A High-quality Genome of the convergent lady beetle, *Hippodamia* convergens

Gavrila Ang¹, Andrew Zhang^{2,4,5}, John Obrycki³ and Arun Sethuraman*,¹

Abstract

- Here we describe a high quality genome assembly and annotation of the convergent lady beetle, *Hippodamia convergens* (Coleoptera: Coccinellidae). The
- highest quality unmasked genome comprises 619 Megabases (Mb) of chromosomal DNA, organized into 899 contigs, with a contig N50 score of 89 Mbps.
- The genome was assessed to be 96% complete (BUSCO). Reconstruction of a whole genome phylogeny resolved *H. convergens* as sister to the Harlequin
- 5 lady beetle, Harmonia axyridis, and nested within a clade of several known agricultural pests.
- 6 Keywords: Genomics; Lady beetles; Phylogenomics; Bioinformatics; Assembly; Annotation

Introduction

In 1842, French entomologist Guerin-Meneville identified Hippodamia convergens (Coleoptera: Coccinellidae), a lady beetle native to and widespread throughout North America (Aristiábal and Arthurs 2018). This beetle has an oval body covered by a bright reddish-orange dorsum marked by black dots, akin to other members of the Coccinellidae family. However, it is made morphologically distinct by the eponymous colouring of its prothorax which consists of a well-defined white border encasing two white converging lines against a black background; hence its common name as the convergent lady beetle. The diet of *H. convergens* mainly consists of aphids, but as a generalist, it can also sustain itself on insect larvae, mites, psyllids, and even nectar (Santos et al. 2017). Aphids and psyllids are common pests of agricultural crops such as wheat, tomato, and even rose cultivars (Santos et al. 2017; Flint and Dreistadt 2005), and H. convergens has been utilized extensively in augmentative biological control of these pests since the early 20th century. One of the earliest records of biocontrol use by the United States occurred in 1903, when H. convergens was imported from California to subdue scale insects in Chile (Altieri and Nicholls 1999). Over the years, these beetles have become one of the most commercially available and widely used biological controls against agricultural pests.

The social behaviours of *H. convergens* make it a commercially favorable biocontrol agent. These beetles were found to be transcriptionally upregulated for muscle function and flight during fall (Nadeau *et al.* 2022). This upregulation enables beetles to migrate long distances and aggregate in sheltered sites for the upcoming winter. Studies have attributed the signalling required for aggrega-

tion to pheromones n-Tricosane and 2-isobutyl-3-methoxypyrazine (Wheeler and Cardé 2013, 2014). This clustering behaviour enables commercial insectaries to easily capture vast amounts of beetles from natural aggregation sites. As a response to lower temperatures and altered photoperiods Obrycki et al. (2018), H. convergens enter diapause and subsist using fat stores accumulated from hunting in the spring (Nadeau et al. 2022). This explains why aphidophagous behaviour is not observed in H. convergens beetles captured during the fall, despite their remaining near the release site Davis and Kirkland (1982). In response to the rising temperatures during spring and summer, H. convergens exit diapause and enter a mating period. Katsarou et al. (2005) observed consumption of aphids at higher temperatures (23°C) nearly doubled in comparison to lower temperatures (14°C). However, increased aphidophagy during warmer temperatures, in the context of biocontrol, is confounded by a corresponding increase in flight dispersal behaviour as observed by Davis and Kirkland (1982). As many studies have remarked, the suboptimal efficacy of *H. con*vergens as a biocontrol agent can be largely attributed to its strong dispersal behaviour (Flint and Dreistadt 2005; Obrycki et al. 2009; Starks 1975). Still, measuring the efficacy of *H. convergens* as an alternative method to agricultural pest management is difficult to determine given the beetles' polyphagous and highly mobile nature (Bjørnson 2008; Obrycki and Kring 1998).

The key to optimising the efficacy of biocontrol agents is through understanding the molecular underpinnings of their biology and socio-behaviour. A reference genome will facilitate research in discovering the genetic mechanisms behind feeding behaviours, reproduction, and habitation of biocontrol agents like *H. convergens*. Through the use of third-generation sequencing technology and bioinformatic tools, here we assemble and annotate a high-quality genome for *H. convergens*, and reconstruct a whole

© The Author(s) 2024.

