
Oblivious Routing Using Learning Methods
Ufuk Usubütün∗, Murali Kodialam†, T.V. Lakshman†, Shivendra Panwar∗

∗New York University Tandon School of Engineering, Brooklyn, NY
Email: {usubutun, panwar}@nyu.edu
†Nokia Bell Labs, Murray Hill, NJ

Email: {murali.kodialam, tv.lakshman}@nokia-bell-labs.com

Abstract—Oblivious routing of network traffic uses pre-
determined paths that do not change with changing traffic
patterns. It has the benefit of using a fixed network configuration
while robustly handling a range of varying and unpredictable
traffic. Theoretical advances have shown that the benefits of obliv-
ious routing are achievable without compromising much capacity
efficiency. For oblivious routing, we only assume knowledge of
the ingress/egress capacities of the edge nodes through which
traffic enters or leaves the network. All traffic patterns possible
subject to the ingress/egress capacity constraints (also known as
the hose constraints) are permissible and are to be handled using
oblivious routing. We use the widely deployed segment routing
method for route control. Furthermore, for ease of deployment
and to not deviate too much from conventional shortest path
routing, we restrict paths to be 2-segment paths (the composition
of two shortest path routed segments). We solve the 2-segment
oblivious routing problem for all permissible traffic matrices
(which can be infinitely-many). We develop a new adversarial and
machine-learning driven approach that uses an iterative gradient
descent method to solve the routing problem with worst-case
performance guarantees. Additionally, the parallelism involved
in descent methods allows this method to scale well with the
network size making it amenable for use in practice.

Index Terms—Oblivious Routing, Segment Routing, Gradient
Descent, Machine Learning, Adversarial Learning

I. INTRODUCTION

Classical network optimization literature provides various
methods for solving multi-commodity flow routing problems
when the network graph, link capacities and the demands are
all known. However, in today’s networks with a constantly
growing number of users and with diversified applications
to support, accurately predicting traffic demand is often a
challenge. Virtualization and continuous migration of Internet
services and occasional failures in adjacent networks can
also lead to unpredictable demand fluctuations. Despite the
changing network traffic conditions, for operational simplicity
it is preferable to avoid frequent configuration changes. One
approach to accomplish this while still making good use of
network resources is traffic oblivious routing.

With traffic oblivious routing the goal is to find a fixed
routing that is agnostic to the current traffic demand while not
leading to poor network performance. Work on developing
routing approaches that work over a wide variety of traffic
instances was initiated by [1]. More recently, [2] outlined a

This research was supported by the New York State Center for Advanced
Technology in Telecommunications and Distributed Systems (CATT), NYU
Wireless, the Cisco University Research Program Fund and by the National
Science Foundation (NSF) under Grant No. CNS-2148309 and OAC-2226408.

routing scheme that provides relative congestion performance
guarantee (compared to the optimal routing scheme) for any
traffic matrix. Our paper follows the approach taken in [3]–
[5] where the set of permissible traffic patterns are constrained
by natural network capacity constraints termed the hose con-
straints. Instead of obtaining relative performance guarantees,
we want to obtain absolute performance guarantees over this
class of traffic matrices. To achieve this goal, instead of solving
the routing problem for a single traffic matrix, we need to
find a single routing that works well (provides a worst case
bound) for every permissible traffic matrix subject to the hose
constraints since it only requires knowing the ingress/egress
capacities of the network’s edge nodes. However, we need
to address the challenge of finding the optimized routing for
the infinitely-many traffic matrices that are permissible within
the hose constraints. This oblivious routing solution has the
potential to avoid over-provisioning while robustly handling
fluctuating traffic demands. [6].

Segment Routing (SR) [7] has been widely deployed in
networks for route control. With segment routing, a source-
destination path in the network is composed of multiple seg-
ments where each segment uses shortest-path routes, including
possibly equal-cost multi-path (ECMP) routes, computed by
the underlying routing protocol. Control of the routing path
is accomplished by an appropriate choice of the segment
end-points. In this paper, we use segment routing as the
method of choice for route control and solve the corresponding
oblivious routing problem. A similar approach was taken by
[8]; however our method provides a higher degree of freedom
for routing and does not have any restrictions on the in/out
constraints. For ease of deployment, we consider only 2
segment paths, where each network path is the composition
of at most two segments determined by choosing a single
intermediate node where the first segment ends and the second
segment begins.

