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Abstract 20 
Gene expression can be influenced by genetic variants that are closely linked to the expressed gene (cis 21 
eQTLs) and variants in other parts of the genome (trans eQTLs).  We created a multiparental mapping 22 
population by sampling genotypes from a single natural population of Mimulus guttatus and scored gene 23 
expression in the leaves of 1,588 plants. We find that nearly every measured gene exhibits cis regulatory 24 
variation (91% have FDR < 0.05).  cis eQTLs are usually allelic series with three or more functionally 25 
distinct alleles.  The cis locus explains about two thirds of the standing genetic variance (on average) but 26 
varies among genes and tends to be greatest when there is high indel variation in the upstream regulatory 27 
region and high nucleotide diversity in the coding sequence. Despite mapping over 10,000 trans eQTL / 28 
affected gene pairs, most of the genetic variance generated by trans acting loci remains unexplained. This 29 
implies a large reservoir of trans acting genes with subtle or diffuse effects.  Mapped trans eQTLs show 30 
lower allelic diversity but much higher genetic dominance than cis eQTLs. Several analyses also indicate 31 
that trans eQTLs make a substantial contribution to the genetic correlations in expression among different 32 
genes. They may thus be essential determinants of “gene expression modules,” which has important 33 
implications for the evolution of gene expression and how it is studied by geneticists.  34 
 35 

Author Summary 36 
Mimulus guttatus (yellow monkeyflower) is a model for the study of quantitative trait evolution in natural 37 
populations.  Research has focused mainly on whole organism traits like flower size or herbivore 38 
resistance, but the level of expression of a gene is also a quantitative trait.  In this study, we dissect leaf 39 
transcriptome variation using a breeding design that estimates the contribution of individual loci to 40 
expression variation (eQTLs).  We find rough agreement to the “oligogenic model” of inheritance where a 41 
major locus (the cis regulatory region) generates much of the genetic variation in the population.  42 
Associations studies usually characterize genetic effects as binary (e.g. the two alternatives at a single 43 
nucleotide polymorphism or “SNP”), but this description is insufficient for Mimulus.  Most loci exhibit 44 
multiple, and in some cases, a continuum of alleles.  We find that trans eQTLs have different features than 45 
cis eQTLs, both in terms of the diversity and genetic dominance of alleles.  These genetic features of 46 
eQTLs are critical determinants of the “G matrix,” the genetic variances and covariances among all genes 47 
which determine how gene expression will evolve under selection in response to changing environmental 48 
conditions.  Our finding of large effect sizes and high allelic diversity suggests that the G matrix may be 49 
surprisingly malleable, even on ecological timescales. 50 
 51 

  52 
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Introduction 53 

Gene expression is a quantitative trait.  Expression scored from sequence-read counts (RNAseq [1]) is 54 
strongly influenced by environmental variables, measurement error, and the complex interaction of many 55 
genes [2].  A vast methodology has been developed for the analysis of quantitative traits with applications 56 
to agriculture, conservation, and the evolution of natural populations [3, 4]. When RNAseq is applied to a 57 
population, specifically to a collection of genotypes that have been randomly sampled from a deme, the 58 
machinery of quantitative genetics can be employed to address basic questions about the potential for 59 
gene expression to evolve.  We can ask how many loci affect expression of each gene and how large their 60 
respective effects are.  The effect/number distribution is essential for predicting how rapidly expression 61 
will evolve under natural selection [5, 6].  Population allele frequencies are a second critical aspect of 62 
quantitative trait variation.  Determining whether alleles at expression Quantitative Trait Loci (eQTLs) are 63 
typically rare or intermediate in frequency tests hypotheses about the evolutionary forces that maintain 64 
variation [7].  Next, we can ask whether gene expression is affected by genetic complexities such as 65 
dominance, epistasis, or genotype by environment interaction.  These factors influence the mapping from 66 
genotype to fitness and thus the amount of genetic variation in expression available to selection.  Finally, 67 
recognizing that the entire transcriptome is just a very long vector of quantitative traits [8], we need to 68 
determine the genetic basis of correlations among genes in their expression levels.  Estimating the 69 
respective contributions of genetic and environmental factors to covariances is essential to 70 
understanding co-expression patterns across the genome. 71 
 72 
Gene expression is unlike other quantitative traits in that we know the location of one very important locus 73 
prior to genetic mapping.  The DNA surrounding a gene is likely to contain regulatory sequences such as 74 
promoters and enhancers.  This locus, the cis eQTL, is thus a strong candidate as an effector of 75 
expression.  What fraction of the total genetic variance in expression is generated by the cis eQTL?  The 76 
proximity of regulatory DNA to the expressed gene suggests an oligogenic model of inheritance [9], where 77 
most variation is generated by a “major effect” cis eQTL.  There will also be a lesser contribution of 78 
numerous unlinked modifiers (trans eQTLs). However, association studies of gene expression variation in 79 
humans suggest a very different model. Even if the cis eQTL is the most important single locus, it may 80 
explain only a minor fraction of the genetic variance in expression.  The omnigenic model [10, 11] posits 81 
that many trans eQTLs, each with small effects and distributed uniformly over the entire genome, generate 82 
the bulk of variation in expression. 83 
 84 
Genetic dominance is likely to differ between cis and trans eQTLs.  Additive gene action is expected for cis 85 
eQTLs [12, 13] given that regulatory molecules like transcription factors bind separately to each allele.  86 
With allele-specific effects on expression, additivity results if the overall expression of a gene is the sum of 87 
the mRNAs produced independently by each allele. This simple model can breakdown if there is 88 
imprinting [14] or if feedback mechanisms such as autoregulation [15] cause the realized mRNA levels of 89 
one allele to depend on the expression of the other.  In contrast to cis, there is no a priori reason to 90 
assume additive gene action for trans eQTLs. The product of a trans acting locus (say a transcription 91 
factor protein) can affect both alleles of the expressed gene [2].   92 
 93 
Cis and trans eQTLs should also contribute differentially to genetic covariances between expressed 94 
genes.  Genetic covariances result from pleiotropy, linkage disequilibria, and in populations that inbreed 95 
to some extent, identity disequilibrium [16, 17].  In this paper, we apply a breeding design where all 96 
individuals have a known ancestry.  This allows us to estimate the combined effects of pleiotropy and LD 97 
on the co-expression of genes and the contribution of individual QTLs to these covariances [18, 19].  98 
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When considering multiple expressed genes, a single locus can have multiple effects, both cis and trans. 99 
While it is typical to think of cis eQTLs as effectors of a single gene, a single mutation could affect the 100 
expression of multiple closely linked genes by altering local DNA accessibility.  Distinct mutations in 101 
regulatory regions of closely linked genes will generate a genetic covariance if these mutations are in 102 
linkage disequilibrium in the population.  Trans eQTLs can generate genetic covariances in several ways.  103 
Most obviously, a trans eQTL that affects many genes will generate covariation in expression among all its 104 
targeted genes.  More directly, the cis effect of a mutation on a regulatory gene should generate a 105 
correlation between the expression of that gene and the expression level of downstream target genes (for 106 
which the mutation would be a trans eQTL). 107 

 108 
Fig 1 (A) A diagram of the replicated F2 design with the number of plants used after filtering in 109 
parentheses.  Each “P” is an unrelated inbred line. 767 is another inbred line derived from the same 110 
population, unrelated to the other nine P lines. (B) A photo of the plant (leaf number noted) at the 111 
developmental stage when 2nd leaves were harvested.  (C) The distribution of relatedness (twice the 112 
coefficient of coancestry) values from all pairwise comparisons of individuals.  The set of contrasts 113 
centered on 0.5 corresponds to F2 individuals of different families, while the contrasts centered on R 114 
= 1.0 come from intra-family comparisons.  Comparisons among plants of the same inbred line have 115 
R = 2.0 (genetically identical and fully homozygous).  116 
 117 
In this paper, we describe an experiment to characterize variation and covariation in gene expression, and 118 
then estimate the contribution of individual genetic loci to this (co)variation.  We created a multiparental 119 
mapping population by intercrossing genotypes from one natural population and then measured gene 120 
expression in leaf tissue (Fig 1B).  The replicated F2 crossing design (Fig 1A) produces high variance in 121 
relatedness of individuals, which is essential for estimating genetic (co)variances.  It generates both 122 
homozygous and heterozygous genotypes at individual loci, necessary for characterizing how both the 123 
additive and dominance effects of eQTLs contribute to variation. We analyzed these data using two 124 
complimentary approaches. The “Cross-specific analysis” treats each of the nine families as a distinct 125 
entity and extracts estimates for QTL effects in the fashion of a single F2 mapping population, e.g. [20].  126 
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The “Combined analysis” considers all plants simultaneously with the relatedness of each F2 plant to all 127 
other plants estimated through genomewide similarity [21].  Given sufficient variation in relatedness, we 128 
partition expression variation into genetic and environmental components using the classical “animal 129 
model” ([22], i.e. the linear mixed model [23]).  Finally, we determine the contribution of individual loci to 130 
the genetic component of variation established in this context. 131 

