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Abstract

The timescales associated with precipitation moving through watersheds reveal pro-

cesses that are critical to understanding many hydrologic systems. Measurements of

environmental stable water isotope ratios (δ2H and δ18O) have been used as tracers

to study hydrologic timescales by examining how long it takes for incoming precipita-

tion tracers become stream discharge, yet limited measurements both spatially and

temporally have bounded macroscale evaluations so far. In this observation driven

study across North American biomes within the National Ecological Observation Net-

work (NEON), we examined δ18O and δ2H stable water isotope in precipitation (δP)

and stream water (δQ) at 26 co-located sites. With an average 54 precipitation sam-

ples and 139 stream water samples per site collected over 2014–2022, assessment

of local meteoric water lines and local stream water lines showed geographic varia-

tion across North America. Taking the ratio of estimated seasonal amplitudes of δP

and δQ to calculate young water fractions (Fyw), showed a Fyw range from 1% to 93%

with most sites having Fyw below 20%. Calculated mean transit times (MTT) based on

a gamma convolution model showed a MTT range from 0.10 to 13.2 years, with half

of the sites having MTT estimates lower than 2 years. Significant correlations were

found between the Fyw and watershed area, longest flow length, and the longest flow

length/slope. Significant correlations were found between MTT and site latitude, lon-

gitude, slope, clay fraction, temperature, precipitation magnitude, and precipitation

frequency. The significant correlations between water timescale metrics and the

environmental characteristics we report share some similarities with those reported

in prior studies, demonstrating that these quantities are primarily driven by site or

area specific factors. The analysis of isotope data presented here provides important

constraints on isotope variation in North American biomes and the timescales of

water movement through NEON study sites.
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1 | INTRODUCTION

The timescales associated with precipitation moving through water-

sheds into streams and rivers are indicative of surface and subsurface

hydrologic pathways (McDonnell et al., 2010; McGuire &

McDonnell, 2006). Understanding hydrologic pathways is critical to

properly estimate the timing of water movement but also the reten-

tion, mobility, and fate of water solutes that influence water quality,

water management, and environmental biodiversity (Brooks

et al., 2010; Clow et al., 2018; Godsey et al., 2010; Good et al., 2015;

Maxwell et al., 2016; McGuire & McDonnell, 2006; van Meerveld

et al., 2019). The time and speed at which water enters and exits a

watershed or group of watersheds determines availability for end

users, which in turn affects biodiversity and health of a watershed

through the interaction of the surface and subsurface (Goodman

et al., 2015; Wagener et al., 2010). Accordingly, the dominant problem

in understanding watershed health through the lens of hydrologic

connectivity, is how to describe watershed functionality through the

retaining and releasing of water from storage (Bansah & Ali, 2019).

The associated age of water and the linkages to watershed functional-

ity are critical to ecosystem health due to the connectivity of water

availability and quality through hydrologic pathways. Despite impor-

tant implications for future watershed health, the age of water and

connectivity to watershed functionality remain uncertain. In North

America, the increasing observation network of hydrologic and other

environmental variables allow for a unique opportunity to understand

watershed functionality through the lens of water age.

Stable water isotope data (δ2H and δ18O) provide a powerful tool

to study hydrologic connectivity and transit times that are reflective

of integrated transport processes within a landscape (Brooks

et al., 2014; Capell et al., 2012; Fiorella et al., 2021; Jasechko et al.,

2016; Kirchner, 2016a, 2016b; Lutz et al., 2018; McGuire et al., 2005;

McGuire & McDonnell, 2006; Stockinger et al., 2016). Isotopic tracers

are able to carry a signature of partial evaporation of soil waters and

connectivity between soil and deeper subsurface processes

(i.e., infiltration mechanisms), thereby linking the response of precipi-

tation becoming discharge (Brooks et al., 2010). Local meteoric water

lines (LMWL), local stream water lines (LSWL), deuterium excess (d-

excess = δ2H – 8δ18O), and line-conditioned excess (lc-

excess = δ2H – aδ18O – b, where a and b are the coefficients of the

LMWL) aid in understanding isotope sample variability, evaporative

influences, and potential environmental effects at a variety of tempo-

ral and spatial scales (Brooks et al., 2014; Halder et al., 2015;

Kendall & Coplen, 2001; Landwehr & Coplen, 2006). Hydrologic tran-

sit times, as characterized by a transit-time distribution (TTD) and

associated mean transit time (MTT), link the variability, shifts,

and response between incoming precipitation becoming stream dis-

charge to underlying hydrologic connectivity (Capell et al., 2012; Clow

et al., 2018; Hrachowitz et al., 2010; Kirchner, 2016a, 2016b; Lutz

et al., 2018; McGuire & McDonnell, 2006; Segura, 2021). Similarly,

characterization of the fraction of young water (Fyw) in stream water,

defined as the fraction of runoff with transit times roughly 2–

3 months old (depending on the shape of the underlying TTD),

provides another mechanism to understand the timescales of water

movement through watersheds (Kirchner, 2016a, 2016b). The imple-

mentation of MTT and Fyw calculations has varied across the literature

due to multiple methodologies that rely on specific spatial and tempo-

ral input data (Bansah & Ali, 2019; Capell et al., 2012; von Freyberg

et al., 2018; Gabrielli & McDonnell, 2020; Jasechko et al., 2016;

Kirchner, 2016a, 2016b; McGuire et al., 2005; van Meerveld

et al., 2019; Mosquera et al., 2016; Segura, 2021; Stockinger

et al., 2016). There have been many methodologies for understanding

water age because different convolution models have been shown to

work better or worse in certain types of watersheds, environments,

and with different spatial and temporal input data (Kirchner, 2016a,

2016b; McGuire et al., 2005; Stockinger et al., 2016).

There have been several global and regional efforts to understand

the relationship between transit times and environmental characteris-

tics (Brooks et al., 2014; Halder et al., 2015; Hrachowitz et al., 2010;

Jasechko et al., 2016; Kendall & Coplen, 2001; Lutz et al., 2018; von

Freyberg et al., 2018). The Global Network of Isotopes in Precipitation

(GNIP) and corresponding Global Network of Isotopes in River (GNIR)

have monitored the isotopic composition of precipitation and stream

waters for over 60 years worldwide (Halder et al., 2015). The combi-

nation of GNIP and GNIR allows a worldwide view of water isotope

patterns useful for a range of scientific disciplines and reveal seasonal

variations of isotopes in stream waters and precipitation. This infor-

mation can help provide decision making services for water managers

and allow for better understanding of hydrologic processes (Halder

et al., 2015). Within the United States (US), 351 surface isotope sites

with corresponding precipitation isotopes from 1984 to 1987 within

the United States Geological Survey (USGS) National Stream Quality

Accounting Network were evaluated by Kendall and Coplen (2001).

They showed strong agreement in the isotope spatial characteristics

with the spatial characteristics of the GNIP data, allowing their data-

set to serve as a proxy for the isotopic compositions in US waterways

(Kendall & Coplen, 2001). While these data collections are important

to understanding spatially and temporally isotope variation across

large scales, they do not provide consistent monitoring of watershed

scale processes at distributed sites across different ecological biomes.

Starting in 2012, the National Ecological Observatory Network

(NEON) established baseline measurements of precipitation, surface,

and vapour water isotopes at all their core sites (Goodman

et al., 2015). NEON's goal extends beyond water isotopes to broadly

utilize long-term research environments throughout North America to

study streams, rivers, and lakes interactions with the atmosphere and

other ecological characteristics for at least 30 years (NEON, 2023b).

In this study, we present stable water isotope data from co-located

precipitation (δP) and stream water (δQ) sites across the continental

US and Puerto Rico within NEON. These data are analysed with

established methods to understand the hydrologic processes and

timescales associated with water movement at each site. Here, our

goal is to clarify key hydrologic processes at NEON sites by under-

standing the movement of water through the surface-subsurface con-

tinuum using stable water isotopes. The movement of water at NEON

sites has linkages to water cycling, which can provide key insights into
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watershed health and aid in future research at NEON sites as well as

similar studies. To accomplish our goal, we (1) evaluate the site-

specific stable water isotope LMWLs and LSWLs to understand the

sample variability, evaporative influences, and any potential environ-

mental effects, (2) evaluate the δP and δQ seasonal cycles and calcu-

late Fyw, (3) use δP and δQ information to calculate MTTs based on a

gamma convolution model to evaluate the distributions of water tran-

sit times at NEON sites, and (4) assess relationships between the

LMWL, LSWL, Fyw, and MTTs with environmental characteristics, to

synthesize findings across the continental US and Puerto Rico.

