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Abstract

Combinatorial testing is a popular software engineering tech-
nique for effectively testing programs that operate on param-
eters drawn from small, finite domains (such as configuration
options), by providing a principled way of systematically ex-
ploring interactions between them. Property-based testing,
on the other hand, is a widely used technique for testing
the correctness of functional programs that usually operate
on large, infinite domains (such as algebraic data types), by
randomly generating or enumerating inputs.

In this paper, we show how to extend and apply ideas from
the narrow scope of combinatorial testing techniques to the
broader scope of property-based testing applications. In par-
ticular, we develop a novel way of pruning the input search
space while still ensuring that a diverse set of constructor
patterns appear among the set of generated tests. In our im-
plementation, we integrate a state-of-the-art enumeration-
based property-based testing framework, LazySearch, with
a state-of-the-art combinatorial testing tool, NIST’s ACTS,
and demonstrate how it can significantly speed up the ef-
fectiveness of testing—up to more than 20× in the case of a
prior System F case study from the literature.

CCS Concepts: • Software and its engineering→ Soft-

ware testing and debugging.

Keywords: property-based testing, combinatorial testing,
enumeration, generation, functional programming
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1 Introduction

Suppose that you are working on the design and implemen-
tation of a new typed functional language. During this devel-
opment you will most likely need to establish confidence in
the metatheoretic properties of such a system. For instance,
consider preservation, which states that the type g of a term 4

in any given context Γ is invariant under a single evaluation
step:

preservation Γ e g =

hasType Γ e g ==> hasType Γ (step e) g

How would one go about testing such a property? Property-
based testing offers a promising solution: generate many
inputs, repeatedly execute preservation, and check if any of
the inputs invalidate it. Naturally, the success of this process
hinges on how the inputs are generated.
A natural way of generating such inputs is to use ran-

domness: generate random contexts, expressions, and types;
filter out all generated configurations which violate the well-
typedness precondition; and then check that, for those that
remain, performing an evaluation step does not yield an
ill-typed term. Unsurprisingly, such a generate-and-filter ap-
proach is not very effective: a lot more configurations are
ill-typed than not.
The standard solution to this so-called precondition prob-

lem is to handwrite a generator that produces well-typed
terms directly. Unfortunately, writing such generators can
be extremely challenging. For example, constructing an ef-
fective generator for well-typed lambda terms for each of

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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simply typed lambda calculus (STLC) [18], STLC with ef-
fects [15], or System F [7] constituted a significant research
contribution in itself. More recent solutions to the same prob-
lem attempt to use automatic methods for obtaining such
generators, but they usually rely on language features not
available in mainstream languages, such as specifications
written in the form of inductive relations in Coq [14].

An alternative way of generating inputs is to systemati-
cally enumerate the elements of the input space. While an
enumerate-and-filter approach is also ineffective for pre-
cisely the same reason, enumeration opens up a particularly
interesting avenue of addressing the precondition problem:
Claessen et al. [2] leverage laziness to prune large parts of the
search space at once, using the structure of the precondition
itself to guide the generation process.
For concreteness, let’s turn back to our running example

of testing preservation and consider Terms that contain at
least Abstractions, Applications, (DeBruijn-based) Variables,
and Constants:

data Term = Abs Term | App Term Term

| Var Nat | Const Int

| ...

If we were to follow a naive enumerate-and-filter approach,
many of the syntactically well-formed lambda terms gener-
ated would be filtered out for being ill-typed. For instance,
all of the terms in Fig. 1 are ill-typed, as they are applications
of a non-functional value (the constant 0).
The main observation behind Claessen et al. [2] is that

the entire space of terms of a similar form on the left—
applications of an integer constant—could be pruned out
by observing that

App (Const undefined) undefined

can be classified as ill-typed in a lazy language like Haskell
without yielding an error. This approach is currently imple-
mented in the LazySearch [4] library and shows significant
promise. For example, as we will see in Section 5, in a case
study from the literature in testing preservation for System
F [6], LazySearch finds all bugs (although it takes several
minutes for some of them) where a naive enumerate-and-
filter with something like SmallCheck is incapable of finding
almost anything [23].

Still, just like all enumeration-based approaches, the effec-
tiveness of LazySearch greatly depends on the enumeration
order [16]. Turning again to our running example, although
all the terms in Fig. 2 are well-typed, they are extremely
similar: they are applications of an identity function to some
other term. As a result, they will most likely not lead to
interestingly different execution behaviors. As a result, enu-
meration can spend a lot of time in a particular (and un-
interesting) part of the search space before exploring new
ones. And sometimes that’s acceptable! If, for example, we

App

Const 0 Const 0

App

Const 0 App

.. ..

App

Const 0 Abs

..

Figure 1. Terms that are ill-typed.

App

Abs

Var 0

Const 0

App

Abs

Var 0

App

.. ..

...

App

Abs

Var 0

Abs

..

Figure 2. Terms that are well-typed.

had enough time to exhaust the entire search space, then
enumeration order is not as important of a concern.

Sadly, that is not always the case. Testing time is finite and,
even in our running example, the search space of well-typed
terms is too large to exhaust. Ideally, we could use fair and
compositional enumeration combinators to write enumera-
tors that will, by default, provide some guarantees that we
will not ignore parts of the input space for too long [16].

