

1 **Five million years of Antarctic Circumpolar Current strength variability**

2

3 Frank Lamy^{1,2}, Gisela Winckler^{3,4}, Helge W. Arz⁵, Jesse R. Farmer⁶, Julia Gottschalk⁷, Lester
4 Lembke-Jene¹, Jennifer L. Middleton³, Michèle van der Does¹, Ralf Tiedemann^{1,2}, Carlos
5 Alvarez Zarikian⁸, Chandranath Basak⁹, Anieke Brombacher¹⁰, Levin Dumm¹¹, Oliver M.
6 Esper¹, Lisa C Herbert¹², Shinya Iwasaki¹³, Gaston Kreps¹, Vera J. Lawson¹⁴, Li Lo¹⁵, Elisa
7 Malinverno¹⁶, Alfredo Martinez-Garcia¹⁷, Elisabeth Michel¹⁸, Simone Moretti¹⁷, Christopher
8 M. Moy¹⁹, Ana Christina Ravelo²⁰, Christina R. Riesselman¹⁹, Mariem Saavedra-Pellitero²¹,
9 Henrik Sadatzki^{1,2}, Inah Seo²², Raj K. Singh²³, Rebecca A. Smith²⁴, Alexandre L. Souza²⁵,
10 Joseph S. Stoner²⁶, Maria Toyos^{1,2}, Igor M. Venancio P. de Oliveira²⁷, Sui Wan²⁸, Shuzhuang
11 Wu²⁹, Xiangyu Zhao³⁰.

12 ¹Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Bremerhaven, Germany

13 ²MARUM–Center for Marine Environmental Sciences, Bremen, Germany

14 ³Lamont-Doherty Earth Observatory, Climate School, Columbia University, NY, USA

15 ⁴Department of Earth and Environmental Sciences, Columbia University, NY, USA

16 ⁵Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

17 ⁶School for the Environment, University of Massachusetts Boston, USA

18 ⁷Institute of Geosciences, Kiel University, Germany

19 ⁸International Ocean Discovery Program, Texas A&M University, USA

20 ⁹Department of Earth Sciences, University of Delaware, USA

21 ¹⁰Department of Earth & Planetary Sciences, Yale University, USA

22 ¹¹Neue Bahnhofstraße 20, Berlin, Germany

23 ¹²School of Marine and Atmospheric Sciences, Stony Brook University, USA

24 ¹³Research and Development Center for Global Change, JAMSTEC, Japan

25 ¹⁴Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, USA

26 ¹⁵Department of Geosciences, National Taiwan University, Taiwan

27 ¹⁶Department of Earth and Environmental Sciences, University of Milano-Bicocca, Italy

28 ¹⁷Climate Geochemistry Department, Max Planck Institute for Chemistry (MPIC), Germany

29 ¹⁸Laboratoire des Sciences du Climat et de l'Environnement LSCE, Institut Pierre Simon Laplace IPSL,

30 CNRS-CEA-UVSQ, France

31 ¹⁹Geology Department, University of Otago, New Zealand

32 ²⁰Ocean Sciences Department, University of California, Santa Cruz, USA

33 ²¹School of the Environment, Geography and Geosciences, University of Portsmouth, United Kingdom

34 ²²Global Ocean Research Center, Korea Institute of Ocean Science and Technology (KIOST), Republic of

35 Korea

36 ²³School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneshwar, India

37 ²⁴Department of Geosciences, University of Massachusetts-Amherst, USA

38 ²⁵Department of Geology, Federal University of Rio de Janeiro, Brazil

39 ²⁶College of Earth, Ocean and Atmospheric Sciences, Oregon State University, USA

40 ²⁷ Postgraduate Program in Geochemistry, Department of Geochemistry, Fluminense Federal University,

41 Niterói, Rio de Janeiro, Brazil

42 ²⁸South China Sea Institute of Oceanology, Chinese Academy of Sciences, China

43 ²⁹Institute of Earth Sciences, University of Lausanne, Switzerland

44 ³⁰National Institute of Polar Research, Geoscience Group, Japan

45 *corresponding author: Frank Lamy (Frank.Lamy@awi.de)

46

47 **Summary Paragraph**

48 **The Antarctic Circumpolar Current (ACC) represents the world's largest ocean current**
49 **system and impacts global ocean circulation, climate, and Antarctic ice sheet stability¹⁻³.**
50 **Today, ACC dynamics are controlled by atmospheric forcing, oceanic density gradients,**
51 **and eddy activity⁴. While paleoceanographic reconstructions exhibit regional**
52 **heterogeneity in ACC position and strength over Pleistocene glacial-interglacial cycles⁵⁻⁸,**
53 **the long-term evolution of the ACC is poorly known. Here, we document changes in ACC**
54 **strength from sediment cores in the Pacific Southern Ocean. We find no linear long-term**
55 **trend in ACC flow since 5.3 million years ago (Ma), in contrast to global cooling⁹ and**
56 **increasing global ice-volume¹⁰. Instead, we observe a reversal on a million-year time scale,**
57 **from increasing ACC strength during Pliocene global cooling to a subsequent decrease**
58 **with further early Pleistocene cooling. This shift in the ACC regime coincided with a**
59 **Southern Ocean reconfiguration that altered the sensitivity of the ACC to atmospheric**
60 **and oceanic forcings¹¹⁻¹³. We find ACC strength changes to be closely linked to 400,000-**
61 **year eccentricity cycles, likely originating from modulation of precessional changes in the**
62 **South Pacific jet stream linked to tropical Pacific temperature variability¹⁴. A persistent**
63 **link between weaker ACC flow, equatorward shifted opal deposition, and reduced**
64 **atmospheric CO₂ during glacial periods first emerged during the Mid-Pleistocene**
65 **Transition. The strongest ACC flow occurred during warmer-than-present intervals of**
66 **the Plio-Pleistocene, providing evidence of potentially increasing ACC flow with future**
67 **climate warming.**

68 **Main Text.**

69 The strong eastward flow of the ACC represents the world's largest current system. It connects
70 all three major basins of the global ocean and therefore integrates, and responds to, climate
71 signals throughout the globe³. The ACC reaches to abyssal water depths and connects deep,
72 intermediate, and shallow ocean circulation³. The system of oceanic fronts across the ACC is
73 associated with upward shoaling of density surfaces towards the south, upwelling of deep
74 waters, the formation of intermediate water masses, and steep upper ocean gradients^{15,16}.
75 Through this linkage of the shallow and deep ocean, the ACC plays a critical role in the
76 Southern Ocean carbon cycle and changes in atmospheric CO₂⁴. The strength and position of
77 the ACC and its associated oceanic fronts are controlled by wind stress, interaction of flow with
78 the deep ocean bathymetry, and buoyancy forcing⁴. The southern westerly winds (SWW), as
79 the integrated wind stress across the entire circumpolar belt, drive northward transport of
80 surface water in the Ekman layer, producing downwelling to the north and upwelling south of
81 the wind belt. The SWW produce eastward geostrophic flow and form a vigorous eddy field
82 interacting with rough bottom topography along the path of the ACC, thereby partly balancing
83 the forcing at the sea surface⁴. Buoyancy forcing is controlled by heat and freshwater inputs
84 that affect the density structure of the ACC and is thought to be equally important for ACC
85 strength as the winds⁴.

86

87 During the past decades, warming around Antarctica (i.e., south of the ACC) has been shown
88 to be delayed compared to global atmospheric warming, yet a speed-up of the subantarctic ACC
89 is observed in response to greenhouse gas forcing¹⁷. This contributes to buildup of heat in the
90 subtropics, north of the ACC, connected to poleward shifting large-scale ocean gyres that are
91 critical for anthropogenic heat uptake and transport^{17,18}. Atmosphere-ocean interactions across
92 the ACC also affect the extent and stability of the Antarctic cryosphere by altering the advection

93 of comparably warm water masses, such as Circumpolar Deep Water (CDW), towards marine-
94 based ice sheet sections that are sensitive to sub-glacial melting¹⁹.

95

96 Sediment records of Pleistocene ACC strength in the Southeast Pacific sector of the Southern
97 Ocean and the Drake Passage document a common pattern of reduced ACC flow during
98 glacials^{5,8} including millennial-scale variations in phase with Antarctic paleotemperature
99 records^{5,20}. On the other hand, small opposite variations in ACC strength are documented in
100 sediment records across the southern ACC east of the Drake Passage in the Scotia Sea⁷, while
101 stronger glacial ACC flow is reconstructed in the Indian Ocean sector⁶ and within the deep
102 western boundary current east of New Zealand²¹. These observations highlight potential
103 regional and meridional heterogeneity of ACC flow over Pleistocene glacial-interglacial cycles.
104 Thus, an explicit north-south transect across the ACC zones in the pelagic Southern Ocean is
105 important to assess overall ACC fluctuations.

106

107 Existing ACC strength records during the Pliocene are fragmentary¹¹. Reconstructions of
108 southern hemisphere meridional sea surface temperature (SST) gradients indicate an overall
109 strengthening of the atmospheric circulation and plausibly imply an enhancement of the largely
110 wind-driven ACC over the Pliocene and early Pleistocene⁹. Moreover, Pliocene changes in
111 tropical paleoclimates (e.g., the Asian monsoon²²) and tropical Pacific zonal SST trends²³ might
112 affect Pliocene SWW intensity and thereby the atmospheric forcing of ACC strength. The Plio-
113 Pleistocene evolution of these ACC drivers highlights the need for continuous ACC proxy
114 records extending into the Pliocene to better understand the variability of ACC strength and
115 associated ocean-atmosphere processes during warmer-than present time periods.

116

117 To reconstruct the strength of the ACC and shifts of the frontal system over the past ~5.3 Ma,
118 we use sediment records from the pelagic Central South Pacific, the region farthest away from
119 land in the global ocean (Fig. 1). Our study is primarily based on International Ocean Discovery
120 Program (IODP) Expedition 383 Sites U1540 and Site U1541, both drilled at ~3600 m water
121 depth within the SAZ^{24,25} (Extended Data Fig. 1). IODP Site U1541 provides a continuous
122 benthic foraminiferal stable oxygen isotope stratigraphy back to ~3.5 Ma²⁶ with orbital tuning
123 of sediment density to ~41-kyr obliquity cycles between 3.5 and 5.3 Ma supported by shipboard
124 biostratigraphic and paleomagnetic time-markers (Extended Data Fig. 2-3). The sedimentary
125 record of IODP Site U1540 can be correlated to that of Site U1541 using Core Scanner data
126 (see Methods, Extended Data Fig. 4). To test the representativeness of ACC reconstructions at
127 the IODP Sites, we present additional late-Pleistocene records along a meridional latitude
128 transect (cores PS75/76, PS75/79, and PS75/83; Fig.1).

129

130 We infer changes in ACC strength from sortable silt as proxy for near-bottom water velocity
131 variations^{7,27}. Such records were used previously for reconstructing ACC strength changes at
132 abyssal water depths in vicinity of the Drake Passage^{5,8}. Modern ACC studies suggest that eddy
133 field variations are important for short-term ACC variability and could compensate wind
134 forcing completely when eddy saturation is reached⁴. However, averaging over centuries or
135 more, the sortable silt proxy represents a scalar mean water column-integrated current speed^{7,27}.
136 Therefore, on longer timescales, the sortable silt signal integrates the total water transport
137 including wind, baroclinic, and eddy-induced contributions.

138

139 To reconstruct ACC strength, we infer sortable silt records from high resolution X-ray
140 fluorescence Core Scanner Zr and Rb data, calibrated with discrete grain-size measurements.

141 We transfer the high-resolution record to absolute current strength using the sortable silt-flow
142 speed correlation from the Scotia Sea²⁷ (see Methods).

