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abstract: Morphology often reflects ecology, enabling the pre-
diction of ecological roles for taxa that lack direct observations, such
as fossils. In comparative analyses, ecological traits, like diet, are of-
ten treated as categorical, which may aid prediction and simplify
analyses but ignores the multivariate nature of ecological niches.
Furthermore, methods for quantifying and predicting multivariate
ecology remain rare. Here, we ranked the relative importance of
13 food items for a sample of 88 extant carnivoran mammals and
then used Bayesian multilevel modeling to assess whether those
rankings could be predicted from dental morphology and body size.
Traditional diet categories fail to capture the true multivariate na-
ture of carnivoran diets, but Bayesian regression models derived
from living taxa have good predictive accuracy for importance ranks.
Using our models to predict the importance of individual food items,
the multivariate dietary niche, and the nearest extant analogs for a
set of data-deficient extant and extinct carnivoran species confirms
long-standing ideas for some taxa but yields new insights into the
fundamental dietary niches of others. Our approach provides a prom-
ising alternative to traditional dietary classifications. Importantly,
this approach need not be limited to diet but serves as a general frame-
work for predicting multivariate ecology from phenotypic traits.

Keywords: diet, dental topography, Carnivora, tooth, Bayesian,
ordinal regression.

Introduction

Interspecific interactions, the structure of communities,
and the persistence of lineages through time are all medi-
ated by the ecological niches that each species occupies
and the degree of overlap between them (Hutchinson
1957, 1959; Hayward and Slotow 2009; Vannette and
Fukami 2014; Peralta et al. 2020; Pigot et al. 2020). Diet
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is a particularly important axis of niche differentiation;
communities of closely related species are often struc-
tured along dietary axes (Kiltie 1988; Hertel 1994; Pigot
et al. 2020), and dietary ecology fosters phenotypic vari-
ance as organisms evolve physiological, morphological,
and behavioral adaptations to efficiently acquire and pro-
cess different food resources (Arnold 1983; Carroll et al.
2004; Santana and Dumont 2009; Vincent et al. 2009;
Holzman et al. 2012). On short timescales, competition
for dietary resources can lead to character displacement
and divergence in the morphology of ecologically and phy-
logenetically similar taxa (Van Valkenburgh and Wayne
1994; Grant and Grant 2006; Pfennig and Pfennig 2010),
while on macroevolutionary timescales dietary ecology may
promote differential patterns of speciation and extinction
as dynamics between competing lineages and resource
availability change over time (Farrell 1998; Price et al.
2012; Lobato et al. 2014; Wiens et al. 2015; Burin et al.
2016; Poore et al. 2017).

Given the importance of diet in eco-evolutionary pat-
terns and processes, the relationship between diet and
phenotype is now manifest in many animal systems.
For example, the morphology of insect mouthparts (Krenn
2019), snake fangs (Cleuren et al. 2021), bird beaks (Olsen
2017; Pigot et al. 2020; Natale and Slater 2022), mammalian
crania and jaws (Janis and Erhardt 1988; Spencer 1995;
Morales-Garcí et al. 2021), and vertebrate (especially mam-
malian) teeth (Melstrom 2017; Christensen and Melstrom
2021; Pollock et al. 2022) are all predictive of diet. The
performance-mediated relationship between morphology
and ecology is particularly important in analyses that in-
clude taxa for which ecological data are not directly avail-
able, such as fossils, which can be critical for robust infer-
ence of macroevolutionary parameters (Finarelli and Flynn
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2006; Slater et al. 2012). However, effectively integrating
taxa of unknown ecological function into evolutionary
studies requires not only that we can construct predictive
models to estimate ecological traits from their morpholog-
ical characters but also that we can effectively and accu-
rately quantify the range of ecological roles that species
may play in the first place.

Problems quickly arise when determining precisely how
to categorize diet based on the range of food types that are
used and the frequency with which any particular type is
consumed. Diet is typically reduced to one of a small num-
ber of discrete categories, often based on trophic level (e.g.,
“herbivore,” “carnivore,” and “omnivore”; Price et al. 2012;
Price and Hopkins 2015; Christensen and Melstrom 2021).
Other studies have expanded this range to include more
refined categories, such as “browser,” “grazer,” and “mixed
feeder” (Toljagić et al. 2018) and “hyper-,” “meso-,” and
“hypocarnivore” (Van Valkenburgh 1988; Slater 2015), or
even more finely subdivided categories based on variation
in foraging behavior and microhabitat use (Pigot et al. 2016,
2020; Verde Arregoitia and D’Elía 2021). However, all of
these schemes still require that taxa be pigeonholed into a
single discrete group. This categorization of diet may be un-
satisfactorily simplistic for several reasons. Finely divided
categories are often created for a particular taxonomic sub-
set, precluding the application of the same coding scheme
across higher-level macroevolutionary studies. For example,
a “hypercarnivorous” weasel, rat, and mole may depredate
very different animals (e.g., mice, beetles, and worms), leav-
ing few options but to create a large number of categories
(“vertebrate hypercarnivore,” “soft invertebrate hypercarni-
vore,” etc). Furthermore, species frequently consume differ-
ent proportions of foods, often opportunistically, or have diets
that cross category boundaries. For example, many squirrel
species, such as the antelope ground squirrel, will occa-
sionally eat vertebrates despite seeds making up an over-
whelming portion of their diet (Bradley 1968). Categorizing
a squirrel as “granivore” necessarily ignores the less com-
mon, but still nutritionally important, vertebrate food items
that are consumed, while “omnivore” may be too broad a
dietary classification in this case. Pineda-Munoz and Alroy
(2014) suggested that diet be classified on the basis of both
the primary and the secondary food types consumed, with
the term “generalist” reserved for taxa in which no individ-
ual food type comprises the majority of the diet. Although
this scheme is an improvement on previous approaches,
it still fails to capture the full breadth of diet variation by
ignoring the use of foods of tertiary or lower importance.
Grundler and Rabosky (2021) overcame this issue by treating
diet as multivariate rather than categorical, and they in-
ferred the presence and location of dietary niche shifts
over snake phylogeny by using a database of proportional
occurrences of food items in the diet of 882 species (Grundler
2020). However, although some level of unobserved data can
be accommodated by this approach, it cannot readily be ex-
tended to datasets with large numbers of data-deficient taxa,
such as those based on fossils.

Ideally, animal diet would be codified in a way that
preserves its inherently multidimensional structure while
also being amenable to prediction from the morphology
of poorly studied or extinct taxa and, ultimately, to
large-scale macroevolutionary and macroecological anal-
ysis. Rojas et al. (2011) and Kissling et al. (2014) appar-
ently independently developed a coding scheme that,
rather than assigning taxa to a single discrete diet cate-
gory, ranks the relative importance of different food types
in a species’ diet on the basis of the use of keywords in
synoptic reviews and primary ecological studies. The result
is that diet is represented not as a single code in a classifi-
cation scheme but, rather, as a vector of ordinal variables.
Rojas et al. (2011) and Kissling et al. (2014) ultimately used
their codings to classify taxa into standard specialist cate-
gories, while Rojas et al. (2018) used them to develop a
univariate continuous variable spanning herbivory to car-
nivory (see also López-Aguirre et al. 2022). However, the
original importance codings present a holistic multivariate
description of diet that may yield previously overlooked
insights into the form-function relationship between phe-
notype and ecology and the structure of dietary niches. For
example, a species may experience selective pressure for
traits that are associated with efficient acquisition and
processing of seasonally or infrequently consumed food
items (“fallback foods”; Marshall et al. 2009), as these nu-
tritional sources may increase an individual’s fitness when
preferred food items are unavailable. Although item im-
portance ranking has several advantages over traditional
classification schemes, it is yet to be widely adopted in
ecomorphological studies (but see Machado 2020).

