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Abstract— Quantum information processing technologies are gaining interest due to their po-
tential for performance exceeding what is possible with the best classical computers. One of
the most promising platforms is the circuit quantum electrodynamics (cQED) architecture that
controls superconducting circuit qubits by coupling them to electromagnetic fields in microwave
resonators or waveguides. As these devices become increasingly complex, existing analysis and de-
sign approaches that often rely on lumped element circuit approximations can become inadequate
due to their lack of accuracy and flexibility. This is leading to a growing interest in developing
quantum full-wave numerical modeling methods for the high-fidelity analysis of cQED devices.
In this work, we focus on a quantum full-wave modeling approach that uses a projector-based
quantization approach that allows a problem to be decomposed into distinct subdomains whose
fields can be quantized more easily. This leads to a framework that can naturally incorporate
microwave ports, which is not straightforward with other formulations. Here, we consider an
explicit problem of a coaxial-fed rectangular waveguide cavity to validate parts of our projector-
based formalism. Toward this end, we apply this approach to a classical Hamiltonian analysis
of this system that can be used to more easily validate the relevant full-wave aspects of the
corresponding quantum formulation. In addition to presenting the formulation of the full-wave
classical Hamiltonian of the system, we derive equations of motion and discuss an analytical solu-
tion procedure with an input-output theory approach. We validate our formulation by comparing
the input-output theory results to standard finite element method (FEM) scattering parameter
simulations.

1. INTRODUCTION

Quantum information processing devices are revolutionary technologies that have the potential to
leverage quantum effects to achieve unparalleled performance compared to conventional technology.
One particularly promising platform is the circuit quantum electrodynamics (cQED) architecture,
as demonstrated through recent landmark achievements of a computational advantage over the
most powerful classical machines [1, 2]. However, there is still a gap to achieving practical quantum
computation, which requires significant improvement in the performance of each component of these
systems while also massively scaling the number of qubits involved [3, 4].

Tackling these engineering challenges will result in increased hardware complexity, which stresses
the deficiencies in existing analysis methods and emphasizes the need for new high-fidelity mod-
eling approaches to be developed. Most often, systems are initially conceptualized and analyzed
using simplified lumped-element circuit descriptions [5]. The fidelity of these simplified models are
limited due to their omission of various frequency- and spatial-dependent effects, which can lead to
significantly incorrect modeling predictions [6]. To address some of these issues, black-box circuit
quantization techniques were introduced to incorporate the effects of more modes of an electromag-
netic system into a lumped-element circuit model [7]. Although these methods do utilize full-wave
results in building their circuit models, the process involves inconvenient curve-fitting procedures
that become impractical when including many modes of the electromagnetic system. More recently,
quantum full-wave modeling approaches that more directly work with electromagnetic eigenmodes
are gaining interest for achieving accurate solutions in the design of cQED devices [8, 9].

In this work, we focus on the projector-based quantization technique from [9] due to its superior
handling of ports in the description of an electromagnetic system, as well as its potential for
developing domain decomposition methods that produce more intuitively-useful numerical results.
Here, we validate field-dependent parameters of this model by investigating a classical version of the
formulation which can be more easily verified by comparing to widely-available classical full-wave
simulation tools. To achieve this, we begin in Section 2 by introducing the classical projector-based
Hamiltonian analysis approach, with additional details on normalizing the relevant eigenmodes
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Figure 1: Schematic illustration of the subdomains for the projector-based full-wave Hamiltonian analysis
of a coaxial-fed rectangular waveguide cavity.

included in an appendix. In Section 3, we derive the equations of motion for this system and then
solve them using the analytical input-output theory approach commonly used in quantum optics.
Following this, we demonstrate the validation of our approach through numerical results in Section
4. Finally, we discuss conclusions and future work in Section 5.

2. FORMULATION

One quantization approach particularly suited to a geometry like that in Fig. 1 is the projector-
based quantization method used in [9]. In this approach, the entire system is decomposed into
different subdomains by introducing artificial boundary conditions at the interface of each region.
Each subdomain is terminated by complementary boundary conditions of either perfect electric
conductor (PEC) or perfect magnetic conductor (PMC) at the interface. This maintains the her-
miticity of the eigenvalue problem of each region, which guarantees that a complete set of orthonor-
mal eigenmodes can be found and then used to represent the fields in each subdomain. With the
field descriptions isolated in the spatial bound of each subdomain, the physical dynamics between
subdomains must be tied together to recover the solution to the original problem. More details on
the specifics of this can be found in [9], but the end result is that the strength of coupling between
modes in different regions is proportional to the spatial overlap integral of the field mode profiles
over the interface surface between subdomains. The final result is the system and bath Hamiltonian
commonly used in quantum optics [10], but with the important distinction that all Hamiltonian
parameters can be computed a priori rather than relying on curve fitting to measured data or other
similar procedures.