Results 132 

Mapping RNAseq reads to our de novo assemblies effectively genotypes F2 133 
plants 134 
Two of the ten parental lines (767 and 62) used in this study were sequenced and assembled by the Joint 135 
Genome Institute [24], while the other eight were assembled from our long-read sequencing (see Methods 136 
A).  De novo assembly of the long reads yielded two to four large scaffolds per chromosome with a high 137 
inclusion of genes (BUSCO completeness 93-94%, S1 Table). We used genetic maps obtained from our F2 138 
genotyping to assemble scaffolds into pseudo-chromosomes. Next, we called SNPs among these lines 139 
and report the nucleotide diversity within and around each gene in S2 Table. These comparisons confirm 140 
our previous Illumina sequencing [25]: The 10 lines are about equally distant from each other in terms of 141 
sequence divergence (S1 Fig) and can thus be treated as unrelated individuals from the natural 142 
population.   143 
We genotyped F2 plants using the RNAseq reads (Methods C). Transcript reads can be suboptimal for 144 
genotyping owing to varying coverage per locus (expression levels differ among genes) and because the 145 
representation of the two parental alleles within the RNA of heterozygotes may be unequal (allele-specific 146 
expression). We address these difficulties by stringent filtering of genes, using only about 37% as genetic 147 
markers.  Next, we apply a Hidden Markov Model (HMM) to each chromosome of each individual allowing 148 
marker specific genotyping error rates (the emission probabilities of the HMM).  The HMM leverages 149 
genetic information across the chromosome, and particularly from neighboring genes, to call the 150 
genotype (ancestry) at each locus [26, 27].  Given the recombination rate of M. guttatus [27], a diploid F2 151 
plant has an average of ~1.8 crossover events per chromosome.  Consequently, there are large stretches 152 
of markers (usually hundreds of genes) between genotype transitions along chromosomes.  Neighboring 153 
markers will (nearly) always have the same ancestry (homozygous for 767, heterozygote, or homozygous 154 
for the alternative parental line allele), which greatly simplifies genotype inference.  For the filtered 155 
dataset, we obtained posterior genotype probabilities of >99% at virtually all marker loci.   156 
After filtering the RNAseq read data, we obtained an average of 4,800 informative genetic markers per 157 
cross (family).  The HMM yields genetic maps for each family.  The maps from different families are similar 158 
to each other by chromosome, and the average total genetic length (1,260 centimorgans) is comparable 159 
to previously published maps of M. guttatus [27].  Also, the maps exhibit the predicted pattern of 160 
recombination suppression over regions where large inversions are known to segregate.  Line 664 carries a 161 
large inversion on chromosome 6 [28] and the map for this family exhibits recombination suppression over 162 
the predicted region (1.22 to 8.57mb in the coordinates of the 767 genome assembly).  The meiotic drive 163 
allele on chromosome 11 [29] segregates in families 62, 502, 541, 664, and 909, and these maps exhibit 164 
consistent suppression from coordinates 6.60mb to 17.62mb.  As expected, this interval includes the 165 
centromere.  Interpolating from the genetic markers, we established a nearly complete genotype matrix 166 
for eQTL mapping.  For each gene measured for expression, we could score the locus as homozygous for 167 
the reference line (767), homozygous for the alternative line, or heterozygous.  This gives us a genotype 168 
call specific to each expressed gene, which is the cis eQTL in the Combined analysis. 169 
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Estimation of genetic variances and the contribution of specific eQTLs 170 
Genetic variances are estimated by determining how phenotypic similarity increases with genetic 171 
similarity.  Estimation will be most effective when we can compare plants that range from unrelated (R=0) 172 
up to fully homozygous identical twins (R=2).  We calculated the relatedness using the genotype matrix for 173 
the 1,588 plants.  The distribution of pairwise relatedness values (depicted in Fig 1C) confirms that our 174 
crossing design produced the high variance in relatedness that is necessary for accurate estimation of the 175 
genetic variances. At the low end, where R = 0, there are 451,200 contrasts among unrelated individuals.  176 

These are plant pairs from  177 
Fig 2. All significant eQTLs are reported by QTL (x-axis chromosomal locations) and affected gene 178 
position (y-axis) in four of the crosses (alternative lines 502, 909, 541, and 1034).  Blue/aqua points 179 
are cis eQTLs while red/pink denotes trans eQTLs (shade changes with chromosome).  The vertical 180 
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“chimneys” highlighted by arrows are trans eQTL hotspots, the locations of which are unique to each 181 
cross.   182 
 183 
different inbred lines and contrasts of F2s to unrelated parental lines.  The next most frequent contrast is 184 
among F2 plants in different families (average R = 0.5), which are related through shared inheritance of 185 
DNA from their common parent (767).  F2 plants within a family (average R = 1.0) can have alleles Identical 186 
by Descent through both parents.  The variability in relatedness around the modal points of 0.5 and 1.0 are 187 
due to the stochastic events of segregation and recombination in gamete formation that will make siblings 188 
more/less similar by chance.  Finally, there are several thousand contrasts of genetically identical 189 
individuals within parental lines.  These contrasts have R = 2.0 because line plants are completely 190 
homozygous (the maximum for R is 1 when all plants are outbred).  191 
We used simulations to choose the best statistic to estimate the contribution of individual loci to genetic 192 
variation in expression (Methods F).  In these simulations, we used the observed genotype matrix as a 193 
framework with subsequent generation of expression levels, with and without cis and trans eQTLs of 194 
varying effects.  We tested the accuracy of three different methods: the least squares based Haseman–195 
Elston (HE) regression [30] and two statistics derived from the maximum likelihood fit of the linear mixed 196 
model: Vg[r2] and Vg[a] are described in Methods D.  Across a range of cases, all three estimators are 197 
nearly unbiased given our sample sizes and genotype matrix.  In other words, the average of estimates 198 
across simulations is close to the true value of the parameter used to simulate data.  However, when a 199 
locus contributes to genetic variation, the variance among replicate simulations is much larger for HE 200 
regression than for either Vg[r2] or Vg[a].  The variance for Vg[a] is marginally lower than for Vg[r2] (see S3 201 
Table). We chose Vg[a] to estimate the contribution of both cis and trans eQTLs to the genetic variance of 202 
expression in the real data because it was the most accurate (Vg[a] has the lowest mean square error). 203 

The great majority of genes exhibit cis-regulatory variation with high allelic 204 
diversity 205 
In the Combined analysis, 91% of genes have a significant cis eQTL (FDR < 0.05; S4 Table).  The Cross-206 
specific mapping identified 32,853 eQTLs over the 9 families, most (22,794) were cis to the affected gene.  207 
These estimates refer only to measured genes, those expressed in leaf tissue and passing filters.  The 208 
eQTL plot for four of the crosses (Fig 2) are typical of the full set (S2 Fig), with the many cis eQTLs filling the 209 
diagonal of this plot.  Gaps along the diagonals are only present in centromeric parts of chromosomes 210 
where there are few genes. This is partly due to filtering: We did not test genes with a mean Count Per 211 
Million < 0.5.  Average expression levels are lower for genes in centromeric regions (and for low 212 
recombination portions of the genome generally;  S3 Fig).  A greater number of significant cis eQTLs 213 
emerge from the Cross-specific analyses than the Combined analysis (22,794 > 11,818) but these 214 
numbers are not comparable.  Each gene is tested nine times in the former analysis (once within each 215 
cross) but only once in the latter. 216 
Genetic effect estimates are very similar between Cross-specific and Combined analyses.  When cis QTL 217 
effects are measured in standard deviations of the expression level, estimates for the same locus/cross 218 
are nearly equivalent between identical Cross-specific and Combined analyses: The correlation is 0.96 219 
when including both significant and non-significant tests (n = 9 crosses x 12,987 genes = 116,883 220 
estimates; S4 Fig).  This high congruence is noteworthy given that (a) data transformations differ between 221 
pipelines, (b) the Cross-specific analysis considers only F2 individuals while the Combined analysis also 222 
includes data from the homozygous parental lines, and (c) the Combined analysis includes a random 223 
effect to absorb trans eQTL effects while the Cross-specific does not. The strength of evidence (level of 224 
statistical significance) for cis-regulatory variation is much stronger from the Combined analysis because 225 
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it integrates signal across families.  However, the point estimates for allelic effects are remarkably 226 
consistent (r = 0.96). 227 

 228 
Fig 3.  (A) The distribution (across genes) of the fraction of the total genetic variance due to the cis 229 
locus is reported for each of the 12,987 genes.  Genes with negative Vg(cis) estimates are reported as 230 
0. (B) The estimated effect of the alternative allele (not 767) on total gene expression (across 231 
genotypes) is a strong predictor of allele frequency within the reads produced by heterozygotes.  The 232 
units for a (estimated additive effect) are standard deviations of expression. (C) The distribution 233 
across eQTLs of the number of functionally distinct alleles per cis (blue) and trans (red) eQTL are 234 
reported. (D) The distributions across genes of estimates for the scaled dominance coefficient (d/a) 235 
are reported for cis and trans eQTLs.  With no dominance d/a = 0 while -1 (or 1) implies that the 236 
alternative allele is fully recessive (or dominant).  The end categories bin all estimates that are less 237 
than -1.1 or greater than 1.1. 238 
 239 
More important than the number of significant tests, we find that most of the additive genetic variation in 240 
gene expression is explained by cis eQTLs. From the Combined analysis, the mean values for VE, Vg(cis) and 241 
Vg(trans) were 0.828, 0.093, and 0.044, respectively.  The fraction of the genetic variation generated by the cis 242 
locus varies (Fig 3A), but Vg(cis) > Vg(trans) for 63% of genes.  Here, Vg(trans) is estimated using the relationship 243 
matrix and represents the combined effect of all trans acting loci on the affected gene.  As expected, the 244 
strength of evidence for a cis eQTL is positively correlated with Vg(cis) (S5 Fig).  The residual variance, VE, is 245 
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the largest component for most genes where measurement error owing to finite sequencing depth 246 
contributes substantially.  Average read depth per gene is a strong positive predictor of test significance, 247 
while average VE declines as coverage increases (S6 Fig).  Both trends are expected if expression levels are 248 
less accurately estimated at genes with lower coverages. 249 
The cis eQTLs identified by our Combined and Cross-specific analyses are significant when the overall 250 
expression of a gene differs among the three genotypes that segregate within each family (the alternative 251 
homozygotes and the heterozygote).  Because genotype is called at the marker locus most proximal to the 252 
expressed gene, significant tests from this procedure are often called “local eQTLs” [31].  Allele-specific 253 
expression provides an alternative method to detect cis eQTLs [32] based only on data from heterozygous 254 
individuals.  If cis DNA variation only affects the expression of the physically linked gene (on the same 255 
chromosome), the “high allele” should be over-represented in the mRNA produced by heterozygotes. In 256 
this experiment, we have the genome sequences of all parental genomes and can distinguish alternative 257 
alleles within the mRNA produced by heterozygous plants for 46,828 gene/family combinations.  In these 258 
cases, we see that whichever allele increases expression across all three genotypes is usually over-259 
represented in the mRNA produced by heterozygous plants (Fig 3B).  This is the signature of allele-specific 260 
expression.  Given that both estimates (the additive effect on overall expression and allele frequency 261 
within heterozygotes) are subject to substantial estimation error, the high positive correlation (r = 0.83) 262 
provides a compelling corroboration of cis eQTLs identified using local markers.  This is illustrated by the 263 
subset of cases where the estimated additive effect of the alterative allele on expression is lower than -0.5 264 
or greater than 0.5 (and we can be confident of correctly inferring up or down regulation).  In these cases, 265 
allele frequency in the mRNA of heterozygotes deviates from 0.5 in the predicted direction in 99.6% of 266 
7,841 tests. 267 
Contradicting the assumption of additivity, about 20% of cis eQTLs exhibit some level of dominance (the 268 
test for dominance yields FDR<0.05).  However, dominance is nearly always partial with heterozygote 269 
expression levels between the values of alternative homozygotes.  Dominance is quantified by the 270 
parameter d, where the mean expression of genotypes RR, RA, and AA are 𝑚, 𝑚 + 𝑎 + 𝑑, and 𝑚 + 2𝑎, 271 
respectively (m is the mean expression of individuals homozygous for the reference allele (RR)).  Partial 272 
dominance is implied if abs(d) < abs(a).  For cis eQTLs, 98% of point estimates for d and a satisfy this 273 
condition (Fig 3D).  Partial dominance at cis eQTLs is corroborated by the allele-specific expression data.  274 
If we regress the alt-allele frequency in reads from heterozygotes (y-axis of Fig 3B) onto the estimates for 275 
both a and d simultaneously, both are highly significant as positive predictors of allele frequency (p < 10-9 276 
for each coefficient).  The positive coefficient for d means that when the overall expression of the 277 
heterozygotes exceeds the value predicted by additivity, there is a corresponding increase in alt-allele 278 
frequency within the reads produced by heterozygous plants.  When d < 0, this frequency is reduced 279 
relative to additivity.  Thus, fluctuations in allele-specific expression parallel dominance estimates. 280 
The definition of “alleles” is different in multiparental mapping experiments (such as this study) than in 281 
genomewide association studies.  In the latter, alleles are typically biallelic SNPs.  Here, alleles are the 282 
distinct haplotypes carried by the founding parental lines in the vicinity of each gene.  In our initial model 283 
fit, we allowed the cis allele from each of our nine alternative lines to uniquely differ from the allele carried 284 
by the reference line (767). From the point of view of statistical testing, it is appropriate to allow each 285 
allele to have a unique effect on expression that is characterized by a distinct free parameter. In fact, our 286 
simulations indicate this procedure to be slightly conservative for detecting QTLs (Methods F).  However, 287 
in terms of characterizing QTL effects, this “full model” is overparameterized when fewer than 10 288 
functionally distinct alleles segregate.  To address the number of functionally distinct cis alleles, we 289 
applied the allele partitioning method of King et al. [33] to each gene.  The typical result is an allelic series 290 
with a median of 3 alleles per cis locus (Fig 3C).  Some significant loci have only two distinct alleles, but in 291 
this case, each allele is typically carried by multiple ancestral lines.  We can characterize allele number 292 
and relative frequency of alleles with heterozygosity: 𝐻 = 1 −  ∑ 𝑞𝑖

