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Abstract—Quantum electromagnetic effects in superconduct-
ing circuits are promising phenomena to develop revolutionary
quantum information processing technologies. To design complex
circuits, there is a need for the development of accurate full-wave
numerical models. In this work, we study the simpler classical
full-wave Hamiltonian of a coaxial-fed rectangular waveguide
cavity to validate field-based parts of the corresponding quan-
tum Hamiltonian. We present the formulation of the system
Hamiltonian and derive equations of motion. We compare results
from our formulation using numerical eigenmodes to traditional
transmission simulations of the system to validate the approach.

I. INTRODUCTION

Superconducting circuits that operate at microwave fre-
quencies are one of the most promising quantum information
processing architectures [1]. To improve these systems, full-
wave quantum numerical models are increasingly of interest
[2], [3]. However, validating the accuracy of these models can
be difficult due to the complexity of the hardware and the
formulations themselves. Here, we study a classical version
of the Hamiltonian proposed in [3] to more easily validate
the computation of certain field-dependent parameters for the
geometry shown in Fig. 1, which is representative of part of
a 3D transmon architecture [4].

In this work, we present the formulation of the classical
full-wave Hamiltonian applicable to Fig. 1. We then derive
equations of motion for this system when driven by impressed
currents in the coaxial subdomains. We numerically validate
part of this formulation, with further results from the time
domain dynamics to be presented at the conference.

II. FORMULATION

The method of [3] uses a projector-based approach to
decompose the system into subdomains that can be more easily
quantized. Each subdomain is terminated with complementary
perfect electric conductor (PEC) and perfect magnetic conduc-
tor (PMC) boundary conditions at their interfaces (see Fig.
1) so that each subdomain eigenvalue problem is Hermitian.
The subdomain dynamics are then tied together through the
field profiles at the interfaces. Considering this, we expand the
subdomain fields using eigenmodes that are solutions to the
wave equation in each subdomain. For cavity fields, we have

E(r, t) =
∑
k

√
ωk

2ϵ0
(ak(t) + a∗k(t))Ek(r), (1)

H(r, t) = −i
∑
k

√
ωk

2µ0
(ak(t)− a∗k(t))Hk(r), (2)

Fig. 1. Schematic illustration of the subdomains for the projector-based full-
wave Hamiltonian analysis of a coaxial-fed rectangular waveguide cavity.

where Ek and Hk are spatial eigenmodes, ωk are the eigenval-
ues, and ak combines the canonical conjugate field amplitudes
qk and pk as ak(t) =

1√
2
(qk(t) + ipk(t)). For coaxial fields,

there is a continuum of modes so the expansion becomes

Ep(r, t) =
∑
λ

∫ ∞

0

√
ωλp

2ϵ0

× (aλp(t, ωλp)+a∗λp(t, ωλp))Eλp(r, ωλp) dωλp, (3)

where p indexes the port subdomains and λ differentiates be-
tween transverse mode profiles with corresponding eigenvalues
ωλp. The definition of aλp(t, ωλp) and Hp follow the format
of the cavity fields, adjusted for the continuum of modes.

These mode expansions may now be substituted into the
full projector-based Hamiltonian, which here is

H = HQ +HP +HQP +HJP +HMP , (4)

where each Hamiltonian will be defined explicitly shortly.
First, HQ (HP ) is the cavity (coaxial) subdomain Hamiltonian,
which after using the eigenmode orthogonality simplifies to

HQ =
∑
k

ωka
∗
kak, (5)

HP =
∑
p,λ

∫ ∞

0

ωλpa
∗
λp(t, ωλp)aλp(t, ωλp)dωλp. (6)

The other Hamiltonians represent interactions between fields
in different subdomains and with impressed current sources
that drive the system. The cavity-coaxial interaction is

HQP =
∑
k,p,λ

∫ ∞

0

gk,λp(ak + a∗k)(aλp + a∗λp)dωλp, (7)



gk,λp =

∫∫
c0
2

√
ωλp

ωk

[
Hk · (Eλp × n̂p)

]
dr, (8)

where the surface integration occurs over the interface between
subdomains and n̂p is the unit normal pointing into the cavity.
The interaction of impressed currents with TEM coaxial fields
(other mode profiles can be considered similarly) are