2 | DATA AND METHODS

2.1 | Study sites and measured data

NEON sites vary in geographic location across the continental US,

Hawaii, and Puerto Rico, with vastly different climate and watershed

characteristics within the network. Each NEON domain has long-term

sites of precipitation (terrestrial) and stream water (aquatic) observa-

tions. The aquatic and terrestrial sites are typically co-located (i.e., in

close proximity) to support understanding of linkages across terrestrial

and aquatic ecosystems and their interactions with the atmosphere

(NEON, 2023b). This dataset is unique because both inputs and out-

puts of hydrologic tracers are actively measured across ecosystems at

the continental scale. In this study, NEON terrestrial and aquatic site

pairs that are at most 20 kilometres (km) apart are used to allow for

observations that are representative of the same environment. Using

this 20 km threshold resulted in 26 NEON sites for analysis in this

study (Figure 1).

The 26 NEON sites varied in location from Alaska to Puerto Rico

and covered nearly all NEON ecoclimatic domains that have a diverse

range in geomorphic and climate (environmental) characteristics

(Tables 1 and 2). This allows us to capture a wide range of North

American ecological and climatic diversity (NEON, 2023b). Watershed

areas upstream of the aquatic collection points were obtained from

shapefiles via NEON's spatial data and maps portal and analysed

within GIS software (ESRI, ArcGIS Version 10.8.2; USGSa TNM Ver-

sion 2.0, 2023) for geospatial characteristics in concert with a 10 m

Digital Elevation Model (DEM) of watershed terrain. Across the

NEON sites, watershed area ranges from 1 to 47 085 km2 with about

75% of the watersheds less than 70 km2 (NEON, 2023e). See the

Sources of Uncertainty and Limitations section about the co-located

NEON watersheds that are greater than 100 km2. The average water-

shed elevation ranges from 13 to 2908 meters (m) with an average of

588 m. The average slope ranges from 2.2% to 56.3%, with the aver-

age slope of 15%. The longest flow path obtained using flow path

delineation ranges from 1.3 km to over 530 km with 75% of the

watersheds less than 13 km (NEON, 2023e). The soil characteristics

were grouped into fractions of clay, silt, and sand, as well as the

F IGURE 1 Map of 26 National Ecological Observatory Network (NEON) site pairs (lettered a–z) as in Table 1. Each site is colour coded by the
watershed size in kilometres squared (km2) with the NEON ecoclimate domains labelled.
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average porosity using the Global Land Data Assimilation System

(GLDAS) over a 0.25-degree pixel at each NEON aquatic site (Rodell

et al., 2004). The average clay, sand, silt fraction, and porosity respec-

tively across NEON sites is 0.22, 0.47, 0.31, and 0.44. We acknowl-

edge some NEON watersheds are larger than the 0.25-degree pixel

and may not be representative of the whole watershed. We obtained

NEON watershed geology from SanClements et al. (2020) and took

the rock names to translate them into rock types as igneous, meta-

morphic, or sedimentary. Some rocks had a combination of rock types.

We compared various rock types to water timescale metrics and

found no correlations using a t-test. We exclude geology information

from the remainder of the paper and note NEON geology is complex.

We recommend future research should investigate rock types correla-

tion to NEON hydrologic processes.

Meteorological variables at the 26 NEON sites were obtained

from NEON and the Daily Surface Weather and Climatological

Summaries (DAYMET) (NEON, 2023b; Thornton et al., 2022). The

average watershed temperature ranges from �9 to 24 Celsius (�C)

with an average of 11�C (Table 2). The average watershed precipita-

tion ranges from 262 to 2329 millimeters (mm) with an average of

1014 mm. We noticed highly variable incoming daily precipitation

data and acknowledge potential errors via measurement uncertainty

through underestimates and overestimates of the NEON precipitation

dataset. Thus, we used DAYMET (Version 4 R1) precipitation data

because it provides continuous estimates of precipitation in space and

time. DAYMET is derived from a collection of algorithms and com-

puter software designed to interpolate and extrapolate from daily

meteorological observations to produce gridded estimates of daily

weather parameters. DAYMET also covers the continental US and

Puerto Rico, which encompasses the NEON sites. We downloaded

the 1 km grid pixel over each NEON terrestrial measurement site loca-

tion spanning the date of the first and last δQ observations (varies per

TABLE 1 National Ecological Observatory (NEON) site pairs (lettered a–z) environmental characteristics: latitude/longitude (Lat-Lon), state
(ST), average elevation (meters (m)), area (area–kilometres (km)), slope (slope–10 m digital elevation model (DEM)), longest flow length (flow
length–km), flow length/slope (NEON, 2023a), clay fraction, sand fraction, silt fraction, and porosity.

Site labels
(Precip-stream)

Location
(Lat, Lon) ST

Elevation
(m)

Area
(km)

Slope

(10 m
DEM)

Flow length
(km)

Flow
length/slope

Clay
fraction

Sand
fraction

Silt
fraction Porosity

(a) ARIK-ARIK 39.8, �102.5 CO 1179 2632 2.2 156.0 70.9 0.21 0.44 0.35 0.437

(b) BLAN-LEWI 39.1, �78.0 VA 152 12 7.2 5.3 0.7 0.22 0.52 0.27 0.447

(c) BLUE-BLUE 34.4, �96.6 OK 289 322 3.2 41.0 12.8 0.24 0.50 0.27 0.447

(d) BONA-CARI 65.2, �147.5 AK 230 31 9.6 7.7 0.8 0.20 0.44 0.35 0.437

(e) CLBJ-PRIN 33.4, �97.8 TX 253 4 3.2 12.5 3.9 0.26 0.53 0.21 0.447

(f) CUPE-CUPE 18.1, �67.0 PR 157 4 56.3 4.5 0.1 0.29 0.39 0.32 0.447

(g) DELA-BLWA 32.5, �87.8 AL 22 16 159 12.8 458.9 35.9 0.32 0.32 0.36 0.437

(h) GRSM-LECO 32.5, �87.8 TN 579 9 23.8 5.4 0.2 0.22 0.48 0.29 0.447

(i) GUIL-GUIL 18.2, �66.8 PR 551 10 49.7 6.1 0.1 0.39 0.40 0.21 0.45

(j) HARV-HOPB 42.5, �72.3 MA 203 11.9 7.7 6.1 0.8 0.05 0.78 0.17 0.386

(k) JERC-FLNT 31.2, �84.4 GA 30 14 999 6.15 434.5 70.7 0.16 0.67 0.18 0.419

(l) KONZ-KING 38.9, �96.4 KS 324 13 4.9 5.7 1.2 0.22 0.39 0.40 0.437

(m) KONZ-MCDI 39.1, �96.6 KS 396 23 3 7.7 2.6 0.22 0.39 0.40 0.437

(n) LENO-TOMB 31.8, �88.2 AL 13 47 085 7 530.3 75.8 0.24 0.50 0.26 0.45

(o) NIWO-COMO 40.0, �105.5 CO 2908 4 18.5 7.9 0.4 0.17 0.47 0.37 0.437

(p) ORNL-WALK 36.0, �84.3 TN 264 1 23.1 2.2 0.1 0.22 0.48 0.29 0.447

(q) REDB-REDB 40.8, �111.8 UT 1694 17 25.9 4.2 0.2 0.25 0.49 0.26 0.412

(r) SCBI-POSE 38.9, �78.2 VA 276 2 9.8 1.3 0.1 0.22 0.48 0.30 0.412

(s) SYCA-SYCA 33.8, �111.5 AZ 645 280 33.6 32.3 1.0 0.21 0.54 0.25 0.412

(t) TALL-MAYF 33.0, �87.4 AL 77 14 20.1 4.7 0.2 0.21 0.49 0.29 0.447

(u) TOOL-OKSR 68.7, �149.1 AK 766 58 2.2 10.8 4.9 0.19 0.47 0.35 0.437

(v) TOOL-TOOK 68.6, �149.6 AK 715 68 2.8 8.5 3.0 0.19 0.47 0.35 0.437

(w) WOOD-PRLA 47.1, �99.2 ND 591 4 3.3 2.1 0.6 0.21 0.35 0.44 0.476

(x) WOOD-PRPO 47.1, �99.2 ND 591 2 2.5 2.5 1.0 0.21 0.35 0.44 0.476

(y) WREF-MART 45.8, �121.9 WA 337 6 34.2 2.7 0.1 0.21 0.48 0.31 0.447

(z) YELL-BLDE 45.0, �110.6 WY 2053 38 16.2 12.2 0.8 0.12 0.54 0.34 0.437

Note: See SanClements et al. (2020) supplementary information for the geology at NEON site.
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NEON site) for each individual site from 2014 to 2022. We used

DAYMET data to calculate the average precipitation intensity (mean

precipitation on days with rain) and average percent of days with pre-

cipitation per year. The average precipitation intensity ranges from

4.8 to 16.8 mm/day with an average of 11 mm/day. The average days

with precipitation per year range from 6% to 38% with an aver-

age of 20%.