Here, we investigate whether ordinal ranking of food
type importance can be predicted from ecomorphological
traits using a well-established system with rigorously de-
fined functional variation: the molar dentition of terres-
trial (i.e., nonpinniped) members of the mammalian order
Carnivora. We seek to understand how different functional
aspects of the carnivoran dentition, such as sharpness,
complexity, and surface area, correlate with the relative
importance of different food items. Carnivora is an ideal
group for such a study. The order is taxonomically and
ecologically diverse, comprising more than 300 living spe-
cies (Burgin et al. 2018) that occupy a wide range of dietary
niches. Extant carnivorans have been well studied, with a
wealth of information available regarding their phylo-
genetic relationships (Eizirik et al. 2010; Nyakatura and
Bininda-Emonds 2012; Slater and Friscia 2019), dietary
diversity (Ewer 1998), and ecomorphological variation
(Van Valkenburgh 1988; Van Valkenburgh and Koepfli

Dicrostonyx
Highlight



194 The American Naturalist
1993; Sacco and Van Valkenburgh 2004; Friscia et al.
2007). Additionally, carnivorans possess a rich fossil rec-
ord, providing ample opportunity to predict the ecologies
of extinct species. We conducted an extensive literature
review to evaluate the relative importance of 13 different
food items for 88 species of extant carnivorans using the
approach of Rojas et al. (2011) and Kissling et al. (2014).
We then fit a series of Bayesian multilevel regression mod-
els with linear and topographic dental metrics as predic-
tors and the relative importance of diet items as ordinal re-
sponses. Finally, we used the best-fitting models for each
food item to predict the importance of the 13 food types
for a sample of data-deficient extant carnivorans, as well
as several species of extinct carnivorans spanning from
the Eocene (∼50 myr) to the latest Pleistocene (∼13 kyr).
Material and Methods

Data Collection

Morphological Data Collection. We compiled data for four
morphological metrics that collectively describe the grind-
ing area, relief, complexity, and sharpness of the lower
molar tooth row from 99 species of extant nonpinniped
carnivorans. Species-mean values for relative lower grind-
ing area (RLGA; Van Valkenburgh 1988), a measure of the
size of the lower molar tooth row dedicated to grinding as
opposed to slicing, were obtained from Slater and Friscia
(2019) and Friscia et al. (2007). We generated novel topo-
graphic metrics from 3D surface scans of carnivoran lower
first (m1) and second (m2) molars (for scanning details,
see “Additional Methods” in the supplemental PDF). Mo-
lar scans and measurements were obtained from speci-
mens housed in the mammal collections of the Field Mu-
seum of Natural History, Chicago (for specimen numbers,
see table S1). Relief index (RFI; Boyer 2008) is the ratio
of the 3D surface area of a tooth to its 2D planar area and
is a measure of topographic relief. Orientation patch count
rotated (OPCr; Evans et al. 2007; Wilson et al. 2012) mea-
sures the complexity of the tooth by counting the number
of contiguous patches on the tooth surface that share a
common orientation. Because the orientation of each point
is sensitive to the alignment of the tooth model to the global
coordinate system, counts are calculated over several small
rotations of the model and averaged (Wilson et al. 2012).
RFI and OPCr were calculated using the molar package
(Pampush et al. 2016) for R (R Core Team 2022). Finally,
Dirichlet normal energy (DNE) measures the average cur-
vature of a surface by calculating its “bending energy” (Bunn
et al. 2011) and captures overall tooth sharpness. We used
“a robustly implemented algorithm for DNE” (ariaDNE;
Shan et al. 2019) that is less sensitive to artifacts due to
3D modeling, such as smoothing, than early DNE algo-
rithms, implemented via Matlab scripts provided by Shan
et al. (2019). For carnivoran species without an m2, we as-
signed a value of zero for all dental topographic measure-
ments. All surface scans are available in the MorphoSource
digital repository (project ID: 000501405), and all dental
measurement values are available in table S1.

We visualized patterns of covariation in the topographic
data by performing a principal component analysis (PCA)
on the covariance matrix of standardized dental data us-
ing the prcomp function in the stats package in R (R Core
Team 2022). To evaluate phylogenetic signal in carnivoran
dental shape, we calculated Kmult (Blomberg et al. 2003;
Adams 2014) using the phylosignal function in the
geomorph R package (Adams et al. 2021; Baken et al.
2021).

Dietary Data Collection. We sourced dietary information
for each carnivoran species in our dataset through a review
of species accounts and primary ecological studies. We
followed Machado’s (2020) coding scheme of canid diets,
modified from Kissling et al. (2014), to rank the relative
importance of 13 food types: large mammal, small mam-
mal, bird, herptile (reptiles and amphibians), fish, egg, car-
rion, hard-bodied invertebrate, soft-bodied invertebrate,
seed (including nuts), root, fruit, and plant (including
leaves and stems). Canids span almost the entire breadth
of dietary diversity in carnivorans, and this system is
therefore appropriate for the present study. However, food
items can easily be modified for subsequent studies, de-
pending on taxonomic and ecological sampling. For ex-
ample, few extant carnivorans place high importance on
leaves or stems, allowing for use of a single broad “plant”
type, but this could be split into “grasses,” “herbaceous
plants,” “leaves,” and “woody stems” if artiodactyls and
perissodactyls were added in subsequent work. We de-
fined large mammals as species with a mean mass greater
than 5 kg. Hard- and soft-bodied invertebrates were des-
ignated as separate food types because sclerotinized and
unsclerotinized cuticles have different material properties
that require different mechanical solutions to fracture
(Freeman 1979; Strait and Vincent 1998). We coded larvae
as soft-bodied, irrespective of the properties of the adult
cuticle.

Following Kissling et al. (2014) and Machado (2020)
but with some minor modifications, food types were as-
signed to ranks on the basis of the use of keywords and
phrases in synoptic reviews or primary analyses of diet
in the focal species (table 1). In contrast with Kissling
et al. (2014), we avoided broad or superficial sources (e.g.,
Nowak and Walker 1999) when coding dietary ranks and
attempted to validate primary sources where review articles,
such as Mammalian Species accounts from the American
Society of Mammalogists, were used. A single instance of
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a species consuming a food type was sufficient to assign it
rank 2 (low importance), regardless of inferred nutritional
importance. Seasonally and regionally important foods were
generally considered important in the context of the species’
diet (Porter et al. 2022). We note that this approach may re-
sult in higher rankings for some food items, because of indi-
vidual or population-level specializations (e.g., Bolnick et al.
2003; DeSantis et al. 2022), than are representative of the
overall species mean. For this reason, our dietary impor-
tance rankings should be conservatively interpreted as de-
scribing the fundamental dietary niche of each taxon rather
than the realized niche of any one population (Hutchinson
1957). In cases where insufficient data were available to as-
sign ranks to food items, such as when a source only listed
a set of foods that are eaten or that have been recovered
from stomach contents without using keywords to describe
the frequency or importance of each, we coded the taxon
as unknown. All food importance scores are available in
table S1.

To visualize general patterns of covariation in dietary
item importance, we performed a PCA on the polychoric
correlation matrix of importance scores, computed using
the polychor function in the polycor R package (Fox 2021).
Polychoric correlations differ from Pearson’s correlations
in that they do not assume that the input variables them-
selves are continuously distributed but that they are discrete
outcomes of a liability threshold process on a normally
distributed latent variable. As such, they are appropriate
for ordinating discrete ordered states, such as Likert scores
(Holgado-Tello et al. 2010). We then used the mclust R
package (Scrucca et al. 2016) to determine the optimal num-
ber of clusters of taxa in the resulting PC scores based on a
finite Gaussian mixture model, with a maximum of 20 clus-
ters permitted and model selection based on the Bayesian
information criterion (BIC).

