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Abstract

The burgeoning field of genomics as applied to personalized medicine, epidemiology, conservation, agriculture, forensics, drug devel-
opment, and other fields comes with large computational and bioinformatics costs, which are often inaccessible to student trainees
in classroom settings at universities. However, with increased availability of resources such as NSF XSEDE, Google Cloud, Amazon
AWS, and other high-performance computing (HPC) clouds and clusters for educational purposes, a growing community of academi-
cians are working on teaching the utility of HPC resources in genomics and big data analyses. Here, I describe the successful imple-
mentation of a semester-long (16 week) upper division undergraduate/graduate level course in Computational Genomics and
Bioinformatics taught at San Diego State University in Spring 2022. Students were trained in the theory, algorithms and hands-on
applications of genomic data quality control, assembly, annotation, multiple sequence alignment, variant calling, phylogenomic
analyses, population genomics, genome-wide association studies, and differential gene expression analyses using RNAseq data on
their own dedicated 6-CPU NSF XSEDE Jetstream virtual machines. All lesson plans, activities, examinations, tutorials, code, lectures,

and notes are publicly available at https://github.com/arunsethuraman/biomi609spring2022.
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Key messages

bioinformatics on a high-performance computing cluster.

* Here, I describe the curriculum and logistics of implementing a semester-long course in computational genomics and

¢ Topics covered included genome assembly, alighment, phylogenomics, GWAS, RNAseq analyses, and population genomics.
¢ All curricular materials are available for other educators on the author’s GitHub page.

Introduction

Studies that apply genomics, that is, that incorporate the entirety
of heritable DNA from individuals, cells, strains of the same or
many species have super-exponentially grown in the last decade
[1, 2]. While this growth can be partially attributed to the seem-
ingly ever-declining costs of DNA-sequencing on high-
throughput platforms such as Illumina [copyright], Pacific
Biosciences [copyright], IonTorrent [copyright], and Oxford
Nanopore Technologies [copyright], the associated costs and
need for storing, analyzing, and making sense of large genomic
data have grown significantly (https://www.genome.gov/2020SV).
Correspondingly, the market for bioinformatics and genomics
skills has grown across the world, with multi-billion USD market
sizes [3].

This puts the onus on university-level education on training
current students on effective handling, analyses and interpreta-
tion of genomic data [4], as much as on accessible high-
performance computing (HPC) facilities. However, college-level

training on bioinformatics and genomics is lagging significantly
on the applications of current tools and software pipelines for
genome-size data analyses owing to (1) lack of accessibility to
HPC facilities locally for classroom needs, (2) current reliance on
students and trainees to install and run large genomic data anal-
yses on their own laptops or devices, which can often overwhelm
and crash current architecture, (3) lack of cross-compatibility of
tools between operating systems and architectures, and (4) reli-
ance on unsecured and slow network capabilities for web-based
analyses and transfer of data [5].

To address all these issues, I developed and taught a compre-
hensive course on computational genomics and bioinformatics at
San Diego State University in Spring 2022. The course was co-
listed as part of the Computer Science, Biology, and
Bioinformatics curricula, and the student trainees comprised
graduate and senior undergraduate students at San Diego State
University (SDSU) with varied research and training interests.
Student registrants were either required to have some basic

Received: July 19, 2022. Revised: October 14, 2022. Accepted: October 17, 2022
© The Author(s) 2022. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

202 1dY $Z uo sosn sjeuss Ateiqi Aq 16,/289/2£09eda/|///9[01E/SPOYIWOIG/W00 dNo"dlWapes.//:Sd)y Wolj Papeojumo(