21

¹Department of Biology, San Diego State University, San Diego, CA, USA 92182

²Department of Biology, Indiana University, Bloomington, IN, USA 47408

³Department of Entomology, University of Kentucky, Lexington, KY, USA 40506

 $^{^4}$ National Institutes of Health, Bethesda, MD, USA 20892

⁵Department of Biological Sciences, California State University San Marcos, San Marcos, CA, USA 92096

^{*}Corresponding author: asethuraman@sdsu.edu

110

111

112

113

- genome phylogeny of publicly available Coleopteran genomes to
- resolve the position of Coccinellidae.

Materials and methods

2

Inbred lines of *H. convergens*, collected from the wild in Lawrence, Kansas, USA (pers. comm. Drs. JP Michaud, John Obrycki) were maintained in the California State University San Marcos greenhouse in San Marcos, CA on an ad libitum diet of pea aphids (Acyrthosiphon pisum), raised on crops of fava beans (Vicia faba). Sibling clutches of 20 unsexed adults were then pooled and shipped to Dovetail Genomics (now Cantata Bio, Santa Cruz, CA) for processing and sequencing.

Sequencing

12

Genomic DNA was extracted from 20 adult beetles using the Qiagen DNeasy Miniprep kit according to the manufacturer's protocol and quantified on a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) from all 20 individuals. PacBio sequence libraries were then generated from pooled whole genomic DNA of lab-reared H. convergens beetles using the SMRTbell® Express Template Kit 2.0 (PacBio, Menlo Park, CA, USA). Dovetail Genomics utilised the PacBio® RS II sequencing system to generate continuous long reads (CLRs) to 30x coverage from the library. Short read libraries were additionally prepared according to the protocols ofPutnam et al. (2016) (Chicago) and Lieberman-Aiden et al. (2009) (Dovetail HiC) with 350 bp mean fragment size using NEBNext Ultra enzymes and Illumina-compatible adapters. Both libraries were sequenced on an Illumina HiSeq X to a target of 30x coverage.

Data Cleaning and Quality Control

The long reads and Hi-C reads were preprocessed by Dovetail Genomics for the removal of adapter sequences. PacBio CLRs (HiFi) produced thus were consensus derived and therefore, sequences had a predetermined high-base call accuracy so no further quality control was performed. The Hi-C reads were analysed using FastQC (ver 0.11.9) (Andrews et al. 2010) to determine base call accuracy.

Genome Assembly

The de novo genome assembler, wtdbg2 (ver 2.5) Ruan and Li (2020), was utilised to construct a genome assembly from long reads. The assembly, initially in the form of a fuzzy De Bruijn graph, was converted into a FASTA file using the consensus tool, wtpoa-cns (ver 2.5). A self-correction method was performed to improve the assembly quality, using both the long reads and Hi-C reads. First, the long reads were aligned to the consensus assembly using Minimap2 (ver 2.24-r1155-dirty) Li (2018). The resulting binary alignment map (BAM) file was sorted according to the sequence order of the long reads files. Samtools sort (ver 1.16.1) Li et al. (2009) was used to rearrange the BAM file such that the sequence alignments occurred with respect to the assembly file, or in "genome order". The sorted BAM file was converted into a suitable input format for wtpoa-cns using the tool Samtools view (ver 1.16.1). This converted file was then used to polish the initial assembly using wtpoa-cns.

The assembly was polished a second time using Hi-C reads as 'pseudo" short reads. The assembly was first indexed using bwa index (ver 0.7.17) Li and Durbin (2009) so that it may be efficiently parsed during sequence alignment. The short reads were aligned to this indexed assembly using bwa-mem (ver 0.7.17) Li and Durbin (2009), resulting in a sequence alignment map (SAM) file in the sequence order of the short reads file. Samtools sort was again used to rearrange the mapping file such that the alignments occurred in genome order. Finally, the map was converted into FASTA format using the consensus tool wtpoa-cns.

A de novo genome assembly was also constructed using Canu (ver 2.2) Koren et al. (2017)), an assembler that uses a string-overlap graph-based approach. We used an estimated genome size set to 450 megabases (Mbps), based on the genome sizes of Harmonia axyridisChen et al. (2021) and Coccinella septempunctataCrowley et al. (2021).