143

144 **Pleistocene ACC strength changes**

145 Modern ACC flow between its Northern and Southern Boundary fronts is not equally
146 distributed across the Southern Ocean (Fig. 1). Most of the ACC transport occurs in the vicinity
147 of the SAF, and less prominently at the Northern Boundary front and the PF¹⁶. To assess large-
148 scale ACC strength changes and potential links to latitudinal shifts of the frontal system, we
149 compare down-core records north-south across the ACC over the last three glacial cycles (0-
150 350 ka) (Fig. 2). All records along the transect document similar absolute ACC strength (~4-5
151 cm/s) during glacial periods such as Marine Isotope Stages (MIS) 2-4 and 6, indicating
152 homogenously reduced glacial ACC flow across a broad latitudinal band. In contrast, during
153 interglacials, we observe overall stronger and more variable ACC flow (~6-9 cm/s), with
154 stronger flow in the SAZ compared to the PFZ (core PS75/76 and PS75/79) (Fig. 2). Compared
155 to the northern records, the AZ record (core PS75/83) shows lower amplitude ACC changes
156 with comparatively higher glacial values (~5-6 cm/s) and lower interglacial values (~7 cm/s)
157 than the sites north of the PF (Fig. 2c). Relative to the Holocene mean, glacial ACC strength
158 was reduced by ~30-50% in the SAZ, ~20-30% in the PFZ and at the PF, and ~20% in the AZ,
159 whereas ACC strength during interglacial MIS 5 and MIS 7 slightly exceeded the Holocene
160 levels (Fig. 2d).

161

162 The largest decrease in glacial ACC flow occurred in the SAZ, the zone of strongest current
163 transport under modern conditions¹⁶. Within the SAZ, we observe a similar magnitude of ACC
164 strength reduction both to the west (IODP Site U1541) and to the east (IODP Site U1540) of
165 the EPR (Fig. 1), excluding a strong effect of the topographic barrier of this mid-ocean ridge

166 on ACC variability. This is also supported by consistently matching carbon isotope records
167 from benthic foraminifera²⁸ over the past three glacial cycles at these two locations (Fig. 2e).
168 Therefore, we conclude that ACC strength records from IODP Sites U1540 and U1541, within
169 the SAZ, are well suited to document the large-scale flow changes across the pelagic ACC in
170 the Pacific Southern Ocean. Together, our records document a strong glacial ACC reduction
171 spatially coherent across nearly the entire latitudinal range of the ACC in the Central South
172 Pacific during the past three glacial cycles. Conversely, during interglacials, we find an overall
173 enhanced ACC that at times exceeded Holocene average flow, particularly in the SAZ.

174

175 Across the middle and late Pleistocene, our Central South Pacific records document large
176 amplitude changes with strong ACC flow during interglacials between MIS 11 and MIS 21.
177 Exceptionally strong ACC flow occurred during MIS 11 (150 to 180%), the highest values of
178 the entire Plio-Pleistocene record, while ACC strength during interglacials MIS 13 to MIS 21
179 reached 130-150% of the Holocene ACC strength (Fig. 3). As for the most recent three glacial-
180 interglacial cycles, glacials were characterized by reductions in ACC strength to similar levels
181 at all sites, translating to ~50-70% of the Holocene estimates (Fig. 3). In comparison, the eastern
182 South Pacific ACC strength record from the entrance of the Drake Passage (core PS97/93)⁸
183 revealed less pronounced glacial reductions (65-75%) and strongly attenuated interglacial
184 maxima, with Holocene strength levels only slightly exceeded during relatively few warm
185 intervals (Fig. 3c).

186

187 Pleistocene glacial-interglacial changes in opal content across our ACC transect document a
188 clear opposite pattern in the SAF/PFZ compared to the AZ (Fig. 3 and Extended Data Figure
189 6-8) consistent with Atlantic SO records²⁹. These fluctuations are characterized by strongly
190 increased opal contents across the SAF and PF and reduced opal deposition in the AZ during

191 glacials compared to interglacials. Ultimately, the opal records imply a relocation of Southern
192 Ocean fronts that altered nutrient supply, stratification, and iron fertilization in these surface
193 ocean regions²⁹⁻³². The glacial northward shift of the opal belt is accompanied by the overall
194 homogenous decrease of ACC strength across the entire latitudinal transect. During warmer
195 Pleistocene interglacials, such as MIS 5, we observe a similar anticorrelation between opal
196 deposition and ACC strength. Reduced interglacial opal deposition occurs in the SAZ, where
197 the strongest ACC flow is reconstructed. Conversely, enhanced interglacials opal deposition in
198 the AZ occurs with only weak or modest enhancement of ACC flow compared to glacials,
199 suggesting a clearer differentiation across the SAF and PF (Fig. 2). Together our ACC strength
200 and opal content records imply that both reduced overall current strength and latitudinal shifts
201 of the fronts are characterize glacial-interglacial Pleistocene ACC changes.

202

203 The Mid-Pleistocene Transition (MPT) was a fundamental reorganization of Earth's global
204 climate system between ~1250 and ~700 ka, when glacial-interglacial cycles changed from
205 ~41-kyr to ~100-kyr periods and increased in amplitude³³. Our ACC reconstructions exhibit a
206 transition between ~1300 and ~ 1000 ka, with gradually increasing glacial and interglacial ACC
207 strength coinciding with the early part of the MPT. This interval culminates in a pronounced
208 ACC maximum during MIS 31 reaching ~160% of Holocene mean values. The increase in
209 ACC flow strength in the SAZ during the initial part of the MPT is accompanied by the
210 emergence of stronger orbital-scale fluctuations in opal contents at IODP Sites U1540 and
211 U1541 in the SAZ and in core PS75/76 located in the PFZ (Fig. 3). These fluctuations are
212 characterized by strongly increased opal contents during glacials compared to interglacials,
213 indicating a strengthening of the opal belts across the SAZ and PFZ and/or a relocation of
214 Southern Ocean fronts^{26,29}.

215

216 **Long-term ACC development**

217 Over the past 5.3 Ma, our sediment records document large variations in ACC strength, between
218 ~50% and 180% of the mean Holocene ACC flow (~3.5 cm/s to ~14 cm/s (Fig. 4 and Extended
219 Data Fig. 5). Strikingly, we do not observe a linear multi-million year trend in ACC strength
220 over the entire record, synchronous with the global cooling during this time period^{9,10}. This is
221 unexpected because, particularly in the Pacific Ocean, the multi-million year cooling in global
222 temperatures across the Plio-Pleistocene was accompanied by gradually increasing zonal and
223 meridional SST gradients^{9,23,34}. Taken at face value, increasing SST and atmospheric
224 temperature gradients would strengthen the SWW and thus strengthen the ACC³⁵. Our ACC
225 record documents this gradual increase in strength throughout the Pliocene (5.3 to 3.0 Ma; Fig.
226 4). However, after an ACC strength maximum in the Late Pliocene (~3.0 Ma), ACC strength
227 broadly declines, in opposition to expectations from continued early Pleistocene cooling and
228 ice volume expansion (Fig. 4). These contrasting trends indicate that the ACC responded to
229 fundamentally different forcings in the Pliocene versus the early Pleistocene (Fig. 5). The shift
230 in the ACC regime coincided with the major climate reorganisation associated with the
231 intensification of the Northern Hemisphere Glaciation (iNHG) that included global atmosphere-
232 ocean circulation changes and increasing Antarctic ice volume and sea-ice extent^{11,13}.

233

234 During the early Pliocene, the absence of a major marine-based Antarctic ice-sheet, strongly
235 reduced sea-ice cover, and weaker Southern Ocean density gradients^{11,13} would have resulted
236 in weakly developed oceanic fronts (Fig. 5a). This setting would have enhanced the sensitivity
237 of the ACC to atmospheric forcings, as oceanic forcings controlled by density gradients were
238 plausibly weaker. The overall increasing trend in ACC strength during the Pliocene can thus be
239 explained by overall increasing atmospheric forcing through the progressive equatorward
240 movement and intensification of the SWW in response to decreasing global temperatures,
241 increasing meridional temperature gradients, and a progressive development of meridional

242 Southern Ocean density gradients (Fig. 5a and 5b). The Pliocene changes parallel the beginning
243 development of zonal gradients across the tropical Pacific⁹ and increasing East Asian Summer
244 Monsoon (EASM) strength as recorded at the Chinese Loess Plateau³⁶ (Fig. 4c and 4d). Proxy
245 evidence for Pliocene EASM changes is heterogenous across East Asia³⁷ but modelling
246 studies^{37,38} suggest that an expanded Western Pacific Warm Pool and weakened zonal and
247 meridional temperature gradients during the early Pliocene reduced the EASM strength,
248 superimposed on climatic consequences connected to the uplift of the Tibetan Plateau³⁶. These
249 changes in the Pliocene EASM, connected to large-scale zonal and meridional Pacific SST
250 pattern, have a strong influence on tropical and subtropical atmospheric circulation increasing
251 the strength of both the Hadley and the Walker circulations. These changes plausibly enhanced
252 the strength of the SWW and altered the latitudinal position of the SWW including the high-
253 altitude jet configuration (Fig. 5a and 5b).

254

255 In contrast to the Pliocene trend, we observe a weakening of ACC strength during the early
256 Pleistocene (until ~1.5 Ma, Fig. 4d). We hypothesize that the processes driving meridional
257 surface Southern Ocean density gradients during the Pleistocene were fundamentally different.
258 During the late Pliocene, global cooling associated with the iNHG and growth of Antarctic ice-
259 sheets would have cooled ocean temperatures in the Antarctic Zone, intensifying the meridional
260 temperature gradient until AZ waters reached the freezing point. Subsequently, further cooling
261 would not have been possible in the AZ, and instead cooling would have been concentrated
262 north of the AZ. Thus, further early Pleistocene cooling would instead decrease meridional
263 temperature gradients in the mid-latitudes, the opposite sense as during the Pliocene (Fig. 5). A
264 modelling study focusing on the effect of West Antarctic Ice Sheet (WAIS) growth across the
265 iNHG simulates an increase of ACC strength³⁹ in the Pacific sector, opposite to our proxy-
266 based decreasing trend across this time period. This comparison either suggests that the advance

267 of Antarctic ice-sheets alone cannot explain the paleo-ACC proxy records or that important
268 mechanisms and feedbacks are missing in the climate model.

269

270 Superimposed on the early Pleistocene enhanced high latitude forcings, the decreasing ACC
271 strength trend remains affected by zonal and meridional (sub)tropical SST gradients and the
272 strength of the EASM (Fig. 4). In contrast to the Pliocene long-term trend, further increasing
273 zonal temperature gradients across the tropical Pacific and overall decreasing EASM strength
274 during the early Pleistocene resulted in a decreasing long-term trend in ACC strength (Fig. 4
275 and Fig. 5c). These linkages are opposite to the Pliocene trends and strongly support our view
276 of major climate reorganisation associated with the iNHG affecting the EASM³⁷ and the
277 southern high latitudes including the ACC.

278

279 In addition to ACC strength, the major changes across the iNHG are also evident in the biogenic
280 sediment deposition at our sites (Fig. 4g). Whereas enhanced opal deposition occurs in the SAZ
281 during intervals of reduced ACC strength throughout the Plio-Pleistocene, the opal content of
282 SAZ sediments notably increases relative to carbonate at the iNHG. This shift in SAZ biogenic
283 sediment deposition parallels coeval high latitude changes, including increased opal burial in
284 the Atlantic sector of the ACC⁴⁰, decreased opal deposition in the AZ due to increasing
285 stratification and extended sea-ice^{13,41}, and notably decreased opal deposition in the subarctic
286 North Pacific after ~2.75 Ma^{38,42}. These observations suggest that the Late Pliocene decrease
287 in Pacific meridional overturning circulation, as indicated by stronger North Pacific carbonate
288 deposition³⁴ (Fig. 4f and Fig. 5b), led to a meridional redistribution of Pacific nutrient
289 availability away from the North Pacific and AZ and toward the SAZ.