Unfortunately, such techniques don’t play well with au-
tomatic approaches in the style of LazySearch: under the
hood, LazySeach constructs an indexing function from nat-
ural numbers to elements of an algebraic datatype (such as
lambda terms), and can potentially prune, using laziness,
ranges from the numeric domain that correspond to an en-
tire space of values in the codomain. However, at the same
time, the flat numeric domain of this mapping obscures the
recursive structure that is required to use explicit fair com-
binators.
Is there any hope? Given a finite amount of testing time,

can we systematically avoid falling down the rabbit hole of

fully exploring valid but largely homogeneous subspaces before

visiting others? In this paper, we provide such a solution using
ideas from combinatorial testing.

Combinatorial testing [17] is a software engineering tech-
nique for testing software with multiple configuration op-
tions [11], by providing a principled way of exploring in-
teractions between such options. However, out-of-the-box
combinatorial testing tools (such as ACTS [10]) can presently
only be used to test programs that operate on variables drawn
from small, finite domains.
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Our work bridges the gap between such tools and lever-
ages their power to test functional programs that usually
operate on potentially infinite algebraic data types with mul-
tiple constructors. In particular, our contributions are:

• We expand the applicability of out-of-the-box com-
binatorial testing techniques to functional languages,
describing a new notion of combinatorial coverage
for algebraic data types, and use these techniques to
improve upon LazySearch [4] (Section 3).

• We propose Radix Coverage, a technique for increas-
ing the applicability and efficiency of combinatorial
testing tools for tests with parameters spanning dras-
tically larger ranges than state-of-the-art software can
currently handle (Section 4).

• We evaluate our techniques on two case studies:
1. We first turn to the Traffic Collision Avoidance Sys-

tem (TCAS), a piece of avionics software used his-
torically to benchmark combinatorial testing pro-
cedures [19]. We show that Radix Coverage offers
a viable avenue to blackbox-testing in this setting,
reducing testing times from multiple hours down to
mere minutes—where such speedups were only pos-
sible by manually cutting down the search space us-
ing expert domain-specific knowledge (Section 5.1).

2. The second case study focuses on applying Radix
Coverage in a functional setting, by testing a Haskell
implementation of System F from the literature [6].
When compared to LazySearch, our implementation
provides significant benefits on harder-to-find bugs,
reducing time to failure up to more than 20× (Sec-
tion 5.2).

2 Combinatorial Testing

We begin by presenting some background information
on combinatorial testing and its purpose, as well as describ-
ing a state-of-the-art tool, ACTS (Automated Combinatorial
Testing for Software), that we will leverage later in the paper.

2.1 Combinatorial Testing

Combinatorial testing is a software engineering technique
for efficiently testing a system that has many possible in-
put configurations. Going back to our running example
of developing a programming language, consider how one
could test whether compiler optimizations for it preserve
the original semantics of a program. Such optimizations
are often bug-riddled, and the situation becomes especially
bug-prone when multiple optimizations are enabled simulta-
neously [11]. For concreteness, suppose we have 5 toggleable
program transformations: lambda lifting (ll), stream fusion
(sf), common subexpression elimination (cse), specialization
(sp) and function inlining (inl):

optimize :: Bool -- ll

-> Bool -- sf

-> Bool -- cse

-> Bool -- sp

-> Bool -- inl

-> Prog -- p

-> Prog

optimize ll sf cse sp inl p = ...

Let’s also assume, for now, that we already have some test
suite of programs and we are only focusing on interactions
between optimizations—we will return to the problem of
generating the programs themselves later in the paper. How
can we ensure that our optimizer behaves correctly? One
naive way would be to ensure that all 25 = 32 combinations
of optimizations preserve the semantics of the programs in
our test suite. However, such an approach quickly becomes
intractable as we add more and more optimizations.

Combinatorial testing offers an attractive alternative: rather
than covering all interactions between such optimizations,
we could cover all t-way interactions between them. For
example, we could test all 2-way interactions with just the
following 6 configurations shown in Table 1. Indeed, for any
pair of optimizations, any distinct toggling of the pair can
be found in some row of the table!

Table 1. Two-strength covering array for optimization tog-
gling.

ll sf cse sp inl

1 True True False False False

2 True False True True True

3 False True True False True
4 False False False True False

5 False True False True True
6 False False True False False

More generally, combinatorial testing weakens the notion
of full coverage, going from testing every possible combina-
tion of values of all input parameters, to exhaustively testing
every possible combination of values of each C-sized subset
of input parameters, for some small number C .

In exchange for this weakening, C-way coverage combina-
torial testing achieves comparable efficacy in terms of bug
finding with substantially fewer test cases. Each instantiation
of a C-sized subset of input parameters is termed a C-strength
interaction. Each full input configuration of all = parameters
then covers one C-strength interaction for each of the

(=
C

)

subsets. If it was possible for each input configuration to
cover a unique C-strength interaction for all

(=
C

)

subsets, and
if each input parameter spanned E possible values, then, in
only EC tests, full C-strength coverage would be obtained (as
opposed to the E= tests required for traditional full coverage).

While this uniqueness property is not possible in practice,
the actual number of required tests factoring in the need
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to repeat interactions is only worse by a factor logarithmic
in the total number of parameters in the input configura-
tion. When compared to, E= , the number of all possible input
combinations under exhaustive coverage, C-strength combi-
natorial coverage’s reduction to only O(EC;>6(=)) test cases
represents a significant improvement. One might argue that
the C-strength combinatorial coverage of a test suite is a poor
measure of its bug-finding efficacy, but it has been empiri-
cally shown in actual software [11] that the majority of bugs
are found by strength 3 and there are diminishing returns
approaching 100% bugs found as the strength approaches 6.

