Charging

Given an accurate description of the physics governing the motion of the sphere across the

channel, we now return to the charge transfer process that occurs when the particle ‘contacts’

the surface of either electrode. Specifically, we consider a charge transfer ‘collision’ between a

negatively charge sphere as it approaches the oppositely biased lower electrode at z = �H/2

(Figure 6). During the sphere’s approach, the local electric field in the gap separating

the the sphere and the electrode begins to rise as Emax ⇡ (12V0 � �)/(a⇠) ⇠ E0/⇠ where

⇠ = (h+ 1
2H � a)/a is the dimensionless surface separation. Eventually, this maximum field

exceeds the dielectric strength of the liquid (EB ⇡ 107 V/m for mineral oil), and an electric

discharge forms between the sphere and the electrode.26 Charge then flows rapidly onto the

sphere thereby reducing the electric field Emax in the sphere-electrode gap. Assuming that

some critical field (of order EB) is necessary to sustain the electric discharge, the trajectory

of the sphere through the position-charge phase space is expected to move along a curve of
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constant field Emax ⇠ EB (Figure 6). At some point, however, the electric force FE on the

charged sphere changes sign, and the sphere is pushed away from the electrode surface. The

field in the sphere-electrode gap then falls below the critical magnitude necessary to sustain

the discharge, and the flow of charge onto the sphere ceases. Importantly, this transition

occurs at some finite charge q which is greater than zero, owing to the dielectrophoretic

attraction of the sphere to the electrode, but less than the equilibrium charge qeq. For

EB ⇡ 30E0, the curve of zero force (FE = 0) intersects that of constant field (Emax = EB)

at a sphere charge of q ⇡ 0.5qeq – similar to that observed in experiment.

Figure 6: Qualitative particle trajectory (black) through the position-charge phase space.
Sphere position is presented as the dimensionless surface separation with the lower electrode,
⇠ = (h+ 1

2H�a)/a; sphere charge q is scaled by the equilibrium charge qeq. The blue curves
show lines of constant electric field Emax within the sphere-electrode gap as multiples of the
applied field, E0 = V0/H. The red curve shows the line of zero electric force: FE < 0 below
the line (i.e., towards the electrode at ⇠ = 0) and FE > 0 above.

While greatly simplified, this putative mechanism helps to rationalize the experimental

observation that the sphere charge never achieves the expected equilibrium value. In the

absence of inertial e↵ects, the sphere changes direction immediately upon reversal of the

electric force. As a result, the particle does not make mechanical contact with the electrode

surface, and charge transfer proceeds through a thin lubricating film.

Charge transfer at finite surface separations is further supported by electric current mea-
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surements – in particular, by the sharp current ‘spikes’ that occur when the sphere approaches

contact with either electrode. These ‘spikes’ are typically attributed to the rapid flow of

charge between the sphere and the nearby electrode upon dielectric breakdown. However,

current ‘spikes’ may also arise by a purely capacitive mechanism before transfer of charge

to/from the sphere. When a charged sphere approaches an oppositely biased electrode, the

electric current diverges like I / ⇠�1 as the surface separation approaches zero, ⇠ ! 0 (see

Supporting Information). This behavior is illustrated in Figure 7a, which shows the electric

current predicted by the model for a sphere of constant charge. From the present data, it

is di�cult to distinguish between these competing hypotheses: the current ‘spikes’ observed

in experiment (Figure 1c) may occur before charge transfer as described by the model pre-

dictions of Figure 7 or during charge transfer via dielectric breakdown. Nevertheless, even

without detailed knowledge of the charge transfer process, we can apply the capacitive model

to determine a lower bound on the surface separation between the sphere and the electrode

at ‘contact’.

We first determine the average magnitude of the current peaks from the experimental

data: Imax = (0.72± 0.05)qs/ts where qs = 4⇡""0a2E0 and ts = 3⌘/2""0E2
0 are characteristic

scales for charge and time, respectively, and the uncertainty represents a 95% confidence

interval for all replicates and voltages. Similarly, the average charge on the particle is

estimated to be q = (1.35 ± 0.02)qs. Using this charge estimate, we compute the electric

current due to the motion of the sphere via CCEP as shown in Figure 7a. By comparing

the results of the model with the peak current measured in experiment, we find that the

surface separation at ‘contact’ must be ⇠min > 0.005 or roughly 0.1 µm. This order-of-

magnitude estimate is consistent with the charge transfer mechanism illustrated in Figure

6. We emphasize that this result is a lower bound since the electric field in the sphere-

electrode gap is considerably larger than the breakdown strength at these separations (i.e.,

Emax ⇠ 10EB for ⇠ ⇠ 0.01). Therefore, charge transfer between the sphere and the electrode

likely begins before the current reaches its peak value. Moreover, small surface irregularities
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(a)

(b)

Figure 7: (a) Computed electric current due to the movement of a charged sphere via CCEP.
Here, the charge on the sphere is constant and equal to q = 1.35qs as measured in experiment.
The results are presented in dimensionless form using the characteristic scales qs = 4⇡""0a2E0

and ts = 3⌘/2""0E2
0 . The inset shows the current as a function of the dimensionless surface

separation, ⇠ = (h+ 1
2H � a)/a. (b) Histogram showing the distribution of ‘collision times’

tc (defined in the inset) for the lowest voltage used, V0 = 300V.
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on the particle or the electrodes can result in local field enhancements that further promote

breakdown, and hence particle trajectory reversal at larger separations ⇠ > ⇠min.

Finally, the proposed mechanism for charge transfer has important implications for the

dynamics of particles moving via CCEP. First, it helps to explain why the particle sometimes

remains near the electrode for a variable period of time before moving o↵ towards the opposite

electrode, particularly at weaker fields (Figure 7b). The dynamical trajectory of the particle

through the position-charge phase space passes near a fixed point, at which the electric force

(and thereby the particle velocity) is zero as is the flow of charge to/from the particle (Figure

6). As a result, there are ‘collisions’ where the force on the particle is near zero while the

viscous resistance to motion is large (� ⇠ ⇠�1 � 1 near contact). Longer times are therefore

required for the particle to ‘escape’ the electrode surface; these times may vary in length due

to the stochastic nature of the electric discharges mediating charge transfer.

We also note that because charge transfer occurs at finite surface separations, the role

of surface forces between the particle and the electrodes is likely minimal. The particle can

oscillate between the two electrodes without ever making mechanical contact with either

surface. This result may explain our experimental observation that the minimum voltage

required to initiate CCEP motions is invariably greater than that required to sustain such

motions: adhesive surface forces between the particle and the electrode are relevant only

during the first charge transfer event. Further experiments are needed to determine the

operational limits of CCEP and their origins – in particular, at lower voltages.

Conclusions

We have provided a complete, quantitative description of the electrostatic and hydrodynamic

behavior of a particle during contact charge electrophoresis. Building on this accurate de-

scription, we provided new and useful insights into the process of contact charge transfer

that explains incomplete particle charging and elucidates the nature of particle-electrode
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‘contacts’. These results can be used to extend our ability to predict particle behavior in

new environments. We are currently working to extend the Stokesian dynamics theory to

describe the dynamics of multiple interacting particles27 as well as that of asymmetrically-

shaped particles. Such predictive control over CCEP dynamics will help to pave the way

towards its application within microfluidic systems and beyond.
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