290

291 **Orbital forcing of ACC variability**

292 On orbital timescales, the Plio-Pleistocene ACC strength records and changes in opal
293 deposition are dominated by glacial-interglacial cycles and, notably, strong variations with a
294 ~400-kyr period (Extended Data Fig. 9). These 400-kyr fluctuations of ACC strength are
295 particularly strong during the Pliocene and early Pleistocene with large amplitudes of ~6 cm/s
296 (Extended Data Fig. 5). Prominent intervals with above-modern (Holocene) ACC strength
297 occur at ~2.8-3.1 Ma (*Plio1*), ~3.5-3.8 Ma (*Plio2*), and ~4.9-5.1 Ma (*Plio3*) (Fig. 4d). These
298 Pliocene records are characterized by generally opposite variations in ACC strength and
299 opal/carbonate ratios, with higher opal/carbonate ratios during times of reduced ACC strength
300 (and vice-versa; Fig. 4d and 4g). This pattern is consistent with the Pleistocene glacial-
301 interglacial cycles and implies a strengthening and/or northward extension of the Pliocene opal
302 belt during intervals with reduced ACC strength^{29,30}, likely related to changes in upwelling of
303 nutrients and ocean stratification. These changes are probably related to overall ACC strength
304 changes and/or latitudinal shifts of the most likely weaker developed Pliocene ACC fronts (Fig.
305 5a).

306

307 The ~400-kyr cycles are evident in a number of Pliocene paleoclimatic records, including
308 marine oxygen-isotope data and Asian monsoon records^{36,43-45}, and are also present in
309 simulations of Plio-Pleistocene Antarctic ice-volume⁴⁶ (Extended Data Fig. 9). They are
310 thought to be an expression of long-term variations in the eccentricity of Earth's orbit with the
311 characteristic period of 400 kyr. A plausible mechanistic link to ACC changes could be through
312 modulating atmospheric changes on precessional time scales⁴³. For the past ~1 Ma, precessional
313 forcing has been invoked to explain variations of the South Pacific jet stream related to the
314 EASM and affecting the strength of the SWW, and hence the flow strength of the ACC^{14,47}.
315 These model simulations and proxy results indicate a unique response of the jet stream
316 configuration in the SWW over the South Pacific to orbital forcing. During precession maxima,
317 the split jet is strengthened, resulting in a reduced Midlatitude Jet and subantarctic SWW in the

318 Pacific sector, and thus reduced wind forcing of the ACC^{14,47}. As for the early Pleistocene
319 million-year trend, the precessional changes are characterized by in-phase variations of zonal
320 temperature gradients in the tropical Pacific and the EASM. In contrast, at the ~400-kyr-band,
321 strength of the EASM and the ACC are mostly antiphased (Extended Data Fig. 9). We suggest
322 that EASM-ACC linkages might have operated differently due to the strong austral winter
323 seasonal expression of the split jet changes^{14,47}, its modulation by long-term eccentricity
324 changes, as well as million-year timescale reconfigurations of low and high-latitude climate
325 fluctuations affecting the ACC (Fig 5).

326

327 A variety of paleoproxy data point to a critical role of the Southern Ocean in influencing
328 atmospheric CO₂ content by affecting deep-water upwelling, the formation of new water
329 masses, and the Southern Ocean biological pump². During the middle and late Pleistocene,
330 glacial minima in ACC strength correspond to low global atmospheric CO₂. This supports
331 substantially reduced upwelling and stronger stratification, enhancing CO₂ storage in the SAZ
332 and PFZ as previously shown for the last glacial cycle^{48,49}. In contrast to the homogenous
333 decrease during glacials, enhanced ACC strength during individual interglacials was largely
334 variable and not strictly linked to Antarctic temperature and the global atmospheric CO₂ level
335 (Fig. 3). Whereas continuous orbitally-resolved atmospheric CO₂ reconstructions are not
336 available for the Pliocene, we note a close covariance between maxima in marine carbon isotope
337 ($\delta^{13}\text{C}$) records and eccentricity minima on the ~400-kyr timescale during the Pliocene and early
338 Pleistocene⁴⁵ (Extended Data Fig. 9). The $\delta^{13}\text{C}$ changes have been related to changes in the
339 Southern Ocean carbon reservoir, involving deep and intermediate water stratification and
340 marine productivity⁴⁵. A connection (with changing phasing) of our reconstructed ACC
341 strength changes to the ~400-kyr cycles in the global $\delta^{13}\text{C}$ stack⁵⁰ supports an important role

342 for the ACC in shaping physical conditions for the marine carbon cycle, for time intervals prior
343 to ice-core CO₂ records.

344

345 **ACC strength and Antarctic Ice Sheets**

346 ACC strength records are relevant for assessing the role of oceanic forcing for Antarctic ice-
347 sheet development during the Pliocene. We observe that phases of ACC weakening paralleled
348 advances of the WAIS as reconstructed from the Antarctic Drilling Project (ANDRILL)^{1,12},
349 with ACC strengthening corresponding to WAIS retreat (Fig. 4). The first evidence for an
350 advance of the WAIS in the early Pliocene corresponds to an interval of reduced ACC strength
351 following *Plio3*. Open marine conditions at the ANDRILL site (indicating WAIS retreat) occur
352 after ACC maximum *Plio2*. A strong WAIS advance during the iNHG is paralleled by a
353 decrease in ACC strength (Fig. 4). Moreover, ~400-kyr-band-pass filters of ACC strength and
354 modelled Antarctic ice volume record⁴⁶ are mostly anti-phased over the Pliocene and early
355 Pleistocene (Extended Data Fig. 9), consistent with the expected relationship between a
356 stronger ACC and ice-sheet retreat driven by enhanced southward advection and upwelling of
357 CDW together with southward-shifted oceanic fronts^{1,12}. Conversely, Pleistocene interglacials
358 (not covered by ANDRILL) with strong ACC circulation likely affected the stability of the
359 WAIS. This comprises several super-interglacials during and after the MPT, notably including
360 MIS 31 and MIS 11, which may have encompassed substantial WAIS retreat or even collapse¹⁹.
361 Our reconstructions of strong ACC flow during these super-interglacials indicate that WAIS
362 retreat or collapse may be mechanistically linked to substantially enhanced ACC flow. Our
363 Plio-Pleistocene ACC reconstructions support the simulated ~400-kyr cyclicity of the Antarctic
364 ice-sheet with decreasing amplitudes after ~1.5 Ma. After MIS31, strong glacial-interglacial
365 cycles emerge and might be the consequence of dominating northern hemisphere-paced climate
366 cycles with the beginning of the MPT.

367

368 The ACC plays a crucial role in heat uptake and transfer to lower latitudes, and ocean
369 circulation on a global scale^{17,18}. In this context, our paleo reconstructions provide insights for
370 global climate simulations that face major challenges in projecting future ACC and Southern
371 Ocean changes and impacts on the carbon cycle⁵¹. Strong ACC flow, exceeding that of the
372 preindustrial Holocene, mainly occurred during warmer-than-present time-intervals during the
373 Pliocene and Pleistocene interglacials. Observed ACC acceleration under anthropogenic
374 warming (e.g., intensified warming in the Central South Pacific compared to the Drake
375 Passage¹⁷) appear to match the patterns documented in our records of ACC strength maxima
376 during interglacial warm intervals (Fig. 3c-d). These findings provide geological evidence in
377 support of further increasing ACC flow with continued warming. If true, a future increase in
378 ACC flow with warming climate would mark a continuation of the pattern observed in
379 instrumental records^{17,18}, with likely negative consequences for the future Southern Ocean
380 uptake of anthropogenic CO₂.

381

382 **Online Content.** Methods and Extended Data Figures

383

385 **References**

386 1 Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse
387 through the past five million years. *Nature* **458**, 329-332, doi:10.1038/nature07809
388 (2009).

389 2 Sigman, D. M. *et al.* The Southern Ocean during the ice ages: A review of the Antarctic
390 surface isolation hypothesis, with comparison to the North Pacific. *Quaternary Sci. Rev.*
391 **254**, 106732, doi:10.1016/j.quascirev.2020.106732 (2021).

392 3 Talley, L. D. Closure of the Global Overturning Circulation Through the Indian, Pacific,
393 and Southern Oceans: Schematics and Transports. *Oceanography* **26**, 80-97,
394 doi:10.5670/oceanog.2013.07 (2013).

395 4 Rintoul, S. R. The global influence of localized dynamics in the Southern Ocean. *Nature*
396 **558**, 209-218, doi:10.1038/s41586-018-0182-3 (2018).

397 5 Wu, S. *et al.* Orbital- and millennial-scale Antarctic Circumpolar Current variability in
398 Drake Passage over the past 140,000 years. *Nature Communications* **12**, 3948,
399 doi:10.1038/s41467-021-24264-9 (2021).

400 6 Mazaud, A., Michel, E., Dewilde, F. & Turon, J. L. Variations of the Antarctic
401 Circumpolar Current intensity during the past 500 ka. *Geochem. Geophys. Geosyst.* **11**,
402 Q08007, doi:10.1029/2010gc003033 (2010).

403 7 McCave, I. N., Crowhurst, S. J., Kuhn, G., Hillenbrand, C.-D. & Meredith, M. P.
404 Minimal change in Antarctic Circumpolar Current flow speed between the last glacial
405 and Holocene. *Nature Geoscience* **7**, 113-116, doi:10.1038/ngeo2037 (2014).

406 8 Toyos, M. H. *et al.* Antarctic Circumpolar Current Dynamics at the Pacific Entrance to
407 the Drake Passage Over the Past 1.3 Million Years. *Paleoceanography and*
408 *Paleoclimatology* **35**, e2019PA003773, doi:10.1029/2019PA003773 (2020).

409 9 Fedorov, A. V., Burls, N. J., Lawrence, K. T. & Peterson, L. C. Tightly linked zonal
410 and meridional sea surface temperature gradients over the past five million years.
411 *Nature Geoscience* **8**, 975-980, doi:10.1038/ngeo2577 (2015).

412 10 Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed
413 benthic $\delta^{18}\text{O}$ records. *Paleoceanography* **20**, PA1003, doi:10.1029/2004PA001071
414 (2005).

415 11 McKay, R. *et al.* Antarctic and Southern Ocean influences on Late Pliocene global
416 cooling. *Proc. Natl. Acad. Sci. USA* **109**, 6423-6428, doi:10.1073/pnas.1112248109
417 (2012).

418 12 Naish, T. *et al.* Obliquity-paced Pliocene West Antarctic ice sheet oscillations. *Nature*
419 **458**, 322-328, doi:10.1038/nature07867 (2009).

420 13 Sigman, D. M., Jaccard, S. L. & Haug, G. H. Polar ocean stratification in a cold climate.
421 *Nature* **428**, 59-63, doi:10.1038/nature02357 (2004).

422 14 Lamy, F. *et al.* Precession modulation of the South Pacific westerly wind belt over the
423 past million years. *Proc. Natl. Acad. Sci. USA* **116**, 23455-23460,
424 doi:10.1073/pnas.1905847116 (2019).

425 15 Orsi, A. H., Johnson, G. C. & Bullister, J. L. Circulation, mixing, and production of
426 Antarctic Bottom Water. *Progress in Oceanography* **43**, 55-109 (1999).

427 16 Park, Y. H. *et al.* Observations of the Antarctic Circumpolar Current Over the Udintsev
428 Fracture Zone, the Narrowest Choke Point in the Southern Ocean. *J. Geophys. Res.*
429 *Oceans* **124**, 4511-4528, doi:10.1029/2019jc015024 (2019).

430 17 Shi, J. R., Talley, L. D., Xie, S. P., Peng, Q. H. & Liu, W. Ocean warming and
431 accelerating Southern Ocean zonal flow. *Nat. Clim. Chang.* **11**, 1090-1097,
432 doi:10.1038/s41558-021-01212-5 (2021).

433 18 Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean
434 warming delayed by circumpolar upwelling and equatorward transport. *Nature*
435 *Geoscience* **9**, 549-554, doi:10.1038/ngeo2731 (2016).

436 19 Noble, T. L. *et al.* The Sensitivity of the Antarctic Ice Sheet to a Changing Climate:
437 Past, Present, and Future. *Rev. Geophys.* **58**, e2019RG000663,
438 doi:10.1029/2019RG000663 (2020).

439 20 Lamy, F. *et al.* Glacial reduction and millennial-scale variations in Drake Passage
440 throughflow. *Proc. Natl. Acad. Sci. USA* **112**, 13496-13501,
441 doi:10.1073/pnas.1509203112 (2015).

442 21 Hall, I. R., McCave, I. N., Shackleton, N. J., Weedon, G. P. & Harris, S. E. Intensified
443 deep Pacific inflow and ventilation in Pleistocene glacial times. *Nature* **412**, 809-812,
444 doi:10.1038/35090552 (2001).