2.2 ACTS

How does one arrive at the table above? To construct an
efficient C-strength combinatorial coverage test suite, we can
turn to ACTS [10], a tool produced by the National Insti-
tute of Science and Technology (NIST) which automatically
constructs combinatorial covering arrays when given a speci-
fication of a system’s configuration parameters and a desired
interaction strength. The rows of a covering array each rep-
resent one concrete configuration to test, with the columns
of the covering array each holding values associated with the
parameter they are labeled by. Using the specification, ACTS
constructs an array while minimizing the total number of
rows, and therefore test cases, required to obtain the desired
strength of combinatorial coverage.
To construct a covering array for our system, one could

handwrite the ACTS specification shown in Figure 3. The
[Parameter] section specifies the name, type, and values al-
lowed for a given parameter. The [Relation] section lists
the relations which determine the interaction strength of
the parameters in the covering array. For our case, a sin-
gle relation including all the parameters in the array and
given a strength C , ensures that the covering array has in-
teraction strength C . Note that C should be replaced with
a value from 1 to the number of parameters being related,
as there cannot be an interaction larger than the number

[System]

Name: test

[Parameter]

ll (boolean) : True ,False

sf (boolean) : True ,False

cse (boolean) : True ,False

sp (boolean) : True ,False

inl (boolean) : True ,False

[Relation]

R1 : (ll, sf, cse , sp, inl , C)

[Constraint]

Figure 3.ACTS specification of combinatorial configuration.

of variables that are interacting. The [Constraint] section
allows one to list simple restrictions on the values of vari-
ables. For instance, if the specialization optimization was
known to be incongruent with function inlining, the con-
straint !((specialization && inlineFunctions)) could be
listed under the [Constraint] section.
The first step to bridging the gap between combinatorial

testing and high-level property-based testing is to provide a
high-level API to access ACTS from a language like Haskell
(Figure 4). To this end, we provide two functions: The func-
tion constructTestArrayValues, which, given a test specifica-
tion, calls ACTS and provides a list of input configurations –
the combinatorial covering array. The function mkTest, which
is a smart constructor that builds a test specification for a
given predicate, list of constraints, list of variables (including
types, names, and values), and intended interaction strength.
Continuing our running example, we also require the prop-
erty we wish to test, optimizationCorrect, which asserts
that the combination of enabled optimizations preserves the
semantics of the interpreter.

3 To Infinity And Beyond

Combinatorial covering arrays allow for efficiently testing
configurations of small-range parameters like the boolean
toggles from the optimization configuration. But what about
parameters with larger domains? What about parameters
whose domain is infinite—such as the well-typed terms from
the introduction? Naturally, a covering array cannot contain
such infinite-range parameters, as it would require infinite
rows to cover. A different approach is therefore necessary.
So what can we do instead? Rather than trying to store

an infinite numbers of concrete values in a covering array,
we will partition the entire space of values into a finite num-
ber of distinct (potentially overlapping) infinite subspaces
in a way that can be recursively applied to further parti-
tion each subspace. Algebraic data types offer a natural such
partitioning strategy: let the constructors dictate it. Then,
we will leverage combinatorial testing to ensure that all in-
teractions between constructors are exercised when testing.
To make things more concrete, let’s return to our running
example of testing a programming language’s design and
implementation.

Partitioning via Example. Consider the datatype of
terms for our language, which has two recursive construc-
tors, Abs and App, and two base-case constructors Var and
Const.

data Term = Abs Term | App Term Term

| Var Nat | Const Int

We can construct a reasonable single-level partitioning of
the space of Terms by partitioning based on the top-level
constructor, the root of the Term’s constructor tree. Because
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type Strength = Int

constructTestArrayValues :: Read a => Test a -> IO [a]

constructTestArrayValues = -- Defined elsewhere

optimizationTest :: Strength -> Test (Bool , Bool , Bool , Bool , Bool)

optimizationTest strength = mkTest predicate constraints inputVariables strength

where

predicate = optimizationCorrect

constraints = []

inputVariables = map boolParam ["ll", "sf", "cse", "sp", "inl"]

boolParam name = Param (PBool name [True , False ])

>>> constructTestArrayValues (optimizationTest 2)

[(True ,True ,False ,False ,False),(True ,False ,True ,True ,True ),

(False ,True ,True ,False ,True ),(False ,False ,False ,True ,False),

(False ,True ,False ,True ,True ),(False ,False ,True ,False ,False )]

Figure 4. Example of Radix Coverage test specification.

we discriminate based on a single constructor, we can define
an indexing type � as follows.

data I = Abs ' | App ' | Var ' | Const '

Abs' is the index for the infinite space of Terms whose
root constructor is an abstraction, whereas Var' is the index
for the infinite space of Terms which are just free variables,
because Var as a root constructor implies no more recursive
Terms. Using this indexing type, we can define a characteristic
function which checks whether a given Term is inside the
partition with a given index in I.