For comparison with previous categorical dietary group-
ings, we classified the species in our dataset using four
often-used carnivoran dietary classification schemes: the
PanTHERIA database dietary classification scheme ( Jones
et al. 2009), which ranks 2,161 mammal species into three
diet categories (omnivore, herbivore, and carnivore); the
classification scheme of Van Valkenburgh (1988), which
places carnivorans in three dietary categories (hyper-, meso-,
and hypocarnivore); the four-category scheme of Pineda-
Munoz et al. (2017), which uses secondary dietary categories
where an alternate food source comprises a substantial
proportion of the diet after the primary food source
(in this case, hypercarnivore, hypocarnivore-insectivore,
hypocarnivore-herbivore, and mesocarnivore); and diet
categories from Animal Diversity Web (https://animal
diversity.org/, accessed on February 8, 2022), an increas-
ingly popular source of dietary information for compara-
tive analyses (e.g., Lomolino et al. 2012; Morales-Garcí
et al. 2021; Goswami et al. 2022), which places the taxa
in our dataset into six categories (carnivore, frugivore, her-
bivore, insectivore, omnivore, and piscivore). We used the
Van Valkenburgh (1988) and Pineda-Munoz et al. (2017)
classifications reported in the supporting information of
Hopkins et al. (2022). We then recomputed optimal clus-
tering schemes in our importance data but with the num-
ber of clusters set equal to the number of groups in each of
the four discrete dietary schemes and compared the resulting
classifications using the adjusted Rand index, as computed
by the adjustedRandIndex function in the mclust R pack-
age. The Rand index compares classification schemes based
on matches, with its adjusted version accounting for the
number of matches that are expected to occur due to chance
(Hubert and Arabie 1985). An adjusted Rand index of 0 is
expected for two completely random classification schemes,
while a value of 1 indicates perfect agreement between the
two.
Bayesian Multilevel Modeling

Dietary rankings are neither continuous predictors nor
discrete categories but, instead, are categories with a nat-
ural order. Therefore, to test the hypothesis that food
type importance can be predicted from dental topography
in carnivorans we used ordinal regression, with diet rank-
ing represented as a cumulative distribution (Bürkner and
Vuorre 2019). Like polychoric PCA, cumulative ordinal
regression models assume that the response variable is
Table 1: Dietary importance ranking scheme
Rank
 Dietary importance
 Keywords and phrases
1
 Never consumed
 “Never consumed” (no mention of the dietary item being consumed in any of the sources
consulted)
2
 Low importance
 “Occasionally,” “sometimes,” “small amounts,” “supplemented by,” “a few,” “rarely,”
“opportunistically”
3
 Moderate importance
 “But also includes,” “may include,” “feeds partly,” “also feeds,” “includes”

4
 Primary importance
 “Consists mainly,” “feeds mostly,” “concentrates,” “major portion,” “prefers,” “especially

significant,” “most frequently consumed,” “almost exclusively,” “also important”
Note: Our keywords are modified from Kissling et al. (2014) and Machado (2020).
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drawn from a continuous distribution split by k thresh-
olds that separate k1 1 groups; for four dietary rankings,
1–4, the model will estimate three thresholds within the
total distribution of rankings (Bürkner and Vuorre 2019).
The distances between thresholds in a cumulative distri-
bution need not be equal. We used food item importance
rankings as our response variables and the dental topo-
graphic metrics for m1 and m2 as our predictors. Body
mass can mediate the type of food that a species is capable
of attaining and processing with a given occlusal topogra-
phy (e.g., Carbone et al. 1999, 2007; Radloff and Du Toit
2004), and therefore we modeled the interaction between
the natural log of body mass, taken from PanTHERIA
(Jones et al. 2009), and the m1 and m2 predictors. Model-
ing the interaction between body mass and dental mor-
phology allows us to condition our estimates on the effect
of body size and simultaneously quantify variation in the
effect of tooth topology on diet along the body size con-
tinuum. Species traits may covary due to evolutionary his-
tory, so we used a phylogenetic correlation matrix gener-
ated from the timescaled molecular phylogeny of Slater
and Friscia (2019) as a group-level predictor (Lynch 1991;
de Villemereuil et al. 2012; de Villemereuil and Nakagawa
2014). This phylogenetic multilevel modeling approach
jointly estimates the phylogenetic covariance in the data
and conditions the model estimates on this covariance
(McElreath 2020; Fulwood et al. 2021).

Our models took the general form

ordinal(diet rank) ∼ b1mass(b2m1 1 b3m2) 1 Rp,

where b1 represents the effect of body mass on diet cat-
egory, b2 and b3 represent the effect of m1 and m2 topog-
raphy on diet category, and Rp represents the phyloge-
netic correlation matrix. The interaction terms b1#b2 and
b1#b3 represent the interactions between mass and m1
topography and between mass and m2 topography, re-
spectively. For each dietary item, we fit five ordinal regres-
sion models: one for each of the three dental topographic
measures, one for RLGA, and one model that included all
four of the dental metrics. Models were fit using the R
package brms (Bürkner 2017), an interface for the Bayes-
ian probabilistic programming language Stan (Gelman
et al. 2015). Working in a full Bayesian framework allows
us to fit these complex ordinal models within a multilevel
structure, to provide an intuitive measure of uncertainty in
the results (i.e., probability) and to use regularizing priors
to minimize overfitting risk. Data processing and post hoc
analyses heavily relied on the tidyverse (Wickham et al.
2019), furrr (Vaughan and Dancho 2022), and tidybayes
(Kay 2021) packages. All models and scripts are available
in the Dryad Digital Repository (https://doi.org/10.5061
/dryad.pc866t1rg; Nations et al. 2022) and on GitHub (https://
github.com/jonnations/CarnivoranDentitionDiet_MS).

Prior Predictive Checks. Before fitting the models, we stan-
dardized all linear predictors to z-scores, as is recom-
mended practice when working with predictors on differ-
ent scales (Gelman et al. 2020; McElreath 2020). For each
tooth metric, we compared three different prior distribu-
tions for each response variable (ranks of food items): a
normal distribution, a student-T distribution, and a cus-
tom Dirichlet distribution. We used prior predictive sim-
ulation to determine the best-calibrated parameters for
each prior distribution that effectively capture the distri-
bution of the dietary ranks while discouraging unrealistic
values (fig. S1). We then used Bayesian leave-one-out (LOO)
cross validation (Vehtari et al. 2017) to determine the prior
distribution with the highest predictive power for the re-
sponse variables. Bayesian LOO cross validation uses Pareto
smoothed importance sampling to simulate the posterior
of the model nsample times, leaving out a single data point
(in our case, a single species) in each refitting. This ap-
proach identifies data points (i.e., species) that have an out-
sized influence on the posterior distributions, rewards accu-
rate prediction while penalizing overfitting, and calculates a
LOO score for each model that can be used for model com-
parison (Vehtari et al. 2017; Yao et al. 2018).

Model Fitting. After determining an appropriate prior
distribution for each dietary item response, we ran each
model for four chains, with 2,000 iterations of warm-up
and 2,000 iterations of sampling. We used a N (0, 1) prior
on each predictor variable (z-scores of tooth metrics and
log(mass) as well as phylogenetic correlation matrix). Chain
convergence was verified with the Gelman-Rubin R̂ statistic
(Gelman and Rubin 1992). For each food item, we again
used LOO cross validation to compare the predictive power
of each of the five models, then estimated the model
weights using stacking (Yao et al. 2018).

Model Validation and Predictive Accuracy. We used three
approaches to validate our models. First, we used posterior
predictive checking via the pp_check command in brms
to confirm that the models indeed generated reasonable
estimates of the distribution of importance ranks in orig-
inal dietary data by plotting 500 draws from the posterior
along with the empirical counts of the rankings for each
food item (fig. S2). Second, we used our LOO model weights
to model average over the five models for each food item,
then extracted the Pareto-k scores for each species for each
food item. Pareto-k scores are diagnostics calculated by the
Pareto smoothed importance sampling algorithm in LOO
(Yao et al. 2018). They provide an estimate of how far an

https://doi.org/10.5061/dryad.pc866t1rg
https://doi.org/10.5061/dryad.pc866t1rg
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individual LOO posterior distribution is from the full dis-
tribution, indicating the importance of each sample (i.e.,
each species) to the posterior. A low Pareto-k score (!0.3)
indicates that removing the sample has no measurable effect
on the posterior predictions, while a high Pareto-k score
(10.7) indicates that removing a sample has a large effect
on the posterior (Vehtari et al. 2017). High Pareto-k values
indicate overfitting or model misspecification, which both
result in models with low predictive ability. Third, we cal-
culated the accuracy of our models for each food item over
the entire set of posterior samples. To do this, we extracted
the predicted rank for each species per food item from
1,000 posterior draws and used the LOO model weights
to model-average the predictions over the five models
for each food item. We then calculated the difference be-
tween the posterior mean predicted food item importance
ranks and our empirical importance ranks. We calculated
two accuracy scores for each food item; one for a differ-
ence of zero (posterior mean model-averaged rank p em-
pirical rank) and one for a difference of no more than
1 (0 ! jempirical rank2 posterior mean model-averaged
rankF ≤ 1).
Predicting Food Item Importance in Data-Deficient
Extant and Fossil Carnivorans