NEON isotope data is openly available via their data portal

(NEON, 2023a). We downloaded both δ18O and δ2H stream (δQ –

DP1.20206.001) and precipitation (δP – DP1.00038.001) data. The

δP composite samples and δQ grab-samples were collected approxi-

mately biweekly and sent to an external laboratory for analysis and

archiving (NEON, 2023c, 2023d). The δQ samples are collected,

sealed with parafilm to prevent evaporation, and stored on ice within

4 h of sample collection (NEON, 2023d). Isotope ratios in both δQ

and δP samples are measured using cavity ringdown spectrometry

(NEON, 2023c, 2023d). NEON reports isotope observation uncer-

tainties, where for precipitation (δP) sites and samples, the average

uncertainty values for δ18O are 0.05‰ and δ2H are 0.35‰. For

stream water (δQ) sites and samples, the average uncertainty values

for δ18O are 0.05‰ and δ2H are 0.33‰ (NEON, 2023c, 2023d).

Stream water samples were filtered for outliers following Wassenaar

et al., 2018. We eliminated values of δQ that were outside 3 times

the interquartile range in order to use acceptable isotope values that

would not be skewed by inaccurate or imprecise laboratory perfor-

mance. On average this eliminated �3% of δQ data. Table 3 reports

the weighted mean values of δP and unweighted δQ data (after filter-

ing for outliers). We use unweighted δQ because NEON does not

have reliable discharge data (Rhea et al., 2023). We use weighted δP

to account for differences in isotope values per precipitation amounts

so that the outflow composition reflects the mass flux entering the

watershed.

There are three NEON sites that are nested in our study area

(in Alabama), which are DELA-BLWA (g), LENO-TOMB (n), and TALL-

MAYF (t) (Figure 1). Site LENO-TOMB (n) is the largest watershed

with sites (g) and (t) nested inside. To account for the large variability

of precipitation in site (n), we took the average precipitation and δP

for all three sites to used it for the terrestrial site location LENO (n).

TABLE 2 National Ecological Observatory (NEON) site pairs (lettered a–z) environmental characteristics: average temperature (�C), and
average precipitation magnitude (Precip–millimetres (mm)), intensity (mm/day), and frequency (%).

Precip-stream Avg temp (�C) Avg Precip (mm) Precip intensity (mm/day) Precip Freq

(a) ARIK-ARIK 10 452 8.5 0.11

(b) BLAN-LEWI 12 976 9.6 0.23

(c) BLUE-BLUE 16 1041 14.6 0.14

(d) BONA-CARI -3 262 6.0 0.20

(e) CLBJ-PRIN 18 841 14.4 0.12

(f) CUPE-CUPE 24 2050 16.8 0.25

(g) DELA-BLWA 18 1372 15.5 0.20

(h) GRSM-LECO 13 1375 11.0 0.31

(i) GUIL-GUIL 21 1900 14.0 0.38

(j) HARV-HOPB 8 1368 9.9 0.26

(k) JERC-FLNT 19 1311 12.4 0.19

(l) KONZ-KING 12 860 11.8 0.19

(m) KONZ-MCDI 13 921 11.8 0.19

(n) LENO-TOMB 18.1 1386 16.3 0.20

(o) NIWO-COMO 2 841 8.2 0.26

(p) ORNL-WALK 14 1340 12.9 0.28

(q) REDB-REDB 8 751 8.7 0.16

(r) SCBI-POSE 12 1090 10.9 0.30

(s) SYCA-SYCA 21 409 11.2 0.06

(t) TALL-MAYF 17 1379 15.0 0.25

(u) TOOL-OKSR �9 316 4.8 0.13

(v) TOOL-TOOK �9 316 4.8 0.13

(w) WOOD-PRLA 4.9 494 8.3 0.14

(x) WOOD-PRPO 4.9 494 8.3 0.14

(y) WREF-MART 10 2329 13.4 0.24

(z) YELL-BLDE 4 481 4.8 0.18

Note: DAYMET was used to calculate precipitation intensity and precipitation frequency.
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This allowed us to consider further upstream impacts on the water-

shed. Further impacts and limitations on averaging the three sites will

be discussed in Section 4.4, Sources of Uncertainty and Limitations.

2.2 | Downscaling of δP and comparing with δQ

NEON δP samples represent aggregated precipitation over an approx-

imately two-week's time scale and to properly understand the

changes over a continuous time frame, we statistically downscale

the aggregated δP to produce daily δP estimates. The downscaling

method combines a deterministic estimate of seasonal variability in δP

with stochastically generated daily estimates in δP that are consistent

with the covariation of precipitation amount and its isotope ratio

(Finkenbiner et al., 2021). The combined deterministic and stochastics

time series are then corrected to match the observed low frequency

mass inputs. The downscaling was applied to δP for both δ18O and

δ2H and is openly published via the NEON Daily Isotopic Composition

Environmental Exchanges (NEON-DICEE) Dataset (Finkenbiner

et al., 2022). Since the downscaling method is stochastic, the analyses

conducted here are run across an ensemble of 100 downscaled δP

time series per NEON site. This propagates uncertainty in downscaled

precipitation estimates through later analyses. We use each ensemble

δP in our methods below.

To understand the evaporative and elevation influences within

the δP and δQ meteoric water lines, we assessed the local meteoric

water lines (LMWL), the local stream water lines (LSWL), and line-

conditioned excess (lc-excess) (Landwehr & Coplen, 2006). Using a

weighted linear regression, the LMWL slope and intercept were fit to

precipitation δ18O vs. δ2H samples and DAYMET precipitation

amount. The LSWL slope and intercept were fit to stream water δ18O

vs. δ2H samples. The lc-excess allows a greater understanding of the

TABLE 3 National Ecological Observatory (NEON) site pairs (lettered a–z) isotope characteristics of the weighted median and standard
deviation (Std) δP (O18 and H2), median (Std) of δQ (O18 and H2), weighted δP slope (Figure 2), weighted δP intercept (Figure 2), δQ slope
(Figure 2), δQ intercept (Figure 2), and amplitude of δP (AP) and δQ (AQ) (Figure 3).

Precip-stream
δ18OP δ2HP δ18O Q δ2H Q δP

slope
δP
intercept

δQ
slope

δQ
intercept AP AQ

Median
(Std) Median (Std)

Median
(Std) Median (Std)