2 | Biology Methods and Protocols, 2022, Vol. 00, No. O

computer science background, with prior coursework in either
databases (e.g. CS 503 Scientific Database Techniques or CS 514
Database Theory and Implementation), or programming (e.g. CS
200 Introduction to Data Science and Python), or enrollment in a
graduate program in bioinformatics or biology. The students
were not required to be enrolled in active research credits, al-
though a majority of those enrolled were performing lab work
with faculty across the Department of Biology. Considering the
heterogeneous expertise of students, this course was developed
to therefore encompass theoretical, statistical, algorithmic, and
applied aspects of genomics (Table 1), that included analyses and
quality control of raw genomic data, de novo assembly, read align-
ment to reference genomes, variant calling, phylogenomic recon-
struction, ab initio- and reference-based annotation, population
genomic analyses, genome-wide association studies (GWAS), and
differential gene expression using RNAseq data. Lab sessions
were developed based on analyses of publicly available genomic
data from various sources including SARS-CoV-2 genomes from
GISAID and NCBI, population genomic and phenotypic datasets
from DataDryad and Zenodo, human genomic data from the
1,000 Genomes Project, and RNAseq data from EBI. All laborato-
ries were designed to run on personalized 6-CPU virtual machines
created for each student on NSF XSEDE [6] Jetstream (Indiana
University) which provides a convenient web-based interface for
large-scale data analyses to run via a web-browser. This, com-
bined with the convenience of hybrid (in-person in a classroom
equipped with computers and virtual) instruction via videocon-
ferencing permitted accessibility of cutting-edge training in geno-
mics for all students in the midst of the COVID-19 pandemic.
Students were trained in Unix shell scripting and statistical anal-
yses and data visualization in the R programming language as
part of the course, but were provided the freedom to use a pro-
gramming language of their choice and expertise for all assign-
ments, laboratories, and examinations. I hope that this primer
describing the course will serve as a helpful model for the geno-
mics training community in developing similar courses at their
own institutions.

Course organization and logistics

A request for funding/computational startup was made through
the XSEDE education allocation portal (https://allocations.ac
cess-cl.org/) in January 2022, prior to commencement of the

Spring 2022 term for 500,000 CPU hours to be shared by students
of my BIOMI 609 Computational Genomics and Bioinformatics
course. XSEDE (now completely transitioned into ACCESS—
https://access-ci.org/) offers free educational allocations for most
US-based educators and researchers, and has served as an in-
valuable resource for equitable computational use. My resource
allocation application was reviewed and awarded seamlessly,
with student accounts created easily through my computational
startup account portal. Followed by this, students were required
to create accounts on the XSEDE portal, with dual-factor authen-
tication, which permitted the creation of individual virtual
machines for each student. For convenience of using several pre-
installed libraries and tools for genomics, every student thereon
created a “Genomics Toolkit v.1.3.1” instance on their allocation,
which is a precompiled virtual machine with 6 CPUs, 16 GB of
RAM, and 60 GB of drive space, and pre-installed tools including
bedtools [7], beftools [8], and the bioconductor package [9]. A full
list of tools on the Virtual Machine (VM) are available here
https://iujetstream.atlassian.net/wiki/spaces/JWT/pages/
334397443/Genomics+Toolkit+image. Additional tools that were
required for each laboratory were installed individually by stu-
dents on their VMs. The convenience of the Jetstream web inter-
face allowed students a GUI for their Unix virtual machines
through XSEDE, as well as easy file transfer to and from their lo-
cal machines via a web browser. This permitted students with
different degrees of expertise in Unix operating systems to learn
and master the system via terminal and a web browser with min-
imal difficulty. Students were provided a detailed manual
explaining how to navigate their Jetstream machines including
file access, downloading and installing tools, setting paths, creat-
ing/copying/moving directories, writing and executing shell
scripts, and exploring and summarizing large genomic datasets,
prior to lab sessions. The course was organized such that stu-
dents were introduced to a topic through lectures for a week or
two, followed by which they spent a lab session working through
analyses of real genomic datasets. Student performance was
assessed through regularly interspersed graded analysis/pro-
gramming assignments, take-home examinations, and a final
project report (all materials accessible via the course’s GitHub
page). All lectures and notes were also recorded and made acces-
sible to the students immediately after every class. All videos of
lectures and laboratories are accessible via this YouTube playlist:
https://youtube.com/playlist?list=PL1e4GDIV5mn

Table 1: Schedule of lectures and associated laboratories from the Spring 2022 offering of BIOMI 609 Computational Genomics and

Bioinformatics at San Diego State University

Lecture

Laboratory

Introduction to genomic sequencing technologies, datatypes
Base calling, quality control

Genome assembly—de novo, guided

Review + midterm 1

Alignment, BLAST, Burrow-Wheeler transforms

Variant calling

Phylogenomics (neighbor joining, parsimony)
Phylogenomics (likelihood)

Review + midterm 2

Population genomics—1 (HWE, LD)

Population genomics—?2 (structure, evolutionary history)
Human genomics—GWAS

mRNAseq analyses

Annotation—ab initio, hidden Markov models

Final examination review

Final examination

Laboratory 1—genome assembly

Laboratory 2—variant calling

Laboratory 3—Phylogenomics

Laboratory 4—Population genomics
Laboratory 5—GWAS

Laboratory 6—RNAseq analyses
Laboratory 7—Genome annotation

Notes: All laboratory manuals are accessible at https://github.com/arunsethuraman/biomi609spring2022/tree/main/Labs.
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TQPoB7HR8UxQpg5stdMLiO. All lecture notes are accessible via
the course’s GitHub page: www.github.com/arunsethuraman/bio
mi609spring2022. While my course was deployed onto NSF
XSEDE, resources for this curriculum should be straightforward
to extend and deploy onto other HPC clusters or cloud instances,
such as Google Cloud (https://cloud.google.com/edu/faculty),
AWS Educate (https://aws.amazon.com/education/awseducate/),
the EU’s CoE (https://www.hpccoe.eu/eu-hpc-centres-of-excel
lence2/), or other similar education initiatives the world over.