2, where 𝑞𝑖 is the frequency of the ith 293 
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allele and the sum is taken over all alleles at the locus.  Across all cis loci (significant or not), the median H 294 
is 0.59 indicating high allelic heterogeneity.   295 
We used multiple linear regression to test if sequence variation in the vicinity of genes can predict the 296 
strength of cis eQTL effects on expression.  We measured variation within each of three windows around 297 
each gene: the 1kb upstream of the gene start codon, the gene itself, and the 1kb downstream.  Within 298 
each region, we calculated nucleotide diversity (π) and a measure of insertion/deletion frequency (U) as 299 
potential effectors of cis eQTL significance. U = 0.0 if the ten lines are perfectly colinear over a region but 300 
increases toward 1.0 as indels accumulate (see Methods B). Predicting the significance of cis eQTL 301 
effects on the full set of 12,897 genes, all six predictors are positive, but only four are strongly significant 302 
(S5 Table).  Cis eQTL significance increases most strongly with π within the genic region and with U for the 303 
upstream regulatory region.  Indels in the genic and downstream regions have moderately positive effects 304 
on cis eQTL significance, while nucleotide diversity in the upstream and downstream regions are 305 
minimally important. 306 

The characteristics of ascertained trans eQTLs are very different from cis 307 

eQTLs 308 
While less frequent than cis eQTLs, trans eQTLs are abundant: 10,059 significant tests across all nine 309 
families in the Cross-specific analysis (Fig 1).  A substantial fraction of trans eQTLs occur in “hotspots” 310 
where a single locus effects the expression of many genes.  Within each cross, we clustered significant 311 
trans eQTLs if located within 2 centimorgans of each other which distills all significant tests into 1,979 loci 312 
( S6 Table). The number of affected genes per locus is usually low (median = 2), but we can identify 35 313 
hotspots where the trans eQTL affects the expression of 30 or more genes.  In a few cases, hotspots in 314 
different families have roughly similar genomic locations ( S2 Fig), but since the affected genes are 315 
different, they are likely caused by different mutations.  For example, three different families (155, 664, 316 
and 909) each have a trans eQTL hotspot within the first Mb of chromosome 1.  However, the 68 affected 317 
genes in family 155 are different from the 30 genes affected in family 664, and the 35 in family 909 are non-318 
overlapping with either previous set.   319 
In the Cross-specific analysis, 98% of the trans eQTL/affected gene pairs were ascertained within only one 320 
family.  This suggests low allelic diversity – a bi-allelic polymorphism with the minor allele carried by only 321 
one parental line.  However, it is not tenable to assume the absence of significance as absence of effect. 322 
To provide a meaningful contrast of allelic diversity at cis and trans eQTLs, we estimated the effect of each 323 
trans eQTL considering all families simultaneously, essentially applying the Combined analysis model 324 
previously fit to cis loci.  Across all trans eQTL/affected-gene pairs, the Combined analysis indicates that 325 
trans eQTLs explain about 10% of the genetic variance (Vg) on average. This is much less than the average 326 
cis contribution to Vg (Fig 3A) and usually constitutes a minority of the overall Vg(trans) for genes.   327 
 There are two reasons for lower diversity at trans eQTLs than cis eQTLs.  First, trans eQTLs have a lower 328 
number of functionally distinct alleles per locus (median of 2 instead of 3; Fig 3C).  Second, for a given 329 
allele number, the average heterozygosity is lower at trans than cis eQTLs because the latter exhibit a 330 
more even distribution of alleles (Fig 4).  At two allele loci, a trans eQTL is more likely to be 1:9 than 5:5 for 331 
allele counts, while the reverse is true for cis eQTLs.  With three alleles, there are a greater number of 332 
configurations, but cis eQTLs are over-represented in high heterozygosity categories (right side of Fig 4b) 333 
and trans eQTLs in the lower categories (left side).  The differences in the distributions of cis and trans are 334 
highly significant for both the two allele (X2 = 505, df = 4, p < 10-16) and three allele (X2 = 274, df = 7, p < 10-335 
16) loci. Comparisons beyond three alleles are not possible owing to absence of trans eQTLs with high 336 
allele counts.   337 



 11 

 338 
Fig 4.  Panels A and B: The distribution of allele configurations for cis (blue) and trans (red) eQTLs for 339 
loci with (A) two alleles or (B) three alleles.  The bracketed numbers refer to (A) the counts of the 340 
minor and major alleles or (B) the counts of minor, intermediate and major alleles.  The allelic 341 
configurations are ordered left to right according to increasing heterozygosity (H). Panels C and D: 342 
Examples of the distribution of expression levels (Box-Cox transformed values used in the 343 
Combined analysis) per cis eQTL genotype (colored bars) or the overall distribution (inset for each 344 
panel).  Panel C is a case where the cis eQTL has two functionally distinct alleles (gene = 345 
MgIM767.04G000700.v1.1) where five of the P lines carry the allele of IM767 (R) while the other four 346 
carry an alternative (A).  Panel D is an example with three functional alleles (gene = 347 
MgIM767.10G016500.v1.1) where all P lines differ from 767 with two carrying allele A1 and the other 348 
seven carrying allele A2 349 
The partitioning of variation at eQTLs into functionally distinct alleles also illustrates an interesting aspect 350 
of the overall expression distribution of genes.  Hsieh et al [34] noted that eQTL with major effects could 351 
generate a multi-modal distribution for expression – the distinct modes corresponding to the means of 352 
different genotypes.  In this experiment, we do observe multi-modal distributions, but usually only when 353 
there is a large effect eQTL with only two alleles segregating.  This is illustrated by a comparison of two 354 
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major cis eQTLs, with either two (Fig 4C) or three (Fig 4D) distinct alleles.  Inspecting the overall 355 
distributions (insets in figures), we see a clear bimodal distribution in the first case, but not the second.  In 356 
either case, if we subdivide plants according to cis eQTL genotype, the underlying distributions reveal the 357 
cause of the difference.  There is a relatively simple unimodal distribution within each cis eQTL genotype 358 
for both genes. However, they separate more clearly in the two-allele case simply because fewer 359 
genotypes (and thus fewer distributions) span the range of expression variation.  Genotypes with 360 
intermediate means (frequently heterozygotes) fill the “valleys” in the overall distribution particularly with 361 
three or more alleles segregate at an eQTL.     362 
The average Heterozygosity of trans eQTLs (H = 0.41) is only about two thirds that of cis eQTLs owing to the 363 
differences in allele number/evenness.  This is a large difference, but less than suggested by literal 364 
extrapolation from the Cross-specific analysis where trans eQTLs typically showed in only one family.  In 365 
the Combined analysis, the “typical” trans eQTL has the minor allele present in two of ten lines.  We 366 
obtain only one significant test in the Cross-specific analysis owing to sampling error and limited power 367 
(the Beavis effect [35]).  In fact, there are a small number of potentially important cases where the trans 368 
eQTL has high allelic diversity.  For example, MgIM767.11G072100.v1.1 (a MADS box transcription factor) 369 
is affected by a QTL about 17.5 mb into chromosome 4 that segregates within four of nine families. 370 
Considering the results from the perspective of the phenotype, we find that many genes are affected by 371 
multiple trans eQTLs, both within and between families. Across all genes measured for expression, the 372 
number of trans eQTLs ranged from 0 to 12.  There is a strong positive relationship between the “trans 373 
heritability” (Vg(trans) as a proportion of the total variance in expression) and the number of significant trans 374 
eQTLs identified for that gene in the Cross-specific analysis (Fig 5A).  For a given number of trans eQTLs 375 
affecting a trait, Vg(trans) increases with the amount of genetic variance generated by these loci (F1, 6808 = 376 
58.4, p < 10-13).  In other words, the amount of variation contributed by mapped trans eQTLs is a strong 377 
predictor of the estimated Vg(trans) of a gene (which is the total contribution of trans eQTLs, mapped or not).  378 
However, even in this subset of genes where we identified at least one trans eQTL, the majority of Vg(trans) 379 
remains unexplained. 380 