(a) ARIK-ARIK �8.8 (3.0) �62.3 (7.9) �10 (0.6) �75.5 (3.5) 7.9 7.6 5.4 �21.6 6.38 0.54

(b) BLAN-LEWI �6.3 (2.5) �38.2 (6.2) �7.7 (0.3) �48.9 (1.2) 7.4 8.2 3.8 �19.9 2.39 0.06

(c) BLUE-BLUE �5.4 (2.3) �30.5 (5.5) �4.9 (0.2) �28.3 (1.2) 7.1 8.2 4.3 �7.2 2.69 0.07

(d) BONA-CARI �16.3 (4.0) �136.5 (11.7) �19.1 (0.4) �148 (2.3) 8.8 6.7 5.6 �40.8 2.68 0.17

(e) CLBJ-PRIN �5 (2.2) �27.1 (5.2) �4.2 (0.5) �25.9 (3.4) 7.1 8.4 5.1 �4.0 2.46 0.35

(f) CUPE-CUPE �2.9 (1.7) �11.8 (3.4) �2.7 (0.3) �8.3 (1.8) 7.6 10.0 5.1 4.9 1.19 0.14

(g) DELA-BLWA �3.6 (1.9) �17.8 (4.2) �3.9 (0.7) �21.4 (4.0) 6.0 3.8 5.5 �0.1 0.69 0.37

(h) GRSM-LECO �5.7 (2.4) �36 (6.0) �7 (0.4) �42.6 (2.7) 8.3 11.3 6.1 0.1 1.84 0.21

(i) GUIL-GUIL �3.2 (1.8) �14 (3.7) �3.1 (0.3) �11.3 (2.2) 8.4 12.7 5.9 6.6 1.19 0.15

(j) HARV-HOPB �8.3 (2.9) �53.4 (7.3) �8.6 (0.7) �54.3 (4.8) 8.0 13.2 6.8 3.9 1.91 0.63

(k) JERC-FLNT �4.1 (2.0) �20.9 (4.6) �3.6 (0.5) �19.3 (3.3) 7.6 10.1 6.5 3.9 0.34 0.32

(l) KONZ-MCDI �6 (2.4) �37.6 (6.1) �6 (0.3) �38.4 (1.5) 7.8 8.8 4.6 �10.9 3.02 0.03

(m) KONZ-KING �6 (2.4) �37.6 (6.1) �5.5 (0.6) �35.5 (3.3) 7.8 8.8 5.4 �6.1 3.02 0.16

(n) LENO-TOMB �4 (2.0) �19.6 (4.4) �3.7 (0.7) �20.6 (4.3) 6.8 7.5 5.5 �0.3 0.57 0.37

(o) NIWO-COMO �14.9 (3.9) �115.1 (10.7) �17.3 (0.6) �128.9 (4.3) 8.8 16.0 6.6 �13.7 6.08 0.54

(p) ORNL-WALK �5.8 (2.4) �34.1 (5.8) �6.1 (0.3) �35.5 (1.4) 7.7 10.9 4.3 �9.1 1.92 0.05

(q) REDB-REDB �14.3 (3.8) �105.6 (10.3) �16.5 (0.3) �122.9 (1.4) 7.0 �6.0 5.0 �41.0 5.44 0.03

(r) SCBI-POSE �6.5 (2.5) �39.3 (6.3) �7.8 (0.3) �47.2 (2.1) 7.6 10.1 5.8 �2.6 2.45 0.18

(s) SYCA-SYCA �7.5 (2.7) �54.1 (7.4) �8.5 (1.2) �60.6 (7.5) 6.9 �2.2 6.3 �7.8 4.25 0.83

(t) TALL-MAYF �4.4 (2.1) �22.3 (4.7) �4.3 (0.4) �21.7 (2.4) 7.1 8.6 5.0 �0.7 0.71 0.13

(u) TOOL-OKSR �17.8 (4.2) �147.5 (12.1) �19.5 (1.0) �149.4 (7.1) 8.1 �3.8 6.8 �19.7 4.30 2.02

(v) TOOL-TOOK �17.8 (4.2) �147.5 (12.1) �19 (1.0) �150.7 (7.7) 8.1 �3.8 7.4 �8.5 4.30 0.61

(w) WOOD-PRLA �10.6 (3.3) �77.9 (8.8) �3.7 (1.5) �45.2 (9.3) 8.2 8.9 6.0 �23.0 2.57 1.01

(x) WOOD-PRPO �10.6 (3.3) �77.9 (8.8) �3.8 (1.8) �47.1 (10.6) 8.2 8.9 5.9 �24.6 2.57 1.00

(y) WREF-MART �9.5 (3.1) �67.5 (8.2) �10.1 (0.6) �68.5 (4.2) 7.8 6.2 6.3 �5.4 1.25 0.08

(z) YELL-BLDE �14.4 (3.8) �115.9 (10.8) �19 (0.3) �144.1 (2.1) 7.4 �10.2 6.1 �28.1 5.99 0.27
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evaporative influences where the moisture source is measured (δP),

relative to where stream water is sampled (δQ). The lc-excess is

defined as:

lc�excess¼ δ2H�a�δ18O�b ð1Þ

where a is the slope and b is the y-intercept of the LMWL.

2.3 | Fyw and MTT calculation

Existing Fyw and MTT mathematical approaches were used based on

Kirchner (2016a, 2016b) and McGuire et al. (2005). The Fyw in stream

water was calculated using the seasonal cycles of the δP and δQ, by

estimating the amplitudes A and phases φ through nonlinear fitting to

a sine curve, thereby a simpler metric and less computational involved

than TTD (Kirchner, 2016a; Lutz et al., 2018). The sine curves for the

precipitation isotope ratio, δP(t) and stream water isotope ratio, δQ(t)

are given as:

δP tð Þ¼AP sin 2πft�φPð ÞþkP ð2aÞ

δQ tð Þ¼AQ sin 2πft�φQ

� �þkQ ð2bÞ

where t is time, f is the frequency of the cycle (f = 1 year�1 for a

seasonal cycle), the subscripts P and Q refer to precipitation and

stream water, and k is the curve offset. We applied this only for

δ18O isotope data for reporting simplicity. We did the analysis for

δ2H and found very similar results. The Fyw from the above equa-

tion is defined as amplitude in δQ (AQ) divided by the amplitude in

δP (AP) (i.e., Fyw = AQ/AP). We used 100 ensemble-member inputs

of δP that allowed for the Fyw to be estimated 100 times per

input.

We employed a convolution approach following McGuire et al.

(2005) to estimate a time invariant TTD based on the incoming data

of δP, DAYMET precipitation amount, and output data δQ. In the con-

volution model to estimate stream water isotopes, we used the input

precipitation signal (δP) and the output stream water signal (δQ) con-

sidering the lag of past inputs δP (t� τ) according to their TTD, g(τ)

(McGuire et al., 2005). The input precipitation signal (δP) was volume

weighted by weighing w t� τð Þ using DAYMET precipitation data. This

ensured that the stream water composition reflects the mass flux

leaving the watershed (McGuire et al., 2005).

δQ tð Þ¼

ð∞

0
g τð Þw t� τð ÞδP t� τð Þdτ
ð∞

0
g τð Þw t� τð Þδdτ

ð3Þ

We utilized three convolution approaches, which were the

gamma probability density function (PDF) distribution, exponential

distribution, and power law distribution (Kirchner et al., 2001;

Maloszewski & Zuber, 1982; Schumer et al., 2003). In the gamma

distribution, two parameters are used defined by beta (shape, β) and

alpha (scale, α):

g τð Þ¼ Γα�1

βαΓ αð Þ exp �τ=β
� � ð4Þ

The two other models, exponential and power law, only use one

shape parameter. Both models were proven to be ineffective at drasti-

cally improving model δQ data compared to the gamma distribution,

therefore, they will not be discussed further.

Based on the shortest period of isotope data observations, a max-

imum of 2190 days (=6 years) into the past was used to evaluate the

MTT. However, the gamma distribution model parameters (α and β)

were bound such that at least 50% of the gamma PDF fell within the

2190-day analysis period. This allowed us to vary the range of

the shape and scale parameters by considering how much of the

gamma PDF falls within the data records for each site. The defined

gamma convolution model parameters were fit to maximize the model

δQ data based on the Kling-Gupta Efficiency (KGE) value closest to

1 (Gupta et al., 2009). The KGE is a model fitness metric that incorpo-

rates the correlation coefficient, the bias, and the normalized standard

deviation (Knoben et al., 2019). By using the ensemble of 100 daily δP

time series, we estimated 100 different MTTs with associated KGE

and model parameters. For each ensemble, a global optimization using

scipy.optimize (differential evolution) was used to find the best gamma

model fit with the highest KGE (closest to 1) per NEON site (Virtanen

et al., 2020). We utilized other optimizations (that gave bad results)

through scipy.optimize such as: basinhoppinh, brute, shgo, and dual

annealing. The chosen optimization, differential evolution, uses the

three parameters, α, β, and the effective fractionation factor (Eeff). Eeff

is used to account for isotope fractionation. We use the bounds for

each parameter respectively of 0.001 to 1010, 0.001 to 1010, and

�100 to 100. We used a random seed, 300 iterations, and an initial

condition for the function at 1, 365, and 0 for the three parameters

respectively. The optimization function allowed us to minimize the

gamma model output errors in δQ and search for the best combina-

tion of model parameters (α and β) that have the highest KGE.

3 | RESULTS

3.1 | δQ and δP relation to LMWLs and LSWLs

In this study, we present the NEON stable water isotope data and

associated LMWLs and LSWLs across the 26 sites (Figure 2, Table 3).

