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Abstract—Static data visualizations are pervasive across STEM
research disciplines. However, as the complexity of datasets
continues to grow, often incorporating multiple modalities, the
limitations of static visualization become apparent. Multimodal
datasets require new tools for data exploration and visualization.
In response to the limited capabilities of prior alternatives which
tend to be less flexible or center on project-specific visualizations
for data exploration, we are developing the Multimodal Data
Explorer (MDE) - a novel application which is capable of explor-
ing custom time-series multimodal data in context, providing a
comprehensive solution that can enable a deeper understanding
of the relationships between multiple streams of data. In addition,
the client-server design of MDE facilitates multiple users’ data
exploration at the same time.

Index Terms—multimodal, visualization, time-series data

I. INTRODUCTION

Early research in affective science and computing mostly
relied on unimodal datasets, such as images, speech audio, text
transcriptions, and individual biophysical modalities [1]-[4].
However, relying on single modalities for affective modeling
can be insufficient [5]. With advances in computational pro-
cessing, incorporating multimodal data into affective modeling
has become increasingly common, considering that humans
tend to rely on information from multiple senses [6], e.g., when
reacting to situational contexts and environmental changes
or making decisions. Despite much research on affective
modeling using multimodal datasets, there is still a need for
additional research on broadly generalizable and adaptable
multimodal data visualization. Existing applications are often
project-specific or lack flexibility in the types of involved data
streams or their user customization functionality. To address
this gap, we have developed a novel application called the
Multimodal Data Explorer (MDE) that enables users to load
and visualize a range of multimodal datasets. Specifically
designed to work with time-aligned multimodal data, MDE
provides a generic and flexible solution for multimodal data
visualization.

The MDE visualization system is designed to facilitate
researchers’ ability to spot trends in multimodal data through
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Fig. 1. A screenshot of a displayed page of the Multimodal Data Explorer
(MDE) featuring a time-series view of an example multimodal dataset. This
visualization includes videos, transcripts, facial expression features, galvanic
skin response, and other time-series data streams. MDE allows users to add
time-specific comments and customize the interface based on the specific data
streams they wish to explore.

the use of a novel visualization interface. MDE is a Django-
based web application [7], which allows the display of videos,
transcripts, interactive data plots, and other time-synchronized
data streams. The main video serves as the anchor for the
remaining modalities time-wise which allows the data to be
displayed in relevant segments. Additionally, MDE allows for
in-place commenting and data annotation in the data timeline.
Figure 1 shows a snapshot of several multimodal data streams
from an experimental setting involving a dyadic task, where
the data comprises modalities such as video, speech audio,
dialogue transcripts, facial features, galvanic skin response
features, and eye movements. The application can generate
distinct pages for each multimodal data instance in the dataset.
Users can further customize the viewing of the applications’
display by manipulating the various window components dur-
ing an exploration session. The outcome is a flexible system
that aids researchers in exploring multimodal datasets which
can lead to a deeper understanding of the relationships across
the various data streams.

II. SELECT RELEVANT PRIOR WORK

Multimodal data analysis holds great importance in vari-
ous scientific domains [8], [9]. One reason for this is that
multimodality can help overcome the limitations of a single
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Fig. 2. This diagram shows the behind-the-scenes interactions of a displayed page. When a user loads the page, the subject view (green) processes the data
and sends it to the subject display which manages most user interactions and retrieves graphs to display.

modality [10], providing researchers with more complete in-
formation. Adequate exploration of multimodal data requires
tools capable of displaying and processing different modal-
ities concurrently. The development of MDE’s interface was
informed by prior research. Although static data visualizations
are widely used, there is a need for improved tools [11],
[12], particularly for time-evolving data [13]. Projects such as
M2Lens [14] or the Multimodal Learning Analytics platform
[15] demonstrate the need for new applications to visualize
multimodal data, and that interactive tools are preferred for
better exploration and understanding of underlying information
[16]. In addition, prior work has discussed the benefits of using
interactive plots over static charts [11], especially pertinent to
time-series data visualizations such as line graphs.

III. OVERVIEW OF THE MDE SYSTEM

The above discussions highlight the limitations of unimodal
or static, non-interactive data visualization systems. In partic-
ular, the limitations of static visualization become even more
evident when trying to explore multimodal, time-series data.
The following is a description of the MDE system and how it
accomplishes our goal of visualizing multimodal data streams.

The core of the system is the subject view, as highlighted in
green in Figure 2. When generating the desired visualization of
a given subject’s data, the subject view accesses a configura-
tion file which details how the dataset is structured in order to
identify the relevant data files before processing them. These
data files may include any provided videos, transcripts, CSV
files, etc. that the subject view needs to pass onto the subject
display (an HTML page). The subject display will also call
back to the subject view during the client’s session to get
updated transcripts and save changes to a comments file.

The subject display mostly interacts with its own static files
and a separate Django application [7] we created that generates
charts on-the-fly using the Bokeh Python graphing library [17].
This application receives information about selected CSV file
columns, current timestamp, and desired time segment width

and returns the corresponding chart for display. The static
folder contains the subject display’s CSS and JavaScript files.
The JavaScript files allow for dynamic widget creation, chart
access, comment creation, and many other functionalities.

MDE’s user interface is designed to be user-friendly, intu-
itive, and flexible. To avoid clutter, MDE provides the option
to split a dataset’s data visualizations across different pages.
This keeps the visualizations organized and straightforward
to parse. To ease the learning curve of using a new sys-
tem, we carefully considered how to make MDE intuitive.
A dashboard-style design, recognizable iconography, inviting
buttons, and logical feature placement are common themes
in the user interface’s design that guide a user in exploring
data while using the system. Additionally, tooltips are included
to further describe a given feature to the user. Flexibility
is an important consideration, as researchers’ experiments
may require different layouts and data streams. To this end,
they can add or remove widgets as needed, and are able to
switch between which CSV columns are being displayed in a
widget. When uploading a dataset, researchers may set up a
configuration file for their data, so they can utilize their own
naming conventions.

IV. DEMO OUTLINE

The demo aims to show MDE’s capabilities and gather feed-
back for improvements. We will introduce MDE and provide
an overview of its key capabilities and briefly introduce the
example data that will be used for the demo. Attendees may
also interact with MDE to attempt specific tasks using the
example data and provide anonymous feedback indicating how
well MDE facilitated exploration.

ETHICAL IMPACT STATEMENT

Data examples were collected in IRB-approved experiments
with informed consent.
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