member :: I -> Term -> Bool

member Abs ' (Abs _ ) = True

member App ' (App _ _) = True

member Var ' (Var _ ) = True

member Const ' (Const _) = True

member _ _ = False

This serves perfectly fine as a definition of the first-level
partition, but, in order to construct a second-level partition,
we need to inspect not only the root constructor of the over-
all Term but also the root constructors of the direct recursive
children of the Term as well, in order to construct the sub-
partitions in a self-similar fashion. Generally, to construct a
partition of depth 5 (which we call call the fineness of the par-
tition), we need to inspect down to the 5 -depth constructors
in the Term tree. A more general version of member therefore
needs to accept a list of I as follows:

member :: [I] -> Term -> Bool

member (Var ' : is) (Var _ ) = True

member (Const ' : is) (Const _) = True

member (Abs ' : is) (Abs e ) =

member is e

member (App ' : is) (App e1 e2) =

member is e1 || member is e2

member [] _ = True

member _ _ = False

Examining the behavior of this function, and in particu-
lar the disjunction in the App' case, we see that a term is a
member of the subspace indexed by a list of indices if there
is a path of nested constructors, starting from the root of the
term’s constructor tree, that matches the list’s sequence of
constructor indices. Any and all indices following an index
corresponding to a terminal constructor are disregarded. All
other constructors in the term besides those matching the
path are left unconstrained by the membership predicate.
Therefore, each list of indices defines an entire space of struc-
turally constrained terms. Allowing terminal constructors to
appear at any point in the indexing list sacrifices injectivity;
[App',Const',App'] and [App',Const',Const'] map to the
same space, leading to repeated testing of the same input
space. However, doing so embeds all lower fineness spaces
into higher fineness spaces which allows multiple fineness
levels to be tested in the same run.
So where does combinatorial testing come into play? If

we were to partition the space of terms into 45 subspaces of
fineness 5 , and then explore all of them, we would be back to
square one: attempting to exhaustively explore a vast space.
What if, instead, we were to focus on interactions between
indices constraining the choices of constructors at different
nesting depths. We could build a minimal set of subspaces
such that, for some strength C < 5 , and for every C-sized
subset of indices at distinct nesting depths, each possible
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configuration of constructor indices at the specified depths
is contained in at least one row of the resulting covering
array.
For example, such a partition with fineness of 5 = 4 and

strength of C = 2 is shown in Table 2 consisting of only
20 rows. Each such row represents one of the 45 = 256

structural 4-depth patterns which fully partition the Term

type.

Table 2. Covering array for Terms (5 = 4, C = 2).

I1 I2 I3 I4

1 Abs’ Abs’ App’ App’

2 Abs’ App’ Var’ Var’

3 Abs’ Var’ Const’ Const’

4 Abs’ Const’ Abs’ Abs’

5 App’ Abs’ Var’ Const’

6 App’ App’ Const’ Abs’

7 App’ Var’ Abs’ App’

8 App’ Const’ App’ Var’

9 Var’ Abs’ Const’ Var’

10 Var’ App’ Abs’ Const’

11 Var’ Var’ App’ Abs’

12 Var’ Const’ Var’ App’

13 Const’ Abs’ Abs’ Var’

14 Const’ App’ App’ Const’

15 Const’ Var’ Var’ Abs’

16 Const’ Const’ Const’ App’

17 Var’ Abs’ Const’ Abs’

18 Abs’ App’ Var’ App’

19 Var’ Var’ App’ Var’

20 Var’ Const’ Abs’ Const’

Indeed, pick any 2-wide configuration of indices. Then at
least one row of the array will exhibit that pattern at every
possible depth! For instance, the configuration [App', Abs']

is covered by rows 5 (App’ at depth 1, Abs’ at depth 2), 6
(App’ at depth 1, Abs’ at depth 4, and App’ at depth 2, Abs’
at depth 4), 7 (App’ at depth 1, Abs’ at depth 3), 10 (App’
at depth 2, Abs’ at depth 3), and 11 (App at depth 3, Abs at
depth 4), ensuring interactions between these constructors
will be present at all possible depths in at least 1 subspace in
the resulting partition.

Combinatorial Testing for ADTs. None of the steps
taken to construct the example above made use of some
unique feature of Term, so the same technique straightfor-
wardly generalizes to create covering arrays for 5 -fine par-
titions on any simple algebraic data type: Take � to be the
set of constructor tags for the data type; define membership
in the 5 -fineness partition for a list of indices of length 5

to mean that there must be some path from the root down
5 constructors so that the constructors on the path match
those listed as constructor tags in the indexing list; create a

covering array for interactions between constructors using
an off-the-shelf tool like ACTS.
Back to our original problem, however, of testing a prop-

erty such as preservation, how do we generate data in a
given subspace of a partition? That’s where LazySearch
comes in. Each row r in the covering array can be inter-
preted as a list of indices, and therefore gives rise to a partic-
ular instantiation of the (purely structural) member predicate,
which is an excellent candidate for LazySearch’s lazy pruning
algorithm.
For example, to test preservation we can:

1. Construct a partition of the data type of terms based
on its constructors.

2. Conjoin the precondition of the property (hasType)
with the membership predicate corresponding to each
row in the array.

3. Run LazySearch with the combined precondition, enu-
merating the space of terms that both satisfy the orig-
inal precondition and match the constructor pattern
dictated by the array row to search for a counterexam-
ple.

Naturally, we would also like to avoid staying in a par-
ticular subspace indefinitely or for too long. Therefore, we
also give a fixed time allotment to testing each pattern gener-
ated in the array, thus ensuring that the enumerative testing
procedure explores a diverse range of top-level construc-
tor patterns, thus increasing the likelihood of finding bugs
within a limited amount of time.

