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Abstract 
The largest dataset of soil metagenomes has recently been released 
by the National Ecological Observatory Network (NEON), which 
performs annual shotgun sequencing of soils at 47 sites across the 
United States. NEON serves as a valuable educational resource, thanks 
to its open data and programming tutorials, but there is currently no 
introductory tutorial for accessing and analyzing the soil shotgun 
metagenomic dataset. Here, we describe methods for processing raw 
soil metagenome sequencing reads using a bioinformatics pipeline 
tailored to the high complexity and diversity of the soil microbiome. 
We describe the rationale, necessary resources, and implementation 
of steps such as cleaning raw reads, taxonomic classification, 
assembly into contigs or genomes, annotation of predicted genes 
using custom protein databases, and exporting data for downstream 
analysis. The workflow presented here aims to increase the 
accessibility of NEON’s shotgun metagenome data, which can provide 
important clues about soil microbial communities and their ecological 
roles.
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Introduction
The soil microbiome is responsible for key ecological processes, such as decomposition and nitrogen cycling (Allison

et al., 2013). One powerful tool for studying the soil microbiome is shotgun metagenomic sequencing, in which all of the

genetic material within the DNA extract of a soil sample is sequenced at once, without targeting specific organisms

(Quince et al., 2017; Pérez-Cobas et al., 2020). The largest publicly available sequencing dataset of this type is updated

annually by theNational EcologicalObservatoryNetwork (NEON),whichmonitors ecological conditions at 47 terrestrial

sites spanning 20 ecoclimatic domains across the US and its territories (Keller et al., 2008). NEON is funded by the

National Science Foundation (NSF), and collects soil samples and releases shotgun metagenomics data annually.

To date, the NEON soil metagenomics data can only be accessed in two formats: as completely raw reads released by

NEON, or as processed files through the default protocols of the MG-RAST storage server. Neither format is suitable for

most metagenomic analyses, which generally answer scientific questions using custom data processing pipelines that use

specific algorithms and targeted reference databases (Ladoukakis et al., 2014; Quince et al., 2017). However, the

hyperdiversity of soil ecosystems can pose a challenge for even the most cutting-edge genomic software: retrieving

complete bacterial genomes is especially difficult from soil samples (Sieber et al., 2018), and up to 95% of soil DNA

reads cannot be identified to the genus level (Méric et al., 2019). To facilitate future scientific analysis, we present a

workflow for taking raw soil sequences and generating a processed dataset that can be linked to other NEON data

products, which include soil biogeochemistry, root measurements, or aboveground plant communities.

NEON data is a valuable resource for ecology and bioinformatics, thanks to its open access software, robust documen-

tation, and educational resources (Jones, 2020). The pipeline that we present here is designed to complement existing

NEON educational resources, such that students and researchers with basic bioinformatics experience may use this

dataset to learn about microbial communities within the soil. We present code and explanations for common analysis

steps, including basic quality control (QC), assembling reads into larger genome fragments (“contig” assembly),

predicting genes, quantifying gene counts for specific ecological or biogeochemical functions, genome assembly, and

exporting to the KBase platform (Arkin et al., 2018). We recommend the review by Pérez-Cobas et al., (2020) for

software alternatives for each step of this shotgun metagenomics analysis.

Methods
Dataset description
Soil samples are collected annually from 47 NEON sites during peak greenness. Soil samples are collected up to 30cm

below the soil surface, the organic (O) and the mineral (M) horizons (when present) are separated, and subsamples from

each horizon are homogenized into one composite sample per horizon, and frozen on dry ice until DNA extraction.

Sample file names include the 4-letter site identifiers, soil horizons (O orM), sampling date, and replicate number. Three

samples are collected within a NEON plot at a sampling time point. As of 2021, DNA extractions are performed using

KAPAHyper Plus kit (Kapa Biosystems). Samples frommultiple sites are pooled into sets of 40 or 60 for 150 bp paired-

end sequencing, which is conducted on an Illumina NextSeq at the Battelle Memorial Institute (NEON Metagenomics

Standard Operating Procedure, v.3). While there is currently no versioned release of NEON’s metagenomic data, the

pipeline described here is designed to be robust to processing new short-read sequence data as they are released from

NEON, approximately annually, though protocols may shift over NEON’s 30-year time span (Stanish & Parnell, 2018).

REVISED Amendments from Version 1

We have reorganized each section to provide clearer background and rationale for each analysis step, with more detailed
explanations of how each tool performs specifically on soilmetagenomics data.We changed themain Snakemakeworkflow
to a new pipeline, metaGEM (Zorilla et al., 2021). This pipeline includes support for high-performance computing clusters,
which is expected to help with scaling up to the increasing number of NEON samples. The raw sequence quality control
step is now carried out by a single software, fastp (Chen et al., 2018). The taxonomy assignment step no longer requires
downloading large reference databases, and instead calls Kraken2 (Wood et al., 2019) remotely through the Toolchest R
package (Cai & Lebovic 2021). The genome-binning step now describes a multi-tool programmatic option as an alternative
to the interactive approach. Figures 1, 2, and 3 have been revised to reflect the changes in software tool output.

Jorge Lopez-Navahelped implement and test thenewbioinformatics pipeline and create figures and is therefore, addedas a
new author and credited with Software and Visualization.

We thank the two reviewers for thorough and helpful feedback, and we hope this revision improves the utility of this
manuscript.

Any further responses from the reviewers can be found at the end of the article
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Operation
We assume a Linux operating system and command-line interface. Storage and RAM requirements will depend on the

specific analyses performed and the number of samples analyzed. To work with a large dataset (10+ samples), a

significant amount of computational power will be necessary, ideally with 8 or more cores for parallel computation. For

those without access to institutional high-performance clusters, the scientific computing platform CyVerse (Merchant

et al., 2016) offers free computational and storage resources.

The computing requirements formetagenomic analysis can sometimes overwhelm personal computers, or login nodes on

shared computing clusters. Therefore, users may wish to test the pipeline in a local environment, then shift to a high-

performance cluster for large numbers of samples. Due to the long duration of certain steps, users may benefit fromLinux

commands that prevent sessions from timing-out or dropping the connection, such as tmux or screen. Either method

requires modifying the configuration file called “config.yaml.”Bolded text will be used to emphasize parameters that

should be modified within the configuration file.

Local analysis: Each metaGEM command can be run with a “--local” flag to run within your current environment. If you

have access to multiple cores, then you will need to add the “--cores” flag to each metaGEM commands below, to take

advantage of parallel computing. This command can check your available threads, though you may not want to use all of

them if you share computing resources:

echo "CPU threads: $(grep -c processor/proc/cpuinfo)"

Cluster analysis: To run on a cluster, the pipeline will assume that jobs are submitted via a SLURM-based scheduling

system, controlled using the file called “cluster_config.json.” Clusters with SGE/OGE-based scheduling may require

workarounds. The “cores” section of the configuration file should be modified to reflect the number of computing

cores for each step.Contact your system administrator for information on appropriate scratch directories, or for guidance

on scheduling and configuration files.