A desirable outcome of any predictive model is the esti-
mation of response variables for observations of an un-
known state. We first used our fitted models to predict
the importance of each food item to the overall diet for
the 11 data-deficient extant taxa in our dataset. To further
explore the predictive abilities of our models, we gene-
rated model-averaged estimates of food item importance
for seven fossil carnivorans (table 2). Molar scans and
measurements were obtained from specimens housed in
the fossil mammal collections of the Field Museum of
Natural History, Chicago, while species mean body mass
estimates were taken from the literature (table 2). The
selected fossil taxa span a phylogenetic, body size, and
putative ecological breadth that should challenge our mod-
els to varying degrees. For example, the sabertoothed felid
(Smilodon fatalis) and nimravids (Dinctis felina and Hop-
lophoneus primaevus) might be expected to exhibit diet-
ary similarities to large extant felids because of their high
degree of morphological similarity. Likewise, the paleo-
mustelid Promartes lepidus is morphologically comparable
to crown group representatives of Mustelidae and so may
be expected to exhibit a similar dietary profile. In contrast,
the cave bear Ursus spelaeus is closely related to the living
brown and polar bears but, on the basis of its craniodental
morphology (van Heteren et al. 2014), tooth wear patterns
(Peigné et al. 2009; Pinto-Llona 2013; Jones and DeSantis
2016), dental topographic metrics (Pérez-Ramos et al. 2020),
and nitrogen isotopic evidence (Hilderbrand et al. 1996;
Richards et al. 2008; Robu et al. 2013; Bocherens 2019;
Naito et al. 2020), has been inferred to be a tough plant
specialist, generalized omnivore, or seasonal bone cracker.
Finally, the daphoenine amphicyonid Daphoenus and the
stem carnivoran “Miacis” latidens have no close extant
relatives for comparison. Including these taxa in our sam-
ple presents an opportunity to gain new insights into their
paleoecology.

For each model with a nonzero LOO weight, we used
the dental and body mass data from each extinct and data-
deficient taxon to sample 4,000 posterior draws of the
expected value of their response variable (diet rank) from
the posterior distribution for each food item for each spe-
cies. Posteriors were multiplied by the LOO model weights
and then summed to generate 4,000 model-averaged pos-
terior draws. Predictions from these models do not come
in the form of a point estimate of the importance rank
for each food item for each taxon, as one would obtain
from a more traditional discriminant function analysis,
but, rather, as a vector of probabilities where the ith value
Table 2: Fossil taxa sampled in this study
Species
 Family
 Body mass (kg)
 Dietary ecology
Daphoenus sp. (FMNH PM 25049)
 Amphicyonidae
 14.56
 Omnivore

Dinictis felina (FMNH UM 424)
 Nimravidae
 22.9
 Hypercarnivore

Hoplophoneus primaevus (FMNH UM 240)
 Nimravidae
 18.2
 Hypercarnivore

“Miacis” latidens (FMNH P 26875)
 Stem carnivoran
 1.97
 Faunivore?

Promartes lepidus (FMNH PM 12155)
 Mustelidae
 2.49
 Omnivore

Smilodon fatalis (FMNH PM 3702)
 Felidae
 220
 Hypercarnivore

Ursus spelaeus (FMNH UC 1645)
 Ursidae
 362.5
 Herbivore, omnivore
Note: For each fossil taxon, we provide the family to which it is currently classified, the literature-derived body mass estimate (in kilograms), and approximate
estimate(s) of its dietary ecology. Body mass estimates were obtained as follows: Daphoenus was estimated from first-molar (m1) length using the general equation
from Van Valkenburgh (1990); Dinictis and Hoplophoneus use the midpoint of the range from Andersson (2004); “Miacis” latidens was estimated from m1 length
using the general equation from Van Valkenburgh (1990); Promartes lepidus was estimated from m1 length using the mustelid equation from Van Valkenburgh
(1990); Smilodon fatalis uses the average value from Christiansen and Harris (2005); and Ursus spelaeus uses the average value from Christiansen (1999).
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is the probability that the dietary item has an importance
rank i or lower to the diet of that taxon. Therefore, for each
draw we computed a weighted importance score (WIS)
for the food item as

WIS p
Xn

ip1

PriRanki, ð1Þ

where Pri is the probability of the ith of the n ranks,
resulting in 4,000 WIS values for each item for each spe-
cies. The WIS values are continuous on the interval 1–4
rather than integer-valued, as in the ordinal dietary data
from extant data-rich species. To aid comparison, we per-
formed the same series of steps to generate a distribution
of 4,000 WIS values for each food item for each data-rich
extant species in our sample.

For each draw in our 4,000 posterior estimates, we
performed a PCA on the correlation matrix of WIS values
for data-rich extant species and projected data-deficient
extant and extinct species into the resulting space to iden-
tify their nearest data-rich neighbors, which we interpret to
be the closest dietary analogs. We calculated the frequency
with which each data-rich extant species was recovered
as the nearest neighbor to each data-deficient and extinct
taxon in the 4,000 posterior samples, which we interpret
as the posterior probability of that data-rich extant taxon
being the true nearest neighbor.
Results

Morphological Data

PCA of the dental topographic data yields patterns that
conform to functional expectations (fig. 1). PC1 explains
64% of the variance in dental topographic data and se-
parates taxa with large relative grinding areas, complex
molars, and tall cusps (negative scores) from those with
small grinding areas, relatively simple teeth, and first
molars with high relief (positive scores). Qualitatively, this
axis appears to separate more “omnivorous” taxa (e.g., bears,
negative scores) from more “carnivorous” taxa (e.g., felids,
hyaenids, Cryptoprocta, positive scores). PC2, which ex-
plains 18% of the variance in tooth shape data, separates
taxa with complex molars (negative scores) from those
with sharp molars and high relief (positive scores). This
axis seems to be associated with the degree of insectivory,
with small insectivorous taxa (herpestids and euplerids,
positive scores) separating from taxa with less reliance
on insects (negative scores). Broken stick analysis sug-
gests that only the first PC is significant. There is a mod-
erate degree of phylogenetic signal in carnivoran molar
morphology that is significantly different from random ex-
pectation (Kmult p 0:58, P p :001, effect size p 13:11).
Dietary Data

Of the 99 species for which we collected morphological
measurements, 11 lacked sufficiently detailed descriptions
of their dietary habits to score important rankings for each
food item. These data-deficient taxa were therefore used to
generate predictions (see below). Figure 2 shows the die-
tary space defined by the first two polychoric PCs of food
item importance scores from the remaining taxa, with plot-
ting symbols corresponding to discrete dietary groupings
from four commonly used categorization schemes. The
first PC, which accounts for 27.73% of the variance in
the data, separates taxa for which large and, to a lesser de-
gree, small mammals are an important component of the
diet (positive scores) from those for which hard and soft
invertebrates and fruits (negative scores) are important.
The second PC, which accounts for 18.07% of the variance,
separates taxa that place high importance on small ver-
tebrates (small mammals, birds, herptiles) as well as eggs
and carrion (positive scores) from those that consume more
plants (negative scores).

Existing dietary classifications do not appear to conform
to multivariate diet data. Mixture model clustering anal-
yses using the full set of 13 PCs identified a five-cluster
scheme as optimal, based on BIC, although five clusters
were only minimally preferred (BIC score difference less
than22.0) to three, four, or six clusters, and there is a weak
−3
−2

−1
0

1
2

−2.5 0.0 2.5
PC 1 (64%)

PC
2

(1
8%

)

Ailuridae Canidae Eupleridae Felidae
Herpestidae Hyaenidae Mephitidae Mustelidae
Nandiniidae Procyonidae Ursidae Viverridae