Solving our oblivious routing problem involves optimizing
over infinitely many traffic matrices. For this aspect, we see a
parallel with machine learning methods. Adversarial learning
approaches are a class of methods that emerged within the
field of deep learning for improving the robustness of neural
networks [9]. In adversarial learning, given a training solution,
new data points are synthetically generated in order to fail
the system. These adversarial data points are then fed back
into the training in order to improve the robustness of the
solution. The idea, therefore, is to gradually find a solution

by constantly improving against adversarially generated worst
case scenarios. In this paper we propose a novel technique
inspired by adversarial learning to be used for oblivious rout-
ing problems. Building on this idea, we switch back and forth
between solving the routing problem for a small set of traffic
matrices and generating the worst case traffic matrices for our
current solution until we converge to an optimal solution. To
solve the constrained optimization problems, we reshape them
in ways that allow us to use descent based methods that are
highly parallelized and efficient when compared with linear
programming (LP) based approaches to oblivious routing that
face computation and scalability issues [6]. We also provide
two relaxations of the oblivious routing problem that use
upper bounds on the traffic demand and do not require an
adversarial method. We implement a solver and provide a
proof of concept. Our contributions in this work can be listed
as follows:

• Formulate a traffic oblivious, 2-SR problem that follows
from the ingress/egress capacities, i.e., hose constraints.

• Propose an adversarial approach to efficiently solve this
problem using gradient descent.

• Propose two relaxations of the problem that yield solu-
tions that provide bounds on the optimal solution.

• Show the proof of concept with an implementation.
After setting up the notation, in Section III we introduce

oblivious routing with hose constraints and then in Section
IV we formulate the 2-SR problem with the hose constraints.
In Section V, we present our adversarial method to solve
the oblivious routing problem. We present relaxations of the
formulated problem in Section VI. Next, in Section VII, we
present performance benchmarks. Concluding remarks are in
section VIII.

II. NOTATION

Let us represent a network using a directed graph G(N,E)
with a set of nodes N and a set of directed edges E. We let
each node be both a source and a destination for the traffic
to be routed. The nodes in N are labeled {1, 2, . . . , n}. We
denote each directed edge from i to j with (i, j) where i, j ∈
N and (i, j) ∈ E. For simplifying the notation we also use e ∈
E to refer to an edge. We use |.| as the cardinality operator. We
express the capacity of link e as ue. We define the utilization
of a link as the total load on that link divided by its capacity.

III. OBLIVIOUS ROUTING WITH HOSE CONSTRAINTS

Unlike challenges involved with characterization of ex-
pected traffic patterns in a network, the network topology and
link capacities are more easily available from the network. As
was done in [5], one can use some of this information about the
network, to characterize all observable traffic on that network.
Let us assume that network G is connected with the outside
world at every node i and that we expect all traffic to originate
and terminate outside our network. Observe for the connection
with the outside world that the egress capacity of each node
provides an upper limit on the amount of traffic that can leave
that node at a given moment. Likewise, the ingress capacities

limit, how much traffic can be observed to enter our network
at a given time. Let us denote the ingress capacity of a node
i with Ri and the egress capacity with Ci. We can then claim
the following for each traffic matrix [tij] that can be observed
at network G:∑

j∈N,j ̸=i

tij ≤ Ri

∑
j∈N,j ̸=i

tji ≤ Ci ∀i ∈ N (1)

This corresponds to having limits on the row and column
sums of any observable traffic matrix imposed by physical
specifications of the network. We can use this information to
describe all observable, or hose-feasible, traffic matrices [tij]
on network G with the following set:

T (R, C) =

{
[tij]

∣∣∣∣∑
j ̸=i

tij ≤ Ri and
∑
j ̸=i

tji ≤ Ci, ∀i ∈ N

}
(2)

Observe that we are characterizing all observable traffic in a
network and not using any current measurements or estima-
tions about the traffic to be carried. In the next section we
formulate a flow placement problem that aims to provide a
fixed optimal solution for every traffic matrix in set T (R, C).