On shared computing clusters, some softwares must be loaded as “modules” before they are used. For instance, to use

Miniconda (necessary for every step of this pipeline), this command will work if there is a shared installation:

module load miniconda # may need to specify version

If there is no existing Miniconda installation, follow the instructions from Conda for a new installation. Subsequent code

will assume that analysis is running locally within a Miniconda environment.

Implementation
Once sequences are downloaded, we use the pipeline metaGEM (Zorrilla et al., 2021), which links a variety of

bioinformatics tools and users can develop customized extensions for specific purposes. metaGEM, and its underlying

Snakemake framework (Köster & Rahmann, 2012), are designed to address common problems with software versioning

and updating, as well as efficient data re-analysis (i.e. running the minimal tasks necessary to generate updated output

files). We describe installation and use instructions for metaGEM below. In addition to metaGEM default steps for

cleaning and assembling the raw reads, we describe taxonomic classification or protein annotation for predicted genes

using custom databases.

To customize or expand on the workflow below, it is helpful to know the basic logic of Snakemake, which is the

underlying framework for the metaGEM pipeline. Snakemake relies on a series of rules, which specify input files, output

files, and any necessary commands. When a rule is called, Snakemake works backwards from the output files to decide if

any input files are missing or outdated, and tries to re-run rules as needed (Köster & Rahmann, 2012).

Setup: installing metaGEM pipeline
Full details on installation can be found in the metaGEMwiki. In short, run the following commands to create and setup a

new analysis directory called metaGEM:

git clone https://github.com/franciscozorrilla/metaGEM.git # Download metaGEM repo

cd metaGEM # enter directory

bash env_setup.sh # Run automated setup script
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Confirm success of installation and environment setup:

bash metaGEM.sh -t check

If all went well, your screen will report messages about the installation. Otherwise, it will report any problems in specific

package installations or environments. You can inspect at the new environments using:

conda env list

Activate the metaGEM conda environment. This will be used for most parts of the pipeline.

conda activate metaGEM

Open the configuration file called “config.yaml” and modify paths as needed. Users must specify the location for the

analysis environment, as well as a “scratch” directory for temporary files.

1. Accessing raw sequence files
1.1 Download test dataset
We recommend an initial interactive test of the pipeline with two microbial samples. This will ensure that all necessary

software is installed and that file paths are correct. From within the metaGEM directory, a sample set can be downloaded

using the code block below:

cd dataset # enter data directory (within metaGEM directory)

wget https://neon-microbial-raw-seq-files.s3.data.neonscience.org/2017/WOOD_002-

M-20140925-comp_R1.fastq.gz

wget https://neon-microbial-raw-seq-files.s3.data.neonscience.org/2017/WOOD_002-

M-20140925-comp_R2.fastq.gz

wget https://neon-microbial-raw-seq-files.s3.data.neonscience.org/2017/SCBI_012-

M-20140915-comp_R1.fastq.gz

wget https://neon-microbial-raw-seq-files.s3.data.neonscience.org/2017/SCBI_012-

M-20140915-comp_R2.fastq.gz

cd ..# return to enclosing metaGEM directory

Next, we have metaGEM reorganize the raw sequence files into subfolders.

bash metaGEM.sh --task organizeData

1.2 Download custom dataset
Information about the metagenomic sequencing for each soil sample is contained in the NEON data product

DP1.10107.001, which can be accessed using the interactive Data Portal.

Data from specific sites and dates can also be accessed via the neonUtilities R package (Lunch et al., 2021). The R

commands below will download the DP1.10107.001 metadata for all samples collected from the Harvard Forest site in

the year 2018. This metadata can then be used to download raw sequences.

# install neonUtilities - can skip if already installed

install.packages("neonUtilities")

# load neonUtilities

library (neonUtilities)

metadata <- loadByProduct (dpID = 'DP1.10107.001', site="HARV", startdate = "2018-

01", enddate = "2018-12", package = 'expanded')
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Downloads will come with three tables of interest:

• mms_metagenomeDnaExtraction: reports the quantity of DNA extracted from the soil sample.

• mms_metagenomeSequencing: lists sequencing protocol for each sample, as well as the read counts. These read

counts can be used to filter out low-quality samples.

• mms_rawDataFiles: lists the download URL for each sample. This table is included only with the “expanded”

package setting, not the “basic” setting.

The sites and dates of interest should be determined by the goals of your analysis: a comparative study might require

samples fromAlaska as well as from Puerto Rico, or samples could be retrieved from sites that have accompanyingmulti-

decadal data from the Long-Term Ecological Research (LTER) program. If samples have the extension.tar.gz, then they

are bundled into a compressed folder with multiple samples and will need to be unbundled (see tutorial here). Samples

must have forward and reverse reads and they should be compressed in.fastq.gz format for most downstream software.

Even when compressed, each file may still require multiple GB of storage.

2. Quality control
2.1 Background and rationale
Raw sequences are shared online in FASTQ format, with only minimal quality control from NEON’s sequencing

facilities, since users may prefer to use specific protocols for quality control. Some aspects of quality control present a

trade-off between data volume and data quality. Each base returned by a sequencingmachine (e.g. “A”, “C”, “T”, or “G”)

has an associated quality score, or Q score (Cock et al., 2009). Q scores can be used to filter low-quality reads, which

generally improves the reliability of genomic analysis (Illumina, 2014). Certain aspects of quality control are absolutely

necessary for reliable analysis, such as removing adapter or primer sequences used in sequencing protocols. For these

steps, Cutadapt (Martin, 2010) and Trimmomatic (Bolger et al., 2014) are frequently-used tools and work well. Fastp

(Chen et al., 2018) is an all-in-one QC tool included in the metaGEM pipeline (Section 2.3) (Zorrilla et al., 2021).

Optional steps of quality-control include removing low-complexity sequences and searching for contaminants. Low-

complexity sequences are naturally occurring regions of DNA with highly biased distributions of bases, such as

“AAAAAAAAAGCGCTTTTTTT.” These regions can make matching to gene databases more difficult by causing

spurious results (Clarke et al., 2019). Users may wish to search for and remove contaminant sequences, such as those that

match the PhiX genome, which is a common contaminant of Illumina metagenomic data due to its use as a control during

sequencing (Mukherjee et al., 2015).

2.2 Considerations for NEON data
Soil samples fromNEON have a wide range of average quality scores, as well as a range of sequencing depths, which are

affected byDNA amounts in soil, lab DNA extraction efficiency, and sequencer error.We recommend removing samples

with lower sequencing depths, but the specific depth cutoff will vary based on your analysis goals (Brumfield et al.,

2020). Up to 100 Gbp may be required for characterizing full soil diversity (van der Walt et al., 2017). None of NEON’s

metagenomes meet this ultra-high sequencing depth, but the majority are sequenced to at least 1.5 Gbp (Figure 1a).