445 22 Nie, J. S. *et al.* Pacific freshening drives Pliocene cooling and Asian monsoon
446 intensification. *Sci. Rep.* **4**, 5474, doi:10.1038/srep05474 (2014).

447 23 Liu, J. J. *et al.* Eastern equatorial Pacific cold tongue evolution since the late Miocene
448 linked to extratropical climate. *Sci. Adv.* **5**, doi:10.1126/sciadv.aau6060 (2019).

449 24 Winckler, G. *et al.* Site U1540 in *Dynamics of the Pacific Antarctic Circumpolar*
450 *Current*. Proceedings of the International Ocean Discovery Program, **383**: College
451 Station, TX (International Ocean Discovery Program).
452 doi:10.14379/iodp.proc.383.104.2021 (2021).

453 25 Winckler, G. *et al.*. Site U1541 in *Dynamics of the Pacific Antarctic Circumpolar*
454 *Current* (eds Lamy F., Winckler, G., Alvarez Zarikian, C. A., & the Expedition 383
455 Scientists). Proceedings of the International Ocean Discovery Program, **383**: College
456 Station, TX (International Ocean Discovery Program).
457 doi:10.14379/iodp.proc.383.105.2021 (2021).

458 26 Middleton, J. L. *et al.* Evaluating manual versus automated benthic foraminiferal $\delta^{18}\text{O}$
459 alignment techniques for developing chronostratigraphies in marine sediment records.
460 *Geochronology* (submitted).

461 27 McCave, I. N., Thornalley, D. J. R. & Hall, I. R. Relation of sortable silt grain-size to
462 deep-sea current speeds: Calibration of the ‘Mud Current Meter’. *Deep-Sea Res. I* **127**,
463 1-12, doi:10.1016/j.dsr.2017.07.003 (2017).

464 28 Ullermann, J. *et al.* Pacific-Atlantic Circumpolar Deep Water coupling during the last
465 500 ka. *Paleoceanography* **31**, 639-650, doi:10.1002/2016pa002932 (2016).

466 29 Anderson, R. F., Chase, Z., Fleisher, M. Q. & Sachs, J. The Southern Ocean's biological
467 pump during the Last Glacial Maximum. *Deep-Sea Res. Part II Top. Stud. Oceanogr.*
468 **49**, 1909-1938 (2002).

469 30 Chase, Z., Kohfeld, K. E. & Matsumoto, K. Controls on biogenic silica burial in the
470 Southern Ocean. *Global Biogeochem. Cy.* **29**, 1599-1616, doi:10.1002/2015gb005186
471 (2015).

472 31 Köhler, P. Atmospheric CO₂ concentration based on boron isotopes versus simulations
473 of the global carbon cycle during the Plio-Pleistocene. *Paleoceanography and*
474 *Paleoclimatology* **38**, e2022PA004439, doi:10.1029/2022PA004439 (2023).

475 32 Lamy, F. *et al.* Increased dust deposition in the Pacific Southern Ocean during glacial
476 periods. *Science* **343**, 403-407, doi:10.1126/science.1245424 (2014).

477 33 Clark, P. U. *et al.* The middle Pleistocene transition: characteristics, mechanisms, and
478 implications for long-term changes in atmospheric pCO₂. *Quaternary Sci. Rev.* **25**,
479 3150-3184, doi:10.1016/j.quascirev.2006.07.008 (2006).

480 34 Herbert, T. D. *et al.* Late Miocene global cooling and the rise of modern ecosystems.
481 *Nature Geoscience* **9**, 843-847, doi:10.1038/ngeo2813 (2016).

482 35 Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened
483 westerlies during Pliocene warmth. *Nature* **589**, 70-75, doi:10.1038/s41586-020-03062-
484 1 (2021).

485 36 Sun, Y. B., An, Z. S., Clemens, S. C., Bloemendal, J. & Vandenberghe, J. Seven million
486 years of wind and precipitation variability on the Chinese Loess Plateau. *Earth Planet.
487 Sci. Lett.* **297**, 525-535, doi:10.1016/j.epsl.2010.07.004 (2010).

488 37 Lu, J. *et al.* Asian monsoon evolution linked to Pacific temperature gradients since the
489 Late Miocene. *Earth Planet. Sci. Lett.* **563**, 116882, doi:10.1016/j.epsl.2021.116882
490 (2021).

491 38 Burls, N. J. *et al.* Active Pacific meridional overturning circulation (PMOC) during the
492 warm Pliocene. *Sci. Adv.* **3**, e1700156, doi:10.1126/sciadv.1700156 (2017).

493 39 Hill, D. J., Bolton, K. P. & Haywood, A. M. Modelled ocean changes at the Plio-
494 Pleistocene transition driven by Antarctic ice advance. *Nature Communications* **8**,
495 14376, doi:10.1038/ncomms14376 (2017).

496 40 Lawrence, K. T. *et al.* Time-transgressive North Atlantic productivity changes upon
497 Northern Hemisphere glaciation. *Paleoceanography* **28**, 740-751,
498 doi:10.1002/2013pa002546 (2013).

499 41 Hillenbrand, C. D. & Cortese, G. Polar stratification: A critical view from the Southern
500 Ocean. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **242**, 240-252,
501 doi:10.1016/j.palaeo.2006.06.001 (2006).

502 42 Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of
503 permanent stratification in the subarctic Pacific Ocean. *Nature* **401**, 779-782,
504 doi:10.1038/44550 (1999).

505 43 Clemens, S. C. & Tiedemann, R. Eccentricity forcing of Pliocene-Early Pleistocene
506 climate revealed in a marine oxygen-isotope record. *Nature* **385**, 801-804,
507 doi:10.1038/385801a0 (1997).

508 44 Stuut, J. B. W. *et al.* A 5.3-Million-Year History of Monsoonal Precipitation in
509 Northwestern Australia. *Geophys. Res. Lett.* **46**, 6946-6954, doi:10.1029/2019gl083035
510 (2019).

511 45 Wang, P.-X. *et al.* Long-term cycles in the carbon reservoir of the Quaternary ocean: a
512 perspective from the South China Sea. *Natl. Sci. Rev.* **1**, 119-143,
513 doi:10.1093/nsr/nwt028 (2014).

514 46 deBoer, B., Lourens, L. J. & van de Wal., R. S. W. Persistent 400,000-year variability
515 of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-
516 Pleistocene. *Nature Communications* **5**, 2999, doi:10.1038/ncomms3999 (2014).

517 47 Chiang, J. C. H., Tokos, K. S., Lee, S. Y. & Matsumoto, K. Contrasting Impacts of the
518 South Pacific Split Jet and the Southern Annular Mode Modulation on Southern Ocean
519 Circulation and Biogeochemistry. *Paleoceanography and Paleoclimatology* **33**, 2-20,
520 doi:10.1002/2017pa003229 (2018).

521 48 Du, J. H., Haley, B. A. & Mix, A. C. Evolution of the Global Overturning Circulation
522 since the Last Glacial Maximum based on marine authigenic neodymium isotopes.
523 *Quaternary Sci. Rev.* **241**, 106396, doi:10.1016/j.quascirev.2020.106396 (2020).

524 49 Ronge, T. A. *et al.* Radiocarbon constraints on the extent and evolution of the South
525 Pacific glacial carbon pool. *Nature Communications* **7**, 11487, doi:
526 10.1038/ncomms11487 (2016).

527

528

529 **Figure Legends.**

530 **Fig. 1 | Visualisation of the modern ACC.** Shown is the simulated ocean velocity at 100 m
531 water depth (blue=weak; white=strong). Model: FESOM2 (Finite-volumE Sea ice-Ocean
532 Model, formulated on unstructured mesh, <https://fesom.de/>). Setup: ROSSBY4.2; Simulations:
533 Dmitry Sein (AWI); Visualisation: Nikolay Koldunov (AWI). ACC fronts as derived from
534 satellite altimetry¹⁶. From North to South NB = North Boundary, SAF = Subantarctic Front,
535 PF = Polar Front, SACC = Southern Antarctic Circumpolar Current Front; SB = Southern
536 Boundary. Core and drilling locations are marked by white stars.

537

538 **Fig. 2 | ACC strength changes over the past three glacial cycles (records along north-south**
539 **transects from the SAZ to the AZ, and west-east across the EPR in the SAZ), compared**
540 **to Antarctic ice core temperature and atmospheric CO₂ records. a,** Antarctic temperature
541 record (EDC ice-core)⁵². **b,** Atmospheric CO₂ record (EDC ice-core)⁵³. **c,** Reconstructed
542 absolute ACC strength variations (cm/s) from a cross-ACC transect including the SAZ (Sites
543 U1540 and U1541), PFZ (PS75/76 and PS75/79), and AZ (PS75/83) and across the EPR
544 (eastern Site U1540 and western Site U1541). **d,** Reconstructed relative ACC strength
545 variations (compared to Holocene mean values (dashed line)). **e,** Benthic foraminiferal δ¹³C
546 records from core PS75/56 (same location as U1540) and PS75/59 (U1541). All sediment
547 records were recovered from water depths bathed in Lower Circumpolar Deep Water masses at
548 present. Numbers above the top panel indicate Marine Isotope Stages (MIS) following Lisiecki
549 & Raymo¹⁰.

550

551 **Fig. 3 | ACC development over the past 1500 kyr. a,** Benthic foraminifera oxygen isotope
552 stack¹⁰. **b,** atmospheric CO₂ reconstructions based on the EDC ice-core record record⁵³. **c,**
553 relative ACC strength variations at site PS75/93, entrance of Drake Passage⁸ (dashed line marks
554 Holocene level). **d,** relative ACC strength variations (dashed line marks Holocene level) at Sites

555 U1540, U1541, and PS75/76. **e**, absolute ACC strength variations at Sites U1540, U1541, and
556 PS75/76. **f**, Opal content changes at Sites U1540, U1541, and PS75/76. Black arrow marks
557 strengthening of the ACC during the early Mid-Pleistocene transition (MPT), numbers mark
558 MIS with outstanding interglacial ACC strength maxima.

559

560 **Fig. 4 | ACC development since the Pliocene.** **a**, Benthic foraminifera oxygen isotope stack¹⁰,
561 Bold black line shows the one million-year-smoothed isotope record. NHG = intensification of
562 northern hemisphere glaciation; MPT=mid-Pleistocene transition. **b**, Modelled Antarctic ice
563 volume⁴⁶, compared to the ANDRILL (AND-1B) ice extent reconstruction (blue=advance;
564 red=retreat; based on Naish et al.¹²), together with modelled sediment facies in the Ross Sea
565 (RS), close to AND-1B (yellow=open ocean; blue=floating ice; green=grounded ice)¹. **c**,
566 Pliocene to Pleistocene changes in meridional and zonal SST gradients. Negative values
567 indicate gradient reduction towards the Pliocene⁹. **d**, relative ACC strength variations (dashed
568 line marks Holocene level) at Sites U1540 and U1541. Bold black line shows the one million-
569 year-smoothed ACC strength record. *Plio1*, *Plio2*, and *Plio3* mark long-term ACC maxima in
570 the Pliocene and early Pleistocene **e**, Magnetic susceptibility record from a loess-paleosol
571 sequence at the Chinese Loess Plateau³⁶ indicating changes in the strength of the Asian
572 monsoon. **f**, North Pacific record of carbonate mass accumulation rates (MAR) at ODP Site
573 882, indicating changes in the of the North Pacific meridional overturning circulation
574 (PMOC)³⁸. **g**, Changes in the ratio of biogenic opal to CaCO₃ at Sites U1540 and U1541. **h**,
575 Changes in opal MAR at ODP Site 1096 indicating sea-ice extent and Antarctic Zone ocean
576 stratification⁴¹.