 381 
Fig 5.  (A) Trans heritability, the fraction of the variance in expression explained by Vg(trans), is predicted 382 
by the number of trans eQTLs affecting a gene. Number in parentheses is the count of genes in each 383 
category and the rectangle is the 95% CI on the mean.  (B) The frequency distributions (density) for 384 
genetic covariance between genes affected by the same trans eQTL and all gene pairs. 385 
Allelic dominance at trans eQTLs is both more frequent and more severe than at cis eQTLs. In the Cross-386 
specific analysis, 60% of trans eQTLs are significant for dominance and abs(d) < abs(a) in only 51% of 387 
cases (Fig 3D).  This does not imply extensive over/under dominance because loci with complete 388 
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dominance will produce point estimates with abs(d) > abs(a) about half the time owing to estimation error. 389 
We can test for over/under dominance by comparing the likelihood of the data with d unconstrained to the 390 
likelihood under complete dominance of either allele.  For cis eQTLs, this test provides only one gene with 391 
a compelling case for over/under dominance: MgIM767.14G274100.v1.1, a pectin acetylesterase protein, 392 
is highly significant for overdominance in three families and marginally significant in a fourth.  There are 393 
more trans eQTLs suggesting over/under dominance, but none rise to genomewide significance. 394 

The contribution of trans eQTLs to genetic covariances 395 
The additive genetic covariance between any two genes (CG) can be estimated simply by applying the 396 
Combined model analysis to the sum of expression at the two genes and then subtracting estimates 397 
obtained from the fits to each gene alone (see Methods D). To characterize the genomic distribution, we 398 
randomly paired each expressed gene with 10 other genes and estimated GG, and the environmental 399 
covariance (CE), for each of these 64,930 trait pairs.  GG and CE each exhibit distributions with a roughly 400 
equal mixture of positive and negative values (S7 Fig). With expression levels standardized to unit 401 
variance, we can use squared covariances to measure the magnitude of genetic and environmental 402 
associations.  For 𝐶𝐺

2, the genomewide mean is 0.000983 (SE = 0.000007), while the mean for 𝐶𝐸
2 is 403 

0.010545 (SE=0.000081).  These low values reflect the fact that most genes are uncorrelated with the bulk 404 
of the transcriptome (thousands of pairwise comparisons), even if strongly correlated with a subset of 405 
other genes (tens to hundreds of comparisons). 406 
We tested the effect of trans eQTLs on co-expression by identifying all pairs of genes affected by the same 407 
trans eQTL. Over 305,809 gene pairs, the mean 𝐶𝐺

2 is 0.001639 (SE = 0.000007), which is the 67% greater 408 
than the genomewide average (t = 65.6, p < 10-9; Fig 5B).  This confirms the prediction that trans eQTLs 409 
contribute to co-expression.  While most gene pairs were specific to one cross, there were 621 pairs 410 
mapped in two families and 4 pairs mapped in three families.  The magnitude of the genetic covariance 411 
(mean 𝐶𝐺

2) is much higher in these multi-family gene pairs (F2,305806=2848, p < 10-9;  S8 Fig).  This is also 412 
expected given that intermediate allele frequency polymorphisms should generate more covariation than 413 
rare allele polymorphisms.  An unexpected result is that 𝐶𝐸

2 is also inflated in trans eQTL pairs where the 414 
mean of 0.014266 (SE = 0.000053) is 35% greater than the genomewide average (t = 38.4, p < 10-9).   415 
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 416 
Fig 6. The strength of evidence (LRT total) is reported for each of the 196 pcQTLs with test p-values < 417 
10-5.  Total LRT is the sum of the additive test LRT1 (yellow) and the dominance test LRT2 (red).  418 
The standard approach to eQTL mapping is to progress gene by gene, predicting expression of each from 419 
genotype (as we did here, Figs 2-4).  The obvious extension for correlations is to consider genotype effect 420 
on trait pairs.  This is not a standard analysis, perhaps because the number of distinct gene pairs is very 421 
large.  Instead, researchers typically apply methods such as principal components analysis (PCA) or 422 
network analysis [36] or sparse factor analysis [37] to compress correlated expression patterns into a 423 
tractable number of aggregate traits (PCs or factors or modules).  For the present dataset, we applied PCA 424 
to the transcriptome and tested for genetic effects on the resulting principal component scores.  PCA 425 
combines the expression values from correlated genes to define PCs that are linear combinations of all 426 
expressed genes.  After defining PCs, we applied our Combined model analysis to each, treating them as 427 
quantitative traits.  We determined the genetic and environmental variance in each PC and mapped loci 428 
affecting these composite traits (pcQTLs).   429 
We found that the first 50 principal components explain nearly half of the total variance in expression of 430 
the full set of 12,987 genes.  Importantly, the average heritability of PC scores is considerably higher than 431 
for individual genes (the mean is 0.25 for the first 50 PC and 0.34 for the next 50;  S7 Table).  We mapped 432 
196 pcQTLs that yield test p-values less than 10-5 (Fig 6,  S8 Table).  These co-localize with the major trans 433 
eQTL hotspots.  Of the 35 hotspots, 24 have one or more pcQTLs within 400kb (which is +/- 2 434 
centimorgans on average in the F2 populations).  Methods G provides a more quantitative contrast by 435 
considering the loadings of each PC on individual genes.  This analysis indicates that the pcQTLs are 436 
absorbing both cis and trans eQTLs to some extent (Methods G).  It is also noteworthy that the dominance 437 
test is usually more significant than the additive test on pcQTLs (Fig 6), which mirrors the prevalence of 438 
dominance for individual trans eQTLs (Fig 3D). 439 
 440 
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Discussion 441 

On average, the cis regulatory region of genes explains about two thirds of the genetic variance in 442 
expression of genes within leaf tissue of Mimulus guttatus (Fig 3A).  This is an unexpectedly high 443 
proportion.  Reviewing studies from a number of species, Liu et al [11] report that Vg(cis) is typically about 444 
one third of the genetic variance, half our estimate.  It is difficult to know if the Mimulus estimate is 445 
atypically high, because while large Vg(cis) values are routinely obtained in eQTL mapping experiments (e.g. 446 
[31, 33]), researchers usually only report estimates for genes with a significant cis eQTL.  Our estimate and 447 
the summary by Liu et al [11] average over all measured genes.  Methodological issues aside, a basic 448 
feature of M. guttatus may be relevant to its high cis regulation.  This species exhibits remarkably high 449 
gene sequence and insertion/deletion (indel) variation, even within local populations [38]. In fact, it is 450 
difficult to reliably map Illumina sequencing reads to intergenic regions of the M. guttatus reference 451 
genome where indel variation is very high [39].  Such variation could affect gene expression insofar as 452 
binding of regulatory elements to the DNA surrounding genes affects expression. 453 
Speaking to the role of sequence variation, we find that genes with elevated indel variation upstream of 454 
the gene start codon and/or high nucleotide variation within the gene body have higher Vg(cis) than do genes 455 
with lower variation (S5 Table).  These patterns have at least two non-mutually exclusive explanations.  456 
First, genes with high variation in general might be more likely to exhibit differences in the regions that are 457 
directly relevant to gene regulation [40]. This is plausible but difficult to evaluate given that we cannot yet 458 
bioinformatically identify regulatory sequences (promoters, enhancers, etc.) in M. guttatus, but sequence 459 
variation in promoter regions has been correlated with the magnitude of cis eQTL effects in Arabidopsis 460 
[41]. Second, the level of sequence variation around a gene could be indicative of the history of natural 461 
selection at a locus.  Genes under stronger purifying selection, or those that have recently experienced a 462 
selective sweep are expected to exhibit lower sequence variation.  Such genes might also tend to exhibit 463 
lower standing variation in cis regulation.  In corn, rare variants within cis regions are associated with 464 
‘dysregulation’ of gene expression [42], although this is not apparent in Mimulus [43]. 465 
 466 

Allelic heterogeneity and the allele frequency spectrum at eQTLs 467 
Brown and Kelly [43] recently published a genomewide association study of gene expression variation 468 
(hereafter called the eGWAS) within this same IM population of M. guttatus.  They examined a different 469 
plant tissue (flower buds instead of leaves), used a different experimental design (homozygous lines 470 
instead of lines intercrossed to produce F2 individuals), and employed a different allocation effort (the 471 
eGWAS scored 151 lines with few individuals per line, while here we have 10 lines with high replication of 472 
segregating variation between lines).  Despite these differences, the current experiment amplifies a key 473 
conclusion of the eGWAS: There is a striking difference in the allele frequency spectrum between cis and 474 
trans acting variants. “Cis-SNPs” have intermediate frequencies relative to the overall genomic 475 
distribution while “trans-SNPs” exhibit a rare-alleles model.  The former is consistent with balancing 476 
selection on cis eQTLs while the latter suggests purifying selection on trans eQTLs [44, 45].  477 
The high allelic heterogeneity documented in the present experiment suggests that the eGWAS may have 478 
actually underestimated the level of variation at cis loci. The eGWAS tested biallelic SNPs rather than 479 
allelic series of haplotypes.  The maximum possible heterozygosity (H) with two alleles is 0.5, which is 480 
much below the average H for our cis eQTLs which usually segregate 3-4 alleles per gene (Fig 3C).  The 481 
regulatory regions of our founding lines are haplotypes that differ in both SNPs and indels at many 482 
positions.  Closely linked variants exhibit linkage disequilibrium in the IM population (see S2 Table in [39]) 483 
aggregating mutations at distinct positions into functionally distinct alleles.  This is an emerging empirical 484 
trend: Multi-parental mapping populations in both plants and animals find that QTLs are best described 485 
as allelic series and not binary alternatives [33, 46]. 486 
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We find that trans eQTLs have lower diversity than cis eQTLs, which corroborates the cis/trans difference 487 
in allele frequency discovered in the eGWAS.  In truth, the current experiment overestimates the amount 488 
of variance generated by individual trans eQTLs because we only estimated the variance contribution of 489 
trans eQTLs that emerged as significant in the Cross-specific analysis.  This is a simple manifestation of 490 
the Beavis effect [35], which does not apply to our cis eQTL because we could include all cis-loci in our 491 
estimation of effects (loci do not have to be discovered as significant to be included).  Even with this 492 
inflation of importance, our mapped trans eQTLs explain only about 10% of the genetic variance in their 493 
affected genes on average.  Most of Vg(trans) remains unexplained and thus represents the aggregate 494 
contribution of loci with effects below our detection limit. 495 
Ascertainment also implies that we are overestimating heterozygosity at trans eQTLs.  The eGWAS 496 
discovered many trans SNPs where the minor allele segregates at about 5% in the IM population (see Fig 2 497 
of [43]).  In the present design, we lose about half such loci just because the minor allele is not sampled 498 
into any of the ten parental lines.  When such an allele is captured, its frequency in the experiment (at 499 
least 10%) is twice that in nature, which effectively doubles the heterozygosity estimate.  Our estimation 500 
procedure is unbiased in the usual statistical sense (Methods F): Averaging over all trans-acting loci, 501 
underestimates (loci where we fail to sample the rare allele) will cancel overestimates (loci where we do 502 
sample the allele) yielding the true heterozygosity on average.  However, since we always focus on the 503 
significant tests after the experiment is completed, an inflated heterozygosity estimate is inevitable. 504 
 505 