Laboratories
Genome assembly

The first laboratory of the semester introduced students to down-
loading and processing genomic data from the Sequence Read
Archive (SRA) using SRAToolKit v.3.0.0 (https://hpc.nih.gov/apps/
sratoolkit.html), read quality assessment using fastqc v.0.11.9
(https://www bioinformatics.babraham.ac.uk/projects/fastqc/),
trimming of reads based on quality using trimmomatic v.4.0 [10],
genome assembly from raw reads using the short read assembler,
velvet v.1.1.0 [11], and assembly quality assessment using
QUAST v.5.1 [12]. Students worked with SARS-CoV-2 genomes
downloaded from the SRA, following which they were tasked
with (1) writing their own program for visualizing the PHRED
quality score distribution from a given FASTQ file and (2) assem-
bling the same genome using several de novo methods such as
velvet [11], AbySS [13], SOAPdeNovo?2 [14], and SPaDes [15] and
assessing assembly quality against the SARS-CoV-2 reference ge-
nome (NCBI Accession ID: NC045512.2) using QUAST [12]. This
exercise introduced students to several genomic concepts, in-
cluding quality scores, N50, N90, contiguity, and GC content,
apart from setting the stage for accessing, downloading, process-
ing, and visualizing large genomic datasets.

Variant calling and phylogenomic reconstruction

In Laboratories 2 and 3, students were introduced to a variant
calling pipeline using publicly available whole SARS-CoV-2
genomes from GISAID (https://www.gisaid.org/). Students uti-
lized the GISAID data portal to search for specific strains, sorted
on geographical origins to obtain FASTA files of whole assembled
genomes, followed by alignment using clustalw?2 [16], indexing
using faidx [8], alignment to a reference genome using bwa-
mem? (https://github.com/bwa-mem?2/bwa-mem?2) [17], and var-
iant calling using SAMtools and BCFtools [8] to create indexed
variant call format (VCF) files. Additionally, whole-genome align-
ments were constructed using MAFFT v.7.90 [18] and whole-
genome phylogenies constructed using RAXML-NG v.1.1.0 [19,
20], and visualized using FigTree v.1.4.4 (https://github.com/ram
baut/figtree/releases). Associated concepts including computing
genotype likelihoods, inferring molecular evolutionary history
under the nearly neutral theory, the molecular clock hypothesis,
and building phylogenies using distance-based and likelihood-
based methods were discussed in detail during lectures.
Additionally, the intuitive visualizations of the evolution of
SARS-CoV-2 and other viruses offered by www.nextstrain.org
provided an exciting and timely learning tool for the extensive
utility of real-time genomics and strain and spread monitoring.

Population genomics

In lectures leading up to the laboratory, students were introduced
to several population genomics concepts, including a review of
Mendelian inheritance; the Hardy-Weinberg principle; linkage
disequilibrium and null expectations for an equilibrium
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population, genetic drift, and the Wright-Fisher process, basic co-
alescent theory (including expectations of time to coalescence,
tree shapes, and the site frequency spectrum), quantifying and
testing for natural selection using summary statistics, selective
sweeps, the Wahlund effect and population structure, inbreed-
ing, migration, and mutational processes. In the following labora-
tory session, students were led through estimation of haploid
nucleotide diversity, Tajima’s D, and a comparison of evolution-
ary rates of HIV and SARS-CoV-2 with the results from
NextStrain. Thereon, students were introduced to a diploid re-
striction associated DNA sequencing (RADseq) dataset from my
laboratory, generated from global populations of the invasive
Harlequin ladybeetle, Harmonia axyridis as part of a population ge-
nomics study of global invasive success in the species (Li et al., in
review). As part of their laboratory, students utilized plink2
v.2.0.0 [21] for data format conversions, vcftools v.0.1.16 [22] for
computing various summary statistics, the gqgman [23] package
in R for visualization of genome-wide summary statistic esti-
mates, and ADMIXTURE v.1.3.0 [24] for estimation of population
structure. The students were then tasked with interpreting the
results of these analyses, in congruence with our manuscript.