In a subset of NEON metagenomes, we did not find PhiX contamination, so this step is not implemented in Section 2.3.

However, tools for removing low-complexity sequences (Komplexity) and removing contaminant DNA are included in

the Sunbeam pipeline (Clarke et al., 2019), an alternative to the metaGEM pipeline used throughout.

2.3 Implementation via metaGEM pipeline
To run quality control on raw sample files (primer trimming, adapter trimming, read filtering, and base quality evaluation)

run the following command:

bash metaGEM.sh --task fastp --local

Each sample will have detailed report files within the “qfiltered” directory. To summarize the results across all samples,

run the following command:

bash metaGEM.sh --task qfilterVis --local

Page 6 of 26

F1000Research 2022, 10:299 Last updated: 12 MAR 2024



Simple visualization of QC outputs will then be generated within the “stats” directory.

3. Assembly-free analysis
3.1 Background and rationale
Metagenomic analysis often involves assembling short reads into longer fragments, called contigs, which can be searched

for genes. However, the assembly step is computationally intensive, and may be avoidable if the only desired output is a

taxonomic profile, which can be generated by tools designed to work with unassembled short reads (Pearman et al.,

2020). These tools, such as Kraken2 (Wood et al., 2019) or Kaiju (Menzel et al., 2016), can assign taxonomic identities to

reads by comparing sequences to reference databases. Compared to other classification tools, Kraken2 has been shown to

perform favorably on soil datasets (Kalantar et al., 2020; Lu & Salzberg 2020). However, the vast majority of soil reads

remain unclassified with short-read classifiers. This may be due to the lack of complete genomes from soil organisms

within reference databases (Quince et al., 2017).

3.2 Considerations for NEON data
Taxonomic reference databases can include sequences from various biological domains, often using genomes from

RefSeq (O’Leary et al., 2016) ormarker gene databases such as Silva (Quast et al., 2013) andRDP (Cole et al., 2014). The

“Standard” pre-built database, shared by the Kraken2 developers, contains sequences from archaea, bacteria, viral,

plasmid, human, and UniVec_Core. Due to the importance of fungi within soil ecosystems, we tested a larger database

(“PlusPF”) that also includes fungi and protozoa. Overall, approximately 17% of reads were identifiable to any kingdom,

with fewer than 0.1% assigned to fungi. Given the increased memory costs of larger databases, and the low detection of

fungi and protozoa, a smaller database (e.g. the Standard) is likely preferable for most microbial analyses. Other NEON

microbial data products (such as amplicon sequences, qPCR, and PLFA) can provide domain-specific information on

fungi, bacteria, and archaea.

3.3 Implementation
The Kraken2 reference databases that span multiple domains of life can reach 100 gigabytes, presenting a potential

obstacle to running analyses on personal computers. The Toolchest R package (Cai & Lebovic, 2021) allows for remote

Kraken2 analysis of samples from within the R environment. The example code below uses the “PlusPF” Kraken2

database, which includes sequences from archaea, bacteria, viral, plasmid, human, protozoa, fungi, and vector contam-

inants. Results for each sample are summarized in a “report” file, which sums the number of reads assigned to each taxon.

Figure 1. Quality control results for short reads using the Fastp software (Chen et al., 2018). Short-read
metagenomic samples are from the Harvard Forest site of the National Ecological Observatory Network (NEON).
a) Counts of read pairs before (blue) and after (red) quality control steps. b) Base quality at Q30 (dark gray) and Q20
(light gray) before filtering. c) Base quality at Q30 (dark gray) and Q20 (light gray) after filtering.
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install.packages("toolchest")

library("toolchest")

toolchest::set_key("share.NjYyZDE2ZTUtNTU0Ny00OWQzLTlkNTktYjRmMTAzYmM4NWFh")#example

key with limited capacity - please download a new key from the Toolchest website

kraken2(read_one = "WOOD_002-M-20140925-comp_R1.fastq.gz",

read_two = "WOOD_002-M-20140925-comp_R2.fastq.gz",

output_path = "./kraken_output.txt")

Kraken2 report files can be visualized using the software Pavian (Breitwieser & Salzberg, 2020). Pavian can be run

locally via R, or samples can be uploaded for analysis using the online application. Alternatively, output from Kraken2

can be converted to the BIOM file format for in-depth visualization using the metagenomics exploration software Phinch

(Bik, 2014).

4. Contig assembly
4.1 Background and rationale
Assembling short reads into contigs can increase sensitivity and accuracy when predicting and annotating genes. Contig

assembly generally requires more computational power and time than any other step within metagenomic analysis

(Quince et al., 2017).

Assembly of soil metagenomes is particularly difficult due to high amounts of biodiversity per sample and the absence of

organisms in reference databases. Currently, the only assembly software designed for soils is Megahit (Li et al., 2016),

which is also one of the fastest tools for metagenome assembly. For some samples, this speed may come at the expense of

sensitivity. metaSPAdes has been benchmarked with soil data and performs comparably, sometimes producing longer

contigs, but requires additional memory and runtime (van der Walt et al., 2017).

Co-assembly of reads, in which information is shared between samples, increases sensitivity to low-abundance reads

(Sczyrba et al., 2017), and can aid in recovering rare genomes (Albertsen et al., 2013). However, co-assembly causes an

exponential increase in assembly time and memory usage, possibly taking days or weeks to complete. Co-assembly can

also increase the number of chimeric contigs for samples with high strain diversity (Ramos-Barbero et al., 2019).

Other assembly decisions (such asminimum contig length) should depend on downstream analyses; for example, average

prokaryotic genes are about 1000 bp (Xu et al., 2006), so shorter contigs may not contain useful information on gene

presence or absence. Some genome binning tools, such as metaBAT, will discard any contigs lower than 1500 bp. Very

Figure 2. Percentage of metagenomic short reads assigned to high-level taxonomic categories. Samples
are from the Harvard Forest site of the National Ecological Observatory Network (NEON). Reads were assigned
using the PlusPFdatabase (release 5/17/21), which includes sequences fromarchaea, bacteria, viral, plasmid, human,
UniVec_Core, protozoa & fungi. Image generated using the visualization software Pavian (Breitwieser & Salzberg,
2020).
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low thresholds, such as 300 or 500 bp, will increase the percentage of raw reads that are represented in an assembly.

Longer contigs generally represent higher confidence in longer regions of the genome, althoughmisassemblies can occur

and lead to long contigs (Sczyrba et al., 2017). We recommend the tool metaQUAST to perform in-depth evaluation

assembly, such as summaries of contig length distributions, detection of misassemblies and errors, or comparison with

reference databases to estimate the abundance of unknown species (Mikheenko et al., 2016). The review by Ayling et al.