IV. SYSTEM MODEL WITH SEGMENT ROUTING

Segment routing (SR) is deployed in networks and can
be used for controlling routing in the network to be along
specific paths. In SR, routing paths are broken down into
multiple segments. For traffic engineering, one needs to pick
which intermediate nodes are to be visited on the way to
the final destination. These intermediate nodes are known at
the source node, which is in charge of appending each of
these intermediate destinations to the packet header. Packets
are forwarded through the chosen segments and used labels
are popped at each intermediate node. Segment routing is
defined to work with any number of intermediate nodes.
However, most of the benefits in terms of optimizing network
utilization can be achieved by just using two segments [10]
(more segments may be needed if traffic needs to be routed
through several mid-boxes). We therefore choose to limit our
attention to 2-segment routing in this work, that is for each
flow traveling through the input-output pair i ⇝ j we pick
one intermediate node k ∈ N . Our proposed method however,
can easily be extended to n-segment routing.

We define our model following a similar approach to [10].
Let SP (i, j) be the set of links e on the shortest path from
the node i to j. With 2-segment routing, if we are given a
flow from i to j, and we chose to route this flow over an
intermediate node k, this flow will travel through the links
in SP (i, k) and then through SP (k, j). In order to map a
shortest path SP (i, j) to a given link e on graph G, define
the mapping coefficient function fij(e) ∈ [0, 1]. If the shortest
path is unique with respect to the cost metric, then fij(e) = 1
for each link e ∈ SP (i, j), and fij(e) = 0 for all other links
e /∈ SP (i, j). If the there exists multiple equal cost paths,
assuming flows are splittable, values of fij(e) can also be
fractional in order to represent an ECMP splitting [11]. An

Fig. 1. Definition of fij(e) with ECMP. The first number next to the link
represents the link weight and the second number is fij(e). The shortest path
length is 4 and there are three shortest paths.

example scenario for the ECMP case is demonstrated in Figure
1. This mapping can naturally be extended to segment routing,
where each segment is routed through the shortest path. Let
gkij(e) be the mapping coefficient function of the 2 segment
route i⇝ k ⇝ j to some link e. It is equal to the following:

gkij(e) = fik(e) + fkj(e) (3)

The values of mapping coefficient functions are fixed for a
given network G and only have to be calculated once, which
can be done fairly easily.

For the purpose of traffic engineering, let us define traffic
split ratios αk

ij ∈ [0, 1]. Assuming flows are splittable, αk
ij

describes the ratio of traffic from i to j that will be routed
over the intermediate node k. In order to distribute all traffic
we must have

∑
k α

k
ij = 1, ∀i, j. In case an arbitrary traffic

matrix [t̃ij] ∈ T (R, C) is observed at the network, the amount
of traffic traveling from i to j routed over node k will be equal
to t̃ijα

k
ij . Therefore, the amount of traffic from i to j routed

over node k will cause t̃ijα
k
ijg

k
ij(e) amount of load on a link

e. The total load F (e) on some link e can then be found using:

F (e) =
∑
ijk

t̃ijα
k
ijg

k
ij(e) (4)

Using the defined symbols, we formulate the following
traffic oblivious 2-SR routing problem. The formulation aims
to minimize the maximum link utilization by tuning traffic
split ratios.

min
αk

ij

µ (5)

s.t.
∑
ijk

tijα
k
ijg

k
ij(e) ≤ µue ∀[tij] ∈ T (R, C),

∀e ∈ E (6)∑
k

αk
ij = 1 ∀i, j ∈ N (7)

αk
ij ≥ 0 ∀i, j, k ∈ N (8)

Constraints in (6) aim to bound the maximum link utilization
and constraints on (7) and (8) make sure that all traffic is
routed. If a solution µ ≤ 1 can be found, this means, there
exists a feasible fixed routing solution that can optimally
handle all permissible traffic matrices.

Note that the utilization constraints in (6) are infinitely many
as these relations have to be satisfied for every matrix from
the set T (R, C). This brings a fair amount of complexity to
the problem since solving the problem involves calculating of
the worst case traffic matrix at each evaluation. There exist
approaches that utilize LP dual formulations to find a solution
to different variants of the oblivious routing problem with hose
constraints. Those approaches however are computationally
expensive and scale poorly with network size [5]. In the next
section, we propose a novel adversarial approach, inspired by
machine learning, that allows us to simplify the problem and
solve it.