We now consider the explicit case of applying the projector-based approach to formulating a
classical Hamiltonian analysis of the geometry shown in Fig. 1. In our expressions, we allow for
a spatially-varying permittivity, but assume there are no magnetic materials present. In this case,
the fields of each subdomain are solutions to the wave equation

∇×∇×E(r, t) + µϵ∂2
tE(r, t) = 0. (1)

We use the separation of variables approach beginning in the cavity subdomain according to

Eq(r, t) =
∑

k

√

ωk

ϵ0
qk(t)Ek(r), (2)

which separates the spatial eigenmodes Ek(r) and the temporal amplitude qk(t) for a particular
eigenvalue ωk. For this kind of solution, we find the separated equations

∂2
t qk(t) = −ω2

kqk(t), (3)

∇×∇×Ek(r)− µϵω2
kEk(r) = 0. (4)

The magnetic field can be expanded similarly and is given as

Hq(r, t) =
∑

k

√

ωk

µ0
pk(t)Hk(r), (5)
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where pk is the canonical conjugate to qk in a Hamiltonian framework. It is common to combine
these conjugate amplitudes into a single complex-valued amplitude as

ak(t) =
1√
2
(qk(t) + ipk(t)). (6)

After substituting this into (2) and (5), we get

Eq(r, t) =
∑

k

√

ωk

2ϵ0

(

ak(t) + a∗k(t)
)

Ek(r), (7)

Hq(r, t) = −i
∑

k

√

ωk

2µ0

(

ak(t)− a∗k(t)
)

Hk(r). (8)

Typically, it is convenient to work with field modes that are orthonormal. In this case, the sense
of orthonormality is given by

∫∫∫

ϵr(r)E
∗

k1
(r) ·Ek2

(r)dr = δk1,k2
, (9)

where δk1,k2
is the Kronecker delta function. The practical aspects of this is detailed in the appendix.

For fields in the pth coaxial subdomain, there is a continuum of modes due to its semi-infinite
length so the expansion becomes

Ep(r, t) =
∑

λ

∫

∞

0

√

ωλp

2ϵ0

(

aλp(t, ωλp)+a∗λp(t, ωλp)
)

Eλp(r, ωλp) dωλp, (10)

where p indexes the coaxial subdomains and λ differentiates between transverse mode profiles with
corresponding eigenvalues ωλp. The definition of aλp(t, ωλp) and Hp follow the format of the cavity
fields, adjusted for the continuum of modes. The orthonormality condition must also be adjusted,
and is now

∫∫∫

ϵr(r)E
∗

λ1p
(r, ωλ1p) ·Eλ2p(r, ω

′

λ2p
)dr = δλ1,λ2

δ(ωλ1p − ω′

λ2p
), (11)

The details for the field mode normalization expressions for coaxial fields can be found in the
appendix as well.

These mode expansions may now be substituted into the full projector-based Hamiltonian, which
here is

HT = HQ +HP +HQP . (12)

The terms in (12) are given as [9]

HQ =

∫∫∫

1

2

(

ϵ|Eq(r, t)|2 + µ|Hq(r, t)|2
)

dr, (13)

HP =
∑

p

∫∫∫

1

2

(

ϵ|Ep(r, t)|2 + µ|Hp(r, t)|2
)

dr, (14)

HQP = −
∑

p

∫∫∫

Fq(r, t) ·
(

Ep(r, t)× n̂p

)

dr, (15)

where the electric vector potential in the cavity subdomain is

Fq(r, t) = −
∑

k

√

1

ωkµ0
qk(t)Hk(r). (16)
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By substituting the field expansions into (13) to (15), each Hamiltonian term can be simplified
using the eigenmode orthonormality. For the cavity and coaxial subdomains, the Hamiltonians
become

HQ =
∑

k

ωka
∗

kak, (17)

HP =
∑

p,λ

∫

∞

0
ωλpa

∗

λp(t, ωλp)aλp(t, ωλp)dωλp. (18)

The remaining Hamiltonian represents interactions between fields in different subdomains, which
for this case becomes

HQP =
∑

k,p,λ

∫

∞

0
gk,λp(ak + a∗k)(aλp + a∗λp)dωλp, (19)

gk,λp =

∫∫

c0
2

√

ωλp

ωk

[

Hk · (Eλp × n̂p)
]

dS, (20)

where the surface integration occurs over the interface between subdomains and n̂p is the unit
normal pointing into the cavity.