577

578 **Fig. 5 | Schematic illustrating key atmospheric and oceanic processes influencing million-**
579 **year trends in ACC strength.** The schematics depict an idealized north-south transect from
580 Antarctica across the Pacific (at ~125°W; north of 20°S out of scale). Shown are major

581 atmosphere-ocean mechanisms influencing long-term changes in the ACC relative to the early
582 Pliocene. **a**, the early Pliocene, **b**, the late Pliocene before the iNHG, and **c**, the Early
583 Pleistocene (1.5Ma) situation following the Southern Ocean reconfiguration connected to the
584 iNHG. U1540/U1541 = location of IODP sites, ACC = Antarctic Circumpolar Current, AIS =
585 Antarctic ice-sheet, EASM = East Asian Summer monsoon, NB = North Boundary, SAF =
586 Subantarctic Front, PF = Polar Front, PMOC = Pacific Meridional Overturning Circulation, ΔT
587 = temperature gradients as in Fig. 4c, SWW = Southern Westerly Wind belt.

588

589 **Acknowledgments.**

590 We thank the captain, crew, and scientific party of R/V JOIDES Resolution for their support
591 during International Ocean Discovery Program (IODP) Expedition 383 “Dynamics of Pacific
592 Antarctic Circumpolar Current (DYNAPACC)”. J. Chiang, C.D. Hillenbrand, P. Köhler, and
593 G. Knorr provided comments and suggestions that improved the paper. We acknowledge
594 funding by the AWI Helmholtz-Zentrum für Polar- und Meeresforschung through institutional
595 research program “Changing Earth – Sustaining Our Future” to FL, LLJ, MvdD, RT, OE, GK,
596 JS, and MT, and DFG Priority Programme 527 grants SESPOD (AR 367/16-1), and IODP383-
597 DYNAPACC (La1273/10-1) to HWA, FL and LLJ. We acknowledge the IODP U.S. Science
598 Support Program for supplemental funding of post-expedition activities via post-expedition
599 activity awards to GW, JLM, JG, and JRF. GW and JLM acknowledge support from NSF grant
600 2305426.

601

602 **Author Contributions**

603 FL and GW designed the study and led the research. IODP Expedition 383 shipboard scientists
604 (FL, GW, HWA, JRF, JG, LLJ, JLM, CAZ, CB, AB, OME, LCH, SI, VJL, LL, EM, EM, SM,
605 CMM, ACR, CRR, MS-P, IS, RKS, RAS, ALS, JSS, IMVPdO, SW, XYZ) collected
606 stratigraphic, sedimentological, and physical properties data from IODP Sites U1540 and

607 U1541 and contributed to the interpretation of results. XRF core scanning at TAMU and AWI
608 was performed by shipboard scientists supported by SHW and LD. Grain-size analyses were
609 done by MvD, MT, and RT and HS provided expertise in South Pacific paleoceanography and
610 orbital tuning. FL and GW wrote the manuscript with contributions from HWA, JRF, JG, L.L.J.,
611 and JLM. All other co-authors (MvD, RT, CAZ, CB, AB, LD, OME, LCH, SI, GK, VJL, LL,
612 EM, AMG, EM, SM, CMM, ACR, CRR, MS-P, HS, IS, RKS, RAS, ALS, JSS, MT, IMVPdO,
613 SW, SHW, XYZ) contributed to the final version.

614

615 **Data availability**

616 All relevant data in this paper are available at PANGAEA Data Publisher (<https://doi.pangaea.de/XXXX>). Background images for Fig. 1 are from FESOM2 (Finite-volumE Sea
617 ice-Ocean Model, formulated on unstructured mesh, <https://fesom.de/>). Extended Data Figure
618 1 uses The Global Multi-Resolution Topography synthesis (GMRT) data set as background
619 data.

621

622 **METHODS**

623 **Study locations**

624 We analyze two Plio/Pleistocene sediment records recovered during International Ocean
625 Discovery Program Expedition 383 (IODP Sites U1540 and U1541)⁵⁴ and three Quaternary
626 records from piston cores obtained during RV Polarstern cruise ANT-XXVI/2.

627

628 IODP Site U1540 is located in the central South Pacific at 55°08.467'S, 114°50.515'W, ~1600
629 nm west of the Magellan Strait at 3580 m water depth²⁴ (Extended Data Fig. 1). The site sits at
630 the eastern flank of the southernmost East Pacific Rise (EPR) within the Eltanin Fracture Zone,
631 ~130 nmi from the modern seafloor spreading axis, and is underlain by oceanic crust formed at
632 the EPR about 6–8 Ma ago. The plate tectonic backtrack path of IODP Site U1540 moves the
633 site westward, to an early Pliocene position ~100 nmi closer to the crest of the EPR at a water
634 depth shallower by several hundred meters. At a smaller scale, the site is located at the NE end
635 of a ridge that parallels the orientation of the EPR. IODP Site U1540 lies in the pathway of the
636 Subantarctic ACC, ~170 nmi north of the modern mean position of the Subantarctic Front
637 (SAF)⁵⁵. A ~213 m thick continuous sequence of Holocene to early Pliocene sediments was
638 recovered at IODP Site U1540. The sequence is dominated by carbonate-bearing to carbonate-
639 rich diatom oozes, diatom-rich nannofossil, and calcareous oozes.

640

641 IODP Site U1541 is located westward, at 54°12.756'S, 125°25.540'W, at 3604 m water depth
642 ²⁵ (Extended Data Fig. 1) The site sits on the western flank of the southernmost EPR, ~50 nmi
643 north of the Eltanin-Tharp Fracture Zone and ~160 nmi from the modern seafloor spreading
644 axis. IODP Site U1541 is underlain by oceanic crust formed at the EPR between ~6 and 8. As
645 with IODP Site U1540, Site U1541 is located an early Pliocene position ~100 nmi closer to the
646 crest of the EPR. At a smaller scale, the site is located in a NNE–SSW oriented trough, ~4 nmi

wide, that parallels the orientation of the EPR. Site U1541 lies also below the pathway of the Subantarctic Antarctic ACC, ~100 nmi north of the modern mean position of the SAF⁵⁵. A ~145 m spliced sedimentary sequence of Holocene–Miocene age was recovered at Site U1541. The sedimentary sequence includes four lithofacies: carbonate-bearing to carbonate-rich diatom ooze, diatom-bearing to diatom-rich nannofossil/calcareous ooze, nearly pure nannofossil ooze, and clay-bearing to clayey biogenic ooze.

653

654 RV Polarstern cruise ANT-XXVI/2 cores include core PS75/76-2 (55°31.71'S; 156°08.39'W; 655 3742 m water depth; core length 20.59 m) situated in the Polar Frontal Zone (Extended Data 656 Fig. 1 and 6). Sediments are characterized by a cyclic succession of primarily calcareous oozes 657 during interglacials and muddy siliceous oozes during glacials. Core PS75/79-2 (57°30.16'S; 658 157°14.25'W; 3770 m water depth; length 18.51 m), located close to the modern Polar Front, 659 is dominated by siliceous oozes with carbonate restricted mainly to peak interglacials (Extended 660 Data Fig. 1 and 7). Core PS75/83-1 (60°16.13'S; 159°03.59'W; 3599 m water depth, length 661 13.13 m) was recovered from the Antarctic Zone. Sediments are strongly dominated by 662 siliceous oozes, with carbonate-bearing oozes appearing during interglacials (Extended Data 663 Fig. 8).

664

665 Age Models

666 Based on the biostratigraphic and paleomagnetic shipboard age-control points²⁴, we further 667 constrained the age model for Site U1541 from 0 to 3.4 Ma using the benthic foraminiferal 668 oxygen isotope record and probabilistic tuning to Prob-stack⁵⁶ (Extended Data Fig. 2). 669 Middleton et al.²⁶ use the hidden Markov model probabilistic algorithm (HMM-Match) of Lin 670 et al.⁵⁷ to align the U1541 benthic oxygen isotope data in three continuous segments with 671 predefined start and end points of 0.00 – 31.35 m CCSF-A (0.000 – 1.126 Ma), 32.90 – 75.54 672 m CCSF-A (1.198 – 3.035 Ma) and 77.32 – 84.95 m CCSF-A (3.135 – 3.480 Ma), bracketing

673 two coring gaps between 31.78 - 32.75 and 75.67 – 77.12 m CCSF-A²⁴. The start and end points
674 for each U1541 data segment were chosen through trial and error of visually-determined
675 alignment points that yielded the lowest uncertainties when run through the HMM-Match
676 algorithm. From 3.4 Ma to 5.3 Ma, we improved the shipboard record through orbital tuning
677 of the GRA-density record to obliquity (Extended Data Fig. 3).

678

679 The age model of IODP Site U1540 (Extended Data Fig. 4) is based on the biostratigraphic and
680 paleomagnetic shipboard age-control points²⁴. We further improved the stratigraphy by
681 correlating the ln(Zr/Rb) record to U1541 (Extended Data Fig. 4).

682

683 The age models of cores PS75/76, PS75/79, and PS75/83 were taken from Lamy et al.³². We
684 updated these age models, originally based on correlation of iron content fluctuations to dust
685 records from Antarctic ice-cores, by using the non-continuous benthic foraminifera $\delta^{18}\text{O}$
686 records available from these cores³².

687

688 **Stable oxygen and carbon isotope analyses on benthic foraminifera**

689 Bulk sediments were freeze-dried, and then washed with deionized water over a 150 μm -mesh
690 sieve to remove fine-grained material such as clay and silt. The coarse fractions of the sediment
691 were subsequently dried in an oven at $\sim 45^\circ\text{C}$. From the coarse fraction larger than 150 μm , one
692 to five specimens of the benthic foraminifera *Cibicidoides* spp. were picked with a wet brush
693 under a stereomicroscope for stable oxygen and carbon isotope measurements. Samples were
694 then analyzed for stable oxygen and carbon isotopes (reported in δ -notation with respect to the
695 Vienna PeeDeeBee (VPDB) international standard, i.e., $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$, respectively) at LDEO
696 using a Thermo DeltaV+ with Kiel IV. The NBS-19 international standard was analyzed every
697 ~ 10 samples, and the long-term 1-standard deviation for $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ of the NBS-19 standard
698 is 0.06‰ and 0.04‰, respectively.

699

700 **Geochemistry and Bulk Sediment Parameters.** Geochemical data were obtained through X-
701 ray fluorescence (XRF) scanning (at AWI, Germany and IODP TAMU, College Station, USA)
702 with an Avaatech (non-destructive) XRF Core Scanner. Split core surfaces were scanned at a
703 one or two cm resolution during consecutive 10 kV, 30 kV, and 50 kV runs, in order to obtain
704 reliable intensities (area counts) of major elements and minor elements. We used the Zr and Rb
705 intensities from the 30 kV run in order to calculate logarithmic ratios of both elements
706 ($\ln(\text{Zr}/\text{Rb})$) used for the calculation of sortable silt and ACC currents strength (Extended Data
707 Fig. 5).

708

709 We assess the strength and position of the ACC frontal system through reconstructing changes
710 in the Southern Ocean opal belt, presently located in the PFZ (between the SAF and the Polar
711 Front [PF]³⁰). We use high-resolution physical properties data (density) and X-ray
712 fluorescence-derived Ca counts calibrated by discrete biogenic opal and calcium carbonate
713 content measurements (Methods).

714

715 For the determination of biogenic opal contents for sediment cores PS75/56, PS75/76, PS75/79,
716 PS75/83, and at Site U1541, we applied an automated leaching method at AWI, with a relative
717 analytical precision of 2-5%⁵⁸. The high-resolution opal content records at Site U1540 and
718 U1541 were obtained from polynomial regressions between GRA-density and the discrete
719 biogenic opal measurements. At Site U1540 we used the regression from core PS75/56 from
720 the same location.

721

722 For the SAZ records from Sites U1540 and U1541, CaCO_3 contents were used to calculate
723 Opal/ CaCO_3 ratios. We used discrete CaCO_3 content data from Site U1541 measured shipboard
724 ²⁴ and data from PS75/56²⁸. At Site U1540 we used the calibration core PS75/56 from the same

725 location. We obtained high-resolution carbonate records for U1540 and U1541 from XRF-
726 based Sr count data calibrated with the discrete CaCO_3 content measurements.