V. ADVERSARIAL LEARNING APPROACH

The oblivious routing problem with hose constraints pre-
sented in Section IV involves satisfying infinitely many de-
mand constraints and presents a challenge. To approach the
problem differently, we propose a novel adversarial approach,
inspired by machine learning, that allows us to capture the
dynamics of the infinitely dimensioned set T (R, C) of hose-
feasible traffic matrices without having to iterate the infinitely
many constraints in (6). We achieve this by breaking the orig-
inal problem down into two simpler and competing problems
and tackle them in alternation. In doing this, we reshape the
problem to make it compatible with gradient optimization
tools. This new formulation allows us to exploit the parallelism
capabilities of modern gradient descent tools.

The optimization problem presented in Section IV, can
instead be solved by tackling the following two sub-problems
in alternation:

(i) Generating the worst case traffic matrices for a given
routing solution αk

ij .
(ii) Solving for the optimal traffic split ratios αk

ij for the
finitely many matrices generated so far.

We first define the two sub-problems and discuss how they
can individually be solved. We then present our methodology
for obtaining the optimal solution for the oblivious routing
problem. Let us begin with sub-problem (ii) which we call the
Optimization Step: Assume that we are given a finite set L of
traffic matrices and we would like to tune the split ratios αk

ij to
obtain the fixed routing solution that results in the lowest max-
imum link utilization. This corresponds to replacing T (R, C)
with L in equation (6) and results in |L| · |E| constraints. By
reshaping the problem into a minmax formulation, we can
eliminate all of the link utilization constraints by embedding
them into the objective function. To simplify the notation,
assume all matrices in set L are indexed and define the set LI

to represent these indices. We obtain the following problem
of finding the optimal routing solution αk

ij over the set L:

min
αk

ij

[
max

e∈E,l∈LI

∑
ijk t

(l)
ij α

k
ijg

k
ij(e)

ue

]
(9)

s.t.
∑
k

αk
ij = 1 ∀i, j ∈ N (10)

αk
ij ≥ 0 ∀i, j, k ∈ N (11)

Stop when
performance

upper and lower
bounds converge

Generate the worst
possible traffic matrices

𝑡!"
($)

for the current
routing fractions 𝛼!"& and

add to the set of bad
matrices ℒ

Find the best routing
split fractions 𝛼!"& for all
traffic matrices in set ℒ

Start with
random split
fractions 𝛼!"

&

Adversarial Step

Optimization Step

Fig. 2. Adversarial Optimization Flowchart

Observe that remaining constraints involve keeping αk
ij non-

negative and ensuring the terms add up to 1 when summed
over k. The softmax function, widely used in machine learning,
is a function that takes in n real numbers and maps them to a
discrete probability distribution with n outcomes, i.e., n num-
bers adding up to 1. This function provides a great opportunity
for eliminating the remaining constraints in (10) and (11). Let
us define a new dummy variable ykij corresponding to each
αk
ij and relate them to one another using the softmax function,

denoted SM(·), as follows:

αk
ij = SM(ykij) = e

yk
ij/(

∑
k̃ e

yk̃
ij) (12)

Observe that, regardless of the values of ykij , the αk
ijs obtained

through (12) always satisfy the constraints in (10) and (11). We
can, therefore, update our formulation once again to include
the softmax function and eliminate all constraints.

min
yk
ij

[
max

e∈E,l∈LI

∑
ijk t

(l)
ij SM(ykij)g

k
ij(e)

ue

]
(13)

By taking advantage of the softmax function, we have been
able to reduce the problem of finding the optimal split ratios
for finitely many matrices into a non-linear unconstrained
optimization problem. This formulation in (13) can easily be
fed into any optimization tool used for machine learning that is
able calculate gradients and be solved with the desired choice
of descent algorithm.

