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Abstract

Contact charge electrophoresis (CCEP) uses steady electric fields to drive the con-
tinuous, oscillatory motion of conductive particles and droplets between two or more
electrodes. These rapid oscillations can be rectified to direct the motion of objects
within microfluidic environments using low-power, dc voltage. Here, we compare high
precision experimental measurements of CCEP within a microfluidic system to equally
detailed theoretical predictions on the motion of a conductive particle between parallel
electrodes. We use a simple, capillary microfluidic platform that combines high-speed
imaging with precision electrical measurements to enable the synchronized acquisition
of both the particle location and the electric current due to particle motion. The
experimental results are compared to those of a theoretical model, which relies on a
Stokesian dynamics approach to accurately describe both the electrostatic and hydro-
dynamic problems governing particle motion. We find remarkable agreement between

theory and experiment, suggesting that particle motion can be accurately captured
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by a combination of classical electrostatics and low-Reynolds number hydrodynamics.
Building on this agreement, we offer new insight into the charge transfer process that
occurs when the particle nears contact with an electrode surface. In particular, we find
that the particle does not make mechanical contact with the electrode but rather that
charge transfer occurs at finite surface separations of > 0.1 pm by means of an electric
discharge through a thin lubricating film. We discuss the implications of these findings

on the charging of the particle and its subsequent dynamics.

Introduction

Contact charge electrophoresis (CCEP) refers to the charging of a conductive particle on
contact with an electrode surface and the subsequent motion of that particle in an electric
field.1® Unlike other forms of electrostatic or electrokinetic particle manipulation such as
dielectrophoresis® or induced charge electrophoresis,>® CCEP requires only a static (dc)
electric field to produce continuous, oscillatory motion between two electrodes. Simple

back-and-forth motion via CCEP has been demonstrated for metallic particles™® and aque-
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ous droplets in a variety of insulating fluids including air, silicone oil,**'? mineral

oil, 23818 and lighter hydrocarbons such as hexane.?!? Importantly, this basic oscillatory mo-

tion?® can be rectified to perform useful functions such as high-speed, directed transport of
particles within microfluidic channels® as well as efficient, low-power mixing of low Reynolds
number streams. >

During CCEP, particle dynamics are governed primarily by two processes: contact charg-
ing, the acquisition of charge by a conductive particle upon contact with an electrode; and
electrophoresis, the movement of the now-charged particle in the applied electric field. Based
on classical electrostatics, the charge ¢ acquired by a conductive sphere of radius a on contact
with a single plane electrode subject to an applied field Ey is ¢ = §7T3550a2E0, where ¢ is

the dielectric constant of the surrounding medium;?%?? the presence of a second electrode

at finite separation H leads to additional contributions of order (a/H)3.! At low particle



Reynolds numbers, the resulting electrophoretic motion may be approximated by equating
the electrostatic force Fg ~ qE( to the hydrodynamic drag Fg ~ 67nau on the particle as
predicted by Stokes law. This simple model provides scaling relationships for the particle
charge (q ~ eg9a®Ey), velocity (u ~ eggak? /1), oscillation frequency (w ~ u/H), and electric
current (I ~ qw) that have been confirmed through several previous studies. ™ %16

To improve upon these approximate scaling relationships, it is necessary to consider
the detailed electrostatic! and hydrodynamic? description of a particle moving between
two electrodes. These complementary problems have been solved independently for the
case of parallel electrodes using a Stokesian dynamics approach that captures both the far-
field, many-body interactions and the near-field (singular) contributions for nearly contacting
surfaces.1'?® These results can be combined to describe the detailed motion of a spherical
particle moving via CCEP between parallel electrodes.

Here, we perform high resolution CCEP experiments to assess the validity of the theoret-
ical model and elucidate the details of contact charge transfer. Using synchronized optical
and electrical characterization, we collect data on both the particle trajectory h(t) and the
instantaneous electric current /(t) accompanying particle motion. These data allow for the
validation of both the electrostatic and hydrodynamic models for a spherical particle moving
via CCEP at low Reynolds numbers. Extending the electrostatic model to incorporate the
effects of electrode curvature, we demonstrate remarkable agreement between the models
and the experimental data across the entire inter-electrode region. Interestingly, however,
we find that the amount of charge ¢ acquired by the particle on contact is consistently less
(ca. 66%) than that predicted by theory. We propose a charging mechanism that helps to
rationalize these discrepancies and offers new insights on the dynamics of contact charge