(2020) covers recent developments in short-read assembly approaches and reference-free assembly evaluation.

4.2 Considerations for NEON data
The variation in sequencing depth among NEON soil samples corresponds to high variation in assembly length

(Figure 3A). Samples with deeper sequencing depths had, on average, longer contig lengths (Figure 3B).Most assemblies

consisted of thousands of separate contigs (Figure 3C). Due to the effort required for assembly, it may be preferable to

select a subset of high-quality samples for downstream analysis, rather than assembling all samples.

Co-assembly of samples may improve assemblies, but it is currently unclear how samples should be grouped for optimal

results, since co-assembly can improve some aspects of an assembly while also introducing errors (Ramos-Barbero et al.,

2019). Some options include grouping samples by sampling plot, timepoint, soil horizons, or field site.

4.3 Implementation
For the contig assembly step, we recommend changing certain parameters in the configuration file. Under the “params”

section, the assemblyPreset parameter is passed to the assembly software, Megahit. The default value is “meta-

sensitive”, but the “meta-large” setting is optimized for complex soil datasets.

To assemble contigs, run the following command, specifying the number of available cores:

bash metaGEM.sh --task megahit --local --cores 28

bash metaGEM.sh --task assemblyVis

Visualization of assembly outputs are also located within the “stats” subfolder.

5. Functional gene annotation
5.1 Background and rationale
To estimate the functional capabilities of a soil microbial community, gene annotation can be carried out using various

gene reference databases. This annotation step can be performed on short reads (i.e. the output from the quality filtering

steps), but this can lead to false positives due to short reads matching multiple ambiguous regions of reference genes

(Quince et al., 2017). More confident matches can often be obtained by searching for genes within assembled contigs.

However, soils often have low assembly rates, in which only a small portion of reads end up as part of a contig (Vollmers

et al., 2017), which can skew functional profiles. The benefit of assembling before annotation can be diminished if fewer

than 85% of reads map to contigs (Tamames et al., 2019).

Functional gene annotation of unassembled reads is carried out for all NEON samples on MG-RAST at the time of their

online publication, using a collection of functional gene databases such as eggNOG (Huerta-Cepas et al., 2019), KEGG

(Kanehisa et al., 2017), and SwissProt (Boutet et al., 2007). Gene annotation from multiple databases can dramatically

increase the number of annotated genes, a trend that is especially pronounced for microbes (such as soil organisms) that

are only distantly related to model organisms like E. coli (Griesemer et al., 2018).

When annotating genes in assembled contigs, a preliminary step is to identify Open Reading Frames (ORFs) using

software such as Prodigal (Hyatt et al., 2010). Then, BLASTp (Altschul et al., 1990) or DIAMOND2 (Buchfink et al.,

2021) can be used to search against protein gene databases. Gene presence does not necessarily mean that the genes

are transcribed or active; however, due to the metabolically expensive nature of maintaining genomic pathways

(Lynch, 2006), there is potentially meaningful correspondence between gene presence and functional potential (Pérez-

Cobas et al., 2020).

5.2 Considerations for NEON data
Soil metagenomes can be used to explore functions of biogeochemical, medical, or ecological interest. For example, the

Comprehensive Antibiotic Resistance Database (CARD) (Alcock et al., 2020) is a curated reference database of DNA

sequences and proteins, designed to identify mutations andmechanisms of resistance to antibiotics, which can develop as

a result of poor human stewardship (Brown & Wright 2016). However, antibiotic resistance can also be an ecological

signifier of fungal-bacterial competition for nutrients (Bahram et al., 2018). Another protein database with relevance
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to the soil microbiome is NCycDB, which categorizes genes into pathways that represent transformations such as

nitrification, denitrification, and anammox. NCycDB was compiled from other sources, including COG, eggNOG,

KEGG and the SEED (Tu et al., 2019).

While functional gene profiling is more reliable with contigs rather than short reads (Anwar et al., 2019), we note that

only 5-10% of reads mapped to any contigs within select Harvard Forest samples (minimum contig length 1000, and

pseudoalignment carried out using Kallisto with default settings (Bray et al., 2016)). These low mapping rates may

suggest that our assembled contigs represent only a small portion of the soil metagenome.

5.3 Implementation
For this example, we will search samples for genes from NCycDB. NCycDB has been shown to return fewer false

positives when used with assembled contigs rather than unassembled short reads (Anwar et al., 2019), so the following

steps use the assembled contigs as input.

The NCycDB must be downloaded from Github and converted into a BLAST-compatible protein database. From the

metaGEM directory, run the following commands to download the database:

svn export https://github.com/qichao1984/NCyc/trunk/data/NCyc_100_2019Jul.7z db/

NCyc_100_2019Jul.7z

This filemust be decompressed from “7z” format into “.faa” format. Commands for this will vary based on your operating

system.

Next, we use the program Diamond (Buchfink et al., 2021) to convert to BLAST-compatible database for use within our

pipeline:

diamond makedb --in db/NCyc_100_2019Jul.faa -d db/NCyc_DB

Figure 3. Results of contig assembly of short-read quality-filtered metagenomic samples. Contigs were
assembled using the Megahit software, with samples from the Harvard Forest site of the National Ecological
Observatory Network (NEON). The “meta-large” preset was used with a minimum contig length of 1000 base pairs
(bp). a) Assembly length per sample, calculated as the sumof contig lengths within sample. b) Average contig length
per sample, plotted against the sequencing depth before filtering. c) Density plot showing the number of contigs per
sample.
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In your configuration file, the “blast_db” parameter should be modified to point to the database file name.

To predict the genes on the assembled contigs, run Prodigal via the following command:

bash metaGEM.sh --task run_prodigal

To compare the predicted genes with the NCycDB, run the following command:

bash metaGEM.sh --task run_blastp

To interpret the output files, each gene can be linked to its gene family using the “id2map” file associated with NCycDB:

svn export https://github.com/qichao1984/NCyc/trunk/data/id2gene.map.2019Jul db/

id2gene.map.2019Jul

To compare results across samples, gene countsmust be normalized to account for variation in sequencing depths (Pereira

et al., 2018). One widely-used method is relative-log expression (RLE), which calculates scaling factors based on the

geometric mean of gene abundances across all samples. RLE can be implemented using the DESeq R package (Love

et al., 2014), and can be used to identify genes that are differentially abundant between groups (such as field sites, or soil

horizons).

6. Binning
6.1 Background and rationale
The vast majority of soil sequences match to no known organism (Figure 2). However, novel genomes can be assembled

from metagenomes. These Metagenome-Assembled Genomes (MAGs) are more commonly assembled from human-

associated samples, but they are quickly becoming a valuable resource for soil genomics: a recent collection of about

200 soil MAGs doubled the percentage of identifiable soil sequences, from 5% to 10% (Nayfach et al., 2020). See Chen

et al. (2020) for an overview of the strengths and pitfalls of MAG assembly and publication.