An additional third de novo genome assembly was constructed using Flye (ver 2.8.1-b1676) Kolmogorov et al. (2019), another assembler based on De Bruijn graphs. This tool also requires an estimation of the genome assembly size, which as before, was set to 450 megabases (Mbps). In the final stage of the assembly process, Flye executed a single round of self-polishing using the long reads.

Genome completeness of all assemblies was measured using BUSCO (ver 5.4.2) (ref: endopterygota_odb10)Simão et al. (2015), which determines the percentage of highly conserved regions within the assembly, as compared against a database of single copy orthologous regions. We then picked the most complete assembly for all further steps.

Masking Repeats

The most complete assembly (Canu) was screened and masked for interspersed repeats and low complexity DNA sequences using RepeatMasker (ver 4.1.5), with the RMBlast search engine Smit (2015). RepeatMasker was also used to generate an annotation file for repeat regions found within the assembly.

Removal of Contaminating Sequences

We used the NCBI's FCS-GX tool Astashyn et al. (2023) to identify contaminant sequences, which aligns sequences against the 'all' database, which contains genomic sequences in the BLAST 'nt' database, classifies them by taxonomy, identifies contaminating sequences, and then removing them from the purged assembly.

Removal of Duplicated Sequences

The repeat-masked and decontaminated assembly was then input into purge-dups (ver 1.0) (Guan et al. 2020) tool for the identification and removal of erroneous duplicate sequences. purge-dups utilises read depth information to remove potentially erroneous sequences from the assembly: contigs with low coverage (haplotigs), contigs with extremely high coverage (duplicates), and contig overlaps.

Genome Scaffolding

Next the purged assembly was scaffolded, using the software tool RagTag scaffold (ver 2.1.0) created by Alonge et al. (2022). RagTag leverages reference genomes to rearrange and align draft assemblies to form longer sequences. Gaps between high-confidence adjacent query sequences are filled with "N" characters. The reference genomes of Harmonia axyridis and Coccinella septempunctata were utilised to create two respective, scaffolded assemblies. It is important to note that RagTag does not modify the input query sequences; it solely reorders, reorients and gap-fills. Further scaffolding was performed using the Hi-C data using the SALSA2 pipeline Ghurye et al. (2017) - briefly, paired-end Hi-C reads were mapped to the scaffolded genome using bwa-mem2 v 2.2Vasimuddin et al. (2019), then provided as input to SALSA2 for scaffolding and gap-filling.

116

117

118

Assembly Validation

Finally, the scaffolded assembly was assessed according to the 3C criterion (contiguity, completeness, and correctness). Assembly contiguity was measured using QUAST (ver 5.2.0) (Gurevich et al. 2013), which yielded N50, L50 statistics, contig/scaffold sizes, and estimated number of misassemblies. Genome completeness and correctness were measured using BUSCO (ver 5.4.2) (ref: endopterygota_odb10), as described above. Additionally, we assessed k-mer completenes, genome size, and genomewide heterozygosity using jellyfish v.2.3.1 (Marçais and Kingsford 2011) with a kmer length of 19 (estimated as the best kmer size using meryl v.1.3 (Rhie et al. 2020)), followed by analyses of the k-mer histograms using GenomeScope (Vurture et al. 2017). We additionally assessed k-mer completeness in the final assembled genome using merqury v.1.3 Rhie et al. (2020).

Gene Prediction and Annotation

RepeatMasker (v. 4.1.5) (Smit et al. 2015) was used to produce an annotation of the interspersed and tandem repeat sequences in the assembly against Coleopterans in the CONS-Dfam_3.7 database. It was also used to create a new 'soft-masked' assembly, wherein repetitive sequences are in lowercase. This 'soft-masked' assembly was input into Augustus (ver 3.5.0) (Stanke et al. 2006) for ab initio gene prediction, using the pre-trained gene model of *Triboleum castaneum*, as a reference. The gff file produced by Augustus and the 'soft-masked' assembly was input into JBrowse (ver 1.16.11) (Buels et al. 2016) to create a visual map of the coding sequences within the *H. convergens* genome.