transfer.
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Figure 1: (a) Experimental schematic. A conductive sphere (radius ¢ = 14 um) is immersed
in mineral oil (dielectric constant, e = 2.5; viscosity, n = 0.027 Pas) and positioned between
two copper wire electrodes separated by a distance H = 1451nm. The curvature of the
electrodes is characterized by their two principle radii, £, = 510pm and R, = 255pm.
Application of a steady electric field Ey = V;/H causes the particle to oscillate continuously
between the electrodes. (b) Bright-field micrographs taken at regular intervals of 250 ps of
a 28 pm particle oscillating at an applied voltage, Vo = 765V. (c) Synchronized particle
trajectory h(t) and electrical current I(t) obtained from high speed imaging (ca. 10° frames
per second) and the current preamplifier, respectively, for V5 = 765 V.



Experiment

24 a5 illus-

CCEP experiments were conducted within an “off-the-shelf” microfluidic device
trated in Figure la. Briefly, two copper wires (OD = 0.5 mm) were bent into hairpin geome-
tries and inserted into a square glass capillary through which mineral oil was flowed (Sigma-
Aldrich M5904 with measured dielectric constant ¢ = 2.5 and viscosity n = 0.027 Pas). The
entire device was enclosed inside an aluminum Faraday cage to minimize electrical noise and
placed under an optical microscope in transmission mode for visualization. During a typi-
cal experiment, a suspension of silver-coated hollow glass spheres in mineral oil (Cospheric
M-40, a = 14 pm, approximately 0.05 wt% in mineral oil) was flowed into the channel with
electrodes energized until a single particle was captured on the electrode surface as observed
by optical microscopy. Clean mineral oil, having been filtered via 0.45pm syringe filter,
was then used as a purge stream to remove unwanted particles. A single data collection
period was initiated by energizing the electrodes to a desired voltage, collecting data, then
de-energizing the system for a minimum of one minute before repeating a measurement.
Logarithmically-spaced voltages were applied in ascending order from the minimum capable
of sustaining reliable oscillation (Vy & 300V or Fy &~ 2.1V um™!) to the maximum achievable
by the voltage source (Vy &~ 1100V or Ey ~ 7.6 Vum™!). Each field setting was replicated
five times, where each replicate contained approximately 10% particle transits between the
two electrodes.

Particle location and electrical current data were collected simultaneously by high-speed
video (Phantom V310, acquisition at ca. 10° frames per second) and precision current pream-
plifier (DL Instruments 1211, rise time < 250ps) as described previously.®? Importantly,
position and electrical data were synchronized to a common start time which corresponds
to 1s after the field was applied. Particle location data were extracted using standard im-
age tracking routines in MATLAB;? electrical data were smoothed using MATLAB’s cubic

smoothing spline function to facilitate further manipulation.



Theory

To describe the motion of a conductive particle moving via CCEP through a dielectric
fluid, we require (i) the electrostatic charge ¢ acquired by the particle upon contact with
the electrode, (ii) the electrostatic force Fp acting on the charged particle, and (iii) the
hydrodynamic drag force Fy that determines its velocity. Here, we review the Stokesian
dynamics approach developed previously! and extend it to account for the finite curvature
of the electrodes.

We consider a conductive sphere of radius a positioned at some point along the shortest
path connecting the two curved electrodes (Figure 1a). Owing to the linearity of the Laplace
equation, the sphere charge ¢ and dipole moment p are linearly related to the potential on
the sphere less the external potential (& — ®°°) and to the external field (E>°) at the sphere’s

center as

q qu> CqE b — o
= ) (1)
p Cpq> CpE E>

where C is the symmetric capacitance tensor (Cpe = Cyg), which can be accurately ap-
proximated for the case of two parallel electrodes.! Note that the symmetry of the problem
ensures that the dipole moment and the electric field are both oriented along the z-direction
(i.e., p = pe, and E® = E%®e,). As described below, knowledge of the external field E*
and the capacitance tensor C enable one to compute all relevant electrostatic quantities such
as the charge, force, and current (Figure 2).