Because MAGs are assembled directly from contigs, rather than grown in an experimental setting, they often have no

cultured relatives, representing a hidden source of genetic diversity in the microbiome (Nayfach et al., 2020). For each

putative genome, or “bin,” summary statistics are produced that estimate the completeness and possible contamination of

the genome, using a set of genes that are expected to be “single-copy”within a genome (Sieber et al., 2018). Bins can be

further refined manually, and genomes that are mostly complete with minimal contamination may be good candidates for

submission to public databases (Bowers et al., 2017). High-quality MAGs can uncover entirely new lineages in the

microbial tree of life (Nayfach et al., 2020).

Binning pipelines generally use a variety of separate binning tools, then refine and synthesize the best outputs from each

tool. Bin refinement is essential for retrieving high-quality bins from soil than from other ecosystems, reflecting the

challenges associated with soil bioinformatics (Sieber et al., 2018; Uritskiy et al., 2018).

6.2 Considerations for NEON data
Many of the genomes in reference databases such as RefSeq and Genbank are actually chimeric (consisting of multiple

organisms). Chimeric genomes are especially prevalent in metagenome-assembled genomes, with chimerism identified

in up to 30% of “high-quality” MAGs. Differential coverage data (obtained from multiple samples) can very quickly

identify chimeric organisms. This makes the extensive NEON dataset particularly valuable for identifying novel soil

genomes. Chimeric genomes can be identified by visualizing genomes in Anvi’o, or by running tools such as GUNC

(Orakov et al., 2021) that identify inconsistencies in the lineages of various genes.

6.3 Implementation
Genome binning is a well-supported feature of the KBase Predictive Biology platform, which was developed for

microbiome analysis by the U.S. Department of Energy (Arkin et al., 2018). KBase links hundreds of different software

tools using an online interface, which allows users to create “Narratives” for specific data analysis projects. In an example

Narrative (Figure 4), we combine the output from three tools,MaxBin2 (Wu et al., 2016),MetaBAT2 (Kang et al., 2019),

and CONCOCT (Alneberg et al., 2014). As inputs, we use the contigs assembled by MEGAHIT, as well as the quality-

controlled sequencing reads. DAS Tool (Sieber et al., 2018) and CheckM (Parks et al., 2015) report on genome quality.
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However, there is currently a limited number of supported software tools within KBase, so the next section presents a

Snakemake-based approach for carrying out similar tasks.

6.4 Genome binning
Assembled contigs can be grouped into bins using information such as read overlap and differential abundance across

samples. The following metaGEM rule calculates differential abundance, and feeds this information into three binning

tools: CONCOCT, metaBAT, and MaxBin:

bash metaGEM.sh --task binning --local --cores 28

6.5 Bin evaluation & refinement
To determine genome completeness, the metaGEM pipeline evaluates bins using a reference database called CheckM.

The compressed database file can be downloaded as part of the env_setup.sh script (see Implementation section). Once

the “checkM” folder is in your metaGEM directory, decompress it by running:

mkdir checkM

tar -xvzf checkm_data_2015_01_16.tar.gz -C checkM

checkm data setRoot checkM # may take a moment to complete

Figure 4. Exampleworkflow for creating and evaluatingMetagenome-Assembled Genomes (MAGs) using the
KBase Narrative interface (Arkin et al., 2018). First, quality-controlled sequencing reads and assembled contigs
are imported using uploadmodules. Then, contigs are binned into putative genomes (or “bins”) usingMaxBin2 (Wu
et al., 2016),MetaBAT2 (Kang et al., 2019), andCONCOCT (Alneberg et al., 2014). DAS Tool (Sieber et al., 2018) is used to
identify the highest-quality bins. Finally, CheckM (Parks et al., 2015) reports the completeness and contamination
(among other statistics) for each putative genome.
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Next, the outputs from Concoct, metaBAT, and MaxBin are refined by metaWrap. The default cutoffs for keeping a

genome are 50%minimum completeness and 10%maximum contamination. These values can bemodifiedwithin

the configuration file. To run the bin refinement step:

bash metaGEM.sh --task binEvaluation --local

To view the resulting bin quality for each sample, go to the sample name within the “reassembled_bins” directory and

inspect the generated plots.

6.6 Genome taxonomy
The newly-assembled genomes can be evaluated against genome databases to determine taxonomy. First, users

must set up the Genome Taxonomy Database (GTDB) (Parks et al., 2020) and specify its location using the

“GTDBTK_DATA_PATH” environment variable. For details on the download and installation of this database, see

the GTDB-tk documentation (Chaumeil et al., 2020).

Once the database is setup, run the following command for taxonomic assignment:

bash metaGEM.sh --task gtdbtk --local

6.7 Additional analysis
Additional analysis - such as metabolic modeling, and simulating interactions between MAGs - can be carried out with

metaGEM, but has more complex software requirements. Details on implementation are in the metaGEM readme.

7. Applications
The NEON microbial sampling structure was designed to allow researchers to connect microbial community structure

and functional potential (Stanish & Parnell, 2018). Complementary data streams can also be leveraged to link soil

microbial data to ecosystem-level biogeochemical fluxes, plant growth, soil quality (Vestergaard et al., 2017) and more.

We recommend Qin et al. (2021) for a discussion of the high-level questions that may be tackled using NEON soil

microbial data; below we highlight a few topics and recommended resources.

7.1 Microbial community structure
NEONmicrobial data is well-suited for elucidating basic patterns in soil microbial ecology, such as the variation between

communities at different spatial and temporal scales (Qin et al., 2021). The nested sampling, in which soil samples come

from plots within each site, can be used to investigate spatial variability and autocorrelation among genes or taxa (Averill

et al., 2021). Longer-term change in microbial communities could be studied by integrating multi-decadal data from the

Long-Term Ecological Research (LTER) program.

Shotgun metagenomes, which provide a snapshot of the entire genomic potential of a community, can be contrasted with

amplicon sequencing, in which specific gene regions are amplified with the goal of distinguishing between taxa. NEON

performs amplicon sequencing (NEON.DP1.10108.001) for soil fungi and bacteria, approximately 3 times per year at

each site. These amplicon sequencing data can be accessed through the specialized neonMicrobe R package (Qin et al.,

2021). To link amplicon sequences with metagenome-assembled genomes (MAGs; Section 6), MAGs must include the

gene regions used for amplicon sequencing. Tools such as phyloFlash (Gruber-Vodicka et al., 2020) can be used to

specifically assemble these gene regions and insert them into MAGs. This method provides an avenue for exploring the

hidden diversity of the soil microbiome via genome assembly, while retaining the phylogenetic context of new genomes.