Now, with knowledge of solving the optimal routing prob-
lem for finitely many matrices from set L, let us formulate
sub-problem (i) of generating worst case traffic matrices to
build the set L. We call this the Adversarial Step: As our aim
is to minimize the maximum link utilization in the network
for all permissible traffic, a worst case traffic matrix for link
e can be defined to be a matrix [tij] ∈ T (R, C) that results in
the maximum utilization of link e, given split choices αk

ij . As
link capacities ue are fixed, this corresponds to maximizing
the total load on the link F (e) as defined in (4) and can be
formulated as the following LP:

[tij]
(l) = arg max

[tij]

∑
ijk

tlijα
k
ijg

k
ij(e) (14)

s.t.
∑
i,i ̸=j

tlij ≤ Cj ∀j ∈ N (15)∑
j,j ̸=i

tlij ≤ Ri ∀i ∈ N (16)

tlij ≥ 0 ∀i, j ∈ N (17)

This problem may yield infinitely many solutions as certain
entries of tlij may not contribute to traffic on link e either due
to the split choices or due to the mapping function. We choose
any one of such solutions as the the free terms have no effect
on the worst case utilization of link e. In order to cover all
links in the network, this problem should be solved |E| times
for each link e ∈ E, producing |E| new traffic matrices to be
appended to set L.

Having both sub-problems formulated, we now present our
adversarial approach for traffic oblivious 2-SR routing with
hose constraints. Our approach, which involves switching back
and forth between the Adversarial and Optimization Steps,
is summarized in a flowchart presented in Fig 2. Given a
network graph G(N,E), link capacities ue and ingress/egress
capacities R and C, we start with randomly generated dummy
variables ykij and obtain the corresponding split fractions αk

ij

through the softmax function presented in (12). This allows
us to start the first execution of the Adversarial Step in which
we generate |E| traffic matrices [tij]

(l) which maximize the
load on their respective links e for the current split fractions
αk
ij . We append all the matrices generated in this step to the

precedently empty set L. At the end of each Adversarial Step,
before ykijs are modified, the value of the objective function
of the Optimization Step, i.e.,

max
e∈E,l∈LI

∑
ijk t

(l)
ij SM(ykij)g

k
ij(e)

ue
(18)

will be equal to the worst case performance performance of
current split fractions αk

ij over the entire set T (R, C), i.e., all
permissible traffic matrices. Therefore, this defines an upper
bound on the worst case routing performance for the current
split fractions. We then move on to the Optimization Step.
We tune the dummy variables ykij with gradient descent in
order to generate the routing solution that leads to the lowest
maximum link utilization over all the traffic matrices in set L.
Once the descent converges, we save the new split fractions. If
evaluated with the new split fractions, equation (18) this time
gives us a lower bound on the worst case performance over
the set T (R, C). We continue going back and forth between
the two steps, continually growing the set L and tuning αk

ijs
while noting down the upper and lower bound values.

In Figure 3 an example optimization run is presented where
the worst case link utilization of each link on the network
is depicted over iterations. Before the first iteration begins,
split fractions are randomly picked and the worst case traffic
matrices corresponding to each link are calculated. These |E|

0 50000 100000 150000 200000 250000 300000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

W
or

st
 C

as
e

Lin
k

Ut
iliz

at
io

n New Matrices Added

Worst Case Link Utilization of All Links - GEANT Topology

100000 125000 150000 175000 200000 225000 250000 275000 300000

0.4

0.5 Detail Window

Fig. 3. The worst case utilization of each link is shown while the active traffic split fractions αk
ij are being tuned with gradient descent over the iterations

of Optimization Steps. The worst case of each link is found over the traffic matrices from the set L and therefore the maximum value corresponds to the
value in equation (18). Each Optimization Step is followed by an Adversarial step where the set L is appended with traffic matrices producing the worst link
utilization for the solution αk

ij at every 8000th iteration. The results are shown for the GEANT topology with parameters in Section VII.

matrices, which constitute the set L, lead to poor utilization
values. Then, the the Optimization Step begins and tunes
split fractions over iterations. At each 8000th iteration, the
Adversarial Step is called to expand the set L. This leads to
peaks that are visible in the worst case. The Optimization Step
then works to find a new solution. As can be seen, the upper
bound does not strictly decrease at each Adversarial Step as
the optimization step taken over the finite set L may push
the solution away from the optimum value. However, when
executed for sufficiently long the two quantities are expected to
converge. Therefore, the procedure can be terminated when the
lower and upper bound values are within a desired ϵ away from
each other. In Section VII we provide performance statistics
for select real backbone network topologies.