Genome-wide association studies

With increased availability of genome-wide data, coupled with
large phenotypic data, GWAS are becoming invaluable tools for
discovering significantly correlated genomic variants in disease,
identifying adaptive loci, and genomic prediction [25]. In a labora-
tory I designed to introduce students to GWAS, I utilized the best-
practices discussed by Marees et al. [26] on a genomic-phenotypic
dataset from Hayward et al. [27] to understand causal variants in
congenital deafness in three breeds of dogs. To achieve this, stu-
dents utilized plink?2 [21] for quality control of the data (visualiz-
ing population structure using a Principal Components Analysis
(PCA), filtering based on minor allele frequencies, missing data
content, deviations from Hardy-Weinberg equilibrium, and close
relatives) followed by a logistic regression analysis and visualiza-
tion as Manhattan plots using the qgman [23] package in R.
Students were then tasked with assessing congruence of their
findings with those reported by the Hayward et al. [27] study.

Differential gene expression analyses, genome
annotation

In order to familiarize students to the Galaxy Project (www.usega
laxy.org), another invaluable toolbox for inclusive and accessible
genomic data analyses, I incorporated a laboratory on differential
gene expression analyses, adapted from Myrto Kostadima's RNA-
seq tutorial from EMBL (bpa-csiro-workshops.github.io), that
(i) aligns RNAseq data generated from two developmental stages
of zebrafish (Danio rerio) to the reference genome using TopHat
v.2.1.1 28], (ii) assembles whole transcriptomes and computation
of feature statistics using Cufflinks v.2.2.1 [29], (iii) differential
gene expression analyses and multiple-testing correction using
CuffDiff v.2.2.1 [29], and (iv) functional enrichment of differen-
tially expressed genes using the DAVID [30, 31] database, all per-
formed in a simple Galaxy Project pipeline. The following
laboratory, students performed annotation of the D. rerio genome
(chromosome 12) using two pipelines—(i) repeat-masking
using RepeatMasker v.4.0 [32] against the Dfam v.3.6 [33] data-
base, (ii) ab initio gene prediction using AUGUSTUS v.3.4.0 [34],
(iii) guided annotation using the MAKER v.2.31.11 [35] pipeline,
and (iv) creation of a combined genome browser instance using
JBrowse v.1.16.11 [36] (Fig. 1). The lecture portion of these analy-
ses permitted broaching topics related to elevated false discovery
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Figure 1: JBrowse instance of a D. rerio chromosome 12 annotation produced by AUGUSTUS and RepeatMasker, visualized using the Galaxy Project
interface. The full history for these analyses can be accessed at: https://usegalaxy.org/u/arun_sethuraman/h/rnaseq-annotation.

rates due to multiple-testing and different correction methods,
as well as an introduction to hidden Markov models for genome
annotation and the utility of the Viterbi and backward/forward
algorithms for inference as implemented in the hmm package in
R (https://cran.r-project.org/web/packages/HMM/HMM.pdf).

Reinforcement of concepts

Recognizing the sheer breadth of concepts and analyses covered
during the course of the semester, I wanted to ensure that there
was sufficient reinforcement of concepts through regular assign-
ments, review sessions, and take-home examinations which
have been shown to increase retention and recapitulation [37].
Here, I describe some of the student exercises, with the entire set
of curricular materials available through the course’s GitHub

page.

Programming assignments

Students utilized a programming language and coding environ-
ment of their choice (e.g. Python, R, and Java) to (1) develop a tool
that took a FASTQ file as input, computed the distribution of
PHRED quality scores from the ASCII Illumina encoding (https://sup
port.illumina.com/help/BaseSpace_OLH_009008/Content/Source/
Informatics/BS/QualityScoreEncoding_swBS.htm), and produce
a visual summary of the per-nucleotide quality distribution, (2)
take a reference genome as a FASTA file, and construct the
Burrow—Wheeler transform and suffix array encoding of the ge-
nome, (3) implement a search algorithm (e.g. backward search al-
gorithm [38], or bisection algorithm [39] for a set of reads provided
as a FASTQ file in the reference genome, (4) write a Wright-Fisher
simulation of allele frequencies in a diploid, bi-allelic population,
and visualize the rates of drift in populations of varying size, and
(5) simulate trajectories of genotype frequencies in a small inbred
population.