HJP = −i
∑
p,λ

s(t)gJp

∫ ∞

0

1
√
ωλp

(
aλp − a∗λp

)
× cos

(
ωλp

c
zref

)
dωλp, (9)

HMP = −
∑
p,λ

s(t)gMp

∫ ∞

0

1
√
ωλp

(
aλp + a∗λp

)
× sin

(
ωλp

c
zref

)
dωλp. (10)

Here, s(t) and zref are the temporal profile and location of
impressed electric and magnetic current densities, and

gJp =
1

ηp

√
2 ln(bp/ap)

ϵpcp
, gMp =

√
2 ln(bp/ap)

µpcp
, (11)

where ap (bp) is the inner (outer) radius of the coaxial line and
material properties are those from the coaxial subdomains. By
implementing the current sources in this way, they produce an
electric field propagating toward the cavity subdomain with an
amplitude given by s(t) and no backwards radiation.

With the Hamiltonians appropriately formulated, equations
of motion can be derived for the ak and aλp’s by taking their
Poisson bracket with H . This results in

∂ak
∂t

= −iωkak − i
∑
p,λ

∫ ∞

0

gk,λp(aλp + a∗λp)dωλp, (12)

∂aλp
∂t

= −iωλpaλp − i
∑
k

gk,λp(ak + a∗k)

+
s(t)
√
ωλp

[
gJp cos

(
ωλp

c
zref

)
+ igMp sin

(
ωλp

c
zref

)]
. (13)

III. NUMERICAL RESULTS

The geometry considered for numerically validating this
formulation is shown in Fig. 1. The dimension of the cav-
ity is 22.86 × 10.16 × 40mm3. The coaxial regions have
ap = 0.05mm, bp = 1mm, ϵr = 12.92, and µr = 1. The
length that the inner conductor protrudes into the cavity is
varied according to the range shown in Fig. 2.

To begin verifying the accuracy of the Hamiltonian, we
numerically find eigenmodes of the cavity region shown in
Fig. 1 and use these to compute gk,λp for the TE101 mode
coupled to the TEM mode of the coaxial regions. From input-
output theory, the gk,λp of a single interface can be related to
the decay rate of the cavity through that interface as [5]

γp = 2π g2k,λp. (14)

Fig. 2. Comparison of the transmission FWHM when using the formulation
of this work and directly computing the transmission with HFSS.

The corresponding full-width half-maximum (FWHM) of the
intensity transmission function (i.e., |S21|2) is then given
by

∑
p γp/2π. The computation of the FWHM via (14) is

compared against that found by directly simulating the S21 of
the geometry in HFSS in Fig. 2, showing excellent agreement.
At the conference, we will also show results of solving the
coupled differential equations (12) and (13) to fully validate
this Hamiltonian formulation.

IV. CONCLUSION

This work presented a full-wave Hamiltonian analysis
method for a coaxial-fed 3D microwave cavity using a
projector-based approach. This formulation is useful as it can
help validate the field-based portions of the quantum full-wave
Hamiltonian proposed in [3]. Our future work will include
incorporating a small dipole antenna into the cavity to validate
the field-qubit coupling Hamiltonian given in [3], as well as
solving the full-wave quantum model in its entirety.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 2202389.

REFERENCES

[1] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied
Physics Reviews, vol. 6, no. 2, p. 021318, 2019.

[2] Z. K. Minev, Z. Leghtas, S. O. Mundhada, L. Christakis, I. M. Pop, and
M. H. Devoret, “Energy-participation quantization of Josephson circuits,”
npj Quantum Information, vol. 7, no. 1, pp. 1–11, 2021.

[3] T. E. Roth and W. C. Chew, “Macroscopic circuit quantum electrody-
namics: A new look toward developing full-wave numerical models,”
IEEE Journal on Multiscale and Multiphysics Computational Techniques,
vol. 6, pp. 109–124, 2021.

[4] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani,
A. P. Sears, B. Johnson, M. Reagor, L. Frunzio, L. I. Glazman et al.,
“Observation of high coherence in Josephson junction qubits measured
in a three-dimensional circuit QED architecture,” Physical Review Letters,
vol. 107, no. 24, p. 240501, 2011.

[5] D. F. Walls and G. J. Milburn, Quantum Optics. Springer Science &
Business Media, 2007.