4 Large-Range Parameter Testing with
Radix Coverage

The approach described in the previous section can be
very effective (see Section 5), but using an out-of-the-box
version of ACTS for the generation of the combinatorial ar-
ray comes with a drawback: NIST’s Practical Combinatorial
Testing guide states that the reasonable upper limit on the
number of values per parameter is between 8 and 10, and go-
ing any higher would make covering array generation time
infeasibly long [22, 24]. For algebraic data types, that means
that our approach cannot efficiently handle types with more
than ∼10 constructors. Moreover, this becomes a bigger prob-
lem in numeric domains: for instance, combinatorial testing
has long been used by NIST to test avionics software such
as the traffic collision avoidance system (TCAS), and some
of that system’s parameters range over three-digit natural
numbers. The current solution? Use white-box knowledge
of the system to pick a small number of values within that
range to cover.
Can we do better? Yes! We can break up a single large-

range parameter into several smaller-range parameters, each
with 10 or fewer values. Then, any given concrete covering
array contains values for all such subparameters and we
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can use these values to reconstruct a value for the original
large-range parameter.

To keep things concrete, let’s focus on integer parameters,
such as those of TCAS, and suppose they range from 0 to 999.
If we were seeking pairwise combinatorial coverage between
such a parameter and another boolean one (which consists
of two values), a complete covering array would consist of
1000 ∗ 2 = 2000 rows, the first few of which are depicted on
the left side of Table 3.
If, on the other hand, we considered the natural split of

the integer parameter into three subparameters (one for
each of the original parameter’s digits) and then pursued
pairwise coverage between all four parameters (three digits
and one boolean), the resulting covering array would only
have 100 rows, the first few rows of which are presented in
the right side of Table 3. Because the interaction strength of
the array is two (which is less than the number of ways we
partitioned the integer parameter), not every number in the
original range will appear, leading to a drastic reduction in
the number of rows.

For example, consider how the first row has the combined
integer parameter as 001 but the next row skips all the way
to 012, skipping ten numbers in between. This is because
while each pair of digits needs to appear in the resulting
array, not every triple of digits does. Concretely, the second
row is not 002 as the covering array generation seeks to pack
as many unseen pairwise interactions into each new row
as possible. 001 already covers 002’s 00x interaction, and
012 would cover the new 01x interaction in addition to the
0x2 that 002 would provide. While this reduction in rows
is beneficial in terms of reducing required testing time, 90%
of the intended range of integers to test over are skipped,
which is far from ideal.

We can rectify this issue of dropping large intended por-
tions of the testing data’s range by increasing the interaction
strength within the three subparameters while keeping the
overall strength to 2. This would make the digits fully inter-
act, ensuring that each element of the integer parameter’s
range is found in at least one row. This increases the num-
ber of rows in the covering array to 1000 (appearing in the
middle of Table 3, still reducing the 2000 rows needed for
full coverage by half and effectively lowering coverage and
therefore saving testing time, but without cutting out any
of the intended test data. Note that since each number only
appears once, either True or False but not both can be paired
with each value, differing from full coverage as displayed on
the left in the same table.

This property that every value of the original range must
appear in at least one row of the generated covering ar-
ray is desirable as a counterweight to the effective loss in
interaction strength between parameters split into subpa-
rameters and the other parameters in the configuration as
shown in Section 5.1. In general, if we split a parameter into
? subparameters, we would need to ensure that its set of

subparameters is related with interaction strength ? , on top
of the interaction strength of the overall covering array. Each
parameter being split would require its own local interac-
tion strength. Thankfully, such a mixed-strength coverage is
already supported by ACTS.
As described so far, this technique of splitting combina-

torial coverage array parameters into subparameters shows
promise, but it has two flaws. First, recall that ACTS can only
guarantee up to interaction strength 6, with only experimen-
tal support for higher strengths. So, if the range of a variable
exceeds a million values, this method does not guarantee
that all members of the range will be represented in the array.
To solve this issue, we can increase the base that we write
a number in, requiring fewer digits to express it. Therefore,
instead of splitting a range of size k into ⌈log10 (:)⌉ digit sub-
parameters with values [0, 1, . . . 9], we split the range into
⌈log1 (:)⌉ subparameters with values [0, 1, . . . 1 − 1], with 1
chosen such that the number of base-1 digit subparameters
does not exceed 6. In practice, we choose the smallest such
1 because having more total parameters increases the array
construction complexity only logarithmically, whereas in-
creasing the total number of values per parameter increases
complexity polynomially.
Second, consider what happens when : , the size of the

integer parameter range, is not a simple power of the base 1.
In that case, we have two choices: only generating values up
to the largest power of 1 smaller than : , which would leave
out a potentially significant chunk of the range, or generating
values up to the smallest power of 1 greater than or equal to
: , which would include many undesired values in the final
covering array that we may not know how to process. To
solve this, we simply add the following constraint to the
covering array generation which forbids the reconstruction
of the subparameters to exceed the maximum value of the
range, where E8 are the subparameter names, supposing there
are ? subparameters total:

maximumValue .>=. parameterValue

where

parameterValue =

foldr foldop (val 0) digits

digits = [E?−1, E?−2 ..E0]

foldop E8 acc =

numVar E8 .+. (val 1 .*. acc)

This iteration works on contiguous ranges of natural num-
bers, but what of large ranges? One could theoretically con-
struct a uniquemethod of splitting up each type that balances
type-unique considerations about maximizing interaction
strength and other desirably qualities, but our goal is to con-
struct an automatic method. Given any finite range of any
values, notice there’s a bijection between it and the finite
range of naturals from 0 to one less than the size of the range
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Table 3. First few rows of a full combinatorial testing covering array (left), Radix Coverage array (middle), and lower-mixed
strength covering array (right).