Figure 1: Phylogeny accounts for only a portion of dental morphol-
ogy. Dental morphology contains some phylogenetic signal (Kmult p
0:58), as carnivoran families are loosely organized in morphospace.
Families with narrow, sharp first molars (m1) and no second molars
(m2) cluster in the positive values of the first principal component
(PC1), while families with large, complex molars have negative PC1
values. Species’ silhouettes are from PhyloPic and are available under
a public domain license.
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Figure 2: A cluster analysis of polychoric principal component analysis (PCA) scores generated from multivariate dietary importance data
captures some discrete diet categorizations but misses most. In each plot, the symbols represent the discrete categories assigned by the four a priori
categorization schemes, the colors represent the multivariate dietary clusters delineated using mixture models in the mclust library, and the ad-
justed Rand index value indicates the match between the two. The number of mclust-delineated diet clusters in each plot was set to the number of
groups in the a priori categorization schemes. A, The simplistic k p 3 category scheme of the PanTHERIA database is an especially poor descrip-
tor of the multivariate diet, with an adjusted Rand index of 0.04. This mismatch can be visualized by the number of different symbols that share the
color green.B, The carnivoran-specific k p 3 scheme of Van Valkenburgh (1988) identifies many of the hypercarnivore species cluster (in purple),
but the remaining two clusters do not match the hypocarnivore or mesocarnivore categories. C, The k p 4 a priori categories of Pineda-Munoz
et al. (2017) split hypocarnivores into two groups; however, these two categories, represented by the square and diamond shapes, are not well
separated in multivariate diet space.D, The mixture models correctly delineate most of the piscivorous (stars) and herbivorous (diamonds) species
from the k p 6 categorization scheme of Animal Diversity Web, although the remaining four a priori categories are not well delineated.
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correspondence between the four a priori discrete dietary
classification schemes and cluster membership when the
number of clusters is fixed to be equivalent (fig. 2). The
simple PanTHERIA scheme—carnivore, omnivore, and
herbivore—performed especially poorly (fig. 2A), with an
adjusted Rand index of 0.04. The three remaining schemes
match the multivariate dietary clusters slightly better, but
adjusted Rand indices remain low (≤0.18; fig. 2B–2D). Al-
though the k p 6 clustering analysis does not perform well
overall, it does effectively collate five of the six piscivorous
species into a cluster, most evident on PC5, and places two
of the three herbivorous species into a cluster (fig. 2D).
Ordinal Models of Food Types

Chains from all Bayesian ordinal models demonstrated ap-
propriate convergence (R̂ ! 1:002). Prior predictive simu-
lations showed that different response distributions (nor-
mal, student-T, and Dirichlet) each performed best for
some food items (fig. S1). All model-averaged Pareto-k
scores are in the acceptable (0.55–0.3; 4% of samples) to
good (!0.3; 96% of samples) range (table S2), indicating
that our models are not overfit and have reasonable predic-
tive accuracy. Most of the Pareto-k values 10.3 are from
the models for root consumption, likely because only eight
of the 88 species in our sample are known to eat any roots
and there are no dental or body mass signatures of root
feeding in the diet. Detailed model outputs and visual-
izations are provided in figure S3 and table S3. Calculations
of model weights using LOO scores and model stacking
showed that different dental topographic metrics best pre-
dict the dietary importance of different food types (table 3).
However, these relationships are often mediated by body
size and sometimes in very different ways. To visualize
these effects, we plotted the posterior probability of belong-
ing to each dietary importance rank for values of the opti-
mal trait, broken down into low (21.5 SD), mean, and high
(11.5 SD) body mass groupings for select dietary items
(fig. 3). RLGA strongly decreases with increased consump-
tion of birds (fig. 3A), large mammals (fig. 3D), and small
mammals (fig. 3E) but increases with increased consump-
tion of fish. However, because of the strong interaction
between mass and RLGA, a diet containing a large propor-
tion of birds is best predicted in small-bodied carnivores
(fig. 3A), a diet rich in small mammals is best predicted
in small and medium-sized carnivores (fig. 3E), and a diet
rich in large mammals is best predicted in large carnivores
(fig. 3D), while high importance of fish is best predicted for
large-bodied taxa with large grinding areas.

We also found that the significance of first and second
molar morphology varied across food types. Across the
range of carnivoran body mass, a high DNE value on m2,
but not m1, increases the probability of plants in the diet.
OPCr of m2, but not m1, is positively associated with the
importance of fruit in small carnivorans, but here, because
of the interaction with mass, high m2 OPCr values are neg-
atively associated with fruit consumption in larger carni-
vorans (fig. 3B). Similarly, high DNE values for m1 are
associated with high importance of soft invertebrates in
small-bodied carnivorans, while low DNE values are pre-
dictive of high importance of soft invertebrates in large-
bodied taxa (fig. 3F). Other models are more complex still.
Small-bodied carnivores consume more hard invertebrates
than larger species, especially in species with high m1
Table 3: Model support (leave-one-out weight from model stacking) for ordinal regressions of dietary item
importance ranks (rows) on dental traits (columns)
Diet
 DNE
 OPCr
 RFI
 RLGA
 All predictors
Bird
 0
 0
 0
 1
 0

Carrion
 0
 .42
 0
 .58
 0

Egg
 .16
 0
 .84
 0
 0

Fish
 0
 0
 0
 1
 0

Fruit
 0
 .41
 0
 .59
 0

Hard invertebrate
 .53
 0
 0
 .47
 0

Herptile
 .72
 0
 0
 .28
 0

Large mammal
 0
 0
 0
 .69
 .31

Plant
 .55
 .2
 0
 0
 .25

Root
 0
 0
 0
 1
 0

Seed
 .32
 0
 .17
 .51
 0

Small mammal
 .16
 0
 0
 .84
 0

Soft invert
 .77
 0
 0
 .23
 0
Note: The model (predictor) with the highest weight is boldfaced for each dietary item. Note that body mass is included as a covariate for each
model but that its effect is variable across models. DNE p Dirichlet normal energy; OPCr p orientation patch count rotated; RFI p relief index;
RLGA p relative lower grinding area.
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DNE values. However, an increased lower grinding area is
strongly associated with increased hard invertebrate con-
sumption across all body sizes.

Rarer food types present a range of challenges to our
predictive models. Specialization on herptiles is uncom-
mon in carnivorans, but the best-fitting model, incorpo-
rating DNE and body mass (table 3), finds a moderate
probability that reptiles and amphibians are important to
the diet of small-bodied taxa, regardless of the sharp-
ness of m1 and m2 (fig. S3; table S3). Infrequent herptile
consumption in the empirical diet data therefore lowers
the predictive accuracy of our herptile models (table 4),
although precise predictions (exact matches between em-
pirical ranks and posterior mean model-averaged predic-
tions) still remain above 50%. Similarly, while no carnivo-
rans in our dataset frequently consume roots, the probability
of consuming at least some roots is inferred to robustly in-
crease with increased lower grinding area, particularly in
larger species (fig. S3; table S3). A different effect is seen
for plants. Although true plant specialists (i.e., an impor-
tance rank for plants of 4) exist in our dataset (e.g., the
pandas Ailuropoda melanoleuca and Ailurus fulgens), they
are rare, and most taxa use plants modestly. This leads
to underprediction of plant importance in these specialist
taxa (WIS p 3:11 and 2.75, respectively) and overpredic-
tion of importance in others, including the more carnivo-
rous polar bear Ursus maritimus (empirical plant impor-
tance rank p 2, WIS p 2:78).
Predicting Dietary Importance in Data-Deficient
Extant and Fossil Carnivorans

Dietary importance predictions for the 11 data-deficient
extant taxa are consistent with limited knowledge regard-
ing their diets. Most data-deficient taxa are small-bodied
members of clades that are traditionally considered to ex-
hibit more generalized diets (e.g., Herpestidae, Viverridae),
and posterior mean WIS values (WIS) reflect this, with
nonnegligible contributions (WIS 1 2:0) of birds, hard and
soft invertebrates, fruits, herptiles, and small mammals in-
ferred for most (fig. 4A). Carrion, eggs, fish, plants, roots,
and seeds are identified as relatively low-importance foods
(WIS ! 2:0) for most of these taxa. Among more special-
ized taxa, the bay cat Catopuma badia and marbled cat
Pardofelis marmorata are confidently predicted to be obli-
gate small mammal feeders (WIS 1 3:9) and to include a
large proportion of birds in their diet (WIS 1 3:2). These
two cats are also the only taxa for which large mammals
are inferred to ever be consumed, although the importance
of this food resource is low (WIS p 2:1–2:3). The cat-
like banded linsang Prionodon linsang is predicted to be
similarly reliant on small mammals (WIS p 3:91), but un-
like the cats, hard (WIS p 3:45) and soft (WIS p 3:09)
invertebrates are also inferred to comprise important com-
ponents of its diet. Soft invertebrates are predicted to fea-
ture heavily (WIS 1 3:0) in the diets of the banded palm
civet Hemigalus derbyanus and the Sunda stink badger
Mydaus javanensis, as well as the short-tailed mongoose
Herpestes brachyurus. Because of the small body size of
many of these data-deficient taxa, predictions for the im-
portance of some food items—herptiles, in particular—
were relatively uniform across species.