The multiparental mapping design enables the discovery of trans hotspots 506 
and the cis/trans difference for genetic dominance 507 
A major advantage of multiparental mapping is that it can give a much better examination of rare alleles 508 
than GWAS [47].  GWAS typically have low power for rare alleles, alleles carried by few individuals in the 509 
experiment.  As noted above, most rare alleles are not sampled into multiparental designs, but for those 510 
that are, there is high replication in measured individuals.  The previous eGWAS [43] found many trans 511 
eQTLs but no hotspots.  It is possible that the difference from the present study, where hotspots were 512 
evident in each cross, is biological (e.g. the bud transcriptome has a different architecture than the leaf), 513 
but a statistical explanation is more plausible.  Because trans-acting alleles tend towards rarity, the minor 514 
allele was usually present in only 5-15 plants of the eGWAS.  In this situation, a locus affecting many 515 
genes will yield genomewide significant tests on a minority of its targets just due to limited power.  Most of 516 
the rare alleles present in the eGWAS were not sampled into the parental lines of this study.  However, 517 
those included are likely carried by over 100 plants which enables reliable detection of trans effects.    518 
To accurately estimate dominance at a QTL, we require substantial representation not just of alleles but 519 
also of diploid genotypes.  Most multiparental mapping populations consist of inbred lines, which allows 520 
high replication of known genotypes.  The replicated F2 design involves crosses among lines, not only to 521 
produce mosaics of the parental genomes (as is true of Recombinant Inbred lines e.g. [46]), but also to 522 
generate QTL heterozygotes.  Owing to this feature, we find a striking difference in dominance between cis 523 
eQTLs, which tend toward additivity, and trans eQTLs that typically exhibit dominance (Fig 3D).  The 524 
molecular biology of gene expression predisposes cis eQTLs to additivity.  If each cis allele contributes 525 
independently by affecting only the linked gene copy, then additivity of overall expression results from a 526 
simple dosage effect.  This logic does not apply to trans acting loci, but it is not clear why they should be 527 
so strongly skewed towards strong dominance at most loci.  About 60% of trans eQTLs yield an absolute 528 
value for d/a that is greater than 0.75, which means that the heterozygote is closer to one of the 529 
homozygotes than to the additive midpoint.    530 
While certainly more nearly additive than trans eQTLs, we can reject pure additivity of gene action at over 531 
20% of cis eQTLs.  At these loci, heterozygotes expression is nearly always intermediate (Fig 3D), but often 532 
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closer to one homozygote than the other.  A subtle deviation from the midpoint is expected given that we 533 
impose a non-linear transformation on read counts prior to estimating allelic effects.  For example, the 534 
log2 transform, which is fashionable in gene expression studies, will tend to pull the heterozygote 535 
expression slightly towards the homozygote with higher expression at an additive locus.  More substantial 536 
deviations suggest a feedback mechanism where expression of one allele is affected by the other.  537 
Autoregulation, which is well established in plants [15], provides one such mechanism.  For example, 538 
transcription factors can increase or decrease their own transcription level by binding their own promoter 539 
region.  However, sequence differences in either the protein or the regulatory region could direct the 540 
feedback (enhancement or suppression) more to one allele than the other. 541 
 542 

Trans eQTLs and genetic correlations in gene expression 543 
The quantitative genetic summary of gene co-expression is the “G matrix” [48].  Each of the n expressed 544 
genes is represented by a row and column in an n x n dimensional matrix with the additive genetic 545 
variances in expression on the diagonal. The additive genetic covariance of two genes is reported in the 546 
off-diagonal matrix elements corresponding to these rows and columns.  The G matrix for the 547 
transcriptome is expected to be “sparse” relative to that for morphological traits.  Morphological traits that 548 
emerge from common developmental processes routinely exhibit moderate to high correlations.   In 549 
contrast, while individual genes may interact strongly within “expression modules” [49], we expect most 550 
interactions to be weak or at least diffuse. Consistent with this expectation, we find that genes typically 551 
have a low additive genetic covariance (CG) with most other genes (grey in Fig 5B).  Our experiment shows 552 
that cis eQTLs are the primary determinant of the G matrix diagonal (Fig 3A) while mapped trans eQTLs 553 
contribute incrementally to genetic correlations in expression.  The latter effect is subtle for individual loci 554 
(Fig 5B), which may reflect the fact that our mapped trans eQTLs explain a minority of the genetic variation 555 
generated by trans acting loci.  556 
Given the high dimensionality of our G matrix (there are over 84 million distinct off diagonal terms), we 557 
applied principal components analysis (PCA) to the transcriptome and then mapped QTLs for the PC 558 
scores (pcQTLs).  For a plant, a PC score is a linear combination of the standardized expression levels at 559 
each gene.  The weights (loadings) differ among the PCs, but in our case, each PC is strongly influenced by 560 
hundreds to a few thousand genes (S9 Table).  Thus, pcQTLs likely affect many genes, although the effects 561 
on individual genes may be modest and below our detection limit for individual trans eQTLs.  That said, 562 
there is a clear indication that pcQTLs “capture” some of the effects of our mapped eQTLs, both cis and 563 
trans.  This is simply because the PC affected by a pcQTL tends to have higher loadings on genes with 564 
genomically proximal eQTLs (Methods G).  The association with trans eQTLs is stronger than with cis.  565 
Also, both pcQTLs and trans eQTLs show a much stronger signal of genetic dominance than do cis eQTLs 566 
(Figs 3D, 6). 567 
PCA is a classic tool in quantitative genetics. It is applied directly to correlated traits to obtain 568 
uncorrelated predictors of fitness [50] and also to characterize the structure of the G matrix [8, 51, 52].  569 
PCA is also used in RNAseq experiments, often for data visualization but sometimes as a data cleaning 570 
tool to remove “confounding factors.”  If an environmental variable (say temperature) influences the 571 
expression of many genes, the failure to control for this variable can reduce the power to detect treatment 572 
effects.  If the leading principal components ‘absorb’ the effects of unmeasured variables, the inclusion of 573 
PC scores as covariates can remove noise and improve power.  Our results are cautionary with respect to 574 
this approach if genotype is the treatment.  Genotypic differences generate a correlated response across 575 
genes.  Pleiotropy can thus be (partly) responsible for co-expression patterns that determine principal 576 
components.  In this experiment, we found that PC scores actually have a higher genetic determination 577 
than individual genes on average (S7 Table).  To statistically remove PCs before analyzing individual genes 578 
can thus eliminate signal (trans eQTLs) as well as noise. 579 
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 580 

Concluding remarks 581 
Evolutionary inferences from genetic experiments always depend on sampling, on where genotypes come 582 
from.  Multiparental mapping populations are typically created from worldwide collections [46, 47, 53, 583 
54], a strategy designed to maximize genetic diversity.  Most eQTL experiments that have been done in 584 
plants are based on broad geographic samples or on crosses between genotypes chosen specifically 585 
because they exhibit interesting (or agriculturally important) phenotypic differences.  In these 586 
experiments, the frequency of alternative alleles within the mapping population will be determined by the 587 
chosen parents, as will anything that depends on these frequencies such as QTL variances.  If parents are 588 
sampled across natural habitats, then genetic variants responsible for local adaptation will segregate in 589 
the mapping population.  In contrast, experiments estimating quantitative genetic (co)variation are 590 
typically based on a random sampling of genotypes from a specific population.  This ensures that allele 591 
frequencies in the mapping population are representative of, and informative about, the ancestral 592 
population.  There are fewer studies of this kind, but recent work in both Capsella grandiflora [45] and 593 
Populus tremula [55] have estimated the contribution of individual loci to the standing genetic variance in 594 
gene expression. 595 
 596 
In this experiment, we sampled parental genotypes from one natural population (Iron Mountain) with the 597 
purpose of estimating features of that population.  This is very large population that reproduces mainly by 598 
outcrossing (at a rate of over 90% in most years [56, 57]).  Moreover, because of very high inbreeding 599 
depression [58], adult plants are almost entirely outbred at Iron Mountain.  We founded this experiment 600 
from a collection of inbred lines made from randomly sampled Iron Mountain plants and previous 601 
sequencing confirms that these line population is representative of the ancestral population in terms of 602 
allele frequencies [25, 39, 43].  These allele frequencies thus reflect the balance of evolutionary 603 
processes (selection, migration, drift) at the Iron Mountain location.  The high variation at cis eQTLs 604 
suggests that selection is maintaining variation at this local scale [43].  Field studies at Iron Mountain 605 
directly measuring selection on genetic variants [25, 59], as well as longer term studies measuring 606 
temporal changes in allele frequency [39], suggest that antagonistic pleiotropy and temporally fluctuating 607 
selection are both acting as selective agents that maintain polymorphism.   608 
 609 
Trans eQTLs have lower allelic diversity than cis eQTLs and a greater contribution of uncommon alleles.  610 
However, the aggregate of evidence from the current experiment and the previous eGWAS suggests that 611 
these relatively “minor” alleles segregate in the 1-10% range within Iron Mountain.  This is considerably 612 
higher than the expected frequency of unconditionally deleterious alleles, which are likely to be less than 613 
1% in a large population.  The scale of sampling is a key consideration here.  An allele that is uncommon 614 
within Iron Mountain, perhaps because it is usually disadvantageous under local environmental 615 
conditions, may be predominant in other populations. As in most widely distributed species, local 616 
adaptation is very common in M. guttatus (e.g. [60, 61]).  If trans eQTLs are important to local adaptation 617 
in M. guttatus, we predict that the allele frequency spectrum for trans eQTLs will shift when we apply the 618 
same experimental design to a species-wide sample of parental genotypes.   619 
 620 
The characterization of gene expression in terms of genetic variances and covariances is necessary to 621 
predict the response to natural selection.  Field experiments have demonstrated rapid evolution of gene 622 
expression in response to selection [62-64].  From one generation to the next, the change in mean 623 
expression levels under selection can be predicted from the current G matrix without any information on 624 
the genetic architecture of expression variation [65, 66].  However, the rate that G matrix elements change 625 
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is dependent on how eQTLs combine to determine genetic (co)variances.  Our finding that a major locus, 626 
the cis eQTL, explains much of expression variation suggests that the G matrix will be malleable on 627 
ecological time scales.  Shifts in allele frequencies at major QTLs rapidly change genetic variances and 628 
covariances [6, 67]. The usual view is that selection eliminates genetic variation, which should occur 629 
rapidly if fixation at one gene eliminates much of the variation.  However, with the temporal fluctuations 630 
evident at Iron Mountain, variation can persist even with strong selection [68, 69].  631 
 632 
The finding of high allelic diversity at eQTLs further complicates G matrix dynamics, particularly when 633 
considering genetic covariances.  With two alleles and additive gene action, we can describe a locus as 634 
either positive or negative with respect to the covariance of two affected traits.  If the first allele increases 635 
expression at two genes, the alternative necessarily has a negative effect on both (because effects are 636 
defined by contrast between alleles).  With multiple alleles, this is no longer assured.  With four alleles, all 637 
directions for pleiotropic effects could be evident (positive/positive, negative/negative, positive/negative, 638 
and negative/positive). The extent to which allelic heterogeneity generates complex pleiotropy is currently 639 
unclear, making it an important target for future experimental work.  640 
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Methods 641 