Int Bool 100s 10s 1s Bool 100s 10s 1s Bool

0 False 0 0 0 False 0 0 1 False

0 True 0 0 1 True 0 1 2 True

1 False 0 0 2 False 0 2 3 False

1 True 0 0 3 True 0 3 4 True

2 False 0 0 4 False 0 4 5 False

2 True 0 0 5 True 0 5 6 True
...

...
...

...
...

...
...

...
...

...

by indexing into the range. In the following, we leverage this
idea to provide a final definition of our approach, which we
name Radix Coverage.

Radix Coverage. Radix Coverage constructs covering ar-
rays for large but finite range parameters of any type. It uses
a contiguous range of natural numbers as an index into the
large range, splits the large natural number parameter into
several mutually interacting variables in an ideal base, or
radix. These subparameters use mixed coverage to ensure
they fully interact, so that each value in the range appears
in at least one row of the covering array. These variables are
constrained to prevent their overall value exceeding the size
of the range. Radix Coverage automatically recombines the
digits from the constructed arrays into indices and obtaining
the test values by indexing into the original range of test
values.

5 Evaluation

To evaluate Radix Coverage and its extension to recur-
sive algebraic data types, we present two case studies—one
for each technique. Both case studies make use of muta-
tion testing [9] to compare the efficacy of our approaches
against baseline results from the tools which they augment.
Mutation testing is a technique for comparing the quality
of various testing approaches, by artificially injecting bugs,
called “mutants”, in the system under test and evaluating
how many are found, or “killed”, and how quickly.

5.1 TCAS (Traffic Collision Avoidance System)

For our first case study, we turn to the Traffic Collision
Avoidance System (TCAS), which has long been used to
benchmark the efficiency of combinatorial testing meth-
ods [19].

Previous studies using TCAS as an evaluationmetric relied
on a standard set of 38 realistic, distinct mutations that aim to
capture common programming errors. Our implementation
mirrors this set of mutations, which includes logical errors

(e.g. ≤ instead of <), incorrect arithmetic operators, inverted
logical branches, missing conditions, and incorrect constants.
TCAS takes as input 12 parameters regarding flight and loca-
tion data including: 3 boolean inputs, 3 enumeration types
with either 3 or 4 values apiece, and 6 integer inputs. In
return, TCAS produces one recommendation to maintain a
safe distance between two aircraft.

To evaluate its efficacy and efficiency, Radix Coverage was
tested at varying interaction strengths (C ≤ 6) and choices
for integer variable ranges to find the implanted mutations
in TCAS. We simulated three variable range scenarios (for
each of the TCAS integer variables). To represent a whitebox
testing environment following prior work , one simulation
used sets of less than 10 handpicked values for each variable,
where the values were chosen knowing the likely boundary
cases of the program. The other two simulations we chose
represent a more blackbox testing environment, where the
intended critical ranges of each variable are unknown to
the tester, and therefore larger ranges are required to stand
a reasonable chance of finding bugs. The first gave all 6
integer parameters a range of size 101, starting from 0 and
incrementing by 10 up to 1000 to do a scattered search with
an intermediate sized range. The second gave all integer
parameters a range of size 1001 consisting of all numbers
from 0 to 1000 to do a more exhaustive, consecutive-range
search.

For each setting of interaction strength and variable range
choice, we additionally generated baseline results in terms
of time-to-counterexample by using plain ACTS to find the
bugs. Given that Radix Coverage is an augmentation of ACTS,
this baseline demonstrates how much of an improvement
the technique provides. These experiments were ran on a
machine with 4 double-threaded Intel Core i7 cores running
at 1.9GHz.

RadixCov vs. Whitebox ACTS. Considering the first
white-box scenario of hand picked ranges consisting of ten
integers, ACTS outperforms Radix Coverage in number of
bugs found, but greatly sacrifices memory usage as interac-
tion strength increases. At C = 6, Radix Coverage is able to
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Table 4. Black-Box [0 . . . 1000] Integer Ranges.

t = 2 t = 3
Runtime Bugs Found Runtime Bugs Found

Radix Coverage 2.53 Minutes 26 53.23 Minutes 28
ACTS 46.29 Hours 18 DNF DNF

Table 5. Black-Box [0, 10, . . . 1000] Integer Ranges.

t = 2 t = 3 t = 4
Runtime Bugs Found Runtime Bugs Found Runtime Bugs Found

Radix Coverage 45.6 Sec. 9 148.1 Sec. 30 25.98 Min. 35
ACTS 102.71 Sec. 17 76.58 Hours 35 DNF DNF

find 26 bugs compared to ACTS finding 35 bugs in the same
period of time, with ACTS requiring 7.3 times as much mem-
ory. However, Radix Coverage excels at black-box use with
large integer ranges, which greatly increases its applicability
in scenarios with limited knowledge of critical and boundary
value ranges for the software’s input parameters.

RadixCov vs. Blackbox ACTS. The second scenario uses
basic physical intuition of the problem to give a contiguous
1001 value range for each of the six integer parameters. The
inputs are distances, so they should be non-negative, and
they deal with collision, so 1000 feet apart seems like a rea-
sonable maximum. Testing both Radix Coverage and plain
ACTS against all 38 mutations of TCAS yields the results in
Table 4.

Not only does Radix Coverage far outperform ACTS in
terms of bugs found in this blackbox scenario, the improve-
ment in runtime to discover counterexamples is staggering.
By providing a combinatorial testing method that can han-
dle several parameters with ranges exceeding 1000 values in
minutes, Radix Coverage turns combinatorial testing into a
practical blackbox testing technique.