Projecting data-deficient extant species into the mul-
tivariate diet space for data-rich species illuminates die-
tary affinities between taxa that transcend phylogenetic
and biogeographic boundaries. The catlike linsang does
not cluster with felids at all but is closest to the spotted
skunk (Spilogale putorius) as well as a selection of small
canids, mustelids, euplerids, and herpestids (latter three
not shown in table 5) that are united in placing high im-
portance on a combination of small vertebrate and inver-
tebrate prey. Among other results, it is notable that the
nearest neighbors of the three Southeast Asian hemiga-
line viverrids (Chrotogale,Cynogale, andHemigalus) largely
come from the American Procyonidae (raccoons and re-
latives). Another noteworthy feature is that the density of
the occupied region of dietary space can be inferred from
the number and frequency of nearest neighbors in the pos-
terior sample. For example, the hooded skunk Conepatus
mesoleucas is most frequently recovered as the nearest neigh-
bor to the small-toothed palm civetArctogalidia trivirgata, but
with a posterior probability of only 0.07. With numerous
Table 4: Predictive accuracy of ordinal regression models
of dietary importance ranks
Food item
 Exact match
 51 rank
Bird
 60.7
 98.9

Carrion
 55.1
 95.5

Egg
 64.0
 92.1

Fish
 71.9
 95.5

Fruit
 74.2
 98.9

Hard invertebrate
 58.4
 93.3

Herptile
 51.7
 94.4

Large mammal
 70.8
 89.9

Plant
 66.3
 97.8

Root
 89.9
 95.5

Seed
 82.0
 93.3

Small mammal
 61.8
 95.5

Soft invertebrate
 67.4
 86.5
Note: The accuracy of the model predictions varies among food items but is
consistently high. Most models estimate within one rank of the empirical im-
portance rank more than 90% of the time. To generate these estimates, we
took 1,000 draws from the model-averaged posterior distributions from each
food item and then calculated the accuracy of each predicted rank. These
values are the mean accuracy scores of the 1,000 draws.
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other taxa inferred as nearest neighbors at a posterior prob-
ability of !0.1, A. trivirgata apparently resides in a densely
occupied region of diet space. In contrast, H. derbyanus
appears to reside in a far less occupied region of diet space,
close to the two coati species (150% of total matches).

Model-averaged predictions for the relative importance
of different food items in the diet of some extinct carni-
vorans (fig. 4B) are largely consistent with previous work.
We infer that large mammals were an extremely important
(WIS p 3:92) component of the diet of the machairodont
felid Smilodon fatalis and the nimravids Dinictis felina
(WIS p 3:32) and Hoplophoneus primaevus (WIS p 3:27).
Small mammals are inferred to have been of compara-
ble importance to large mammals in the diets of the two
nimravids (WIS p 3:31 and 3.53, respectively), but not
for Smilodon (WIS p 2:12). Other animal-derived protein
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Figure 4: Ordinal models of dietary items can be used to predict the diet of understudied or extinct species. Estimates of the diet rankings of
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one-out stacking scores, and the data-deficient species’ dental metrics and mass as input. The heatmap reports the posterior mean weighted im-
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low predictive power for these taxa.
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sources, such as fish and herptiles, may have been occa-
sionally consumed by these taxa, but they are generally in-
ferred to be less important (WIS ! 2:5).

The amphicyonid Daphoenus is inferred to have had a
rather broad diet in which no single food item dominated
but where small mammals (WIS p 2:88), hard inver-
tebrates (WIS p 2:66), and fruits (WIS p 2:62) were all
consumed frequently. Plants are predicted to have been
the most important component of the diet of the cave
bear Ursus speleaus, with a WIS of 3.27 that exceeds that
of the extant bamboo-specialist pandas. However, we
also infer that fish (WIS p 2:56) and large mammals
(WIS p 2:72) may have been regularly consumed, with
fruits (WIS p 2:25), hard invertebrates (WIS p 2:22),
and small mammals (WIS p 2:25) all consumed at least
occasionally.

The paleodiet of the two other taxa in our sample has
not been as thoroughly studied. We infer that “Miacis”
latidens, a small-bodied stem carnivoran from the Eocene
of North America, relied on hard-bodied invertebrates
(WIS p 3:53), with fruit, soft invertebrates, and small ver-
tebrates also contributing occasionally (WIS p 2:03–2:77)
to its diet. Promartes lepidus is inferred to have primarily
consumed small mammals (WIS p 3:53), although herp-
tiles, birds, fruit, and invertebrates all yield nonnegligi-
ble probabilities of being consumed at least occasionally
(WIS p 2:28–2:60).
Projecting fossil species in the multivariate diet space of
extant carnivorans again yields a mix of intuitive and sur-
prising results. The lion Panthera leo and the spotted hyena
Crocuta crocuta, both of which place high importance on
large mammal prey, are inferred to be nearest neighbors
to the large sabertoothed cat Smilodon. The nimravids are
most frequently recovered closest to two hypercarnivorous
canids, the African wild dog (Lycaon pictus) and dhole
(Cuon alpinus), and two smaller pantherine felids that are
united in placing similar importance on large and small
mammalian prey.Daphoenus clusters close to extant canids
and mustelids that tend to exhibit more generalized diets,
although its most frequent nearest neighbor is a frugivorous
viverrid, the binturong Arctictis bintutong. However, the
posterior probabilities that any of these taxa are the nearest
dietary neighbor to Daphoenus are much lower (0.07–0.14)
than for the sabertoothed taxa (0.1–0.46), indicating that
the amphicyonid probably occupied an area of diet space
that is more densely packed by extant species than did
the sabertooths. “Miacis” latidens and P. lepidus fall closest
to a suite of small-bodied carnivorans spanning the families
Canidae, Herpestidae, Mephitidae, Mustelidae, and Viver-
ridae. The most frequent neighbors of “M.” latidens are
taxa that are typically considered insectivorous or gen-
eralists, while the most frequent neighbors of Promartes
are small taxa that tend to specialize on small vertebrate prey.
However, the low frequencies of the top three neighbors
Table 5: The three most common nearest neighbors for data-deficient extant taxa and fossil taxa in multivariate diet space
Taxon
 Family
Neighbor (%)
1
 2
 3
Catopuma badia
 Felidae
 Leopardus wiedii (15)
 Leptailurus serval (14)
 Felis silvestris (14)

Pardofelis marmorata
 Felidae
 Prionailurus bengalensis (17)
 Leopardus wiedii (15)
 Leopardus serval (14)

Herpestes brachyurus
 Herpestidae
 Vulpes zerda (13)
 Mephitis mephitis (12)
 Bassariscus astutus (11)

Mydaus javanensis
 Mephitidae
 Bassariscus astutus (23)
 Viverricula indica (20)
 Conepatus mesoleucus (9)

Prionodon linsang
 Prionodontidae
 Spilogale putorius (17)
 Vulpes zerda (14)
 Vulpes velox (11)

Bassaricyon alleni
 Procyonidae
 Bdeogale jacksoni (28)
 Potos flavus (21)
 Arctictis binturong (13)

Arctogalidia trivirgata
 Viverridae
 Conepatus mesoleucus (7)
 Hydrictis maculicollis (6)
 Atilax paludinosus (6)

Chrotogale owstoni
 Viverridae
 Otocyon megalotis (13)
 Ichneumia albicauda (10)
 Procyon lotor (9)

Cynogale bennettii
 Viverridae
 Otocyon megalotis (16)
 Nasua nasua (14)
 Procyon lotor (13)

Hemigalus derbyanus
 Viverridae
 Nasuella olivacea (37)
 Nasua nasua (17)
 Bdeogale jacksoni (16)

Paradoxurus musanga
 Viverridae
 Lycalopex vetulus (10)
 Paguma larvata (9)
 Conepatus mesoleucus (8)

Daphoenus
 Amphicyonidae
 Arctictis binturong (14)
 Canis aureus (7)
 Canis adustus (7)

Smilodon fatalis
 Felidae
 Panthera leo (46)
 Crocuta crocuta (23)
 Canis lupus (10)

“Miacis” latidens
 “Miacidae”
 Conepatus mesoleucus (10)
 Paguma larvata (9)
 Lycalopex vetulus (8)

Promartes lepidus
 ?Mustelidae
 Vulpes velox (9)
 Nandinia binotata (9)
 Atilax paludinosus (8)

Dinictis felina
 Nimravidae
 Lycaon pictus (18)
 Cuon alpinus (13)
 Uncia uncia (8)

Hoplophoneus

primaevus
 Nimravidae
 Neofelis nebulosa (13)
 Lycaon pictus (13)
 Cuon alpinus (11)

Ursus spelaeus
 Ursidae
 Ursus maritimus (41)
 Ailuropoda melanoleuca (22)
 Tremarctos ornatus (11)
Note: Neighbors are listed in order by the percentage of nearest neighbor matches from 4,000 posterior predictions (in parentheses).
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(0.08–0.1) again indicate occupation of a densely packed re-
gion of diet space.