3. INPUT-OUTPUT THEORY

In this section, we provide the formulation of the equations of motion and then solve them using
a classical version of input-output theory [11]. An equation of motion for an arbitrary a can be
derived by taking a Poisson bracket with the total Hamiltonian, i.e.,

∂a

∂t
= {a,HT }, (21)

where the Poisson bracket is defined as

{f, g} =
∑

i

(

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

(22)

for f and q that are functions of the canonical conjugates qi and pi defined for a particular ith
discrete eigenmode (this definition can be generalized to the continuum case in a straightforward
manner). Due to the definition, the Poisson brackets will only be non-zero for variables associated
with the same eigenmode. Overall, one is able to find that

{ak(t), a∗k′(t)} = −iδk,k′ , (23)

{aλp(t, ωλp), aλ′p′(t, ω′

λ′p′)} = −iδλ,λ′δp,p′δ(ωλp − ω′

λ′p′), (24)

while the Poisson bracket for the variables between different regions results in a zero value.
To apply input-output theory, we will first simplify the formulation so that it remains analytically

tractable. In particular, we will apply the rotating wave approximation and restrict our analysis to
only consider the dominant cavity mode (with complex-valued amplitude denoted as a0) and the
continuum of TEM modes in the coaxial subdomains (denoted as ap). Further, we will assume the
field solutions are narrowband such that it is possible to extend the frequency integration range to
−∞ (this allows certian useful results from Fourier theory to be used) [11]. With these restrictions,
the equations of motion are

∂a0
∂t

= −iω0a0 − i
∑

p

∫

∞

−∞

gpapdωp, (25)



5

∂ap
∂t

= −iωpap − igpa0, (26)

where gp is the restriction of (20) to the modes specified above.
The next step in input-output theory is to integrate the equations of motion in the coaxial

subdomains in terms of initial and final conditions, which are taken to be well before and well after
the interaction with the cavity has occurred so that they can be considered to be the “input” and
“output” fields, respectively. Considering this, the integration of the coaxial subdomain equations
yields

ap(t, ωp) = e−iωp(t−t0)ap(t0, ωp)− igp

∫ t

t0

e−iωp(t−t′)a0(t
′)dt′, for t > t0, (27)

ap(t, ωp) = e−iωp(t−t1)ap(t1, ωp) + igp

∫ t1

t

e−iωp(t−t′)a0(t
′)dt′, for t < t1, (28)

where t0 is the initial condition time and t1 is the final condition time.
Substituting each of the solutions for the coaxial subdomain of (27) and (28) into (25) results

in

∂a0
∂t

= −iω0a0 − i
∑

p

gp

∫

∞

−∞

e−iωp(t−t0)ap(t0, ωp)dωp −
∑

p

∫

∞

−∞

g2p

∫ t

t0

e−iωp(t−t′)a0(t
′)dt′dωp, (29)

∂a0
∂t

= −iω0a0 − i
∑

p

gp

∫

∞

−∞

e−iωp(t−t1)ap(t1, ωp)dωp +
∑

p

∫

∞

−∞

g2p

∫ t1

t

e−iωp(t−t′)a0(t
′)dt′dωp.

(30)

At this point, we can simplify the notation by defining ain,p(t) and aout,p(t) as

ain,p(t) =
1√
2π

∫

∞

−∞

e−iωp(t−t0)ap(t0, ωp)dωp, (31)

aout,p(t) =
1√
2π

∫

∞

−∞

e−iωp(t−t1)ap(t1, ωp)dωp. (32)

Further, we can make the Markov approximation to assume that gp varies slowly enough over the
frequency range of interest (nominally, the bandwidth of the cavity resonance) so that it can be
factored out of the frequency integrals. Factoring gp out at the center frequency of the cavity
resonance and applying standard Fourier transform identities allows the final terms in (29) and
(30) to simplify to be πg2pa0(t) [11]. Combining these simplifications, we finally have that (29) and
(30) become

∂a0
∂t

= −iω0a0(t)−
∑

p

(i
√
2πgpain,p(t) + πg2pa0(t)), (33)

∂a0
∂t

= −iω0a0(t)−
∑

p

(i
√
2πgpaout,p(t)− πg2pa0(t)). (34)

At this point, it is convenient to exploit the linearity of the system to perform a time-harmonic
analysis. Taking the Fourier transform of (33) and (34), we arrive at