We utilize both stable water isotopes (δ18O and δ2H) and associated

linear fits (LMWL and LSWL) to understand evaporative and elevation

effects at each NEON site. Across all sites, the δ18O values of precipi-

tation range from �28.4‰ to 13.2‰ and the δ2H values ranged from

�230.4‰ to 21.7‰. The median of the weighted δ18O in precipita-

tion ranges from �17.8‰ to �2.9‰ with an average of �8.4‰

(Table 3). The median of the weighted δ2H in precipitation ranges

from �147.5‰ to �11.8‰ with an average of �59.5‰ (Table 3).
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F IGURE 2 Weighted Local Meteoric Water Line (LMWL, solid black line) and unweighted Local Stream water Line (LSWL, dashed grey line)
for δ2H and δ18O isotopes at National Ecological Observatory Network (NEON) site pairs (lettered a–z). Observed precipitation isotope ratios
(cyan) are used with precipitation amounts to create downscaled precipitation isotope values (blue) and are shown with measures of stream water
isotope ratios (red). Site names are in Table 1.
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Across all sites and samples, the δ18O values of stream water range

from �23.0‰ to �1.4‰ and the δ2H values ranged from �176.4‰

to �3.6‰. The median of δ18O in stream water ranges from �19.5‰

to �2.7‰ with an average of �8.7‰ (Table 3). The median of δ2H

ranges from �150.7‰ to �8.3‰ with an average of �61.5‰

(Table 3). Generally, the weighted LMWL has a slope around 8 (mean

of 7.7 with standard deviation of 0.6) and the LSWL has a shallower

slope (mean of 5.7 with standard deviation of 0.9). The shallower the

LSWL slope, the more evaporative effects at that site.

We conducted a brief analysis on the line conditioned excess (lc-

excess) to understand the evaporative and elevation influences within

the δP and δQ data (Landwehr & Coplen, 2006). The lc-excess defines

the offset between the LMWL and LSWL with a value of 0 indicating

no difference between surface water and precipitation water samples

(Landwehr & Coplen, 2006). The average lc-excess among NEON sites

was �0.37‰, which indicates δQ is higher than δP, partially due to

evaporation effects.

Several sites show the range of δQ not centred on a majority of

the δP observations. This is observed in sites BONI-CARI (d), NIWO-

COMO (o), WOOD-PRLA (w), WOOD-PRPO (x), and YELL-BLDE

(z) (Figure 2). The sites TOOL-OKSR (u) and TOOL-TOOK (v) show

the most negative δQ and δP. These sites show larger spreads in δQ

as well as a more negative δQ compared to δP, with positive values of

lc-excess (in a brief analysis not shown). These sites also show more

negative δP observations that are associated with snowfall as the sta-

tions are in Alaska (d, u, and v), the Rocky Mountains in Colorado (o),

North Dakota (w and x), and in Wyoming (z).

3.2 | Isotope seasonality and Fyw estimates

Seasonal patterns in δP and δQ are evident in the NEON stream

water samples based on the median of the 100 ensemble-member

best wave fits using Equations (2a) and (2b) (Figure 3). Given the

strong correlation between δ18O and δ2H (Figure 2), only δ18O was

used in the modelling of Fyw and MTT. Note that each site's isotope

data record begins at different times, which ranges from 2014 to

2018, and continues through the fall of 2022 (Figure 3). The AP ranges

from 0.34‰ to 6.38‰ with an average of 2.78‰ and the AQ ranges

from 0.03‰ to 2.02‰ with an average of 0.4‰ (Table 3).

The relative strength of seasonal amplitudes of δP and δQ values

at NEON site determines the amount of young water, Fyw, within each

location (Figure 4). The average Fyw across NEON is 0.20 or 20% of

young water and the average standard deviation is 0.02 or 2%. The

Fyw ranges from 0.01 to 0.93 with about 75% of sites having a Fyw less

than 0.20 (Table 4).

3.3 | MTT estimates

MTT estimates show a wide range in water transport time throughout

the NEON sites (Figure 5, Table 4). The median MTT ranges from 0.1

to 13.2 years with a median of 1.6 years. The median standard

deviation ranges from 0.1 to 21.2 years with a median of 1.4 years.

The maximum MTT and standard deviations are associated with sta-

tion ARIK-ARIK (a) and are likely unrealistic and corresponding to one

of the lowest KGE model fit of 0.20. The KGE scores range from 0.00

to 0.78 with half of them above 0.47 (Table 4). The diverse range of

the gamma model fits and associated KGE scores provide a complex

set of results with both confident (high KGE) MTT estimates and inac-

curate estimates (low KGE).

The parameters of the gamma function (α and β) vary throughout

the NEON sites (Table 4). The α ranges from 0.3 to 12.2 with a median

of 0.9 and the β ranges from 0.03 years to 34.30 years with a

median of 1.50 years. The ranges of median α and β with the corre-

sponding MTT product in relation to color coded KGE, show no corre-

lation (Figure 6).

The ensemble of downscaled precipitation isotopes allowed the

Fyw and the gamma model to be run as 100 ensemble-members to

obtain estimates of Fyw and MTT that incorporate uncertainties in pre-

cipitation downscaling. The spread of Fyw based on the 100 ensemble-

member δP inputs ranges from just above 0.01, site REDB-REDB

(q) to above 0.90, site JERC-FLNT (k) (Figure 7). Some estimates of

Fyw were above 1 and were excluded from analysis due to unrealistic

estimates. The largest ensemble spreads of Fyw are observed for sites

DELA-BLWA (g), JERC-FLNT (k), and LENO-TOMB (n), which corre-

sponds to the largest median Fyw. The MTT ensembles range from

0.1 years, site LENO-TOMB (n) to well over 15 years, site ARIK-ARIK

(a). As MTT increases, there is a larger spread in the ensemble mem-

bers. The corresponding median of KGE values range from around

0.00, site BLAN-LEWI (b) to 0.78, site SYCA-SYCA (s). There is no

relationship between large spreads or higher median MTT with larger

spreads or lower KGE. There should be higher confidence in an MTT

estimate when there is a corresponding high median KGE, but also a

narrow range of ensemble members. A high KGE and a narrow range

of ensemble members shows our model is consistent and accurately

models the observed δQ.

4 | DISCUSSION

4.1 | δP and δQ relation to environment and
watershed timescale characteristics

There is variable gamma model performance based on visual model

fits from Figure 5 as well as KGE scores from Table 4. Based on this,

we utilize select model fits with KGE scores that represent accurate

observations of stream water isotopes at NEON sites. We assumed

that model fits with a median KGE scores above 0.5 (rounded to near-

est tenth) were robust. There were 14 out of 26 NEON sites with a

KGE ≥0.5. This KGE threshold is applied to only the gamma model

parameters β and α, as well as the output MTT. We choose a rounded

KGE of 0.5 because this value includes ensemble spreads that are pos-

itive (Figure 7), which are considered strong model fits.

The statistical correlations to be discussed have significant

p-values ≤0.1 based on a linear regression, with the significance of p-
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value dictating the size of the coloured square in Figure 8. When eval-

uating the isotope ratios in δP and δQ across the NEON sites, broad

patterns with environmental characteristics are clear (Figure 8a).

There are strong positive and negative correlations (jrj>0.25) with the

δ18O and δ2H median and standard deviation data in δP and δQ with

latitude, longitude, elevation, flow length, clay fraction, silt fraction,

temperature, precipitation amount, precipitation intensity, and the

precipitation frequency. As NEON sites are further north (i.e., higher

F IGURE 3 Downscaled precipitation isotopes (blue) derived from observed precipitation (cyan) during the stream water (red) sampling period.
Best fit sinusoidal curves for precipitation (grey) and stream water (black) for the 26 National Ecological Observatory Network (NEON) site pairs
(lettered a–z) from 2014 to 2022. Site names are in Table 1.
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latitude), δP and δQ become more negative (more depleted,

r=�0.82), while as NEON sites are further east (i.e., lower longi-

tude) in the continental US and Puerto Rico, δP and δQ values are

more positive (more enriched, r=�0.83). There is a negative correla-

tion with the median δP (r=�0.6) and δQ (r=�0.64) with NEON

site elevation. As NEON sites are located at higher elevation, there

is more negative δP and δQ, and thus the isotope signature is

depleted due to the rainout effect. There is a positive correlation

with the median δP (r= 0.35) with flow length. It is not clear what

processes control NEON sites having longer flow lengths and hav-

ing more positive δP. There is a positive correlation with the median

δP (r=0.45) and δQ (r=0.44) with the clay fraction, but a negative

correlation with the median δP (r= 0.41) with the silt fraction of the

NEON site soils. NEON sites that are further north have a lower

clay fraction and higher silt fraction, which explains the inverse

trend of δP and δQ with site latitude. NEON sites that are further east

have a higher clay fraction and lower silt fraction, which explains the

similar trend of δP and δQ with site longitude. There is a positive cor-

relation with the median δP (r=0.93) and δQ (r=0.85) with NEON

site average temperature, indicating more positive or enriched δP and

δQ NEON with higher average temperature. There is a positive corre-

lation with the median δP (r= 0.68, 0.89) and δQ (r= 0.58, 0.85)

with NEON site average precipitation and precipitation intensity,

indicating more positive δP and δQ NEON with higher average pre-

cipitation and the intensity of precipitation. There is also a positive

correlation with the median δP (r= 0.36) with NEON site precipita-

tion frequency. As a NEON site receives more precipitation, the

isotope signature is more enriched or positive due to the high

amount of precipitation represented in warmer climates (i.e., higher

temperatures).