To account for effects due to finite electrode curvature, we use the capacitance tensor
C obtained for parallel electrodes but the external potential &> and field E* for ‘weakly
curved’ electrodes where the electrode separation is small relative to their curvature (H <

R). In this limit, the potential ®>° and field E* in the absence of the sphere evaluated at



its center (z = h) are

d>(h) = -V [% + 2K <3h—[; — %) % + O(/{")} : (2)
E>*(h) = E, {1 + 2K <2—22 — 1—12> + O(KJQ)] : (3)

where Ey = Vo/H is the characteristic field strength, and x = H(R,' + R;')/2 is a di-
mensionless parameter characterizing the mean curvature of the electrodes (see Supporting
Information). This approximation gives the leading order correction to the parallel electrode
solution in the limit of weak curvature (Figure 2a).

When the sphere makes electrical contact with either electrode, charge flows to/from
the sphere until its potential is equal to that of the electrode (e.g., = V;/2 for the lower
electrode). The equilibrium charge acquired by the sphere can then be computed using
equation (1) where the capacitance coefficients are evaluated at contact (e.g., h — a — H/2
for the lower electrode). For the experimental geometry, the equilibrium charge is ¢., = 2.04¢;
where ¢, = 4meeqa®Ey is a characteristic charge scale used throughout the analysis.

The charge on the sphere is balanced by equal and opposite charge, ¢; and ¢, distributed
over the ‘lower’ and ‘upper’ electrodes, respectively, such that ¢ + ¢; + ¢, = 0. The excess
charge on the electrodes due to the presence of the sphere can be expressed in terms of the

sphere charge g and dipole moment p as

() ()
c e (B

as derived in the Supporting Information. The movement of the charged particle across the
channel results in the redistribution of this excess charge between the two electrodes via the

external circuit. Assuming the sphere charge is constant during its transit from one electrode
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Figure 2: (a). Electric field £*° along the axis connecting the two electrodes as approximated
by equation (3). Here, the electrode curvature is £ = {H(R,' 4+ R,') = 0.427 (as in
experiment), and the field is scaled by Ey = V;/H. (b) Capacitance coefficients as a function
of sphere position, h/H, as approximated using the Stokesian dynamics approach.! Here,
the electrode separation is H/a = 10.36 (as in experiment), and the coefficients are scaled
by 4mecga™ Ey with n = 1,2, 3.



to the other, the measured current I is related to the sphere velocity u = dh/dt as

dQI dQu

I =u— = —u—-m. 6
dh dh (6)

This relation is used below to estimate the instantaneous charge on the particle from the

measured current I and velocity w.

To determine the electric force Fg that drives the motion of the particle, we first compute

the electrostatic free energy as

Up = 5 (¢(® + &%) — pE™), (7)

N | —

assuming that the applied voltage 1V, and the sphere charge ¢ are held constant during its
motion across the channel (see Supporting Information). Here, the charge ¢, the external
potential ®*°, and field £* are known; the sphere potential ® and dipole moment p are
obtained from equation (1) using the Stokesian dynamics approximation for the capacitance

tensor C.! The force on the sphere (in the z-direction) can then be computed as

dUg
Fp—— (—) | ®)
dh Vo

where the charge ¢ and the voltage V|, are held constant.
Neglecting inertial effects, the electric driving force Fg is balanced by a hydrodynamic

drag force Fy, which is linearly proportional to the sphere velocity u as
Fy = —6mnaul(h), (9)

where A(h) > 1 is a dimensionless factor that describes the increase in hydrodynamic drag
due to the presence of the electrodes. This expression is valid in the limit of small Reynolds

numbers, Re = pua/n < 1, while the experimental measurements correspond to Re ~



0.01 — 0.1. The drag coefficient A can be accurately approximated using the Stokesian
dynamics approach detailed by Swan and Brady?? for a single sphere between two parallel
walls (see below). Importantly, in the absence of external flows (i.e., for a sphere moving in
a quiescent fluid), this approximation — which neglects effects due to electrode curvature —
is consistent with that used above to evaluate the capacitance tensor C.

Balancing the the electrostatic driving force with the hydrodynamic drag force, we obtain

the following dynamical equation for the position of the sphere

U—E—W. (10)

This equation neglects effects due to particle inertia, which are small relative to the viscous
drag as described by the Stokes number, St = mu/6mna® < 1, where m is the mass of the
particle. In experiments, the silver-coated glass sphere is almost neutrally buoyant, and the

Stokes number is similar in magnitude to the Reynolds number, St ~ Re < 1.