The cave bear yields the most unexpected set of nearest
neighbors. Despite plants being the most important food
item based on WIS values, the most carnivorous extant
bear, the polar bear U. maritimus, is recovered as the near-
est neighbor to the cave bear in 41% of posterior samples.
The giant panda A. melanoleuca, a taxon typically consid-
ered to be strictly herbivorous, is the next most frequent
nearest neighbor, being recovered as such in 22% of pos-
terior samples. That the two most frequently recovered
nearest neighbors are so ecologically disparate yet account
for a combined 63% of the posterior sample may suggest
that Ursus spelaeus occupied a unique region of diet space
relative to extant carnivorans. However, the difficulty of
accurately predicting the importance of plants to the diet
of carnivorans based on our sample means that this inter-
pretation should be made cautiously, especially as the rel-
atively herbivorous Andean bearTremarctos ornatus rounds
out the top three most probable nearest neighbors with a
posterior probability of 0.11.
Discussion

Diet is a fundamental life history trait, defining an or-
ganism’s basic biology as well as its role in a community.
However, diet is also a complex, multidimensional trait,
and efforts to condense the diversity and frequency of food
consumption into discrete dietary categories necessarily
omit critical information regarding the realized dietary
composition of a given species. We have demonstrated that
dietary item importance rankings, phenotypic traits associ-
ated with food processing, and Bayesian multilevel ordinal
modeling can be leveraged to validate the relationship be-
tween traits and food item importance and to predict the
dietary composition of extinct and understudied extant
taxa without the need to condense multivariate dietary data
into one of a few discrete categories. Our findings illumi-
nate a nuanced perspective on dietary diversity by demon-
strating the true multivariate nature of individual species’
diets while simultaneously revealing the loss of important
ecological and biological information that follows the dis-
crete categorization of complex traits. Additionally, our
results highlight how the complex interactions between fo-
cal dietary traits, such as molar shape and structure, and
peripheral traits, such as body mass, are critical to fully un-
derstanding a species’ dietary niche.
Diet Is a Multivariate Trait and Should
Be Analyzed as Such

The question of how to best quantify or categorize mam-
malian diet has lived long in the literature. Simple classifi-
cation schemes that crudely reflect trophic level (carnivore,
omnivore, and herbivore) continue to be widely used in
comparative studies (e.g., Evans et al. 2007; Santana et al.
2011; Price et al. 2012; Price and Hopkins 2015; Rowe
et al. 2016; Fabre et al. 2017), despite an awareness that
two species in the same category may use dietary items
of very different sizes, material properties, nutritional qual-
ities, and phylogenetic affinity (Pineda-Munoz and Alroy
2014). Eisenberg (1981) provided one of the first attempts
to finely describe the full range of diversity in mammal-
ian feeding behavior using a classification scheme with
16 states, each of which was based on a dominant food item
(i.e., a specialization). These categorical states have been
further refined over time by workers specializing on more
restricted clades, each of which may exhibit its own range
of unique predatory and dietary behaviors (Van Valken-
burgh 1988; Williams and Kay 2001; Boyer 2008; Slater
et al. 2010; Slater 2015; Kienle et al. 2017; Toljagić et al.
2018; Fulwood et al. 2021; Verde Arregoitia and D’Elía
2021). Still, it is apparent that most mammals make use
of a mixture of food types and that dietary variation is more
continuously distributed than the most complicated cate-
gorical classifications are able to permit (Pineda-Munoz
and Alroy 2014). Indeed, our ordination of dietary impor-
tance data for carnivorans revealed that even species tradi-
tionally categorized as carnivores occupy a broad swath
of dietary space and do not cluster into natural groupings
(fig. 2). Attempts to project dietary variation into a single
univariate, quantitative trait (e.g., Rojas et al. 2018; López-
Aguirre et al. 2022) may also lead to information loss;
although the first PC of our importance scores appears
to represent a carnivory-herbivory continuum, as in Rojas
et al. (2018), finer-scale patterns of dietary variation, such
as a dominant use of invertebrate prey or fish, occur on
subsequent axes and are missed if we focus only on the first
or the set of “significant” PCs.

Characterizing diet in a more natural, quantitative fash-
ion still poses considerable challenges, particularly when
expanding consideration to taxa that lack detailed ecolog-
ical data. In one attempt to address this problem, Grundler
and Rabosky (2020) proposed a novel comparative method
in which the proportional utilization of a finite suite of re-
source types is modeled as a multinomial distribution that
can evolve over the branches of a phylogenetic tree. Under
this model, observational data on the frequency with which
resources are used by a given species do not represent the
diet itself but, rather, are draws from the multinomial dis-
tribution (i.e., the diet) allocated to that branch of the phy-
logeny, which is, in turn, estimated by the model. Using a
large database of dietary observations taken from Grundler
(2020), Grundler and Rabosky (2021) found evidence that
snakes rapidly expanded in dietary diversity and complex-
ity during the early Cenozoic from a likely insectivorous
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ancestor. While this approach holds much promise for
modeling the evolution of complex traits on phylogenies
of extant taxa, it appears to be of more restricted applica-
bility to extinct lineages, where observational data on die-
tary item use are not typically available and diet must be
estimated from proxies. Data-deficient extant taxa may
also pose considerable problems for this method; although
variation in sampling quality can be explicitly accom-
modated (Grundler and Rabosky 2020), usable observa-
tional data are simply lacking for a large number of taxa
(Gainsbury et al. 2018). In this respect, the more qualitative
but widely applicable approach of Rojas et al. (2011) and
Kissling et al. (2014) that we use here is the one that we
think holds particular promise. We acknowledge that the
use of keywords to rank the importance of food items is
not without problems of its own, in particular that the
use of appropriate literature resources is paramount for
quality control of data (Gainsbury et al. 2018). It is also
likely that the items listed by Rojas et al. (2011) and
Kissling et al. (2014) are too broad for describing dietary
variation in some clades, where they may fail to capture fine-
scale patterns of dietary niche partitioning (McNaughton
et al. 1986; Pineda-Munoz and Alroy 2014; Machado 2020).
Nonetheless, this coding scheme captures major patterns
of dietary variation without the need to pigeonhole taxa
into arbitrary specialist groupings while, critically, provid-
ing a means for estimating dietary item importance in taxa
of unknown ecology, including fossils. This particular flex-
ibility is paramount in making informed macroevolution-
ary and paleoecological inferences (Finarelli and Flynn
2006; Slater et al. 2012).
Predicting Multivariate Diet from Multivariate
Morphology: Challenges and Future Potential

Predicting dietary item importance rankings from mor-
phological data presents novel challenges, but theflexibility
of Bayesian multilevel modeling suggests that these meth-
ods hold much promise for future work in functional ecol-
ogy. Past efforts to link morphology and diet have relied on
multivariate classification methods, such as discriminant
function analysis, to identify linear combinations of traits
that maximally distinguish among groups and to classify
species of unknown ecology (Sacco and Van Valkenburgh
2004; Friscia et al. 2007; Boyer 2008; Hopkins et al. 2022).
However, because discriminant functions classify unknowns
into one of the sets of grouping variables present in the
training set, it is not possible to identify novel ecologies
among the set of data-deficient taxa even though it is rea-
sonable to expect that some extinct taxa may have be-
longed to dietary niches that are unoccupied by the Re-
cent fauna. Some of the predicted dietary item importance
scores we obtain for fossil carnivorans, such as the predicted
high importance of large mammals in the diets of saber-
toothed cats and nimravids, are entirely consistent with
results that might have been obtained from a traditional
discriminant function analysis using dietary categories
(e.g., Van Valkenburgh 1988, 2007), but other results yield
nuanced insights into dietary paleoecology. For example,
although relatively generalized diets are inferred for the
three small to medium-sized taxa Daphoenus, “Miacis”
latidens, and Promartes lepidus, our approach allows us
to identify a more even importance over the suite of food
items in the Daphoenus, a greater emphasis on hard inver-
tebrates in “M.” latidens, and a greater importance of small
mammals for P. lepidus. It is notable that such inference
is not possible using standard statistical toolkits and cate-
gorical dietary data and suggests the potential for further
clarification of dietary ecology in extinct taxa.