The correlations of δP and δQ with the NEON watershed charac-

teristics described above are supported by prior continental scale

analysis of stream water (Kendall & Coplen, 2001). They showed simi-

lar spatial characteristics of δ18O and δ2H across the continental US

with more negative isotope ratios in northern latitudes, further west-

ern areas, higher elevations, cooler temperatures, and lower precipita-

tion. Kendall & Coplen, 2001 did not weight δP but did discharge

weigh δQ observations. Our study showed similar results with

unweighted δP vs. weighted δP observations. The gradient of δ18O

and δ2H ratios at higher latitudes and higher elevations are generally

depleted due to cooler temperatures and the rainout effect (Allen

et al., 2017; Halder et al., 2015). Kendall and Coplen (2001) show the

isotope relation to climate parameters in stream water but go on to

use the river samples as a proxy for precipitation compositions. They

validate δQ data with the adjacent δP data to demonstrate similar cor-

relations to climate parameters and spatial distributions. Kendall and

Coplen (2001) show the ranges and spatial distributions of the slope

of the LSWL within the range of 5–6‰ with locally higher and lower

slopes, which supports the NEON average LSWL slope of 5.7‰.

There are lower slopes in western and further north sites, which imply

enhanced evaporation effects, partly due to snow sublimation for

northern sites. This is supported by Beria et al., 2018, which reviewed

the state of the knowledge in relation to how different hydrometeoro-

logical processes affect the isotopic composition of snow in its differ-

ent forms (snowfall, snowpack, and snowmelt).

The seasonal cycles of δ18O in precipitation (AP) and stream water

(AQ) show a correlation, both positive and negative (jrj ≥ 0.25) with

latitude, longitude, elevation, temperature, precipitation, precipitation

intensity, and precipitation frequency (Figure 8a). The AP and AQ

increase with further north NEON sites. The AP and AQ decrease as

NEON sites are further east in the continental US and Puerto Rico,

lower elevated, warmer temperatures, higher precipitation, and higher

precipitation intensity. The AP shows an additional positive correlation

(r = 0.83) with the average watershed elevation. This is supported

through the median values of δ18O and δ2H in precipitation men-

tioned earlier. Halder et al. (2015) showed the average seasonal ampli-

tude of δ18O in stream water to be 2.5‰ and precipitation to 7.5‰

across the globe. More than half of seasonal δ18O amplitudes in

stream water were below 2.0‰, which is closer to our average of

0.4‰ (Halder et al., 2015). Halder et al. (2015) studied global rivers

and did geographically separate results, but our results are a fraction

of the sample size in comparison, so it is reasonable to show that the

AP and AQ in δ18O relationships are different than Halder et al. (2015).

Despite the differences in quantitate values, Halder et al. (2015) did

show a strong correlation between the amplitude as a function of lati-

tude in δP but not δQ. We show a slightly stronger correlation with

δQ (r = 0.52) than δP (r = 0.42). This difference might be due to the

difference in global versus North American study sites. Halder et al.

(2015) showed a similar lack of correlation with watershed areas.

F IGURE 4 Amplitude of precipitation and stream water seasonal
variation in δ18O isotope values, with the fraction of young water, Fyw
(%) denoted by the colour scale. The letters per dot indicate the
National Ecological Observatory Network (NEON) site pairs (lettered
a–z) and are given in Table 1.
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The relationship between Tables 3 and 4 of the isotope character-

istics of δP and δQ with the watershed timescale metrics show some

correlations across characteristics (Figure 8b). There is a positive cor-

relation with the median of δP and the median of Fyw (r=0.16). There

is a negative correlation with the standard deviation of δP and the

median of Fyw (r=�0.19), β (r=�0.51), median MTT (r=�0.56), and

the standard deviation of the MTT (r=�0.53). There is a positive cor-

relation with the median of δQ and the standard deviation of Fyw

(r=0.37). There are also correlations with the standard deviation of

δQ and the median Fyw (r=0.44), β (r=�0.56), α (r=0.58), median

MTT (r=�0.61), and the standard deviation of MTT (r=�0.58).

There are other correlations, some of which seem spurious, between

the slope of the LSWL with the standard deviation of Fyw, the slope

and intercept of the LSWL with the Fyw and other timescale metrics.

Finally, there is a negative correlation between the AP and the median

as well as standard deviation of the Fyw (r=�0.43, �0.52). As the

amplitude becomes larger, the Fyw becomes smaller.

4.2 | Watershed timescale metrics' relation to
environmental characteristics and themselves

Watershed timescale metrics and environmental characteristics esti-

mated in this study show some correlations (Figure 8c) denoting local

controls over watershed hydrology. There is a positive correlation

between the median (r = 0.61) of the Fyw and the watershed area. As

the watershed becomes larger, the Fyw becomes higher. There is also

a positive correlation between the median (r = 0.76, 0.63) of the Fyw

and the flow length and the flow length/slope. As the watershed

becomes larger with a longer flow length, the Fyw becomes higher.

Lutz et al. (2018) found non-significant correlations between Fyw and

a wide range of watershed characteristics for mean watershed slope,

median flow path length, watershed area, soil fractions of sand, silt,

and clay. Despite that, they did find a correlation between Fyw and

annual precipitation (Lutz et al., 2018). von Freyberg et al. (2018) also

showed a positive correlation between the Fyw and the mean monthly

TABLE 4 The fraction of young
water, (Fyw) and mean transit time (MTT)
characteristics between 100 ensemble-
member model runs at each National
Ecological Observatory (NEON) site pairs
(lettered a–z).

Precip-stream
Fyw β α MTT KGE

Median (Std) Median (Std) Median (Std) Median (Std) Median (Std)

(a) ARIK-ARIK 0.08 (0.00) 34.3 (8.4) 0.4 (0.1) 13.2 (21.2) 0.20 (0.04)

(b) BLAN-LEWI 0.02 (0.00) 4.5 (6.3) 0.6 (1.6) 2.8 (3.5) 0.00 (0.06)

(c) BLUE-BLUE 0.03 (0.00) 4.7 (2.5) 1.5 (0.7) 7.1 (5.7) 0.33 (0.26)

(d) BONA-CARI 0.06 (0.00) 0.5 (0.1) 3.4 (0.4) 1.8 (1.0) 0.30 (0.00)

(e) CLBJ-PRIN 0.14 (0.01) 20.8 (16.2) 0.3 (0.1) 5.8 (11.0) 0.23 (0.19)

(f ) CUPE-CUPE 0.12 (0.01) 8.3 (4.0) 0.7 (0.9) 5.7 (7.0) 0.68 (0.07)

(g) DELA-BLWA 0.54 (0.07) 1.0 (0.5) 0.7 (0.1) 0.8 (0.9) 0.26 (0.02)

(h) GRSM-LECO 0.11 (0.01) 5.6 (2.8) 0.6 (0.0) 3.3 (4.4) 0.68 (0.02)

(i) GUIL-GUIL 0.13 (0.01) 16.4 (4.1) 0.6 (0.0) 9 (12.1) 0.61 (0.02)

(j) HARV-HOPB 0.33 (0.02) 0.4 (0.1) 0.9 (0.1) 0.4 (0.4) 0.74 (0.01)

(k) JERC-FLNT 0.93 (0.08) 0.1 (0.1) 5.4 (24) 0.5 (0.2) 0.38 (0.19)