727

728 **Grain-size determinations and calculation of ACC flow strength**

729 We infer changes in ACC bottom water strength from grain-size estimates of fine-grained deep-
730 sea and continental margin sediments. Traditionally, this has been achieved by quantitative
731 grain-size measurements of the terrigenous fraction using the mean grain-size of sortable silt²⁷
732 at continental margins and deep ocean settings with bottom currents. More recent findings
733 identified changes in element compositions of fine-grained sediments as a reliable proxy for
734 the determination of grain sizes in the sortable silt range that can be used to estimate bottom
735 current velocities^{5,8,20,59}. Wu et al.⁵⁹ showed that the logarithmic count ratio of zirconium to
736 rubidium ($\ln (\text{Zr/Rb})$) as derived from high-resolution elemental records using XRF core
737 scanner data, is suitable to estimate bottom current speed changes. We apply the $\ln(\text{Zr/Rb})$
738 proxy to calculate mean sortable silt values and bottom current speeds of the ACC back to ~ 5.3
739 Ma, using a regional calibration of discrete sample sortable silt measurements to XRF scanner-
740 derived $\ln(\text{Zr/Rb})$ ratios (see below) and calculation of the current speeds following calibrations
741 by McCave et al²⁷ (Extended Data Fig. 5-8):

742 Current speed = (sortable silt mean/0.59) - (12.23/0.59)

743 We use relative deviation from the Holocene mean current speed (except for the cross frontal
744 transect and Extended Data figures showing also current speeds). The length, resolution, and
745 mean sortable silt average across the individual Holocene sections varies among the records,
746 with U1540: ~ 0 -10 ka, 8.14 μm ; U1541: 0-6 ka, 7.9 μm ; PS75/76: 0-11.5 ka, 6.18 μm ; PS75/79:
747 0-11.5 ka, 6.93 μm ; and PS75/83: 9-11.5 ka, 6.27 μm .

748

749 Grain-size distributions were obtained with a Beckman Coulter laser diffraction particle sizer
750 LS13 320, equipped with a micro liquid module (MLM) at the Center for Marine Environmental

751 Sciences (MARUM, University of Bremen, Germany). The lithogenic fraction was isolated
752 from 300 – 500 mg of the bulk freeze-dried sediments by treating the samples with 5 ml H₂O₂
753 (37%), 5ml HCL (10%) and 15 ml NaOH (20%) while being heated, to remove organics,
754 carbonates and biogenic opals, respectively. The samples were rinsed and centrifuged until the
755 pH was neutral in between these steps. Directly prior to the measurements, a few drops of
756 Na₄P₂O₇ · 10H₂O (sodium pyrophosphate) were added and the samples heated and sonicated to
757 disaggregate the particles. Degassed water was used during analysis to minimise the effect of
758 gas bubbles, and a magnetic stirrer homogenised the sample during analysis. The resulting
759 particle-size distributions range from 0.375 to 2000 µm, divided into 92 size classes.

760

761 Sortable silt is defined as the mean grain-size of the sortable silt-fraction (10-63 µm). We
762 obtained a linear correlation between mean sortable silt and ln(Zr/Rb) ratios based on 220
763 samples at Site U1541 (sortable silt mean = 2.4077*ln(Zr/Rb)+12.83) (Extended Data Fig. 10).
764 The suitability of our sortable silt data for bottom current reconstructions is supported by the
765 positive correlation of mean sortable silt and % sortable silt (Extended Data Fig. 10). We
766 excluded samples from MIS 11 with very high values that are outside the linear regression. We
767 note that our positive linear correlation between ln(Zr/Rb) ratios and mean sortable silt has a
768 lower slope compared to studies from the Southeast Pacific^{8,20}. This might be explained by a
769 different composition of siliciclastic material in the sortable silt fraction at sites close to
770 continental margins compared to our sites in the pelagic South Pacific.

771

772 We are aware that other factors, such as continental weathering, might affect the Zr/Rb
773 composition as a proxy for sortable silt and bottom current speed. However, given the pelagic
774 location of our sites, we conclude that, if a weathering influence would affect our central South
775 Pacific records, this effect would be minor, given the large distance to any continent with
776 substantial chemical weathering (in contrast for example to the Indian Ocean). Additional

777 support comes from above mentioned records from the Southeast Pacific off Chile and the
778 Drake Passage which provide excellent correlations of Zr/Rb to the mean sortable silt.

779

780 **Methods References**

781 50 Westerhold, T. *et al.* An astronomically dated record of Earth's climate and its
782 predictability over the last 66 million years. *Science* **369**, 1383-1387,
783 doi:10.1126/science.aba6853 (2020).

784 51 Meijers, A. J. S. The Southern Ocean in the Coupled Model Intercomparison Project
785 phase 5. *Philos. Trans. Royal Soc. A* **372**, 20130296, doi:10.1098/Rsta.2013.0296
786 (2014).

787 52 Jouzel, J. *et al.* Orbital and millennial Antarctic climate variability over the past 800,000
788 years. *Science* **317**, 793-796, doi:10.1126/science.1141038 (2007).

789 53 Luthi, D. *et al.* High-resolution carbon dioxide concentration record 650,000-800,000
790 years before present. *Nature* **453**, 379-382, doi:10.1038/nature06949 (2008).

791 54 Lamy, F., Winckler, G., Alvarez Zarikian, C. A. & the Expedition 383 Scientists.
792 *Dynamics of the Pacific Antarctic Circumpolar Current*. Proceedings of the
793 International Ocean Discovery Program **383**: College Station, TX (International Ocean
794 Discovery Program), doi:10.14379/iodp.proc.383.2021 (2021).

795 55 Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the
796 Antarctic Circumpolar Current. *Deep-Sea Res. Part I* **42**, 641-673 (1995).

797 56 Ahn, S., Khider, D., Lisiecki, L. E. & Lawrence, C. E. A probabilistic Pliocene–
798 Pleistocene stack of benthic $\delta^{18}\text{O}$ using a profile hidden Markov model. *Dynamics and*
799 *Statistics of the Climate System* **2**, dzx002, doi:10.1093/climsys/dzx002 (2017).

800 57 Lin, L., Khider, D., Lisiecki, L. E. & Lawrence, C. E. Probabilistic sequence alignment
801 of stratigraphic records. *Paleoceanography* **29**, 976-989, doi:10.1002/2014pa002713
802 (2014).

803 58 Muller, P. J. & Schneider, R. An automated leaching method for the determination of
804 opal in sediments and particulate matter. *Deep-Sea Res. Part I* **40**, 425-444 (1993).

805 59 Wu, L. *et al.* Evaluating Zr/Rb Ratio from XRF scanning as an indicator of grain-size
806 variations of glaciomarine sediments in the Southern Ocean. *Geochemistry, Geophysics,*
807 *Geosystems* **21**, e2020GC009350, doi:10.1029/2020GC009350 (2020).

808

809 **Author Information Statements**

810 Reprints and permissions may be requested to Frank Lamy (Frank.Lamy@awi.de). We declare
811 that there are no financial or non-financial competing interests. Correspondence and requests
812 for materials should be directed to Frank Lamy (Frank.Lamy@awi.de).

813

814 **Extended Data legends**

815

816 **Extended Data Fig. 1 | Bathymetric maps.** **a**, South Pacific overview with location of all
817 study sites, **b**, Detail of the Central South Pacific with IODP Sites. Besides regional topographic
818 features (FZ=fracture zone, and EPR=East Pacific Rise) also oceanic fronts after Orsi et al.⁵⁵
819 are indicated. (PF=Polar Front, SAF=Subantarctic Fronts).

820

821 **Extended Data Fig. 2 | Stratigraphic background for IODP Site 1541.** **a**, Age-depth plot for
822 the Pliocene and Pleistocene sedimentary sequence at IODP Site U1541 compared to
823 biostratigraphic and paleomagnetic tie points²⁵. Error bars reflect uncertainties in the
824 assignment of taxonomic zones and are discussed in more detail in Winckler et al.²⁵. **b**, Benthic
825 $\delta^{18}\text{O}$ record from IODP Site U1541 tuned to the Prob-stack^{26,56}, shown here in comparison to
826 the LR04 stack¹⁰. **c**, Sedimentation-rate record at Site U1541. **d**, ACC strength record at IODP
827 Site 1541.

828

829 **Extended Data Fig. 3 | Pliocene stratigraphy for IODP Site U1541 based on orbital tuning.**
830 **a**, GRA-density record. **b**, Obliquity (~40 kyr) filtered GRA-density record. **c**, Obliquity
831 reference record with tuning points. **d**, Sedimentation-rate record. **d**, ACC strength record.

832

833 **Extended Data Fig. 4 | Stratigraphic background for IODP Site U1540.** **a**, Age-depth plot
834 for the Pliocene and Pleistocene sedimentary sequence at Site U1540 compared to

835 biostratigraphic and paleomagnetic tie points²⁴. Error bars reflect uncertainties in the
836 assignment of taxonomic zones and are discussed in more detail in Winckler et al.²⁴.**b**, ACC
837 strength records of IODP Site U1540 tuned to Site 1541. **c**, Tuning points. **d**, Sedimentation-
838 rate record at IODP Site U1540 and Site U1541.

839

840 **Extended Data Fig. 5 | Raw data used for calculation of ACC strength at IODP Site U1540**
841 **and Site U1541.** **a**, ACC strength records relative to the Holocene mean. **b**, Absolute ACC
842 strength record calculated from sortable silt data using a formula from the Scotia Sea by
843 McCave et al.²⁷ (see Methods). **c**, Sortable silt record calculated from $\ln(\text{Zr}/\text{Rb})$ using our
844 calibration from discrete grain-size measurement (Extended Data Fig. 10, see Methods). **d**,
845 $\ln(\text{Zr}/\text{Rb})$ record (interpolated to 0.5 kyr and 9-point adjacent averaged).

846

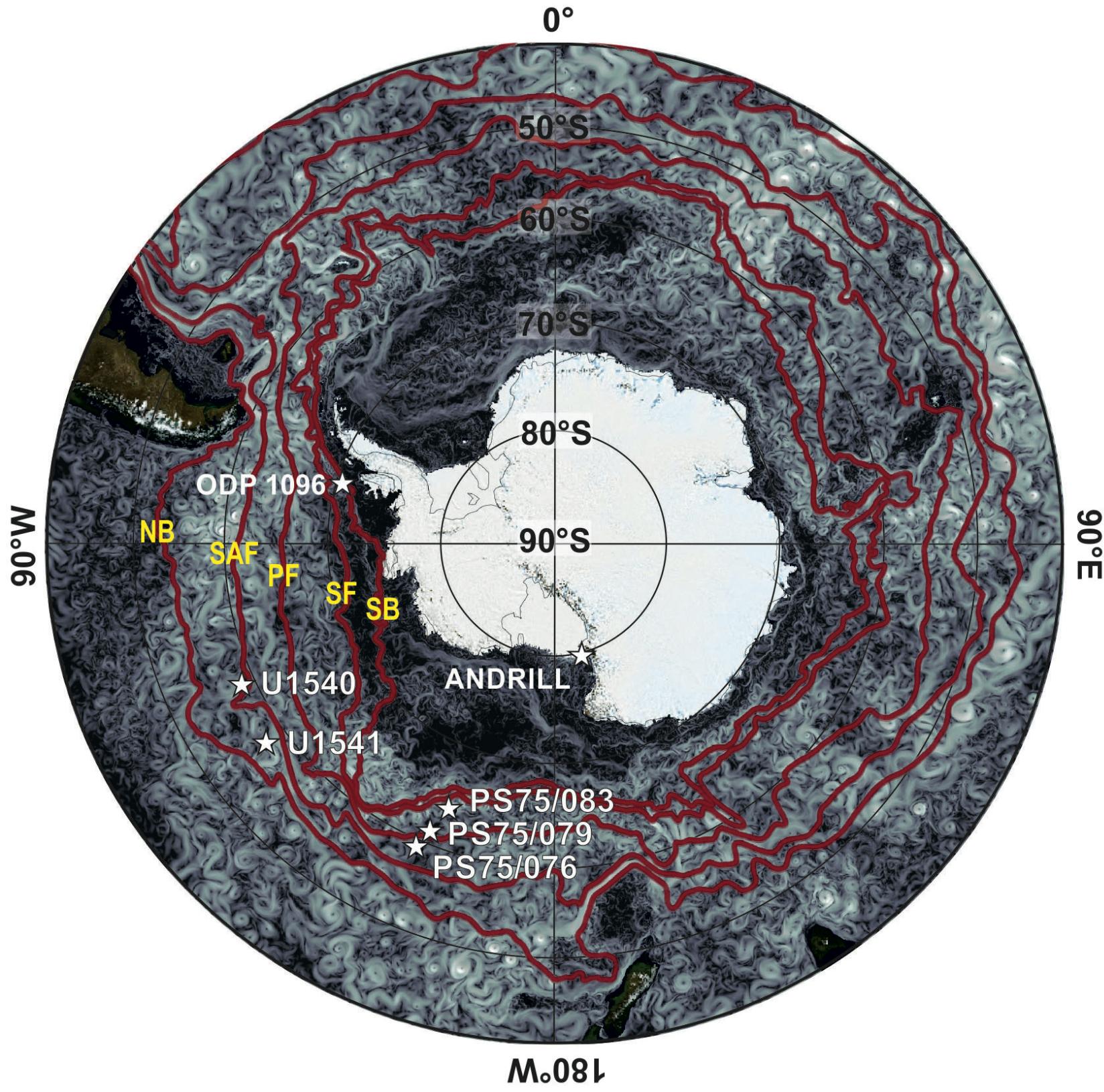
847 **Extended Data Fig. 6 | Raw data used for calculation of ACC strength together with opal**
848 **and CaCO_3 records from core PS75/76.** **a**, ACC strength records relative to the Holocene
849 mean. **b**, Absolute ACC strength record calculated from sortable silt data using a formula from
850 the Scotia Sea by McCave et al.²⁷ (see Methods). **c**, Sortable silt record calculated from
851 $\ln(\text{Zr}/\text{Rb})$ (Extended Data Fig. 10). **d**, $\ln(\text{Zr}/\text{Rb})$ record (interpolated to 0.5 kyr and 9-point
852 adjacent averaged). **e**, Opal content. **f**, CaCO_3 .