−iωa0(ω) = −iω0a0(ω)−
∑

p

(i
√
2πgpain,p(ω) + πg2pa0(ω)), (35)
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−iωa0(ω) = −iω0a0(ω)−
∑

p

(i
√
2πgpaout,p(ω)− πg2pa0(ω)). (36)

Subtracting (36) from (35) results in what is typically referred to as a “boundary condition” in
input-output theory at each coaxial subdomain, which in the frequency domain looks like

ain,p(ω)− aout,p(ω) = i
√
2πgpa0(ω). (37)

To find the scattering parameters within this formalism, we first eliminate the cavity mode
in (35) by substituting into this equation using (37) evaluated for the second coaxial subdomain.
Performing this, we arrive at

aout,2(ω) =

(

π(g21 − g22)− i(ω − ω0)
)

ain,2(ω)− 2πg1g2ain,1(ω)
∑

p πg
2
p − i(ω − ω0)

, (38)

with a similar expression also able to be found in terms of the first coaxial subdomain. Since our
analysis is classical, we can choose to turn one of the coaxial input fields “off” to compute the
scattering parameters. Considering this, we can determine that the S22 and S21 are

S22 =
aout,2(ω)

ain,2(ω)
=

π(g21 − g22)− i(ω − ω0)
∑

p πg
2
p − i(ω − ω0)

, with ain,1(ω) = 0, (39)

S21 =
aout,2(ω)

ain,1(ω)
=

−2πg1g2
∑

p πg
2
p − i(ω − ω0)

, with ain,2(ω) = 0, (40)

which are characteristic of a Lorentzian intensity transfer function, as expected.

4. NUMERICAL RESULTS

The geometry considered for validating this formulation is shown in Fig. 1. The dimension of the
cavity is 22.86 × 10.16 × 40mm3. The coaxial subdomains each have a = 0.05mm, b = 1mm,
ϵr = 12.92, and µr = 1. Further, because of the symmetric positions of the coaxial probes and that
the magnetic field for the dominant cavity mode is odd with respect to the center of the geometry
we have that g1 = −g2. In our validation of the formalism, the length that the inner conductor
protrudes into the cavity is varied from 0.05mm to 1.5mm. To account for the presence of this
coaxial perturbation, spatial eigenmodes and eigenvalues are found for the cavity region using
the finite element method (FEM). These numerical eigenmodes are then normalized and used to
compute all relevant quantities involved in the input-output theory expressions. These results will
be compared to standard driven FEM simulations for validation. All FEM analyses were performed
with HFSS in this work.

To begin verifying the accuracy of the Hamiltonian, we first compute the full-width half-
maximum (FWHM) of the intensity transmission function (i.e., |S21|2). From the input-output
theory result, the gp can be directly related to the decay rate of the cavity through a particular
interface, with the overall result being that the FWHM in angular frequency units is

FWHM =
∑

p

2πg2p. (41)

In Fig. 2(a), the computation of the FWHM via (41) is compared against that found by directly
simulating the S21 of the geometry in HFSS, showing excellent agreement as a function of probe
length. We also investigate the location of the center frequency of the cavity resonance as a function
of probe length, shown in Fig. 2(b). We find more deviation here, but given the approximately
constant offset over a wide range of probe lengths we attribute this error to numerical solution
differences in HFSS rather than due to the projector-based formalism.

As a further check of the projector-based formalism, we compare the magnitude and phase of
the S21 as a function of frequency directly between the input-output theory solution and the driven
FEM results for a coaxial probe length of 0.75mm in Fig. 3. To clearly show the similarity in the
curves, we correct for the frequency offset shown in Fig. 2(b) first. After this, we see excellent
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(a) (b)

Figure 2: (a) Comparison of the transmission FWHM computed using numerical eigenmodes in the input-
output theory formulation and directly computed from driven FEM. (b) Comparison of the resonant fre-
quency from the numerical eigenmode and driven FEM simulations. Both (a) and (b) are plotted in linear
frequency units.

(a) (b)

Figure 3: Comparison of the (a) magnitude and (b) phase of S21 for a coaxial probe length of 0.75mm when
using numerical eigenmodes in the input-output theory formulation and driven FEM simulations.

agreement between the two methods, with similar results found for all other coaxial probe lengths.
It should also be noted that to achieve agreement in the phase plots in Fig. 3(b), we first must
rederive our results using the same eiωt time convention used in HFSS and establish a single phase
reference point at the starting frequency of the simulation. With these references set, we achieve
very good agreement between methods, as shown in Fig. 3(b).