(l) KONZ-MCDI 0.01 (0.00) 0.3 (0.5) 3.9 (5.2) 1.4 (0.6) 0.56 (0.09)

(m) KONZ-KING 0.05 (0.00) 0.2 (0.3) 3.9 (5.1) 0.7 (0.4) 0.47 (0.11)

(n) LENO-TOMB 0.64 (0.05) 0.1 (0.3) 0.9 (0.7) 0.1 (0.1) 0.65 (0.03)

(o) NIWO-COMO 0.09 (0.00) 1.6 (0.4) 0.9 (0.1) 1.4 (1.5) 0.20 (0.03)

(p) ORNL-WALK 0.02 (0.00) 15.6 (3.7) 0.6 (0.0) 9.0 (11.9) 0.58 (0.02)

(q) REDB-REDB 0.01 (0.00) 1.0 (0.9) 5.3 (3.4) 5.5 (2.4) 0.38 (0.08)

(r) SCBI-POSE 0.07 (0.00) 4.3 (2.1) 0.7 (0.1) 3.0 (3.6) 0.28 (0.03)

(s) SYCA-SYCA 0.20 (0.01) 1.5 (0.5) 0.9 (0.1) 1.3 (1.4) 0.78 (0.03)

(t) TALL-MAYF 0.19 (0.02) 9.3 (7.6) 0.3 (0.1) 2.7 (5.1) 0.27 (0.08)

(u) TOOL-OKSR 0.47 (0.02) 2.1 (1.3) 0.4 (0.1) 0.9 (1.3) 0.47 (0.08)

(v) TOOL-TOOK 0.14 (0.01) 0.4 (0.1) 0.9 (0.1) 0.4 (0.4) 0.57 (0.05)

(w) WOOD-PRLA 0.39 (0.03) 0.1 (0.0) 5.1 (0.9) 0.3 (0.2) 0.55 (0.04)

(x) WOOD-PRPO 0.39 (0.03) 0.0 (0.0) 12.2 (6.6) 0.3 (0.1) 0.46 (0.05)

(y) WREF-MART 0.07 (0.01) 0.2 (0.0) 3.6 (0.5) 0.7 (0.3) 0.53 (0.04)

(z) YELL-BLDE 0.04 (0.00) 11.4 (2.5) 0.8 (0.6) 8.9 (10.1) 0.13 (0.14)

Note: The median and standard deviation (Std) of Fyw, median beta (β–scale), alpha (α–shape) MTT, and

Kling-Gupta Efficiency (KGE).
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precipitation, mean precipitation intensity, and drainage density. They

show a weak negative correlation with watershed area, but a strong

negative correlation when they omit high-elevation snow-dominated

sites (von Freyberg et al., 2018). When we omit the five snow-

dominated sites, the correlations do not change significantly. Jasechko

et al. (2016) showed no significant correlations between the Fyw and

watershed size and annual precipitation for additional reference.

We did not weigh δQ based on stream water because of limita-

tions with NEON discharge data (Rhea et al., 2023). von Freyberg

et al. (2018) showed that flow weighting the δQ yielded Fyw that was

F IGURE 5 The gamma convolution model fit of δ18O stream water isotopes (black line) compared against observed stream water isotopes
(red ‘x’) per National Ecological Observatory Network (NEON) site pairs (lettered a–z). The grey shading is the inter quartile range of the model fit
between the 100 ensemble-member model runs. The model analysis statistics per site pair are in Table 4. Site names are in Table 1.
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roughly 26% larger than their unweighted counterparts Fyw, but

Segura (2021) found indistinguishable results considering weighted or

unweighted output signals in the Fyw estimates. von Freyberg et al.

(2018) studied watersheds in Switzerland that were sized 0.7–

351 km2 while Segura (2021) studied watersheds in the Oregon Cas-

cades that were sized 0.2–64 km2. Our study analyzed watershed

sizes from 1 to 47 085 km2.

There are correlations between β and latitude (r = �0.54), longi-

tude (r = 0.49), slope (r = 0.65), clay fraction (r = 0.61), and precipita-

tion frequency (r = 0.71) (Figure 8c). There are correlations between

α and sand fraction (r = �0.47), silt fraction (r = 0.69), and porosity

(r = 0.54). Hrachowitz et al. (2010) showed the β was controlled by

precipitation intensities, supporting our observation, consistent with

Lutz et al. (2018). Hrachowitz et al. (2010) also showed that α has no

relationship with precipitation intensity but was found to be closely

related to watershed landscape organization, notably the hydrological

characteristics of the dominant soils and the drainage density, consis-

tent with Lutz et al. (2018). This is supported with α correlations to

sand fraction, silt fraction, and the soil porosity. The impacts on the

large range in α and β on MTT estimates observed in this study are

shown to be primarily controlled by soil and precipitation characteris-

tics, supported by past studies (Hrachowitz et al., 2010; Lutz

et al., 2018).

There are correlations between the median and standard devia-

tion of the MTT with latitude (r = �0.58), longitude (r = 0.52), slope

(r = 0.68), clay fraction (r = 0.62), precipitation (r = 0.48), and precipi-

tation frequency (r = 0.71) (Figure 8c). There is also a correlation

between the median MTT and temperature (r = 0.49). The transit time

of water gets shorter as NEON sites are further north. The transit

time of water gets longer as NEON sites are further east among our

sites in the continental US and Puerto Rico. The transit time of water

gets longer as NEON sites have steeper slopes, higher clay fraction,

warmer temperatures, more precipitation, and a higher precipitation

frequency. These results show NEON site water age is primarily

determined by the site location within the continental US and Puerto

Rico, gradient (slope), soil characteristics, and climate characteristics.

Other studies have shown several similar and different relationships

between MTT and environmental characteristics (Capell et al., 2012;

Clow et al., 2018; Gabrielli & McDonnell, 2020; Lutz et al., 2018;

Maxwell et al., 2016; McGuire et al., 2005; Mosquera et al., 2016;

Segura, 2021). Each of these studies was conducted in smaller geo-

graphic areas and not over a large scale like our study. Clow et al.

(2018) showed relationships to topographic and geologic characteris-

tics in mountain watersheds of the western US, whereas the Jasechko

et al. (2016) study found different relationships over agricultural areas.

Gabrielli and McDonnell (2020) showed a relationship between geol-

ogy, landscape structure, and water transit times within the critical

zone of eight diverse geologic watersheds with similar rainfall, thin

soils, and steep slopes. They go on to acknowledge their conclusions

would be less likely to show trends with MTT in climates with less

precipitation or higher evaporation (Gabrielli & McDonnell, 2020).

Segura (2021) showed that wet and dry years contribute to relation-

ships of MTT and Fyw with watershed characteristics differently. For

example, the MTT was negatively correlated to drainage area in a

non-drought year and unrelated to drainage area during a drought

year (Segura, 2021). The Fyw was positively correlated to drainage area

in a drought year but unrelated in all other years, including other

drought years (Segura, 2021). The inconsistent relations of MTT and

Fyw correlations to environmental characteristics show the diverse

nature of water transport processes and the times. Finally, there is a

correlation between KGE and slope (r = 0.37) of the watershed

(Figure 8c). As KGE increases, there is a steeper slope. Our gamma

model based on optimization works best for watersheds with steeper

slopes. This might make sense as water moves quicker through vari-

ous environments, our model can work better. However, we do not

observe shorter MTT with steeper watersheds, therefore it is unclear

why we have a positive correlation with KGE and slope.

Figure 8d shows whether any watershed timescale metrics are

related to each other. Visually from Figure 7, there were longer

median MTT with lower Fyw, which is supported by a negative correla-

tion (r = �0.46). The MTT and Fyw relationship is supported by Lutz

et al. (2018), which found larger Fyw tended to have predominantly

short transit times and thus a rapid response to solute input in stream

water.