Results and Discussion

Sphere Charge

To determine the charge ¢ on the sphere during each transit, we measured the instantaneous
particle velocity u and electric current I when the particle was exactly halfway across the
channel (i.e., at h = 0). Combined with the theoretical predictions outlined above, these
measurements allowed for two independent estimates of the sphere charge. Owing to the
symmetry of the electrodes about h = 0, the electrostatic force Fr and the electric current
I are both linearly proportional to the sphere charge at the center of the channel — that is,
Fr = aqEy and I = aqu/H for h = 0 where « is a dimensionless factor computed using
the theory outlined above. Note that at other locations in the channel (h # 0) there are

additional contributions to the force and the current due to the field-induced dipole on the
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sphere that do not depend on the charge ¢.
With these preliminaries the charge on the sphere can be estimated from the experimental
data as
_ 6mnau HI

=—" " andg = — 11
qhn O{EO and (e au? ( )

where the estimate ¢, is based on knowledge of the hydrodynamic drag force, whereas ¢,
is based on the electric current. Here, the particle velocity u and electric current I are
measured experimentally at A = 0, the dimensionless parameters A = 1.38 and o = 0.936
are computed based on theory,’?? and the other quantities (1, a, H, V) are known. For
each applied voltage, we collected five data sets each containing ~200 transits of the particle
across the channel; these data were averaged to obtain estimates of the sphere charge ¢ as a

function of the applied voltage (Figure 3).
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Figure 3: Sphere charge ¢ vs. applied voltage V5. The charge is estimated using equation
11 (denoted ¢, and ¢.) for particles traveling in the positive z-direction (denoted +) and
the negative z-direction (denoted —). The vertical lines denote 95% confidence intervals on
the mean charge. The solid black curve represents the best fit to the data while the dashed
curve shows the theoretical prediction.

The data in Figure 3 are divided into four groups based on the method used to estimate

the charge (g, vs. ¢. in equation (11)) and the direction of travel across the channel (g, wvs.
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q— corresponding to u > 0 or u < 0, respectively). First, we note that the two independent
estimates of the sphere charge agree well with one another (i.e., g, ~ g.); however, there
are often significant variations between the charge acquired on contact with the upper and
lower electrodes (i.e., ¢ # ¢_). Importantly, these variations are not due to differences
in the sign of the charge ¢. By changing the polarity of the applied voltage (£V}), the
sphere acquires positive or negative charge of comparable magnitude when it contacts the
same electrode (e.g., the upper electrode). Instead, differences between ¢, and g_ are likely
due to small imperfections or debri on the electrode surfaces that may influence the charge
transfer process (see below).

Aside from these variations, the sphere charge increases linearly with the applied voltage
in agreement with model predictions (Figure 3, black curve). Interestingly, however, the
measured charge is consistently lower (by ~ 66%) than the equilibrium charge predicted by
theory (Figure 3, dashed curve). We! and others®!*!®> have observed similar evidence for
incomplete charging in previous studies conducted at low Reynolds numbers (Re < 1). By

16 or with mm-

contrast, analogous studies performed at high Reynolds numbers (e.g., in air
sized particles and strong fields”) show strong agreement between the measured charge and
the predicted equilibrium charge. These observations suggest that hydrodynamic effects may

play an important role in the dynamics of charge transfer during sphere-electrode ‘contacts’

(see below).

Electrostatics

Given the charge on the sphere during each transit, we can use the measured current and
position data to rigorously evaluate the validity of the electrostatic model outline above. We
first introduce the charge difference, Aq = ¢; — q., which measures the difference in the excess

charge on the two electrodes due to the presence of the sphere. Using equations (4) and (5)
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for the electrode charges, the charge difference is found to depend on the sphere charge ¢ as
Aq(h) = A(h)q + B(h)gs, (12)

where A(h) and B(h) are dimensionless functions of the sphere position h. Owing to the
symmetry of the electrodes about h = 0, A(h) is an odd function and B(h) is an even
function of the sphere position h. The charge difference can be obtained from experiment

by integrating the measured current and making use of equation (6) to obtain

Aq (h(t)) = Ag(0) + 2 / t I(tdt, (13)

to

where h(ty) = 0 and the sphere charge ¢ is assumed constant for ¢y < ¢’ < t. Here, Aq(0) =
B(0)gs cannot be determined directly from experiment and is therefore estimated by theory
to be B(0) = 0.167 for the present electrode geometry. Using equation 13, we computed the
charge difference Ag(h) from the measured current at several locations across the channel.
This function was then decomposed into odd and even contributions to determine the A
and B coefficients presented in Figure 4. The experimental measurements are in excellent
agreement with the theoretical predictions. Thus, provided that the sphere is sufficiently far
from the electrodes (surface separations greater than a particle radius), its charge remains

constant, and the electric force and current are well described by classical electrostatics.