Each of the sections below reference computer programs for analysis.  All software developed by others, 642 
including standard bioinformatic tools such as Salmon [70] and Gemma [23], are reported as used.  Most 643 
of our analyses were completed using custom programs written in Python (v3.7).  These programs are 644 
provided in S1 File along with “Key_to_programs.docx” which describes their use.  645 

A. Study system, experimental protocols, RNA and DNA extractions, RNAseq 646 
library preparation, and sequencing 647 

As parents, we used inbred lines of the yellow monkeyflower, Mimulus guttatus (syn Erythranthe guttata, 648 
Phrymaceae) extracted from the Iron Mountain (IM) population in the Cascade Mountains of Oregon 649 
(44.402217N, 122.153317W; [56]). This population is predominantly outcrossing with little internal 650 
population structure [71].  In 2018, Troth et al. [25] sequenced whole genomes of 187 IM inbred lines. After 651 
selecting one of these lines (767) as the “reference” (which is common to all crosses), we sampled the 652 
nine alternative lines subject to the condition that they were fully unrelated to 767 and each other.  653 
Relatedness was based on genomewide pairwise nucleotide diversity () from the Illumina sequencing of 654 
these lines [25].  The equidistance among the lines is confirmed by the subsequent de novo assembly of 655 
each line from long read sequencing data (described below, see S1 Fig).   656 
 657 
We crossed each alternative line to 767 with the latter used as the pollen donor (Fig 1A).  We grew a single 658 
F1 plant from each cross and self-fertilized this individual extensively to produce >1,000 seeds.  We grew 659 
the F2 plants along with members of each parental line in four temporally overlapping cohorts using 660 
standard greenhouse conditions [43], about 500 plants per cohort.  Each family was grown in two cohorts 661 
and the IM767 line plants were grown in all four cohorts.  Daylength was kept at 16 hours (supplemental 662 
lighting on at 6am, off at 10pm) throughout the experiment.  We collected whole leaves from the 2nd leaf 663 
pair as soon as the third leaves were >1cm long (Fig 1B), immediately flash froze the tissue in liquid N2. All 664 
leaves were collected between 10am and noon to control circadian rhythm effects on expression.  RNA 665 
was extracted after disrupting the frozen leaves with metal beads using a bead beater in RLT and β 666 
mercaptoethanol solution using a Qiagen RNeasy plant mini kit (Qiagen) according to manufacturer’s 667 
instructions (without the optional DNase step). All samples were eluted in 60 µl RNase-free H2O.  668 
 669 
We made RNAseq libraries using QuantSeq 3’ mRNA-seq Library prep kits (Lexogen) at quarter volumes. 670 
We used four i5 primers (Lexogen), which along with the 96 i7 primers of the kit, allow barcoding of 384 671 
samples per sequencing run. Each batch of 96 samples from one run of the protocol was pooled in equal 672 
volumes and checked for fragment size distribution using an Agilent TapeStation (Agilent, Santa Clara, CA, 673 
USA) and quantified using Qubit (Thermo Scientific) at the KU Center for Genomics. Four such batches, 674 
each with different i5 primers, were pooled equimolarly for a sequencing run. Sequencing was performed 675 
at the KU Center for Genomics on a NextSeq 2000 to obtain 75bp single end reads.  For samples with low 676 
yield in sequencing, we remade libraries from the original RNA extraction and sequenced the remade 677 
libraries. 678 

B. de novo assembly of parental genomes and annotation 679 

From plants of each parental line, we extracted DNA using a modified PacBio protocol for high molecular 680 
weight DNA extraction using 5 g leaf tissue as starting material. The full protocol is available as S2 File. 681 
After confirming high molecular weight using an Agilent TapeStation (Agilent, Santa Clara, CA, USA), we 682 
sent the extracted DNA to the University of Georgia where Sequel II CLR libraries were prepared and 683 
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sequenced according to the manufacturer’s instructions.  We extracted fasta files from the PacBio raw 684 
data (SMRT Link XML) using the ccs and bam2fastq commands from smrtools v9.0.0.92188 (PacBio).  We 685 
assembled genomes using canu 2.1.1 [72] with options genomeSize=430m, correctedErrorRate=0.035, 686 
utgOvlErrorRate=0.065 trimReadsCoverage=2 trimReadsOverlap=500. The resulting assemblies were 687 
reduced to haploid assemblies using purge_dups [73], and were scored for quality using BUSCO v3.0.2 688 
[74] and the embryophyta_odb9 dataset. For the data analysis of this study, we used the genome 689 
assemblies of 767 and 62 produced by the Joint Genome Institute ([24], used with permission).  Our 690 
Pacbio/Canu assemblies were used for the other eight lines. 691 
 692 
We used Liftoff [75] to transfer the annotation of the 767 assembly onto the other genomes.  Given an 693 
annotation file (gff3) from each assembly, we identified orthologs of each 767 gene in each alternative 694 
build.  Not all 767 genes were successfully located in the other assemblies and so we focused on the 695 
12,987 genes discovered in all lines.  These genes also passed the minimum average expression level 696 
described below.  We extracted the sequence of these genes in each build to create a line specific 697 
transcriptome for read mapping.  To score differences in the nucleotide sequences among our 698 
assemblies, we used Mummer 3.0 [76] and SVMU [77] as described in Program Set 1 of Key_to_programs 699 
(S1 File). 700 
 701 
From the output files, we extracted all correctly aligned positions between genomes.  We scored SNPs 702 
and indels (which were enumerated as gaps in 767 relative to the alternative genome and gaps in the 703 
alternative relative to 767) in each gene and in the 1kb upstream of the start codon and downstream of the 704 
gene end.  For each interval, we calculated nucleotide diversity (π) as the fraction of aligned positions that 705 
differ in nucleotide and U = ( total bp – aligned bp )/ total bp.  If the two sequences are perfectly colinear 706 
(no indels) then total bp = aligned bp and U = 0.  U increases towards 1 as the region fills with indels and 707 
unalignable sequence.  This yields six statistics for each gene (π and U for each of the three intervals), 708 
which we used as predictors of the LRT1 test statistic for a cis eQTL.  We standardized each predictor (to 709 
mean zero and variance 1 across all genes) and then applied multiple linear regression using Minitab v19 710 
to produce S5 Table. 711 