4.3 | Understanding water ages across NEON

MTT and Fyw have been previously studied across a wide range of

environments to synthesize consistent correlations to water transport

F IGURE 6 The median alpha (α–shape) and beta (β–scale)
parameters on a logarithmic scale used to calculate the gamma
convolution model color coded by median Kling-Gupta efficiency
(KGE) per National Ecological Observatory Network (NEON) site pairs
(lettered a–z). The product of α and β is the mean transit time,
highlighted by the grey lines, which is also in Table 4. Site names are
in Table 1.
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processes, yet the diversity of the spatial and temporal data used

makes it difficult to ascertain consistent results. This is because these

studies use a wide range of data sources with varying amounts of

incoming precipitation measurements (both isotope ratios and

amount) and outgoing discharge (both isotope ratios and volume)

(Bansah & Ali, 2019; Benettin et al., 2017; Capell et al., 2012; Gab-

rielli & McDonnell, 2020; McGuire et al., 2005; Mosquera et al., 2016;

Segura, 2021; Stockinger et al., 2016; van Meerveld et al., 2019; von

Freyberg et al., 2018). The data used are often from small areas, with

limits on the amount of data collected temporally and spatially (Capell

et al., 2012). This can lead to temporal and spatial limits on MTT and

Fyw calculations, and potentially cause errors or misleading estimates

(Stockinger et al., 2016). The differences in sampling frequency and

spatial variability of collected observations specific in the prior studies

potentially create limitations to understanding spatial variability of

water transport timescales. However, in this study with consistent

data collection and analysis approaches, we still find a diverse range

of water ages across NEON with some correlations to environmental

characteristics. This suggests that MTT and Fyw are determined by a

combination of complex local factors.

The median MTT across the 100 ensemble-member ranges from

a couple of months to over 13 years (Figure 7, Table 4). There is vary-

ing confidence with these estimates based on our model fits against

observations using the KGE. Over half of the sites have median KGE

scores above 0.30 (Table 4). When we use a KGE threshold of ≥0.5,

the MTT ranges from a couple of months to 9 years. The KGE

F IGURE 7 The 100 ensemble-member gamma convolution model results of fraction of young water (top), mean transit time (MTT) (middle),
and Kling-Gupta efficiency (KGE) (bottom) per National Ecological Observatory Network (NEON) site pairs (lettered a–z). The sites are arranged
from lowest median MTT to the highest with NEON site pairs labelled. The coloured circles per plot indicate the median value for that site pair.
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threshold allows us to consider strong model fits when considering

correlations between MTT, α, and β. When the Fyw and MTT have

small ranges with a narrow and positive KGE range, this supports con-

sistent model performance, such as sites HARV-HOPB (j), SYCA-SYCA

(s), and WREF-MART (y) (Figure 7). Sites with negative KGE values

and large ranges in MTT should be carefully analysed and understood

due to potential model errors, such as sites BLAN-LEWI (b), CLBJ-

PRIN (e), and YELL-BLDE (z). Sites that show MTT longer than 6 years

are often correlated with poor KGE or large ranges in MTT (Figure 7).

This is because NEON sites have, at this point, a maximum of 6 years

of δP and δQ data. We can estimate MTT longer than 6 years because

we include a wide range of α and β. We do this to include possibilities

of small or large α and β. It should be noted that MTT longer than

6 years should be understood with greater uncertainty. Lutz et al.

(2018) showed that MTT values above 60 months (5 years) should be

considered cautiously, as strong damping of stable water isotope

ratios in stream water complicates the determination of MTTs of

above 5 years.

F IGURE 8 Pearson correlation between environmental characteristics (from Tables 1 and 2) vs. calculated isotope metrics (from Table 3) and
vs. watershed timescale results (from Table 4). Pearson correlation (r) values are coloured based on the strength of the relationship, with the size
of the colour block is based on the significance level of a linear regression with the p-value (p) as described in plot footnote. Block A is Tables 1
and 2 (environmental characteristics) vs. Table 3 (isotope metrics). Block B is Table 3 (isotope metrics) vs. Table 4 (watershed timescale metrics).
Block C is Table 4 (watershed timescale metrics) vs. Tables 1 and 2 (environmental characteristics). Block D is Table 4 vs. Table 4.
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4.4 | Sources of uncertainty and limitations

There are several sources of uncertainty and limitations derived from

both the data available and methods used. Since we only have one

precipitation measurement location at each NEON site, elevation

effects on the isotope concentration were not considered. A maxi-

mum distance of 20 km was used to ensure precipitation isotope

ratios reflected the same precipitation that would affect residence

times and stream water isotope ratios. Most sites were within 5 km,

but several were outside this distance. The distance between precipi-

tation and stream measurement did not correlate to KGE or other

model values. For the larger watersheds we analysed (>50 km) which

consisted of �35% of the NEON sites, the precipitation measurement

is still within 20 km of the aquatic measurement. The large water-

sheds (except LENO-TOMB (n)) do not have other precipitation mea-

surements, that might be more representative of upstream

characteristics. As mentioned earlier, we average the δP and precipita-

tion observations for LENO-TOMB (n), which encompasses the

nested watersheds DELA-BLWA (g) and TALL-MAYF (t). Future work

to further understand large scale watersheds transport times would

need to consider δP isoscapes, in part using isotope modelling, that

would be representative of the larger watershed inputs

(Waterisotopes.org, 2023; Yoshimura et al., 2008).

Snow related isotope processes (i.e., sublimation) can have impor-

tant effects on isotope composition (Beria et al., 2018). We account for

snowpack fractionation using Eeff in our gamma model. We do not

account for other snowpack processes (i.e., melting, spatial distribution)

and the potential impact that snow has on the composition of δP and

δQ over a watershed. Despite that, we observed potential snowpack

effects on isotope composition at several sites (d, o, u, v, w, x, and z).

These sites as mentioned earlier showed more negative δQ compared

to δP, with positive values of lc-excess. At these sites, precipitation over

the catchment is likely not represented by the gauge collecting δP.

Snow falling at higher elevations compared to the δP tower collection

site would be more negative than the tower, so the δQ (derived from

snow) would be more negative than the δP that we observe.

The δP and δQ data show seasonality and suggest a possibly time

varying residence time distribution. A flow-corrected time based on

daily discharge similar to McGuire et al. (2005) did not improve MTT

calculations, in part due to the limitations of discharge data (Rhea

et al., 2023). Additionally, StorAge Selection (SAS) functions were not

possible with the limitations of discharge data (Benettin et al., 2017;

Rhea et al., 2023). This time invariant MTT presented here needs to

be considered with our results but should be noted that McGuire

et al. (2005) and Kirchner et al. (2001) included discharge changes in

MTT and obtained similar fits to the stream isotope data.

5 | CONCLUSIONS

The co-located δP and δQ across 26 NEON sites provide a unique

dataset in the continental US and Puerto Rico to understand water-

shed processes and the time it takes water to move through NEON

study sites. The data is available at varying time periods beginning

from 2014 to 2018 but continues through the present as NEON con-

tinues to gather data for the foreseeable future. The data presented

with Finkenbiner et al. (2021) statistical downscaling of δP and using

the NEON-DICEE Dataset allows additional data to understand

hydrologic processes with the methods we use. Using the δP and δQ

available at 26 NEON sites we can estimate Fyw and MTT with varying

levels of confidence based on MTT KGE scores. The Fyw varies across

NEON with from 1% to 93% with a majority less than 20%. We are

not able to weigh the Fyw based on discharge values due to NEON

data limits. The MTT varies from 0.1 to 13.2 years with a median of

1.6 years with half of the sites having a MTT shorter than 2 years.

Some MTT have large ranges when using the 100 ensemble-members

of the gamma convolution model. The associated KGE gives confi-

dence in the model fit when they are positive with small ranges, which

occurs at several sites. Using isotope metrics, watershed timescale

metrics, and environmental characteristics shows statistically signifi-

cant correlations throughout the continental US and Puerto Rico. Iso-

tope metrics of the δP and δQ data show documented correlations to

environmental characteristics in addition to the LMWL and LSWL.

The watershed timescale metrics show some documented correlations

to environmental characteristics, all be it not as clear as what past

studies have shown. This indicates it is difficult to correlate consistent

climate, geographic, and geomorphic variables to Fyw and MTT proper-

ties across the continental US and Puerto Rico. This is due to the com-

plex processes that affect water movement, which vary on different

temporal and spatial scales. Several limitations and uncertainties need

to be considered with our approach, but do not discount the results

shown. The uniqueness of NEON and data availability provides a

powerful source to understand hydrologic processes by linking sur-

face and subsurface processes in various ecosystems throughout the

continental US and Puerto Rico. NEON sites have a wealth of envi-

ronmental observations and research that analyses biodiversity and

forest ecosystems such as information about plants, animals, soil,

nutrients, freshwater, and the atmosphere (Goodman et al., 2015;

NEON, 2023b). The isotope data presented here using the LMWL,

LSWL, Fyw, and MTT can help constrain and provide insight into a vari-

ety of water related processes and sciences within NEON study sites.
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