The cave bear presents an altogether different outcome
and emphasizes that broader comparative datasets for ex-
tant taxa may be necessary to fully leverage our approach.
The combination of low d15N and d13C values from bones
and teeth across the species’ range strongly suggest an ex-
clusively herbivorous niche in which forbs and grasses
dominated the diet (Bocherens 2019; Naito et al. 2020).
The occlusal topography of mammalian molars exhibits a
strong signal of herbivory across diverse clades of mam-
mals (Evans et al. 2007), and we should in principle be able
to detect such a diet here (see also Pérez-Ramos et al. 2020).
Our results partially match this expectation, with plants
predicted to be the most important component of cave
bear diet, but with a variety of vertebrate prey predicted
to be at least occasionally consumed (fig. 4B). However, al-
though many carnivorans use some plant materials in their
diets, few in our dataset place high importance (rank p 4)
on them, and this limits the accuracy of our quantita-
tive predictions for this food item (table 4). For example,
among extant taxa we predict relatively similar WIS values
for plants for the bamboo specialist pandas Ailurus and
Ailuropoda and the arctic carnivore polar bear, which, by
virtue of its ursine ancestry, possesses relatively large blunt
molars in comparison with other carnivoran lineages
(Sacco and Van Valkenburgh 2004). The effects of this pre-
diction error may not be restricted to the prediction of
individual food item importance scores but may also be
propagated to our nearest neighbor comparisons, where
the cave bear is recovered intermediate to the polar bear
and giant panda. There has been considerable debate among
isotope paleoecologists regarding whether animal protein
could have been a regionally important component of
cave bear diet (Hilderbrand et al. 1996; Richards et al.
2008; Robu et al. 2013; but see Bocherens 2019; Naito
et al. 2020). It is possible that our results lend support
to the idea that this taxon occupied a novel portion of car-
nivoran dietary space in which plants dominated the diet
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but animal prey could have been a regionally or seasonally
important fallback food (Porter et al. 2022). Our models
will benefit from an expanded sampling of mammals be-
yond Carnivora to increase the representation of species
that place high importance on underrepresented food
items such as plants, which should, in turn, improve the
accuracy and precision of our dietary item importance esti-
mates and aid in comparisons of the ecological niches of ex-
tant and extinct species.

Multinomial Bayesian regressions that allow for the
joint estimation and incorporation of phylogenetic signal
in residual error have been recently employed for dietary
prediction in fossil primates (Fulwood et al. 2021), and
we have extended this approach not only by treating im-
portance ranks as ordered variables but also by including
body size as a covariate. Body size alone is a poor predictor
of mammalian dietary categories in comparison to func-
tional trait metrics (Grossnickle 2020), but our results sug-
gest that body size may still modulate the form-function
relationship between dental morphology and diet (fig. 3).
Such a claim is not without precedent. Fulwood et al.
(2021) did not include size as a covariate in their multino-
mial models but did note that among primates in general, the
teeth of folivores and insectivores resemble one another so
closely that body mass must typically be used to discrimi-
nate between them (Kay 1975). Similar effects are appar-
ent in our carnivoran data. For example, lower grinding
area (RLGA) effectively predicts the relative importance
of large mammals, small mammals, and birds, which are food
items with similar mechanical properties. However, large
mammals appear to be a less important component of small
and medium-bodied carnivoran diets, regardless of RLGA
value (fig. 3D), while RLGA is a poor predictor of the im-
portance of birds and small mammals in the diets of large-
bodied carnivorans (fig. 3A, 3E), consistent with the idea
that energetic constraints enforce a strong effect on prey
size in mammals (Carbone et al. 1999, 2007). More strik-
ingly, high values of DNE for m1, suggestive of a tooth with
multiple tall cusps, predict a high importance of soft in-
vertebrates in the diet of small-bodied carnivorans, while
the exact opposite relationship is recovered for large-bodied
taxa, driven largely by the low profile but more complex
(high OPCr) m1 of the sea otter, raccoon, and bears (fig. 3F).
If importance rankings are to provide a fruitful avenue
for future investigations of ecological diversity and evolu-
tion, then the flexible framework provided by Bayesian
multilevel modeling will play a critical role in untangling
phylogenetic and allometric relationships between form
and function.

Using predictive ordinal modeling to estimate dietary
rankings from phenotypic data can help reconstruct die-
tary partitioning within a community, determine commu-
nity dietary breadth, and enable explicit tests of ecological
redundancies in a probabilistic manner. For example, a
persistent question in evolutionary ecology is the role of
limiting similarity in community structure (MacArthur
and Levins 1967). In brief, limiting similarity postulates
that two individuals that occupy an identical niche space
should not co-occur in space and time. Support of limiting
similarity has been equivocal, leading to the emergence of
null hypotheses that place no emphasis on species’ adapta-
tions or ecological niche in the formation of communities
(MacArthur and Wilson 1963; Hubbell 2001). Partitioning
of food types is a fundamental aspect of community assem-
bly and maintenance (MacArthur and Levins 1967; Grant
1986), and the ranking method presented here holds pro-
mise for quantifying diet in both poorly studied extant
communities and paleocommunities. Generating food con-
sumption probabilities for species within a community
naturally segues to comparisons of dietary structure across
communities. Examples include comparing dietary struc-
ture between communities that occupy similar habitats
but vary in species richness or taxonomic structure and
identifying changes in community dietary structure that
occur with faunal turnover across space or time. For exam-
ple, the dietary similarity that we identify between extant
hemigaline viverrids of Southeast Asia and procyonids of
the Americas suggests incumbency of the latter clade as
a potential explanation for why viverrids failed to colon-
ize the New World despite repeated opportunity and an
otherwise geographically unconstrained distribution (Hunt
1996). Baskin (2003) noted that procyonids only became
the dominant hypocarnivorous carnivorans in North Amer-
ica after the extinction of phlaocyonine and cynarctine
canids (subfamily Borophagine) in the early Hemingfor-
dian and Clarendonian land mammal stages (early through
middle Miocene), respectively. We can hypothesize that die-
tary item importance prediction for these canids might
yield further similarities to hemigaline viverrids and pro-
cyonids, providing additional evidence for the long-term
exclusion of feliform hypocarnivores from North America.
The approaches outlined in this article provide a straight-
forward way of testing this hypothesis.

The relationship between carnivoran diet and molar
structure is well documented, with numerous examples of
how variation in this simple, functional toolkit influences
the processing of various food items (Crusafont-Pairó and
Truyols-Santonja 1956; Friscia et al. 2007; Van Valkenburgh
2007; Smits and Evans 2012), and serves as a good starting
point for building and testing ordinal models of dietary rank-
ings. However, we believe our methodology can be adapted
to virtually any system that has sufficient dietary composi-
tion data available. One well-studied example is the avian
beak, a tool used for both food acquisition and processing
(Grant 1986; Pigot et al. 2020). In this case, different metrics
of beak shape, such as length, width, curvature, or keratin
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thickness, along with other phenotypic traits, such as mass
or tarsus length, may vary in their ability to predict the
quantity of different food types obtained and consumed.
Moreover, the method of ordered ranking need not be re-
stricted to diet composition; with importance rankings of
locomotor modes, such as swimming, climbing, digging,
or flying, models could be constructed to evaluate which
phenotypic traits are associated with different foraging
strata or microhabitat use. Testing the effect of phenotypic
traits on ranked features of diet, behavior, locomotion,
microhabitat, or other commonly discretized environmental
or biological variables, rather than forcing data into dis-
crete categories, holds great potential for identifying the
traits that best predict life history, interactions between
multiple traits that are otherwise unobserved, or the pres-
ence of correlated traits that may generate noise in cate-
gorical analyses.
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