5. CONCLUSION

This work presented a full-wave Hamiltonian analysis method for a coaxial-fed rectangular waveg-
uide cavity using a projector-based approach in the classical regime where its validity can be easily
verified. Equations of motion were formulated for this system, and their analytical solution was
shown using a classical version of input-output theory commonly used in quantum optics. This
classical formulation was shown to be valid by comparing to standard FEM simulations, and due to
its identical field-based characteristics to the quantum full-wave Hamiltonian proposed in [9] also
validates relevant Hamiltonian terms in that formulation. Our future work will include incorporat-
ing a small dipole antenna into the cavity to validate the field-qubit coupling Hamiltonian given in
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[9], as well as solving the full-wave quantum model in its entirety.
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APPENDIX

This section provides the details on the field mode profiles at different subdomains and corre-
sponding normalization constants needed in field normalization. Here, we ignore the presence of
the coaxial perturbations to illustrate the normalization process using the analytical cavity field
expressions. However, to account for the coaxial perturbations inside the cavity we use numerical
eigenmodes computed with FEM for the results presented in the main text. Due to the small nature
of the perturbations, the analytical normalizations discussed in this appendix are still helpful for
normalizing the numerical eigenmodes.

For cavity fields, it is common to separate the eigenmodes into TE and TM modes whose
normalization needs to be considered separately. In each case, the normalized fields are expressed
as

Ek(r) =
1

√

Nu,k

uk(r), Hk(r) =
1

√

Nv,k

vk(r), (42)

where uk and vk are field modes before normalization and Nu,k and Nv,k are the normalization
constants found via

Nu,k =

∫∫∫

ϵr(r)u
∗

k(r) · uk(r)dV, Nv,k =

∫∫∫

v
∗

k(r) · vk(r)dV. (43)

Now, for TE modes, the unnormalized z-component that all other field components may be
computed from would be

vz = Hmnp cos
mπx

a
cos

nπy

b
sin

pπz

d
, (44)

where the m, n, and p are integers in the classical electromagnetics conventions, Hmnp is a constant,

and kt,mn =
√

(mπ
a
)2 + (nπ

b
)2. The unique combinations of m, n, and p corresponds to the single

mode index k used in the cavity subdomain in the main paper. Then, the normalization constants
for electric and magnetic fields can be found to be

Nu,k = −ϵr
(Hmnp ωµ)

2

k2t,mn

abd

Cn

, (45)

Nv,k =
(Hmnp

k2t,mn

)2
{

(mπ

a

pπ

d

)2
+
(nπ

b

pπ

d

)2
+
(mπ

a

)4
+ 2

(mπ

a

nπ

b

)2
+
(nπ

b

)4
}

abd

Cn

, (46)

where the factor Cn reduces down to a smaller number if any one of m, n, or p is 0 as in

Cn =

{

8, if m ̸= 0, n ̸= 0, and p ̸= 0,

4, if m = 0, n ̸= 0, and p ̸= 0; or m ̸= 0, n = 0, and p ̸= 0; etc.
(47)

For TM modes, the unnormalized z-component that all other field components may be computed
from would be

uz = Emnp sin
mπx

a
sin

nπy

b
cos

pπz

d
, (48)

where Emnp is a constant. Then, the normalization constants for electric and magnetic fields are

Nu,k = ϵr

(Emnp

k2t,mn

)2{(mπ

a

pπ

d

)2
+
(nπ

b

pπ

d

)2
+
(mπ

a

)4
+ 2

(mπ

a

nπ

b

)2
+
(nπ

b

)4}abd

Cn

, (49)



9

Nv,k = −(Emnp ωϵ)
2

k2t,mn

abd

Cn

, (50)

and Cn is defined as in (47).
For the coaxial subdomain, the TEM, TE, and TM modes all can exist. Here, we only consider

the TEM mode explicitly since for our geometry all the higher order modes are significantly in
the cutoff region (i.e., there is only one fixed λ index considered). Then, the unnormalized field
expressions for the TEM mode expressed in a local cylindrical coordinate system are

uλp =
V0

ρ ln(b/a)
cos

(ωλp

c
z
)

ρ̂, (51)

vλp = −I0
ρ
sin

(ωλp

c
z
)

ϕ̂, (52)

where c is the speed of light in the coaxial subdomain, b is the length of the outer radius, and a is
the length of the inner radius of the coaxial line. The V0 and I0 are constant amplitudes. Note that
the z-dependence of the modes is fixed by the PMC boundary condition located at z = 0 in the
local corrdinate system (see Fig. 1). The normalized fields are explicitly defined similar to (42),
and the normalization constants become

Nu,λp = ϵr
|V0|2

ln(b/a)
π2c, (53)

Nv,λp = µr|I0|2 ln(b/a)π2c. (54)
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