C. Read mapping, genotype calling and scoring expression levels 712 

We trimmed the RNAseq reads with Trimmomatic [78] and checked for contamination or mislabeling 713 
using custom python scripts (S1 File) that estimated the relatedness of all among samples including the 714 
parental lines. After eliminating dubious samples (low sequencing depth or questionable family 715 
assignment), we retained data from 1588 plants for subsequent analysis.  We used Salmon v1.10.0 [70] to 716 
quantify gene expression. To remove bias caused by preferential mapping of alleles, we mapped the F2 717 
individuals from each family to a composite genome including the (haploid) genome and transcriptome of 718 
each parental line.  We excluded any gene that displayed aberrant mapping of reads from the parent line 719 
plants.  Specifically, we required that reads from the inbred line plants (which are homozygous for a 720 
known parental allele at all loci) map specifically to the allele from that line (in which case the marker is 721 
informative for genotype as well as transcript level analysis) or that the line alleles map equally well to 722 
each allele.  Only genes in the former category were amenable to allele specific expression analyses.   723 
 724 
Within each cross (family), genotyping was based on the RNAseq data from the subset of genes where 725 
reads reliably map to each parental allele (identifying their origin).  We used the count of reads to each 726 
parental allele to make a putative call within each marker locus (RR, RA, AA).  These calls are error prone 727 
owing to low read counts at many loci (lowly expressed genes) and allele specific expression (which 728 
makes heterozygotes resemble the homozygotes associated with higher expression.  Thus, we treat these 729 
putative calls as the “emitted states” with the true genotype treated as the latent states of a Hidden 730 
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Markov Model (HMM).  The HMM estimates the genotype of each F2 plant for each chromosome and is 731 
implemented using a series of python programs revised from the GOOGA pipeline [27].  The model 732 
estimates marker-specific genotyping error rates (which determine emission probabilities) and the 733 
recombination rates between all adjacent markers (which determine the transmission probabilities of the 734 
Markov Chain).   735 
 736 
Given maximum likelihood estimates for all parameters, we extract the genetic map for each cross and 737 
the posterior genotype probabilities at each marker.  The locations of 33,302 recombination events across 738 
1,373 F2 plants is reported in  S10 Table.  The resulting genotype matrices are nearly complete given that 739 
the posterior probabilities for the most likely genotype at each marker are (almost) always greater than 740 
0.99.  To produce a genotype matrix with calls at each expressed gene, we interpolated calls from the 741 
scored markers that were immediately upstream and downstream of any gene not included in the HMM 742 
estimation (these are all genes without informative markers for parental assignment of reads).  When 743 
adjacent markers differed owing to a recombination event, intermediate genes were scored as unknown 744 
genotype.  Finally, we calculated the relatedness matrix using pairwise comparisons among all 1,588 745 
plants.  The coefficient of coancestry at each marker is determined simply by the extent that the two 746 
individuals share alleles from the same parent line given our assumption that parental lines are unrelated.  747 
The overall relatedness between two plants (twice the coefficient of coancestry) is just an average across 748 
all loci.  These programs to infer genotypes and relatedness (as well as those used for other aspects of the 749 
data analysis) are contained in  S1 File with an outline describing the sequence that programs are 750 
executed and the inputs/outputs for each step.   751 
 752 
To obtain the phenotypes (the total expression of each plant at a gene), we summed the reads mapped to 753 
each allele of a gene within each plant.  Lowly expressed genes, those with a mean expression less than 754 
0.5 count per million, were not considered for further analysis.  For the Cross-specific analysis, we 755 
estimated the mean-variance relationship using Voom [79].  Voom also generated a weight for each 756 
observation considering the growth cohort and Cross as factors. First, a DGEList object was generated in 757 
edgeR [80] from the raw counts, which included information on library size per individual using the 758 
calcNormFactors command. Then the DGEList object was Voom transformed given a matrix of cohort + 759 
group. The resulting normalized counts and weights were exported for the Cross-specific analysis.  The 760 
Combined analysis used the standardized counts per million for each gene of each plant directly.  A Box-761 
Cox transform was then applied, gene by gene, and finally standardized the transformed counts to unit 762 
variance.   763 
 764 
For alleles specific expression analysis, we identified all genes in each cross where the total expression 765 
could be partitioned into reads contributed by each parental allele in heterozygotes.  At such genes, we 766 
assembled a vector of count pairs (reads from the reference, reads from the alternative line) for all plant 767 
heterozygous at the cis locus.  We treat these counts as samples from a beta-binomial distribution.  We 768 
determine the maximum likelihood across all plant under the null model enforcing α = β (which implies no 769 
allele specific expression on average, equal expression of both parental alleles) to the more general 770 
alternative model α ≠ β (either parental allele can be overrepresented).  The beta-binomial is superior to 771 
the usual binomial model for counts because it allows over-dispersion.  However, we find that our MLE for 772 
the frequency of the alternative allele in heterozygote RNA (y-axis of Fig 3B) from the beta-binomial is 773 
usually very close to the “naïve estimate”, which is the simple average of A/(R+A) across all heterozygous 774 
plants. 775 
 776 
D. Testing procedures 777 
For the Cross-specific analysis we used rQTL v 1.60 [81] to detect QTLs for the normalized expression of 778 
each gene using the scanone function with cohort as a covariate and taking the weights into account. The 779 
analysis was run separately on each family, and we extracted the LOD score, additive and dominance 780 
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effects, and their standard errors for each marker.  P-values were obtained from permutations specific to 781 
each gene using the scanone command of rqtl and the marker regression method.  For all trans eQTLs, the 782 
location of the eQTL is reported as the location of the LOD peak.  However, for LOD peaks near the 783 
expressed gene, we tested the marker closest to that gene (oftentimes the marker is the gene itself).  The 784 
marker was considered proximal if within the LOD confidence interval from rQTL and also less than 1mb 785 
distant from the gene start site.  We called a cis eQTL only if the LOD at the gene location was significant 786 
(exceeded the genomewide threshold). If significant, we extracted the estimates for effect (a and d) from 787 
this location. 788 
 789 
For the Combined analysis, we fit a linear mixed model using maximum likelihood to the entire dataset for 790 
each gene, considering three different models in sequence.  The calculations were performed using 791 
Gemma [23] as described in Program Set 3 of the Key_to_programs (S1 File).  The fixed effects in the “null 792 
model” are cohort and the random effect absorbs all genetic effects on expression (the relatedness matrix 793 
determining the (co)variance matrix).  This Model 0 yields a log-likelihood (LL0) and two variance 794 
estimates, Vg and Ve.  Vg is the (whole genome) additive genetic variance in expression while Ve is the 795 
residual variance (environmental effects, measurement error, etc.).  We next test for a cis eQTL by adding 796 
the genotype at this locus into the vector of fixed effects.  We first consider purely additive gene action at 797 
the cis locus: Model 1 adds nine parameters, the effects of each alternative allele (specific to each line) 798 
that is crossed to 767.  For all plants from cross z, the phenotype is incremented by az for heterozygotes 799 
and by 2 az for homozygotes for the allele from parental line z.  Model fitting yields the log-likelihood (LL1), 800 
estimates for all nine az values, and the variance components, Vg and Ve.  In the fit of model 1, Vg is the 801 
genetic variance due to trans eQTL since any cis-locus effect has been absorbed into the fixed effects.  802 
The likelihood ratio statistic, 2(LL1 - LL0), is compared to a chi-square distribution with 9 df to test for an 803 
effect of the cis-locus.  Finally, Model 2 allows dominance at the cis eQTL with genotypic values of 0, 804 
az+dz, and 2az for reference homozygotes (767), heterozygotes, and alternative homozygotes (line z), 805 
respectively (the rQTL model used in the Cross-specific analysis).  Model 2 adds nine parameters, so the 806 
likelihood ratio test for dominance, 2(LL2 – LL1) is compared to a chi-square distribution with 9 degrees of 807 
freedom.  We first applied models 0, 1, and 2 to each gene using the cis locus as the genotype.  Later, after 808 
identifying affected gene / trans eQTL pairs from the Cross-specific analysis, applied these models to 809 
each pair using the trans eQTL locus as the genotype. 810 
 811 
From the ML model fits, we can estimate the genetic variance generated by the cis eQTL in two different 812 
ways.  First, we can subtract the Vg from model 1 (which includes only trans effects) from the Vg of model 813 
0 (which includes both cis and trans effects).  This estimator, denoted Vg(r2), is similar to the ‘variance 814 
explained by the QTL’ method that has been applied to multi-parental mapping populations of Drosophila 815 
[33] and mouse [31].  A second estimator, Vg(a), is calculated from the estimated additive effects and their 816 
standard errors: 817 

𝑉𝑔(𝑎) = 2(𝑠𝑎
2 − 𝑠𝑒𝑎

2̅̅ ̅̅̅) 818 
 819 
where 𝑠𝑎

2 is the variance among the nine az estimates and 𝑠𝑒𝑎
2̅̅ ̅̅̅ is the average of squared standard errors on 820 