In the next section we present two relaxations of the oblivi-
ous routing problem that does not require running adversarial
episodes. These formulations provide bounds on the worst case
performance of our Adversarial Method and are further able
to provide sub-optimal routing solutions.

VI. RELAXATIONS FOR OBTAINING PERFORMANCE
BOUNDS

In this section, we present two simpler formulations that are
inspired by [12] that do not require generation of worst case
traffic matrices. These methods are instead able to provide
a sub-optimal routing solution using only the ingress/egress
capacity information R and C. As they are computationally
much simpler than the adversarial method, they provide easy
to compute upper bounds on the worst case performance of
the optimal solution. In order to derive these methods, let us
use a slightly different but equivalent expression to express
the total load F (e) from what we defined in (4). Let us first
define ϕij to be the total amount of traffic induced on an SR
segment from node i to j. Keep in mind that an SR segment
corresponds to a logical mapping and that real traffic goes
through all nodes on the shortest path SP (i, j). In that case,
we can express the total load F (e) as:

F (e) =
∑
ij

ϕijfij(e) (19)

As 2-SR is used, any segment is either the first or the second
along the way. Therefore, the quantity ϕij consists of the
aggregate of all traffic that uses the segment i ⇝ j either
as the first or as the second segment. Assuming an arbitrary
traffic matrix [t̃ij] ∈ T (R, C) is observed at the network, the
total load on logical segment i ⇝ j can be expressed as the
following:

ϕij =
∑
k

αj
ik t̃ik +

∑
k

αi
kj t̃kj (20)

where the first term captures first segments and second term
captures second segments. Note that ϕij depends on the traffic
matrix. However the ingress/egress capacity information R and
C can be used to obtain an upper bound on the term that
does not depend on the individual traffic matrix. We present
two such methods. The first one that we call Non-Uniform
Splitting, uses the same system model introduced in Section
IV. By following the inequalities below we obtain an upper
bound on the quantity ϕij :

ϕij ≤ (max
k

αj
ik)

∑
k

t̃ik + (max
k

αi
kj)

∑
k

t̃kj (21)

≤ (max
k

αj
ik)Ri + (max

k
αi
kj)Cj (22)

Replacing the term ϕij in equation (19) with the upper bound
in (22), provides an upper bound on F (e), the total load on
link e.

We formulate the following new oblivious routing problem
using this upper bound on F (e). Using the same softmax
approach introduced in Section III, allows us to eliminate the
non-negativity and summation constraints of (10) and (11).

min
yk
ij

max
e∈E

1

ue

∑
ij

fij(e)

[
max

k
SM(yjik)Ri

+max
k

SM(yikj)Cj

]
(23)

Note that this relaxation can directly be solved with gradient
descent as it does not require generation of traffic matrices,
or tackling competing problems. The solution to this problem
also provides a worst case performance guarantee.

We formulate a simpler problem that we call Uniform
Splitting by reducing the split choice space. We let αk

ij = αk,
that is, we map all traffic over node k regardless of origin and
destination. Following a similar approach, we obtain an upper
bound on the quantity ϕij :

ϕij = αj
∑
k

t̃ik + αi
∑
k

t̃kj (24)

≤ αjRi + αiCj (25)

By using the same softmax approach, we obtain the following
optimization problem:

min
yk
ij

max
e∈E

1

ue

∑
ij

fij(e)

[
SM(yi)Cj + SM(yj)Ri

]
(26)

Like the Non-Uniform Splitting formulation, this formulation
can also be solved with gradient descent and provide worst
case performance guarantees.