RadixCov vs. Blackbox ACTS in sca�ered domain. The
third scenario further explores black-box testing by taking
the large range from the second scenario and leaving only a
tenth of its values, the 101 multiples of 10 from 0 to 1000, as
choices for each of the 6 integer variables TCAS uses. Using
these ranges as input to both Radix Coverage and ACTS
produces the results contained in Table 5.
Once again, we see that Radix Coverage far extends the

feasible size of integer ranges beyond what is possible with
ACTS. Past strength 2, these large ranges required for black-
box testing become intractable for ACTS, as the test arrays
become overly large. Radix Coverage on the other hand
handles well through strength 4. One downside of Radix
Coverage is that due to the variable splitting technique at
its core, the effective interaction strength of the generated
covering array is lower, as variables are only interacting
with parts of split variables, not with their entirety. From

this data, the bug-finding efficacy seems to indicate that
there is an effective drop of 1 in interaction strength when
compared to plain ACTS, as Radix Coverage finds the same
number of bugs at interaction strength C as ACTS does with
interaction strength (C − 1). Fortunately, this loss is easily
compensated by how much quicker Radix Coverage handles
higher interaction strengths than ACTS.

Overall, the TCAS case study shows that Radix Coverage
has the ability to reduce operations that require days of com-
putation to mere minutes, and can facilitate true black-box
testing of software while leveraging combinatorial methods.

5.2 System F

To evaluate our extension of combinatorial testing to han-
dle recursive algebraic data types, we turn to a mutation
testing based case study from the literature [6] that consists
of a System F implementation, as well as a suite of bugs
(mostly dealing with DeBruijn indices). In particular, the
property being tested is very similar to the running example
we’ve been using throughout the paper, in that it has a well-
typedness precondition. More concretely, the property states
that for all well-typed terms 4 and for all mutants<, both a
single step and a parallel reduction strategy agree with their
original (unmutated) versions:

mutationIrrelevant m e =

typeChecks e ==>

(stepwise NoMutant e == stepwise m e)

&& (parallel NoMutant e == parallel m e)

If either reduction strategy’s result with the mutation en-
abled differs from its result with the mutation disabled, then
the bug implanted by the mutation has been discovered. The
more bugs found in this manner from the suite of 20 available
mutations and the less time it takes to find them, the better.

To determine the effectiveness of our technique, we com-
pare its performance against that of LazySearch, the enu-
meration testing tool that our technique augments. These
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Figure 5. Time to bug discovery (in seconds) for LazySearch (in blue) and our extension (in orange).

Figure 6. Zoomed-in version of Figure 5 for the easier-to-find bugs.

experiments were ran on a machine with 18 double-threaded
Intel Core i9 cores running at 3.00GHz.

We started by generating baseline values by running Lazy-
Search on the property described above for each of the 20
mutations and recorded the time until a counterexample
is found. The results are shown in Figure 5 in blue. These
baseline results stratify the mutations into two groups: quick-
to-find bugs, which can be found in less than 3 seconds, and
slow-to-find bugs, which take upwards of two minutes (be-
tween 130 and 876 seconds). There are 14 quick-to-find bugs
in the baseline and 6 slow-to-find ones. As the quick-to-find
bugs are indistinguishable in Figure 5, we provide a zoomed-
in version with only these (Figure 6).

Against this baseline we measured the performance of
our tool, functional Radix Coverage, on the same metric,
measuring its time to finding a counterexample for each of
the 20 mutations. The results are shown in Figure 5 in orange.
Our technique shows dramatic improvements in bug finding
speed for the 6 slow-to-find bugs when compared to the
baseline. The slowest-to-find bug in the baseline has a 1.68
fold improvement of 876 seconds to 522 seconds, shaving
nearly 6 minutes off the search time. The other five slow-to-
find mutations are found strikingly faster than the baseline,
reducing their search time to under 48 seconds. In order
of increasing baseline time for those five, Radix Coverage
provided a 2.72, 2.78, 18.41, 28.56, and 28.59 fold improvement
in discovery time. As can be seen in Figure 6, the 13 out of 14
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quick-to-find bugs displayed stay under 3 seconds with our
technique, with most performing similarly to the baseline.
The 14Cℎ quick-to-find bug, SubstNoLift, which is displayed
on the main graph and has a baseline discovery time of
4.49 seconds, is the one somewhat significant loss for our
technique, with Radix Coverage finding it 7.33 times slower.
But this only makes for a 32.91 second discovery, which is
in line with the time required for most of the slow-to-find
bugs with Radix Coverage’s dramatic improvements.

Choosing Hyperparameters. One thing that is not clear
from the discussion above is that both LazySearch and Radix
Coverage rely on hyperparameters.
LazySearch takes as a parameter the maximum size of

terms it will enumerate and search through while looking
for a counterexample. Starting with maximum size 1 and
incrementing while LazySearch misses at least one coun-
terexample, we found that to discover counterexamples for
all 20 mutations, LazySearch needs to enumerate well-typed
terms up through size 13, so that is the size we selected to
determine our baseline for comparison.

Radix Coverage on the other hand requires selecting sev-
eral more hyper-parameters in addition to size: time-budget

per pattern, interaction strength, and fineness level. To under-
stand the effect of these parameters, we run several experi-
ments varying each parameter in isolation.
We found that:

• Aswe increase the time-budget per pattern, we explore
each pattern more thoroughly, making deeper bugs
easier to uncover, but at the same time potentially
increase the time-to-failure for shallower bugs.

• As we increase the interaction strength, we explore
more interactions between patterns; in the limit, in-
finite interaction strength would recover exhaustive
enumeration. As a result, this can significantly increase
time-to-failure.