7.2 Biogeochemistry
The biogeochemical functions of soil microbes are poorly understood, despite their importance to global nutrient

recycling. NEON measures many aspects of soil chemistry, which represents the nutrients available to microbial and

plant communities. One-time characterizations of soil texture, bulk density, and detailed chemistry (including micro-

nutrients such as zinc, iron, copper, etc.) are collected during the setup of each site (NEON.DP1.00096.001). Soil carbon

and nitrogen are measured multiple times per year. (NEON.DP1.10086.001). Both datasets can be accessed using the

neonUtilities R package or theNEONData Portal. These can be used to investigate howmicrobial communities varywith

chemical properties.

A subset of NEON metagenomes have an associated data stream on soil nitrogen transformations (NEON.

DP1.10086.001), usually measured at each site once every five years. To calculate microbial rates of nitrogen

mineralization and nitrification, soils are incubated for a month. Initial and final pools of ammonium, nitrites, and
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nitrates can be converted into daily transformation rates using the neonNTrans R package (Weintraub, 2021). To link

these nitrogen transformation rates to microbial data, users can estimate the abundances of pathway genes fromNCycDB

(Section 5.3), and match datasets with the dnaSampleID sample identifier. Genes that encode for enzymes like ammonia

monooxygenase (AMO) are often used as proxies for nitrogen transformation activity, though the relationships between

gene presence and functional activity are poorly characterized (Rocca et al., 2015). NEON's soil nitrogen and microbial

data can be used to clarify the strength of gene-function relationships across diverse biomes.

7.3 Plant communities
The soil microbiome is intimately linked with plant communities, which rely on (or compete with) soil microbes for

nutrients (Bo et al., 2022). NEON soil microbial data is collected alongside detailed inventories of plant species

(DP1.10058.001), phenology (DP1.10055.001), tree biomass (DP1.10098.001), root biomass (DP1.10066.001), and

root stable isotopes (DP1.10099.001). Summaries of plant diversity metrics at multiple spatial resolutions are available

using the neonDiversity R package (Mahood, 2020). These data streams could be used to answer long-standing questions

about spatio-temporal associations between plants and microbes (O'Brien et al., 2021). For instance, soils form the “seed

bank” from which plants recruit microbial symbionts (Bo et al., 2022). The metabolic capacity of these symbionts can

change the growth and stress tolerance of plants (Ravanbakhsh et al., 2019). Soil metagenomes could be used to identify

key microbial genes or symbionts affecting plant distributions across ecosystems (Cregger et al., 2021).

7.4 Bioinformatics
Major challenges in soil bioinformatics include the lack of reference databases and specialized analysis tools, with

different pipelines often leading to divergent conclusions (Pauvert et al., 2019). NEON sequences can be used to develop

bioinformatics pipelines that workwell across biologically and physically heterogeneous soil biomes. Currently available

pipelines that work well on some soils may perform poorly on other soils, because soil chemistry affects sequencing

library preparation and can lead to downstream biases in sequence data. For instance, guanine-cytosine (GC) content of

genomic regions can add bias to sample preparation steps, such as DNA lysing and sequencing (Benjamini & Speed,

2011). GC content is related, however, to temperature and nutrient conditions, and varies between species. While many

bioinformatic tools attempt to correct for GC bias, these normalization steps may not be equally important for different

soils. By freely providing sequences from a variety of biomes, researchers can calibrate tools against a reference dataset

that reflects the full diversity of soils. More generally, NEON shotgun metagenomes can be used to investigate how

variation in bioinformatic pipeline decisions affect ecological inferences. Theymay also act as a valuable resource for soil

bioprospecting efforts, which use bioinformatic approaches to identify bioactive compounds with potential medical or

industrial value (Vuong et al., 2022).

Data availability
Raw metagenomics sequencing data is published in RELEASE-2021 as DP1.10107.001 from the National Ecological

Observatory Network (https://data.neonscience.org/data-products/explore). All other data is previously published and

cited throughout the paper.

Software availability
Bioconductor packages available at https://www.bioconductor.org/. CRAN packages available at https://cran.r-project.

org/. metaGEM software is available at https://github.com/franciscozorrilla/metaGEM and the version used for this

publication is archived at https://doi.org/10.5281/zenodo.4707723.
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The manuscript presents analysis and workflows of the NEON metagenomics data collected 
annually and how the datasets can be interrogated. The manuscript reported on the software that 
offers users, who are not yet confident enough, to build their pipeline from the start to use the 
software to analyze metagenomics, especially shotgun datasets. The software information has 
been improved to give room for the reproducibility of data. Each step involved in implementing 
the software was adequately described to ensure replication of the output. 
 
A little addition would have been to present a user-friendly interface for beginners, who may not 
be familiar with or confident in using command lines, just as the part of KBase that was part of the 
workflow. Future studies can look into that.
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1
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Rationale: 
My main question is who is the audience for this pipeline? Is this intended to be used by students 
to learn some metagenomic analysis and how the NEON data set can be interrogated? Or is this 
intended to be used by researchers, in which case I think the downstream annotation and analysis 
components are somewhat thin. Is this officially recognized by NEON as a standard pipeline that 
will enable comparison between analyses? I don't wish to sound dismissive, but this reads like a 
Yet-Another-Metagenomics-Pipeline paper, which on one hand is fine - there's nothing technically 
or scientifically wrong with it - but this would be a more impactful report if the purpose behind it 
was more strongly presented. 
 
Description: 
There is nothing wrong with the description of the various steps, but the descriptions are 
superficial. There is little discussion of why the methods were chosen and what their strengths 
and weaknesses are. 
 
Replication: 
The code blocks are great, but the formatting rendered incorrectly in my browser (Firefox) - 
newlines were not present, making it hard to interpret what the actual commands are. Also, I tried 
to follow along with those commands on our institutional computing cluster and got stuck on the 
installation of sunbeam. I was able to install sunbeam on my desktop server, but the test of the 
install failed. I went ahead and tried to follow the analysis anyway, but ran into multiple problems. 
Just a caveat that providing the commands doesn't ensure replicability.  
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A few other comments: 
End of Dataset description: "TOS Science Design for Terrestrial Microbial Diversity, 
NEON.DOC.000908" - What is this? 
 
The comment about miniconda, "this command may work", is likely to be confusing. Might be best 
just to say that anaconda is required and to talk to local IT about its availability and how to use it. 
 
The transition between section 1.2 and 2 should make it clearer that section 1.2 was describing 
constructing the configuration file and sections 2 through 5 are describing the individual steps 
that make up the sunbeam pipeline. As it reads now, it could be interpreted that the QC step is 
subsequent to the sunbeam run. 
 
Is section 4.1b missing a code block? 
 
I did not understand what you meant by "We use the homolog protein genes to construct our 
reference database." in section 5. 
 
The Bowers 2017 reference appears to be missing from the bibliography.
 