VII. RESULTS

We implemented all three methods in pytorch in order
to demonstrate a proof of concept. For all three methods
we used the Adam optimizer to descend over the gradient.
Our implementation of the Adversarial Method uses fixed
length descent episodes in its Optimization Step that does not
involve fine tuning with respect to stop conditions. In each
run, we executed the algorithm for a total of 300000 iterations,
used fixed 8000 iteration episodes of gradient descent for the
Optimization Step and took advantage of the CBC LP solver in
pulp to conduct the Adversarial Step. After a run, we pick the
traffic split solution αk

ij that leads to the best worst-case per-
formance and report the worst-case utilization corresponding
to that solution. We tested our method over multiple real life
backbone network topologies obtained through The Network
Zoo [13]. We used uniform link capacities ue = 1, ∀e and
uniform ingress/egress capacities Ri = Ci = 0.1, ∀i.

The transient behavior of our adversarial method is pre-
sented in Figure 3 for the GEANT topology. This transient
behavior was discussed in detail in Section V. Table I presents
the achieved worst case link utilization of each method. These
values are normalized with respect to the worst case link
utilization when the shortest path ECMP routing was used.
These ratios allow us to compare the worst case link utilization
of the proposed methods to that of shortest path routing with
ECMP, and their comparison is only meaningful within the
same topology. Thanks to the achieved load-balancing, we
see notable improvements with respect to the shortest path
scenario for all cases. We also see that the Adversarial Method
always performs better than the Non-Uniform Splitting method
which in turn always performs better than the Uniform Split-
ting method as expected. Both of the relaxation methods,
which are much simpler to solve compared to the Adversarial
approach, obtain a similar performance and provide an upper
bound as expected.

TABLE I
WORST CASE LINK UTILIZATION NORMALIZED WITH RESPECT TO

SHORTEST PATH WORST CASE LINK UTILIZATION

Normalized Worst Case Utilization
Topology Nodes Edges Unif. Sp. N-Unif Sp. Adversarial

Sprint 11 18 61.1% 60.6% 56.0%
GoodNet 17 31 38.8% 37.2% 33.6%
GEANT 40 61 51.3% 49.9% 46.3%
GARR 61 89 57.7% 56.5% 52.3%

Intellifiber 73 97 82.3% 79.3% 71.6%

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated that adversarial approaches that orig-
inated within machine learning can also be used to solve traffic
oblivious routing problems. The technique, unlike previous
attempts, scales to large scale problems and can be used to
derive routing schemes that provide worst case guarantees
over the range of hose-feasible traffic matrices. Furthermore,
we provided relaxations to the problem that can be easily
solved and that can be used to obtain performance estimates
of the Adversarial Method. The approach in this paper can
be extended to the problem of routing with latency bounds
as well routing through middle-boxes by restricting the set of
points through which traffic can be routed.

REFERENCES

[1] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel com-
munication,” in Proceedings of the thirteenth annual ACM symposium
on Theory of computing, 1981, pp. 263–277.

[2] H. Racke, “Minimizing congestion in general networks,” in The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings. IEEE, 2002, pp. 43–52.

[3] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive, “A flexible model for resource management in
Virtual Private Networks,” in Proc. ACM SIGCOMM, 1999, pp. 95–108.

[4] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener, “Algorithms for
provisioning Virtual Private Networks in the hose model,” IEEE/ACM
Trans. Netw., vol. 10, no. 4, pp. 565–578, 2002.

[5] M. Kodialam, T. Lakshman, and S. Sengupta, “Traffic-oblivious routing
in the hose model,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 774–787,
2011.

[6] M. Kodialam, T. Lakshman, J. B. Orlin, and S. Sengupta, “Oblivious
routing of highly variable traffic in service overlays and IP backbones,”
IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 459–472, 2008.

[7] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, Jul. 2018.

[8] M. Antic and A. Smiljanic, “Oblivious routing scheme using load
balancing over shortest paths,” in Proc. IEEE ICC, 2008, pp. 5783–
5787.

[9] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent advances in
adversarial training for adversarial robustness,” in 30th International
Joint Conference on Artificial Intelligence, 2021, pp. 4312–4321.

[10] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized network
traffic engineering using Segment Routing,” in 2015 IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2015, pp. 657–665.

[11] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC
2992, Nov. 2000.

[12] M. Kodialam, T. V. Lakshman, and S. Sengupta, “Efficient and robust
routing of highly variable traffic,” in 3rd Workshop on Hot Topics in
Networks. ACM, November 2004.

[13] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