• The effect of fineness level is mixed and dependent
on the other three parameters. At a low size, a higher
fineness can speed up bug-finding as it leads to finer
partitions; at the same time, however, combining high
fineness with high interaction strength can decrease
the efficiency of testing as the total number of patterns
significantly increases.

Due to the trade-offs and complementary strengths and
weaknesses of the various configurations of hyperparame-
ters, in our experiment we decided to take a balanced ap-
proach. We ran three competing configurations for each
mutation. One which has a low interaction strength (1), low
fineness (1), and medium time-budget (50 seconds)—which
can quickly yield results for shallow bugs: essentially this
allocates an equal amount of time to each constructor. A
second configuration has a medium interaction strength (5),
high fineness (5), and high time-budget (75 seconds)—which
provides a more thorough exploration of the deeper patterns

in the input space. And a third configuration with high inter-
action strength (7), medium fineness (3), and low time-budget
(10 seconds)—which ensures more interactions between con-
structors are exercised, but at a shallower depth than the
second one. While the ACTS manual claims to only support
interaction strengths up to 6, it can go higher when mixed-
strength coverage is used (such as in RadixCov), which we
leveraged to counteract the effective interaction strength
reduction caused by RadixCov’s parameter splitting.

6 Related Work

The potentially related literature on combinatorial and
property-based testing is vast. In this section we only discuss
the most closely related work, starting with recent work that
also attempts to bridge combinatorial testing and functional
programming, and then turning to other potentially related
approaches in the two fields. For a more thorough exposition,
we refer the reader to the combinatorial testing survey of Nie
and Leung [17].

Combinatorial Testing for Functional Programming.

The closest related work is the recent work of Goldstein et al.
[6], which also aims to bring the power of combinatorial
coverage to property-based testing. In their work, they intro-
duce a similar notion of combinatorial coverage for algebraic
datatypes. In fact, our notion of coverage can be completely
encoded in their regular tree expressions. However, that ex-
pressivity comes at a price: there is no way to reconcile their
notion of coverage with out-of-the-box combinatorial testing
tools, which is why they developed a method of thinning
random generators without the use of covering arrays. More-
over, their approach relies on the existence of such a random
generator that must be provided by the user, a process that
can take significant effort depending on the complexity of
the property under test, to the point of constituting a signifi-
cant research contribution in itself [8, 15, 18, 25]. As a result,
we view the two approaches as largely orthogonal: the ap-
proach in this paper pushes the boundaries of completely
black-box testing, using state-of-the-art automatic testing
tools to efficiently find errors; Goldstein et al., on the other
hand, squeeze every ounce of performance from expertly
handwritten generators, but only if such generators exist.

Combinatorial Testing for Context-Free Grammars.

While Goldstein et al. is the only approach we are aware of
that brings combinatorial testing ideas to the functional set-
ting, a number of other lines of work extend combinatorial
testing to handle other domains, such as context-free gram-
mars. In particular, Lämmel and Schulte define combinatorial
coverage between nodes in a grammar by first bounding the
space up to some depth, and then allowing users to manu-
ally specify what interactions need to be covered [12]. Sim-
ilarly, Salecker and Glesner define combinatorial coverage
by mapping depth-bounded grammar derivations to sets of

69



Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Segev Elazar Mi�elman, Aviel Resnick, Ivan Perez, Alwyn E. Goodloe, and Leonidas Lampropoulos

parameter choices [21]. In contrast, our approach can handle
the infinite domains traditionally associated with algebraic
data types, by partitioning the infinite space into a finite
number of (potentially) infinite subspaces, and then defining
combinatorial coverage by focusing on interactions between
the constructors that define those subspaces.

Enumerative Property-Based Testing. As we discussed
throughout the paper, our technique focuses on enumerative
property-based testing by improving upon LazySearch [4].
There are other approaches in the same domain, such as
SmallCheck [20] or the more efficient LeanCheck [1], which
offer property-based testing infrastructure and support gen-
eration of inputs through exhaustive enumeration. We chose
to build upon LazySearch instead, as it provides support for
effectively pruning the input search space to filter out invalid
inputs (a capability which the other tools do not provide), and
we were able to seamlessly leverage the same mechanism to
achieve our partitioning.

Random Property-Based Testing. Finally, as discussed
in the introduction, property-based testing tools [3, 13] often
leverage randomness to sample from the large space of poten-
tial inputs, an approach which comes with both advantages
and disadvantages compared to exhaustively enumerating
inputs up to some size. Thoroughly comparing enumerative
and randomized approaches lies way beyond the scope of
this paper and we refer the interested reader in the recent
work of Shi et al. [23] who undertake such a case study. In-
stead, in this work, we focused on enumerative testing which
provides a black-box automatic method of handling precon-
ditions for properties written in Haskell and we provide a
way of extracting more value out of a finite testing budget.

7 Conclusion and Future Work

In this paper, we showed how techniques from combi-
natorial testing can be used to improve the efficiency of a
state-of-the-art enumeration-based property-based testing
tool for Haskell, by reprioritizing the enumeration order to
be more evenly distributed across the input space. In the
future, we would like to further explore the effects of the
various hyperparameters using a more thorough benchmark
such as the recent one of Shi et al. [23] (which is not yet
publicly available as of the time of writing) and apply our
techniques to more domains.

Data Availability Statement

Code implementing Radix Coverage, its extension to alge-
braic data types, and the evaulation experiments are available
in the Zenodo artifact [5].
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