Hydrodynamics

Similarly, we can use equation (10) to estimate the hydrodynamic drag coefficient A(h) as
a function of the sphere position h within the channel. Using the measured charge (i.e.,
the average of estimates g. and ¢,) and the sphere position, the electrostatic force is first
computed using equation (8). Equating this force to the hydrodynamic drag force, we then
obtain the drag coefficient from the measured particle velocity. The result of this analysis

is illustrated in Figure 5 which compares the measured values of A\(h) to those obtained

13
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Figure 4: A and B coefficients defined by equation (12). The open markers are experimental
measurements; the solid curves are the model predictions. The vertical lines represent 95%
confidence intervals on the mean value; confidence intervals for A are smaller than the
markers and therefore omitted.
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from the hydrodynamic theory for a sphere between parallel walls.?® There is quantitative
agreement between theory and experiment throughout the channel; the small deviations are

readily attributed to the effects of electrode curvature neglected by the model.
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Figure 5: Hydrodynamic drag coefficient A vs. sphere position h. The open markers are
experimental measurements; the solid curves are the model predictions.

Contact Charging

Given an accurate description of the physics governing the motion of the sphere across the
channel, we now return to the charge transfer process that occurs when the particle ‘contacts’
the surface of either electrode. Specifically, we consider a charge transfer ‘collision” between a
negatively charge sphere as it approaches the oppositely biased lower electrode at z = —H /2
(Figure 6). During the sphere’s approach, the local electric field in the gap separating
the the sphere and the electrode begins to rise as Epae ~ (3Vo — ®)/(a) ~ Ey/€ where
¢ = (h+ 3H — a)/a is the dimensionless surface separation. Eventually, this maximum field
exceeds the dielectric strength of the liquid (E ~ 107 V/m for mineral oil), and an electric
discharge forms between the sphere and the electrode.?¢ Charge then flows rapidly onto the
sphere thereby reducing the electric field E,,,, in the sphere-electrode gap. Assuming that
some critical field (of order Ep) is necessary to sustain the electric discharge, the trajectory

of the sphere through the position-charge phase space is expected to move along a curve of
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constant field E,,,, ~ Ep (Figure 6). At some point, however, the electric force Fg on the
charged sphere changes sign, and the sphere is pushed away from the electrode surface. The
field in the sphere-electrode gap then falls below the critical magnitude necessary to sustain
the discharge, and the flow of charge onto the sphere ceases. Importantly, this transition
occurs at some finite charge ¢ which is greater than zero, owing to the dielectrophoretic
attraction of the sphere to the electrode, but less than the equilibrium charge ¢.,. For
Ep =~ 30Ey, the curve of zero force (Fr = 0) intersects that of constant field (F.. = Ep)

at a sphere charge of ¢ ~ 0.5¢,, — similar to that observed in experiment.

10°Ey 102Ey 10Ey
4 L \ 0
107! 107 107 10" 10°
13

Figure 6: Qualitative particle trajectory (black) through the position-charge phase space.
Sphere position is presented as the dimensionless surface separation with the lower electrode,
&= (h+ %H — a)/a; sphere charge g is scaled by the equilibrium charge g.,. The blue curves
show lines of constant electric field E,,,, within the sphere-electrode gap as multiples of the
applied field, Ey = Vi/H. The red curve shows the line of zero electric force: Fg < 0 below
the line (i.e., towards the electrode at £ = 0) and Fg > 0 above.

While greatly simplified, this putative mechanism helps to rationalize the experimental
observation that the sphere charge never achieves the expected equilibrium value. In the
absence of inertial effects, the sphere changes direction immediately upon reversal of the
electric force. As a result, the particle does not make mechanical contact with the electrode
surface, and charge transfer proceeds through a thin lubricating film.