Is the rationale for developing the new method (or application) clearly explained?
Partly

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I have 20 years experience performing microbial genomic and metagenomic 
analysis, including assembly, binning and annotation.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Author Response 22 Nov 2021
Zoey Werbin 

My main question is who is the audience for this pipeline? Is this intended to be used by 
students to learn some metagenomic analysis and how the NEON data set can be 
interrogated? Or is this intended to be used by researchers, in which case I think the 
downstream annotation and analysis components are somewhat thin. Is this officially 
recognized by NEON as a standard pipeline that will enable comparison between analyses? 
I don't wish to sound dismissive, but this reads like a Yet-Another-Metagenomics-Pipeline 
paper, which on one hand is fine - there's nothing technically or scientifically wrong with it 
- but this would be a more impactful report if the purpose behind it was more strongly 
presented.

○

Thank you for identifying these deficiencies within the manuscript. Our intended audience is 
both students and researchers working with NEON soil metagenomes. We have stated this 
explicitly in the last paragraph of the Introduction to the article, and strengthened each 
section of the paper to increase its value to these groups. Specifically, we have added 
subsections titled "Background and Rationale" and "Considerations for NEON data" to each 
analysis section. We plan to submit this revised manuscript for inclusion as a NEON 
community resource. 

There is nothing wrong with the description of the various steps, but the descriptions are 
superficial. There is little discussion of why the methods were chosen and what their 
strengths and weaknesses are.

○

Each step has now been supplemented with descriptions of our preferred methods as well 
as the strengths and weaknesses of alternative methods (in "Background and Rationale"). 
We describe which methods have or have not been benchmarked or optimized for soil 
metagenomes, specifically, as well as their usefulness for the NEON dataset, given the 
properties of the data (in "Considerations for NEON data").

The code blocks are great, but the formatting rendered incorrectly in my browser (Firefox) - 
newlines were not present, making it hard to interpret what the actual commands are. 
Also, I tried to follow along with those commands on our institutional computing cluster 
and got stuck on the installation of sunbeam. I was able to install sunbeam on my desktop 
server, but the test of the install failed. I went ahead and tried to follow the analysis 
anyway, but ran into multiple problems. Just a caveat that providing the commands 
doesn't ensure replicability. 

○

Great points. In response to this and to the comments of Reviewer #1, we have adjusted our 
specific bioinformatic methods to address Sunbeam installation issues. We now recommend 
the stable branch of the metaGEM pipeline, which has run successfully in multiple Linux 
environments. The code blocks have all been shortened to improve readability and cross-
browser formatting.

End of Dataset description: "TOS Science Design for Terrestrial Microbial Diversity, 
NEON.DOC.000908" - What is this?

○

The citation for this sampling protocol document has been changed to "Stanish & Parnell, 
2018", with the full protocol version information within the Works Cited.

The comment about miniconda, "this command may work", is likely to be confusing. Might 
be best just to say that anaconda is required and to talk to local IT about its availability 
and how to use it.

○

The sentence on miniconda requirements has been revised to point readers to their system 
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administrators.
The transition between section 1.2 and 2 should make it clearer that section 1.2 was 
describing constructing the configuration file and sections 2 through 5 are describing the 
individual steps that make up the sunbeam pipeline. As it reads now, it could be 
interpreted that the QC step is subsequent to the sunbeam run.

○

This recommendation is no longer relevant, given our shift in methods and manuscript 
organization.

Is section 4.1b missing a code block?○

This section is no longer present, given our shift in methods and manuscript organization.
I did not understand what you meant by "We use the homolog protein genes to construct 
our reference database." in section 5.

○

This section is no longer present, given our shift in methods and manuscript organization.
The Bowers 2017 reference appears to be missing from the bibliography.○

This reference has been added to the bibliography.  

Competing Interests: No competing interests were disclosed.
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https://doi.org/10.5256/f1000research.54670.r83581

© 2021 Zimmerman N. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Naupaka Zimmerman   
1 Department of Biology, University of San Francisco, San Francisco, CA, USA 
2 Department of Biology, University of San Francisco, San Francisco, CA, USA 

This is a timely and valuable contribution that has the potential to aid in the use of NEON data by a 
wider audience. The core approach (using Sunbeam, a snakemake pipeline, to analyze NEON 
metagenomics data) seems like a good one, and will offer advantages to users who are not yet 
comfortable enough to develop their own such pipeline from scratch. 
 
While in general the approach is a good one and the need for the tool is real and well-articulated 
by the authors, there are a number of aspects that could be improved to maximize the value of 
this contribution. I will outline a few here, but I was unable to complete the full pipeline in my 
testing using the example data specified in the manuscript, and so I am not able to comment on 
all aspects of the pipeline at this time. I would be happy to do another view and assessment after 
hearing from the authors. 
 
I outline some suggestions below: 
 
In the last paragraph of the introduction, I would encourage the authors to revise this sentence: 
"The pipeline that we present here is designed to complement existing NEON educational 
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resources, such that users without prior bioinformatics experience may use this dataset to learn 
about microbial communities within the soil." The background skills that are necessary to 
successfully understand and implement the approach outlined here is not trivial and I don't think 
it's exactly best suited for someone "without prior bioinformatics experience". I think such a user 
would more likely need a graphical interface that did not presume comfort with the *nix 
command line etc. I think the approach outlined here is a valuable contribution because it targets 
users who may have some comfort with programmatic and command-line approaches, but does 
not yet have the skill to develop a flexible pipeline themselves. 
 
In the methods section, first paragraph, I think I would revise to be more careful with tenses. In 
some cases the collection protocols will remain mostly unchanged (e.g. I don't think NEON is 
planning to add any core sites), but other things may change (the kits that they use, the 
sequencing depth or sequencer used, etc. Since NEON is a 30 year project, it might help the 
manuscript's longevity if this paragraph were worded to reflect possible future methodological 
changes. 
 
I might encourage a mention or a suggestion that users use tmux or screen to run pipelines like 
this is they are connected to a remote server over something like ssh. If the connection drops 
during a many hours long pipeline, it can be quite frustrating. 
 
In step 1.2, why do you suggest the use of the develop branch of Sunbeam? Isn't that more likely 
to include breaking changes that will be overly challenging for the target audience? Perhaps this 
could be adjusted to use a stable branch or version, and the text could highlight the develop 
branch alternative for those willing to trade troubleshooting time in exchange for quicker access 
to more advanced features. 
 
For downloading the config file, it might be better to pull from an archival version of the file 
instead of the github version, or at the least include a version at a specific commit and not just the 
main branch, so that it remains stable. Otherwise either the code could break, or the authors 
would need to continually update the configuration to track with software changes. 
 
In my testing of the approach in the manuscript, I am unable to get past the tests that occur after 
the installation of Sunbeam (`bash tests/run_tests.bash`). The tests repeatedly fail with 
segmentation faults during either the megahit or kraken steps. This is on an Ubuntu 20.04 
machine with lots of RAM/disk space/cores. I am not sure where the issue is, and I would consider 
myself reasonably able to troubleshoot such problems, so I am concerned that similar problems 
might arise and be too challenging for the target audience/user. I would be happy to work with 
the authors in more detail to resolve this problem (share log files, etc). I shall share them via a 
comment when I am able to. 
 