Phylogenetic Analysis

To phylogenetically resolve the position of *H. convergens* in the Coleopteran tree of life, we constructed a BLAST database of all predicted genes from our genome annotation step, and intersected these against single copy orthologs identified among other Coleopteran genomes and the genome of *Harmonia axyridis* (Chen *et al.* 2021). Multiple sequence alignments of all such 3,865 used protein coding genes that were represented in all species analyzed were constructed using pasta v.1.8.6 Mirarab *et al.* (2015). Individual gene trees were then constructed using RAXML v. 8.2.12 (Stamatakis 2014) with the PROGRAMMAJTTF mutation model (sensu Thomas *et al.* (2020)). An unrooted species tree was then constructed using all 3865 gene trees with ASTRAL v.5.7.7 (Zhang *et al.* 2018).

Results and Discussion

A total of 267 gigabases of consensus long reads in the form of 3 FASTA files were derived from the CLRs by Dovetail Genomics from PacBio HiFi reads, while 86 gigabases of Hi-C paired-read data (43 gb of forward and reverse reads) was produced.

The final Canu assembly yielded 8520 contigs of 1,417 mbps, with a contig N50 score of 0.24 and a BUSCO score of 97.7%, with notably high proportion of orthologs with duplicates of 80.7%, as against single-copy orthologs (Table 1). These duplicated sequences from the *de novo* assembly were removed to improve assembly correctness, using the purge-dups tool resulting in a drop in overall BUSCO scores of 82.1%. However, the proportion of duplicated orthologs also notably decreased, successfully removing 26.3% of duplicated orthologs. After purging, the length of the final Canu assembly shortened by 48%, falling closer to the expected genome length of Coleopterans (Table 2).

The final draft assembly (purged of duplicates, decontaminated, and scaffolded), achieved a BUSCO score of 96.0% and decreased

the number of contigs by 59% and increased the contig N50 score to 89 Mb, thus improving assembly contiguity. Scaffolding using RagTag also made a modest increase in assembly size by 127 kilobase-pairs due to gap filling with 'N' sequences. 11.4% of the genome assembly was determined to contain repeats (Table 3).

The assembly quality was validated based on the 3C criterion of completeness, contiguity, and correctness. Assembly statistics were generated using the tools QUAST and BUSCO. QUAST was employed to measure genome contiguity, with the final H. convergens assembly achieving a contig N50 length of 89 Mb. Genome completeness was estimated using the proportion of complete BUSCOs, whilst the proportion of complete duplicated BUSCOs served as a proxy for genome correctness in the absence of a reference genome. The assembly protocol achieved an overall BUSCO score of 96.0%, indicating a high level of completeness (Complete:96.0% = Single Copy Orthologs:78.7% + Duplicate:17.3% + Fragmented:1.5% + Missing:2.5%; n:2,124). However, it was observed that 17% of the BUSCOs were duplicated, indicating room for improvement in genome correctness. Still, the *de novo* assembly size of *H. convergens* is comparable to other Coleopteran genomes. We also acknowledge that these duplicated BUSCO's could potentially also arise from inherent heterozygosity and thereby isoforms present amongst the 20 adult beetles that were utilized to generate the assembly. mergury v.1.3 Rhie et al. (2020) estimated a haploid genome size of 426.32 Mbps, which still remains 200 Mbps smaller than the estimated best assembly. Similar analyses using GenomeScope v.1.0 estimated a haploid genome size of 383 Mbps, with a genomewide heterozygosity of 0.041.

The assembled genome was analysed using the gene prediction tool AUGUSTUS, with a trained model based on the *Tribolium castaneum* geneset. The resulting gene predictions were then stored in a GFF file. This GFF file, in addition to the transcriptomic data provided by (Nadeau *et al.* 2022), was used to annotate 154,668 genic sequences in the assembly. This genome annotation was visualised in a genome browser generated by JBrowse and made publicly accessible.

The positioning of *H. convergens* within the Coleopteran order was resolved through 3,865 complete genes conserved across the beetles. The large number of orthologous genes used amongst the beetles provided confidence in the placement of *H. conver*gens within the broader Coleopteran phylogeny (Fig.1). These findings pave the way for future research projects focused on investigating the specific genes associated with predatory and social behaviors Yuan et al. (2022). Utilizing a well assembled and annotated genome can help researchers gain a deeper understanding on the invasive potential of *H. convergens*, its inclination towards frugivory, and its potential impact towards native arthropod populations. In particular, population genetic analyses using the assembled *H. convergens* genome can model the risks associated with uncontrolled release of *H. convergens*, including its potential to disrupt local ecosystems. Further research in this direction will contribute to informed decision-making and the design of management strategies to mitigate potential negative consequences associated with *H. convergens* mediated biocontrol.