Charge transfer at finite surface separations is further supported by electric current mea-
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surements — in particular, by the sharp current ‘spikes’ that occur when the sphere approaches
contact with either electrode. These ‘spikes’ are typically attributed to the rapid flow of
charge between the sphere and the nearby electrode upon dielectric breakdown. However,
current ‘spikes’ may also arise by a purely capacitive mechanism before transfer of charge
to/from the sphere. When a charged sphere approaches an oppositely biased electrode, the
electric current diverges like I oc €71 as the surface separation approaches zero, £ — 0 (see
Supporting Information). This behavior is illustrated in Figure 7a, which shows the electric
current predicted by the model for a sphere of constant charge. From the present data, it
is difficult to distinguish between these competing hypotheses: the current ‘spikes’ observed
in experiment (Figure 1c¢) may occur before charge transfer as described by the model pre-
dictions of Figure 7 or during charge transfer via dielectric breakdown. Nevertheless, even
without detailed knowledge of the charge transfer process, we can apply the capacitive model
to determine a lower bound on the surface separation between the sphere and the electrode
at ‘contact’.

We first determine the average magnitude of the current peaks from the experimental
data: I.. = (0.7240.05)q,/ts where g, = dmecga®Ey and t, = 3n/2ego B2 are characteristic
scales for charge and time, respectively, and the uncertainty represents a 95% confidence
interval for all replicates and voltages. Similarly, the average charge on the particle is
estimated to be ¢ = (1.35 & 0.02)¢s. Using this charge estimate, we compute the electric
current due to the motion of the sphere via CCEP as shown in Figure 7a. By comparing
the results of the model with the peak current measured in experiment, we find that the
surface separation at ‘contact’ must be &, > 0.005 or roughly 0.1 um. This order-of-
magnitude estimate is consistent with the charge transfer mechanism illustrated in Figure
6. We emphasize that this result is a lower bound since the electric field in the sphere-
electrode gap is considerably larger than the breakdown strength at these separations (i.e.,
Epnae ~ 10Ep for £ ~ 0.01). Therefore, charge transfer between the sphere and the electrode

likely begins before the current reaches its peak value. Moreover, small surface irregularities
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Figure 7: (a) Computed electric current due to the movement of a charged sphere via CCEP.
Here, the charge on the sphere is constant and equal to ¢ = 1.35¢, as measured in experiment.
The results are presented in dimensionless form using the characteristic scales ¢, = 4megga’Ey

and t, = 3n/2eegE2. The inset shows the current as

a function of the dimensionless surface

separation, £ = (h + 3 H — a)/a. (b) Histogram showing the distribution of ‘collision times’
t. (defined in the inset) for the lowest voltage used, Vo = 300 V.
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on the particle or the electrodes can result in local field enhancements that further promote
breakdown, and hence particle trajectory reversal at larger separations & > &,,in-

Finally, the proposed mechanism for charge transfer has important implications for the
dynamics of particles moving via CCEP. First, it helps to explain why the particle sometimes
remains near the electrode for a variable period of time before moving off towards the opposite
electrode, particularly at weaker fields (Figure 7b). The dynamical trajectory of the particle
through the position-charge phase space passes near a fixed point, at which the electric force
(and thereby the particle velocity) is zero as is the flow of charge to/from the particle (Figure
6). As a result, there are ‘collisions’ where the force on the particle is near zero while the
viscous resistance to motion is large (A ~ £7! > 1 near contact). Longer times are therefore
required for the particle to ‘escape’ the electrode surface; these times may vary in length due
to the stochastic nature of the electric discharges mediating charge transfer.

We also note that because charge transfer occurs at finite surface separations, the role
of surface forces between the particle and the electrodes is likely minimal. The particle can
oscillate between the two electrodes without ever making mechanical contact with either
surface. This result may explain our experimental observation that the minimum voltage
required to initiate CCEP motions is invariably greater than that required to sustain such
motions: adhesive surface forces between the particle and the electrode are relevant only
during the first charge transfer event. Further experiments are needed to determine the

operational limits of CCEP and their origins — in particular, at lower voltages.

Conclusions

We have provided a complete, quantitative description of the electrostatic and hydrodynamic
behavior of a particle during contact charge electrophoresis. Building on this accurate de-
scription, we provided new and useful insights into the process of contact charge transfer

that explains incomplete particle charging and elucidates the nature of particle-electrode
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‘contacts’. These results can be used to extend our ability to predict particle behavior in
new environments. We are currently working to extend the Stokesian dynamics theory to
describe the dynamics of multiple interacting particles?” as well as that of asymmetrically-
shaped particles. Such predictive control over CCEP dynamics will help to pave the way

towards its application within microfluidic systems and beyond.
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