Overall, I think this is a valuable contribution that fills a need in the community and uses a good 
approach to do so. However, in its current form, I cannot successfully run the example code, even 
on the recommended sample files, and so I have concerns with the brittleness of the approach 
outlined. I'd encourage the authors to do some additional testing on other machines and settings, 
and/or build some more resilience into the installation walkthrough so that the average target 
user is able to make use of this contribution.
 
Is the rationale for developing the new method (or application) clearly explained?
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Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Environmental microbial ecology, including specific experience in 
bioinformatics and pipelines, and several years of experience working with large NEON 
sequencing datasets.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 22 Nov 2021
Zoey Werbin 

Original reviewer comments are italicized. 
This is a timely and valuable contribution that has the potential to aid in the use of NEON 
data by a wider audience. The core approach (using Sunbeam, a snakemake pipeline, to 
analyze NEON metagenomics data) seems like a good one, and will offer advantages to 
users who are not yet comfortable enough to develop their own such pipeline from 
scratch. While in general the approach is a good one and the need for the tool is real and 
well-articulated by the authors, there are a number of aspects that could be improved to 
maximize the value of this contribution. I will outline a few here, but I was unable to 
complete the full pipeline in my testing using the example data specified in the manuscript, 
and so I am not able to comment on all aspects of the pipeline at this time. I would be 
happy to do another view and assessment after hearing from the authors. 
 
Thank you for highlighting the issues with the reproducibility of the pipeline we 
outlined. Due to the referenced issues with installing software, we have switched to a 
similar Snakemake pipeline (metaGEM) that has been tested on various computing 
systems. We describe this new pipeline in the "Implementation" section of the revised 

○
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manuscript. 
 
In the last paragraph of the introduction, I would encourage the authors to revise this 
sentence: "The pipeline that we present here is designed to complement existing NEON 
educational resources, such that users without prior bioinformatics experience may use 
this dataset to learn about microbial communities within the soil." The background skills 
that are necessary to successfully understand and implement the approach outlined here 
is not trivial and I don't think it's exactly best suited for someone "without prior 
bioinformatics experience". I think such a user would more likely need a graphical 
interface that did not presume comfort with the *nix command line etc. I think the 
approach outlined here is a valuable contribution because it targets users who may have 
some comfort with programmatic and command-line approaches, but does not yet have 
the skill to develop a flexible pipeline themselves. 
 
This sentence has been revised to reflect that our audience is those with basic 
bioinformatics experience. Further, each section of the manuscript has been 
expanded to include a thorough description of the rationale for various decisions in 
the subsections "Background and Rationale" and "Considerations for NEON data", so 
that this can be a more useful introductory guide to soil metagenomics.  
 

○

In the methods section, first paragraph, I think I would revise to be more careful with 
tenses. In some cases the collection protocols will remain mostly unchanged (e.g. I don't 
think NEON is planning to add any core sites), but other things may change (the kits that 
they use, the sequencing depth or sequencer used, etc. Since NEON is a 30 year project, it 
might help the manuscript's longevity if this paragraph were worded to reflect possible 
future methodological changes. 
 
Tenses in the "Dataset description" section have been modified to reflect that the 
reported sampling and sequencing protocols are accurate as of 2021. We state that 
this bioinformatics protocol is intended for short-read data specifically, and that 
NEON protocols may shift in the future. 
 

○

I might encourage a mention or a suggestion that users use tmux or screen to run 
pipelines like this is they are connected to a remote server over something like ssh. If the 
connection drops during a many hours long pipeline, it can be quite frustrating. 
 
We now reference tmux and screen in Implementation, within the sub-section "Local 
vs cluster analysis". 
 

○

In step 1.2, why do you suggest the use of the develop branch of Sunbeam? Isn't that more 
likely to include breaking changes that will be overly challenging for the target audience? 
Perhaps this could be adjusted to use a stable branch or version, and the text could 
highlight the develop branch alternative for those willing to trade troubleshooting time in 
exchange for quicker access to more advanced features. 
 
Due to our shift in methods, we no longer use either the develop or stable branch of 
Sunbeam. At the time of writing, however, the develop branch had implemented a 

○
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potential fix for the segmentation fault errors, but it did not resolve errors on all 
operating systems. We hope the local and cluster options for running the metaGEM 
pipeline will also help with reducing troubleshooting time. 
 
For downloading the config file, it might be better to pull from an archival version of the 
file instead of the github version, or at the least include a version at a specific commit and 
not just the main branch, so that it remains stable. Otherwise either the code could break, 
or the authors would need to continually update the configuration to track with software 
changes. 
 
With our shift from Sunbeam to metaGEM, we decided to remove the example 
configuration file. The configuration file that comes installed with metaGEM primarily 
needs file paths to be modified by the user, whereas most parameters can be left as-
is. Throughout the text, we've bolded sentences that instruct the user to modify the 
configuration filepaths.

○

In my testing of the approach in the manuscript, I am unable to get past the tests that 
occur after the installation of Sunbeam (`bash tests/run_tests.bash`). The tests repeatedly 
fail with segmentation faults during either the megahit or kraken steps. This is on an 
Ubuntu 20.04 machine with lots of RAM/disk space/cores. I am not sure where the issue is, 
and I would consider myself reasonably able to troubleshoot such problems, so I am 
concerned that similar problems might arise and be too challenging for the target 
audience/user. I would be happy to work with the authors in more detail to resolve this 
problem (share log files, etc). I shall share them via a comment when I am able to.

○

Overall, I think this is a valuable contribution that fills a need in the community and uses a good 
approach to do so. However, in its current form, I cannot successfully run the example code, even 
on the recommended sample files, and so I have concerns with the brittleness of the approach 
outlined. I'd encourage the authors to do some additional testing on other machines and 
settings, and/or build some more resilience into the installation walkthrough so that the average 
target user is able to make use of this contribution. 
 
These are excellent points and led to a dramatic shift in the focus and implementation of 
this analysis pipeline. The main text of the manuscript now focuses on the various options 
available to users for each step of soil metagenomic analysis, and describes issues specific 
to soil ecology and the NEON dataset specifically. The code at the end of each section is now 
an example of how these decisions may be implemented via specific tools. For this revision, 
we have communicated with the developers of the tools mentioned (metaGEM and 
Toolchest) and are confident that these tools will maintain resilience in the coming years. 
We hope this sufficiently addresses problems of brittleness.  

Competing Interests: No competing interests were disclosed.

 
Page 25 of 26

F1000Research 2022, 10:299 Last updated: 12 MAR 2024



The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 26 of 26

F1000Research 2022, 10:299 Last updated: 12 MAR 2024

mailto:research@f1000.com