those estimates.  This formula is the simple variance (s2) among az values minus the variance generated 821 
by estimation error.  The az estimates can be treated as unrelated because each is calculated from 822 
genotype/phenotype association within distinct families, The simulations described below indicate that 823 
both Vg(r2) and Vg(a) are (nearly) unbiased but Vg(a) has a lower mean square error.  In other words, for 824 
this design Vg(a) is closer to the true variance on average.  Both estimators perform substantially better 825 
than the HE regression approach [30], which also is nearly unbiased but has much larger mean square 826 
errors. 827 
 828 
The alternative models (1 and 2) described above are fully unconstrained – each alternative line can be 829 
uniquely different from 767.  This is necessary if variation is described by an ‘infinite alleles’ model [82], 830 
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but over-parametrized if few alleles segregate at the cis locus.  All the possible configurations, ranging 831 
from two to ten distinct alleles at a QTL, can be testing by first ranking the az estimates from most negative 832 
to most positive and then considering all “splits” that subdivide these estimates into discrete bins [33].  833 
We determined the maximum likelihood for all 511 distinct configurations for each gene.  For a given 834 
number of partitions (e.g. two partitions equals three alleles), we selected the case with the highest 835 
likelihood.  Starting with the 2-allele case, we accept increases in the allele number (rejecting the simpler 836 
model by accepting an additional parameter) only if twice the likelihood difference is greater than 3.84 837 
(which is the p<0.05 threshold for a chi-square test with 1 df).   838 
 839 
The linear mixed model was applied in two other analyses.  To test cases of potential over/under 840 
dominance, we compared the likelihood of the data with d unconstrained (Model 2) to the likelihood under 841 
complete dominance of either allele.  This has the same number of parameters as Model 1 but with a 842 
different assignment of genotype effect to heterozygotes.  Second, we applied Model 0 to the sum of 843 
expression (Z) between pairs of genes (y1 and y2): Z= y1+y2. This yields estimates for genetic and 844 
environmental variance in Z. For either genetic or environmental components, we note that 𝑉𝑎𝑟[𝑍] =845 
𝑉𝑎𝑟[𝑦1] + 𝑉𝑎𝑟[𝑦2] + 2 𝐶𝑜𝑣[𝑦1, 𝑦2].  Consequently, we can solve for the genetic (CG) and environmental 846 
(CE) covariances given the corresponding variances in Z and as well as the single trait estimates for VG and 847 
VE.  For all tests, we obtained a p-value across all 12,987 genes and then assign the False Discovery Rate 848 
(Q-values) using “p.adjust()” in R [83]. 849 
 850 
E. Mapping QTLs for expression principal components 851 
We created a matrix with standardized expression levels for all genes (mean zero and variance one) for all 852 
plants prior to invoking Principal component estimation programs.  Using the R libraries MASS, dplyr, and 853 
data.table, we applied the prcomp function to the expression matrix and extracted the variance explained 854 
by each principal component, the loadings on all 1,588 PCs, and the PC scores for each plant for each 855 
principal component.  We formatted each PC score list as a phenotype file for input to the Combined 856 
analysis pipeline.  We first fit the linear mixed model to each PC score without a QTL to estimate the 857 
genetic and environmental variance of that trait.  Next, we added a QTL single to the model with the 858 
position adjust incrementally along each chromosome.  Here we tested every other gene location (a step 859 
size << 1 cm).  We retained the model fits with the highest log-likelihood per chromosome as putative 860 
pcQTLs. 861 
 862 
F. Simulations to test estimation procedures 863 
Our testing and estimation procedures were evaluated using simulations grounded in the design of our 864 
experiment.  Specifically, we considered a range of scenarios with and without genetic variation in 865 
expression by simulating phenotypic (expression) data from the observed genotypes of our 1588 plants.  866 
Each simulation replicate starts with the selection of a random gene.  Given this, we can distinguish the 867 
cis genotype for each plant (which will affect phenotype if we are simulating a cis eQTL) as well as the 868 
genomic background (which will affect any simulated trans effect).  To each simulated dataset, we fit the 869 
Models 0 and 1 applied to the actual data, as well as several alternative approaches.  For each ML fit, we 870 
applied two methods to estimate the variance generated by the cis eQTL, Vg[r2] and Vg[a] as defined 871 
above in the Methods.  We also tested the Haseman–Elston (HE) regression [30] instead of ML to estimate 872 
VE, Vg(cis), and Vg(trans).   873 
The first set of simulations consider the null case where all variation is environmental (VE = 1, Vg(cis) = Vg(trans) 874 
= 0).  Random normal deviates were generated using the normal() and multivariate_normal() functions 875 
from the NumPy library of python [84]. In this case, we find that the likelihood ratios tests very nearly 876 
follow the predicted null distribution (S9 Fig) but are slightly conservative – only 3.5% of tests of model 1 877 
yield p < 0.05 instead of 5%.  In terms of variance estimates, bias is minimal for both ML and HE 878 
regression, both with and without genetic variation in expression (S3 Table).  This is noteworthy given that 879 
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ML imposes feasibility constraints (e.g. VE cannot be negative) while HE regression does not.  To simulate 880 
data with cis effects on expression, we sampled a unique additive genetic value for each line from a 881 
normal distribution given a specified value for Vg(cis).  We simulate a trans effect generated by many small 882 
effect loci by sampling a vector from the multinormal distribution.  The covariance among plants is 883 
determined by Vg(trans) and the relatedness matrix.  The mean of estimates from both ML and HE regression 884 
are close to the true values regardless of whether model 0 or model 1 is fit to the data.  In other words, all 885 
methods are approximately unbiased.  However, ML is far more precise than HE regression when there is 886 
genetic variation in expression.  The root mean square error (a measure of the magnitude of estimation 887 
error) is much smaller for both Vg(cis) and Vg(trans) (S3 Table).  We find that Vg[a] is slightly but consistently 888 
more precise than Vg[r2] in estimating Vg(cis).  For this reason, we report Vg[a] from the ML fits to each gene. 889 
While not included in  S3 Table, we performed many additional simulations to consider additional data 890 
types and alternative analytical procedures.  First, we considered the case where only two alleles 891 
segregate at the cis eQTL.  For these simulations, we randomly sampled from a bi-allelic locus where the 892 
positive allele is at population frequency q and has a fixed additive effect a.  Given q and a, Vg(cis) = 2 q(1-q) 893 
a2 [85].  We found that Vg[r2], Vg[a], and HE regression all yielded unbiased estimates for Vg(cis) and the 894 
pattern for precision (Vg[a] better than Vg[r2] much better than HE) was unchanged from the infinite 895 
alleles model simulations in S3 Table. Next, for both ML and HE regression, we considered the “leave-one-896 
out” option [86] for relatedness calculations.  With this option, the trans genetic effect considers all 897 
chromosomes except the one that harbors the expressed gene and putative cis locus.  When Vg(cis) = Vg(trans) 898 
= 0, estimation and hypothesis testing outcomes are essentially unchanged using leave-one-out.  Using 899 
leave-one-out in simulation that include either cis- or trans- genetic variation, the LRT values for model 1 900 
are inflated.  This is expected when there is a cis eQTL because the leave-one-out procedure is designed 901 
to increase power.  Unfortunately, we also see that they are inflated in simulations where Vg(trans) > 0 but 902 
Vg(cis) = 0.  This implies an elevated false positive rate.  This occurs because the fixed effect parameters 903 
describing the cis eQTL can “absorb” the effect of trans eQTLs that are on the same chromosome, loci 904 
that are not included in the relationship matrix with leave-one-out.  In our simulations, we assume that 905 
trans loci are distributed uniformly over the genome.  For genes on large chromosomes (e.g. chromosome 906 
14 in Mimulus), a substantial fraction of the trans-effect will emanate from genes on the same 907 
chromosome.  We also find that the variance component estimates can be poorly behaved in the leave-908 
one-out model fits applied to our experimental design.  For these reasons, we used the overall 909 
relationship matrix in analysis of the actual data.  This method might be underpowered in general, but that 910 
is not a major difficulty for the current study given that nearly all cis eQTLs were significant anyway (see 911 
Results). 912 
 913 

G. Estimating the overlap of pcQTLs with eQTLs  914 
To assess overlap of pcQTLs with the eQTLs, we defined a genomic window around each pcQTL of +/- 2mb 915 
from the LOD peak.  Noting the specific PC affected by the pcQTL, we determined the loadings of this PC 916 
onto each expressed gene (12,987 values).  For testing against cis eQTLs, we asked if the loadings on 917 
genes within the window around the pcQTL were larger in magnitude than loadings on gene elsewhere in 918 
the genome.  For a single pcQTL, we compared the means from two lists: the squared loadings on genes 919 
within the window (median of 263 per pcQTL) versus the genes outside the window (median of 12724 per 920 
pcQTL).  We then performed a paired t-test on the differences across all pcQTLs.  The loadings were larger 921 
within windows (t195 =2.26, p=0.025). 922 

The test for overlap with trans eQTLs is similar in structure, a comparison of loadings within the 923 
pcQTL window versus those outside.  However, here we surveyed the list of trans eQTL / affected gene 924 
pairs.  For each such pair we noted whether the trans eQTL genomic location (the position of the causal 925 
locus) was within the pcQTL window or not.  If so, the loading on the affected gene (which would 926 
generally reside elsewhere in the genome) would be added to the “within window” list.  If the trans 927 
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eQTL was located outside the pcQTL windows, the loading of the affected gene was added to the 928 
outside window list.  Within window lists contained a median of 185 affected genes while the median 929 
count was 9874 for the outside list.  As previously we distilled each list within each pcQTL into a mean 930 
of squared values and compared them across pcQTLs using a paired t-test.  The loadings were larger on 931 
genes with trans eQTL located within windows (t195 =2.92, p=0.004). 932 
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 Supplemental Tables and Figures 1179 

 S1 Table. A summary of features from our de novo assemblies based on PacBio sequencing.  N50 = 1180 
the length of the shortest scaffold in the ranked list that covers at least 50 % of the assembly. 1181 

 S2 Table.  The nucleotide diversity (π) and indel frequency (U) is reported for each gene in three 1182 
intervals, within the gene body, the 1kb upstream of the gene, and the 1kb downstream of the gene. 1183 
 S3 Table. Simulations with cis alleles sampled from a normal distribution with Vg(cis) specified.  The 1184 
color coding (green for r2, blue for [a], pink for HE) identifies the standard deviation among replicate 1185 
simulations for each model for the non-zero genetic parameters in each simulation case.  Since the 1186 
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estimators are (nearly) unbiased, the standard deviation estimates the root mean square error.  For 1187 
cis genetic effects, the error is smaller for blue than green and both are much smaller than pink.  For 1188 
trans genetic effects, the error is the same for green and blue (the estimators are the same) but again 1189 
much smaller than for pink. 1190 

 S4 Table.  The results from testing the cis eQTL at each of 12,987 genes scored for expression.  1191 
“Number of alleles (cis eQTL)” and “Heterozygosity at cis eQTL” are derived from the allele 1192 
partitioning method applied to each gene.  LRT1 and LRT2 are the likelihood ratio statistics testing for 1193 
additive and dominance effects, respectively.  The p-value and q-value (FDR) is reported for each 1194 
test.  The last three columns report the variance component estimates for the LRT1 model fit: Ve, 1195 
Vg_trans, and Vg_cis. 1196 

 S5 Table.  A regression of LRT1 values onto nucleotide diversity (p) and indel diversity (U) within 1197 
three regions about each gene.  Each predictor was standardized to unit variance (z transform) to 1198 
make the regression coefficients comparable. 1199 

 S6 Table. Significant trans eQTL tests are distilled into 1,979 loci.  Each locus is given a unique name 1200 
(first column) and then identified to cross and genomic location.  The last two columns are the 1201 
number and identity of affected genes. 1202 

 S7 Table. The estimated environmental (Ve) and genetic (Vg) variance for each PC score is reported 1203 
for the first 200 PCs.  h2 equals Vg/(Vg+Ve). 1204 

 S8 Table. For each of the 196 pcQTLs with p < 10-5, we report the genomic location, affected PC, p-1205 
value, number of distinct functional alleles, heterozygosity, the additive, dominance, and total LRT 1206 
tests (LRT1, LRT2, LRT_total). 1207 

 S9 Table. The loadings on standardized traits for the first 200 expression principal components. 1208 

 S10 Table.  The locations are reported for 33,302 recombination events detected across 1,373 F2 1209 
plants.  Each event is localized by differing genotypes (each with posterior probability > 0.99) at 1210 
bracketing markers (left and right of the recombination breakpoint).  The location of these flanking 1211 
markers is reported as bp position in the IM767 reference genome.  1212 

 S1 Fig. The fraction of nucleotide positions that differ () within genes is reported between each pair 1213 
of lines.  We calculated p for each chromosome, and then averaged these 14 values to obtain the 1214 
mean and standard error (the latter used to calculate the 95% CI).   1215 

 S2 Fig. The eQTL plot of all nine families (crosses). 1216 

 S3 Fig.  The rate of recombination within a chromosomal region affects average gene expression.  1217 
We divided all gene regions into quartiles (x-axis) and averaged the Log CPM across genes within 1218 
each region. 1219 

 S4 Fig. The correlation of additive effect estimates between the Cross-specific (x-axis) and 1220 
Combined (y-axis) analyses is 0.96. 1221 

 S5 Fig. The strength of evidence for a cis eQTL (LRT1) is positively correlated with Vg(cis).   1222 

 S6 Fig. Mean expression (measured as CPM on a log scale) is a strong positive predictor of test 1223 
significance (left) and a strong negative effector of VE (right).   1224 
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 S7 Fig. GG (left) and CE (right) each exhibit distributions with a roughly equal mixture of positive and 1225 
negative values.  1226 

 S8 Fig.  The magnitude of the genetic covariance (mean 𝑪𝑮
𝟐) increases with the number of families 1227 

that segregate a trans eQTL. 1228 

 S9 Fig.  The distribution of LRT1 (the test for an additive eQTL) across 5000 simulations when there is 1229 
no eQTL.  The actual mean of simulations (8.77) is slightly below the null distribution predicted value 1230 
of 9 for a chi-square distribution with 9 df.  1231 

S1 File. This tarball contains all of  S1 File (python code and the instructions to run all programs). 1232 

S2 File. The protocol is reported for High Molecular Weight DNA extraction. 1233 
 1234 