Figures and tables

Data availability

All scripts used in assembly, quality control, and annotation are available on the project's GitHub page: https://github.com/gavrila-ang/MetaGenome The genome assembly has been deposited with NCBI Project Accession:

4

27

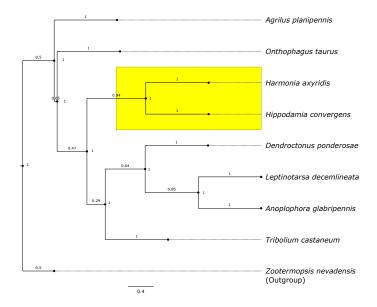

28

Table 1 Comparative Assembly quality between the Canu assembly, and subsequent correction steps (purging of duplicates, scaffolding), length, and completeness statistics as assessed against the BUSCO endopterygota_odb10 database. Assemblies shown are (1) wtdbg2, (2) wtdbg2+purge_dup, (3) Flye, (4) Flye+purge_dup, (5) Canu, (6) Canu+purge_dup, (7) Canu+purge_dup+RagTag, (8) Canu+purge_dup+RagTag+FCS-GX+salsa2.

Statistic/Assembly	1	2	3	4	5	6	7	8
Total Length (Mb)	1428	750	2429	951	1418	620	620	619
No. of Contigs	16181	4933	32016	6945	8520	2174	899	422
Contig N50 (Mb)	0.20	0.45	0.32	0.58	0.24	0.62	0.62	0.62
Scaffold N50 (Mb)	0.20	0.45	0.33	0.58	0.24	0.62	89.67	89.67
Complete BUSCO Score (%)	93.20	82.10	97.70	85.40	97.70	95.90	96.10	96
Complete and Single-Copy BUSCOs (%)	47.70	62.90	17	28.70	10.90	75.60	78.70	78.70
Complete and Duplicated BUSCOs (%)	45.50	19.20	80.70	56.70	86.80	20.30	17.40	17.30

Table 2 Comparison of assembly correctness, contiguity and completeness between the *Hippodamia convergens* assembly from this study, *Harmonia axyridis*, and *Coccinella septempunctata*.

	3C Criterion	Hippodamia convergens	Harmonia axyridis	Coccinella septempunctata
Total Length (Mb)		619	426	399
Contig N50 length (Mb)	Contiguity	89.67	22.90	16.50
Overall BUSCO Score (%)	Completeness	96.10	97.40	97.50
Duplicated BUSCOs (%)	Correctness	17.40	2.30	1

Figure 1 ASTRAL Species tree reconstruction amongst Coleopterans, resolving the omnivorous Coccinellid monophyly, comprising *Hippodamia convergens* and *Harmonia axyridis*, which in turn share a common ancestor with several species of herbivorous agricultural pests. Branch values indicate ASTRAL quartet scores (between 0 and 1), indicating support for the branch, while node values indicate support for the split (1 = 100% of gene trees support the split).

- PRJNA1017495. The JBrowse instance of the predicted genome
- annotation can be accessed at https://usegalaxy.org/datasets/
- 3 f9cad7b01a4721357d2c38a73df02de6/display/?preview=True

Acknowledgments

We thank Roxane Saisho and Alicia Tovar for maintaining strains of *H. convergens* in their homes during the COVID-19 lockdowns. This manuscript is dedicated in the memory of Roxane.

Funding

GA was supported by USDA-HSI:2022-77040-38529 to PI Sethuraman and co-PIs Vourlitis and Jancovich. Sequencing was supported by USDA-REEU: 2017-06423 to PI Vourlitis and co-PI Sethuraman and USDA-NIFA: 0224776 to PI John Obrycki (University of Kentucky). AZ was supported by NSF-REU: 1852189 to PI Betsy Read and co-PI Sethuraman. AS was supported by NSF CAREER 2042516.

Conflicts of interest

NA

Literature cited

Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, Wang X, Lippman ZB, Schatz MC, Soyk S. 2022. Automated assembly scaffolding using ragtag elevates a new tomato system for high-throughput genome editing. Genome biology. 23:1–19.