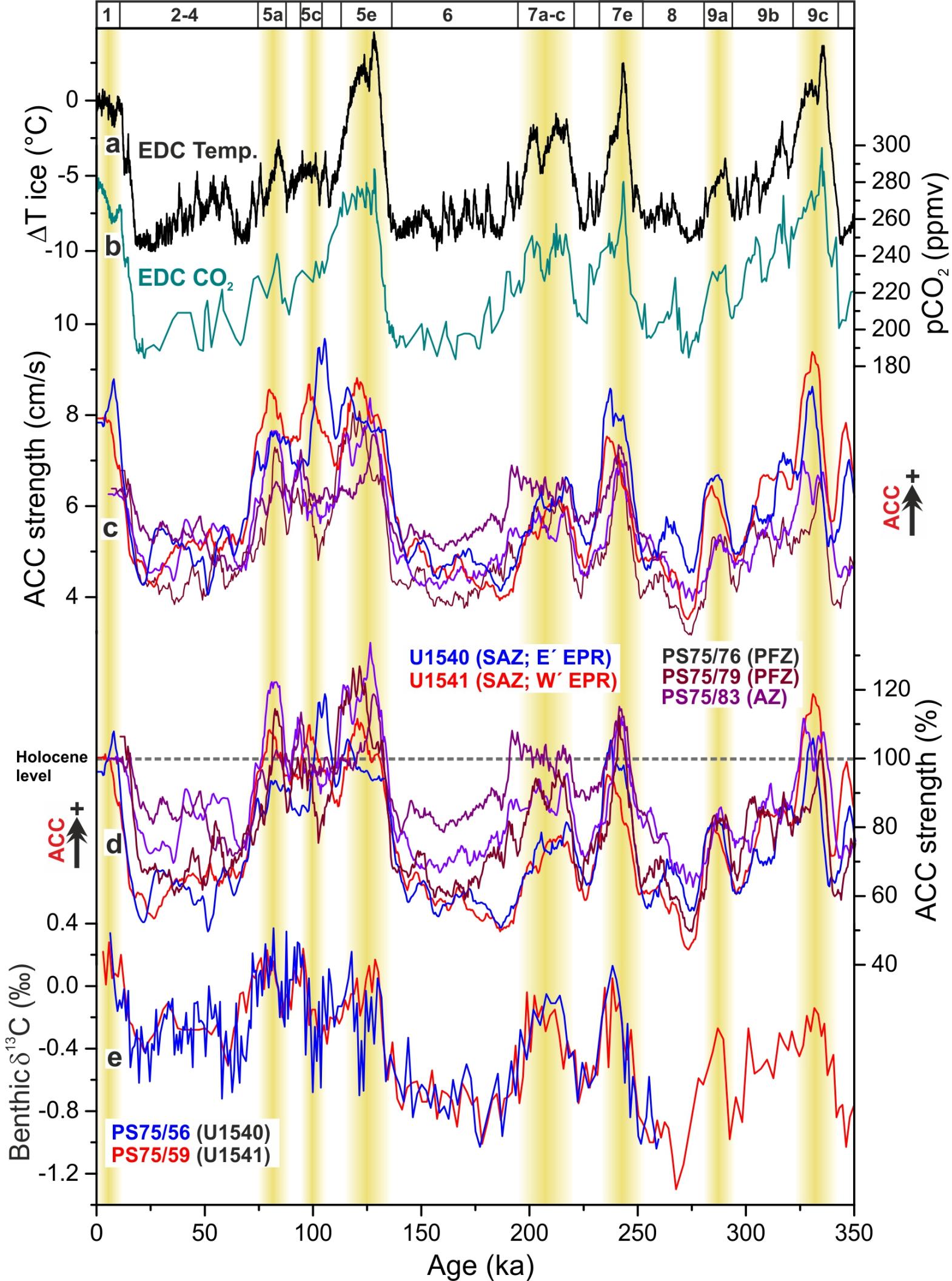
853

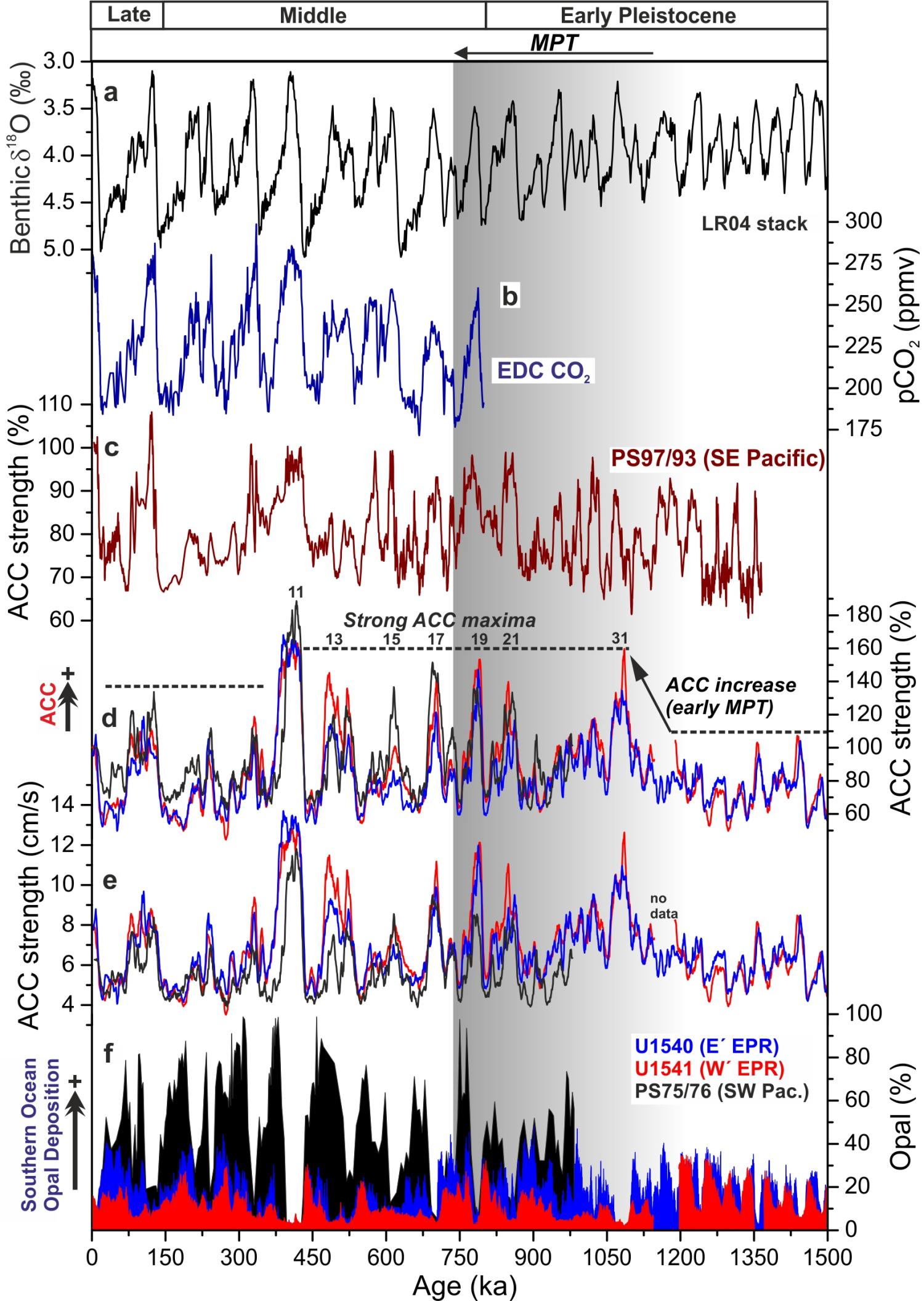
854 **Extended Data Fig. 7 | Raw data used for calculation of ACC strength together with opal**
855 **and CaCO_3 records from core PS75/79.** **a**, ACC strength records relative to the Holocene
856 mean. **b**, Absolute ACC strength record calculated from sortable silt data using a formula from
857 the Scotia Sea by McCave et al.²⁷ (see Methods). **c**, Sortable silt record calculated from
858 $\ln(\text{Zr}/\text{Rb})$ (Extended Data Fig. 10). **d**, $\ln(\text{Zr}/\text{Rb})$ record (interpolated to 0.5 kyr and 9-point
859 adjacent averaged). **e**, Opal content. **f**, CaCO_3 .