Scripting genomic analysis pipelines

Through the semester, students were also tasked with analyses
of publicly available genomic datasets including the take-home
final examinations, where they submitted a shell script that
encompassed all steps in assembly, quality control, trimming,

quality assessment, phylogeny reconstruction, annotation, and
creation of a genome browser instance from a whole-genome se-
quencing run of the bacterium Treponema pallidum subsp. pallidum
(SRA Accession: SRR18326765). They also had to perform analy-
ses of population structure in the species using the data of Beale
et al. [40], and assess congruence of their results with those from
the manuscript and discuss the evolutionary history of the spe-
cies. Other exercises that were assigned to them included tracing
the evolutionary origins of the HIV-1 epidemic using data from
Faria et al. [41] by constructing phylogenetic trees, (2) assembly,
annotation, quality control, and analyses of whole genomes from
Escherichia coli (ENA Accession ID: SRR957824), and reanalyses of
population genomic summary statistics and estimates of popula-
tion structure in a resident song sparrow, Melospiza melodia from
Mikles et al. [42].

Project reports

Students were also provided with the resources and time on their
Jetstream machines to work on an independent project that in-
corporated techniques, analyses, and concepts learned through
the semester. These independent projects spanned a wide range
of topics that included temporal phylogenomic analyses of SARS-
CoV-2 whole genomes in pre-vaccinated and post-vaccinated
time points, GWAS of physiological phenotypes among human
populations from high altitude regimes in Tibet, analyses of na-
tive Australian population structure in Eucalyptus moluccana, and
the development of an RNAseq differential gene expression pipe-
line in the Galaxy Project. Some sample independent project
reports from the course are shared with permission from stu-
dents and their research mentors on the course’s GitHub page.

Assessment and student evaluations

Students were formally assessed at the end of the semester and
provided with several question prompts that quantify (1) effec-
tiveness of the instructor, (2) stimulation of interest in computa-
tional genomics, and (3) effectiveness of the evaluative
components on a scale of 1-5 (1=Poor, 2=Below average,
3=Average, 4=Good, and 5=Excellent). Across all prompts,
responses (N=10) indicated that this course, instructional

202 1dY $Z uo sosn sjeuss Ateiqi Aq 16,/289/2£09eda/|///9[01E/SPOYIWOIG/W00 dNo"dlWapes.//:Sd)y Wolj Papeojumo(



Table 2: Collated responses for 12 quantitative assessment
questions on a scale of 1-5 (1 =Poor, 2 =Below average,

3 =Average, 4= Good, and 5 =Excellent) from N = 10 students
from Spring 2022

Question prompt Mean Standard Median
deviation
Course organization and presentation 5.00 0.00 5.00
Focus on course learning objectives 4.90 0.32 5.00
Overall teaching 4.80 0.42 5.00
Enhancement of understanding of subject 4.50 0.71 5.00
Contribution of examinations to the 4.60 0.52 5.00
learning process
Contribution of assignments to the 4.80 0.42 5.00
learning process
Effective use of class time 4.80 0.42 5.00
Clarity of presentation of materials 4.60 0.70 5.00
Instructor’s helpfulness 4.90 0.32 5.0
Instructor’s responsiveness 5.00 0.00 5.00
Instructor’s mastery of the subject matter 5.00 0.00 5.00
Instructor’s stimulation of your interest 4.80 0.63 5.00
in the subject
Overall 4.81 0.46 5.00

Notes: These questions assessed teaching effectiveness, quality of curricular
material, and contributions of evaluative components. Overall effectiveness
score from Spring 2022 was 4.81 (0.46 standard deviation).

material, and my teaching proved effective (Table 2, mean =4.81,
standard deviation = 0.46, and median =5.00). None of the en-
rolled students dropped the course at any point in the semester,
and they nearly exhaustively utilized all allocated CPU hours on
their respective virtual machines. A majority of the students re-
ceived an A (95% or more of points), or an A— (90-95% of points),
which indicated continued interest in the curricular material
throughout the semester.

While it was definitely challenging to maintain an engaging
environment in a hybrid format, I hope that the convenience of it
outweighs the difficulties. I also hope that open-sourcing all my
curricular material will encourage more bioinformatics and geno-
mics instructors to adopt this hybrid instructional strategy in the
future.

Conclusions

Teaching applied bioinformatics and computational genomics,
especially at the graduate and undergraduate levels is challeng-
ing, especially considering that not all institutions have equitable
access to HPC to permit large-genomic data analyses in an in-
structional scenario. I hope that this course modeled on XSEDE'’s
Jetstream will encourage more instructors to utilize it for instruc-
tional purposes on similar education platforms. While this was
an ambitious course, I am also hopeful that other instructors will
be able to adapt my curricular materials to their own specialties,
styles, and pace.

Data availability

All curricular materials are accessible via the course’s GitHub
page: www.github.com/arunsethuraman/biomi609spring2022.
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