Altieri MA, Nicholls CI. 1999. Classical biological control in latin america: past, present, and future. Handbook of biological control. pp. 975–991.

Andrews S *et al.* 2010. Fastqc: a quality control tool for high throughput sequence data.

Aristiábal L, Arthurs S. 2018. Convergent lady beetle. Hippodamia convergens. .

- Astashyn A, Tvedte ES, Sweeney D, Sapojnikov V, Bouk N, Joukov V, Mozes E, Strope PK, Sylla PM, Wagner L *et al.* 2023. Rapid and sensitive detection of genome contamination at scale with fcs-gx. bioRxiv. pp. 2023–06.
- Bjørnson S. 2008. Natural enemies of the convergent lady beetle,
 hippodamia convergens guérin-méneville: their inadvertent importation and potential significance for augmentative biological control. Biological Control. 44:305–311.
- Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G,
 Goodstein DM, Elsik CG, Lewis SE, Stein L *et al*. 2016. Jbrowse:
 a dynamic web platform for genome visualization and analysis.
 Genome biology. 17:1–12.
- 13 Chen M, Mei Y, Chen X, Chen X, Xiao D, He K, Li Q, Wu M, Wang S, Zhang F *et al.* 2021. A chromosome-level assembly of the harlequin ladybird harmonia axyridis as a genomic resource to study beetle and invasion biology. Molecular ecology resources. 21:1318–1332.
- Crowley L, of Oxford U, Lab WWGA, of Life WSIT, of Life Consortium DT *et al.* 2021. The genome sequence of the seven-spotted ladybird, coccinella septempunctata linnaeus, 1758. Wellcome open research. 6.
 - Davis JR, Kirkland RL. 1982. Physiological and environmental factors related to the dispersal flight of the convergent lady beetle, hippodamia convergens (guerin-meneville). Journal of the Kansas Entomological Society. pp. 187–196.
- Flint ML, Dreistadt SH. 2005. Interactions among convergent lady beetle (hippodamia convergens) releases, aphid populations, and rose cultivar. Biological Control. 34:38–46.
- Ghurye J, Pop M, Koren S, Bickhart D, Chin CS. 2017. Scaffolding
 of long read assemblies using long range contact information.
 BMC genomics. 18:1–11.
- Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. 2020.
 Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 36:2896–2898.
- Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. Quast: quality
 assessment tool for genome assemblies. Bioinformatics. 29:1072–1075.
- Katsarou I, Margaritopoulos JT, Tsitsipis JA, Perdikis DC, Zarpas KD. 2005. Effect of temperature on development, growth and feeding of coccinella septempunctata and hippodamia convergens reared on the tobacco aphid, myzus persicae nicotianae. BioControl. 50:565–588.
- Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long,
 error-prone reads using repeat graphs. Nature biotechnology.
 37:540–546.
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research. 27:722–736.
- Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34:3094–3100.
- Li H, Durbin R. 2009. Fast and accurate short read alignment with burrows—wheeler transform. bioinformatics. 25:1754–1760.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP. 2009. The sequence alignment/map format and samtools. bioinformatics. 25:2078– 2079.
- Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M,
 Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO
 et al. 2009. Comprehensive mapping of long-range interactions
 reveals folding principles of the human genome. science. 326:289–293.

- Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 27:764–770.
- Mirarab S, Nguyen N, Guo S, Wang LS, Kim J, Warnow T. 2015. Pasta: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. Journal of Computational Biology. 22:377–386.
- Nadeau EA, Lecheta MC, Obrycki JJ, Teets NM. 2022. Transcriptional regulation of reproductive diapause in the convergent lady beetle, hippodamia convergens. Insects. 13:343.
- Obrycki J, McCord J, Mercer N, White J. 2018. Photoperiodic induction of adult diapause in north american populations of the lady beetle hippodamia convergens (coleoptera: Coccinellidae). Environ. Entomol. 47:1596–1600.
- Obrycki JJ, Harwood JD, Kring TJ, O'Neil RJ. 2009. Aphidophagy by coccinellidae: application of biological control in agroecosystems. Biological control. 51:244–254.
- Obrycki JJ, Kring TJ. 1998. Predaceous coccinellidae in biological control. Annual review of entomology. 43:295–321.
- Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW *et al.* 2016. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome research. 26:342–350.
- Rhie A, Walenz BP, Koren S, Phillippy AM. 2020. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome biology. 21:1–27.
- Ruan J, Li H. 2020. Fast and accurate long-read assembly with wtdbg2. Nature methods. 17:155–158.
- Santos KFA, Zanardi OZ, de Morais MR, Jacob CRO, de Oliveira MB, Yamamoto PT. 2017. The impact of six insecticides commonly used in control of agricultural pests on the generalist predator hippodamia convergens (coleoptera: Coccinellidae). Chemosphere. 186:218–226.
- Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. Busco: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31:3210–3212.
- Smit A. 2015. Smit, afa, hubley, r & green, p. repeatmasker open-3.0, rmblast-2.14.1.
- Smit A, Hubley R, Green P. 2015. Repeatmasker open-4.0. 2013–2015
- Stamatakis A. 2014. Raxml version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313.
- Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. 2006. Augustus: ab initio prediction of alternative transcripts. Nucleic acids research. 34:W435–W439.
- Starks K. 1975. Behavior of Convergent Lady Beetles in Relation to Greenbug Control in Sorghum: Observations and Preliminary Tests. volume 53. US Department of Agriculture, Agricultural Research Service, [Southern Region].
- Thomas GW, Dohmen E, Hughes DS, Murali SC, Poelchau M, Glastad K, Anstead CA, Ayoub NA, Batterham P, Bellair M *et al.* 2020. Gene content evolution in the arthropods. Genome biology. 21:1–14.
- Vasimuddin M, Misra S, Li H, Aluru S. 2019. Efficient architecture-aware acceleration of bwa-mem for multicore systems. In: . pp. 314–324. IEEE.
- Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC. 2017. Genomescope: fast reference-free genome profiling from short reads. Bioinformatics. 33:2202–2204. Wheeler CA, Cardé RT. 2013. Defensive allomones function as

- aggregation pheromones in diapausing ladybird beetles, hippodamia convergens. Journal of chemical ecology. 39:723–732.
- Wheeler CA, Cardé RT. 2014. Following in their footprints: cutic ular hydrocarbons as overwintering aggregation site markers
 in hippodamia convergens. Journal of chemical ecology. 40:418–
 428
- Yuan H, Gao B, Wu C, Zhang L, Li H, Xiao Y, Wu K. 2022. Genome of the hoverfly eupeodes corollae provides insights into the evolution of predation and pollination in insects. BMC biology. 20:1–16.
- Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. Astral-iii: polynomial time species tree reconstruction from partially resolved gene trees. BMC bioinformatics. 19:15–30.

Table 3 Repeat content variation assessed on the scaffolded Canu assembly of *Hippodamia convergens* using RepeatMasker.

		Number of Elements	Length Occupied(bp)	% of Sequence
Retroelements		140220	55733568	3.84
	SINEs:	1	63	0
	Penelope:	0	0	0
	LINEs:	105258	35902146	2.47
	CRE/SLACS	0	0	0
	L2/CR1/Rex	42197	10633373	0.73
	R1/LOA/Jockey	11860	4723341	0.33
	R2/R4/NeSL	4708	2603344	0.18
	RTE/Bov-B	21472	10060078	0.69
	L1/CIN4	0	0	0
	LTR elements:	34961	19831359	1.37
	BEL/Pao	10477	5368518	0.37
	Ty1/Copia	3989	2732450	0.19
	Gypsy/DIRS1	20495	11730391	0.81
	Retroviral	0	0	0
DNA transposons		175613	32941932	2.27
	hobo- Activator	35276	3710132	0.26
	Tc1-IS630- Pogo	113343	24926017	1.72
	En-Spm	0	0	0
	MULE-MuDR	110	12308	0
	PiggyBac	492	111551	0.01
	Tourist/Harbing	e 5 365	902756	0.06
	Other (Mirage, P-element, Transib)	755	119066	0.01
Rolling-circles		3937	477624	0.03
ronning circles		0,0,	17,021	0.00
Unclassified:		345298	60864377	4.19
Total interspersed repeats:			149539877	10.31
Small RNA:		1648	734047	0.05
Satellites:		0	0	0
Simple repeats:		282696	12335559	0.85
Low complexity;		46945	2355942	0.16