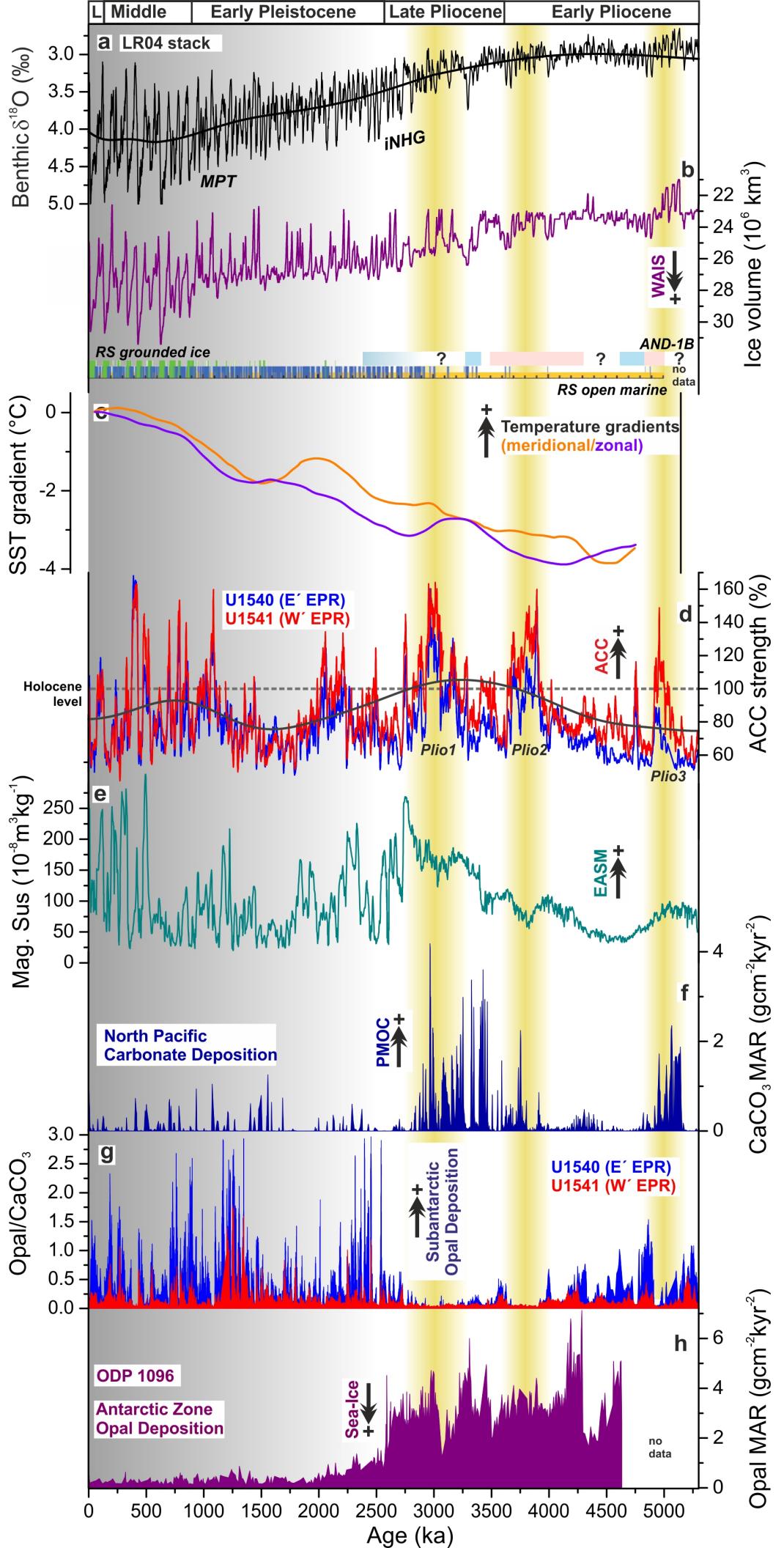
860

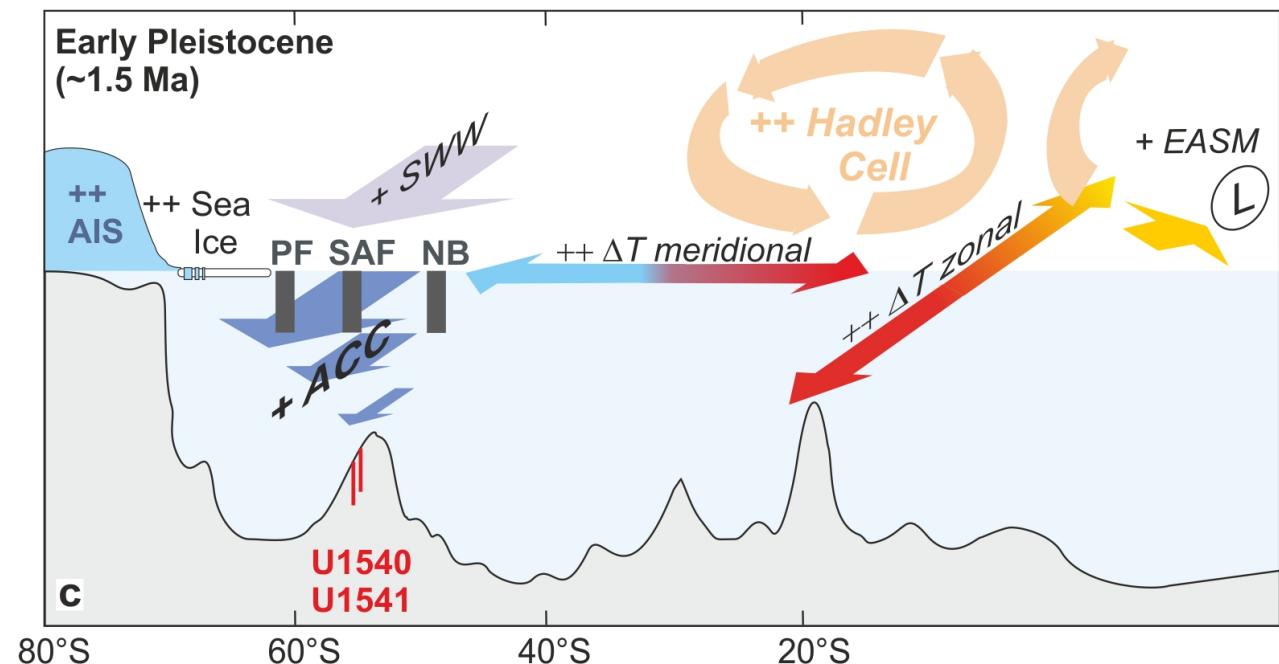
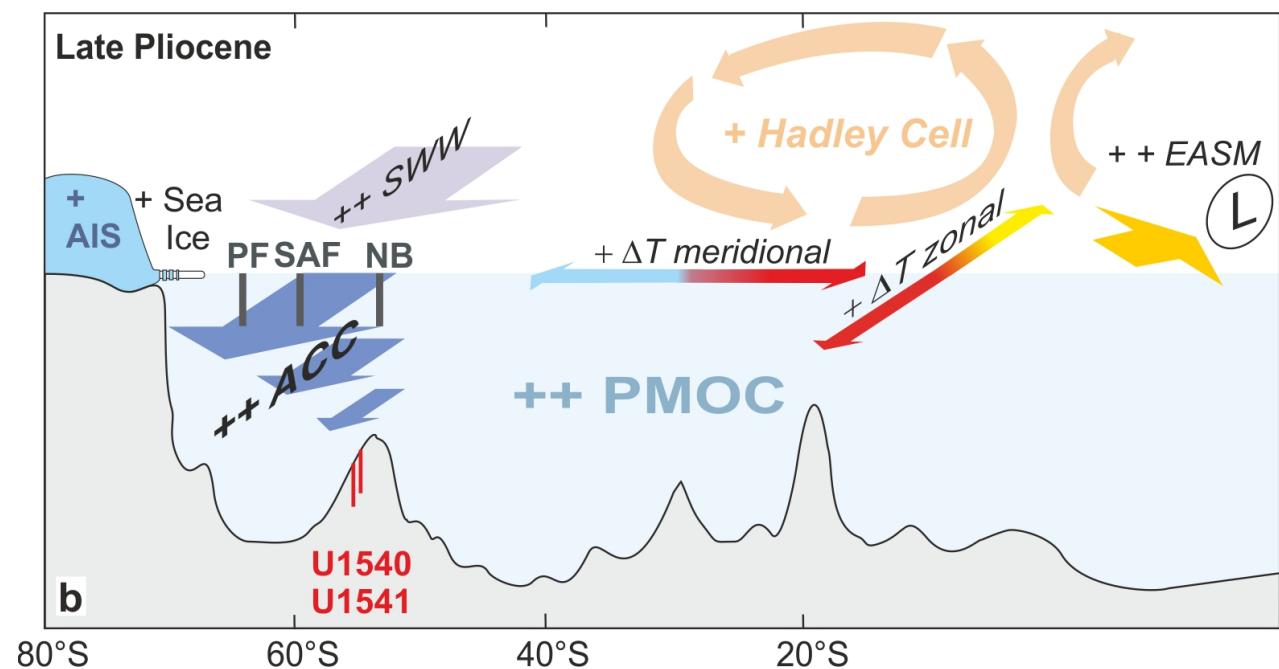
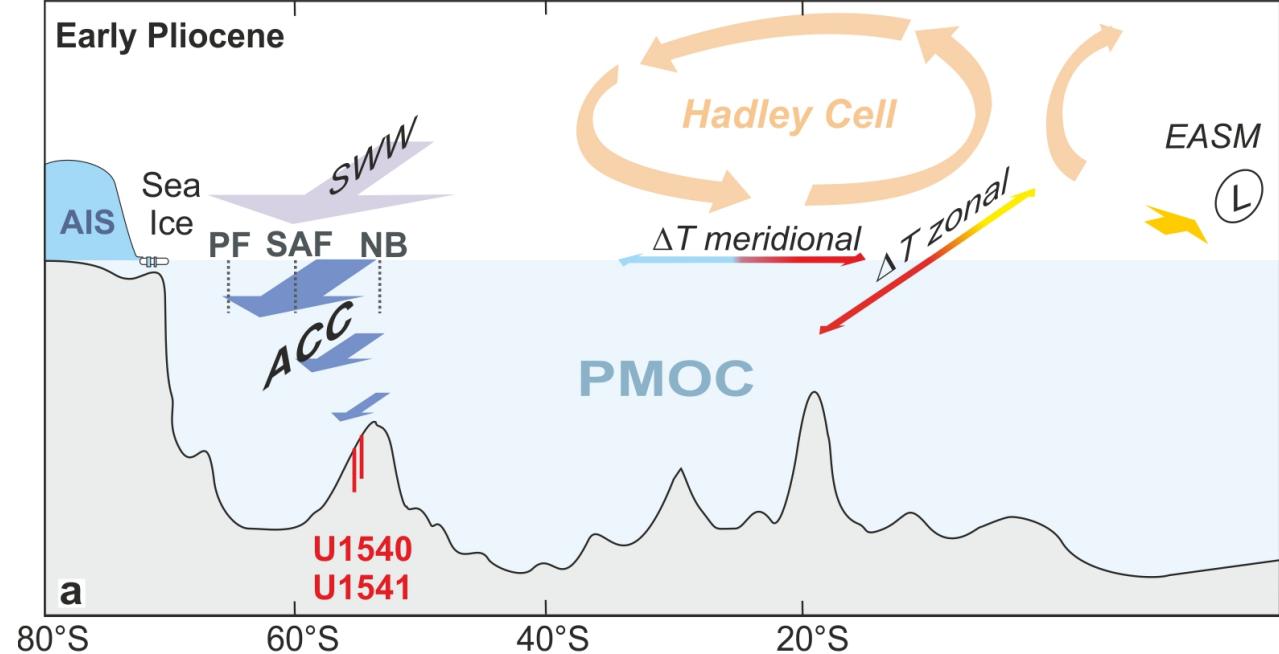
861 **Extended Data Fig. 8| Raw data used for calculation of ACC strength together with opal**
862 **and CaCO₃ records from core PS75/83.** **a**, ACC strength records relative to the Holocene
863 mean. **b**, Absolute ACC strength record calculated from sortable silt data using a formula from
864 the Scotia Sea by McCave et al.²⁷ (see Methods). **c**, Sortable silt record calculated from
865 ln(Zr/Rb) (Extended Data Fig. 12). **d**, ln(Zr/Rb record (interpolated to 0.5 kyr and 9-point
866 adjacent averaged). **e**, Opal content. **f**, CaCO₃.


867


868 **Extended Data Fig. 9| Long-term ACC changes ~400-kyr time-scales** **a**, Benthic
869 foraminifera oxygen isotope stack LR04¹⁰. (NHG=intensification of northern hemisphere
870 glaciation; MPT=mid-Pleistocene transition). **b**, relative ACC strength variations (dashed line
871 marks Holocene level) at IODP Sites U1540 and Site U1541. **c**, Filtered ACC record at Site
872 U1541. Gaussian band pass filter centered at 413-kyr (0.00242 +/- 0.0005 ka⁻¹) as the main
873 long-term eccentricity period⁴⁵. **d**, Filtered Antarctic ice-sheet (AIS) volume record⁴⁶ at 413-
874 kyr. **e**, Filtered Asian Monsoon record³⁶ at 413-kyr. **f**, Filtered global marine δ¹³C stack⁵⁰
875 documenting global marine carbon reservoir changes. **g**, Filtered eccentricity parameter.


876


877 **Extended Data Fig. 10 |** Discrete sortable silt mean measurements compared to the calculated
878 record from ln(Zr/Rb) using the formula shown in b. **b**, Graphical correlation of sortable silt
879 mean values to ln(Zr/Rb). **c**, Positive correlation of sortable silt mean and sortable silt %.




880

