o

X

Exploring Middle School Students’ Understanding of Algorithms
Using Standards-aligned Formative Assessments: Teacher and Researcher
Perspectives

Satabdi Basu, Daisy Rutstein, Carol Tate, Arif Rachmatullah, Hui Yang, and Christopher Ortiz
{satabdi.basu, daisy.rutstein, carol.tate, arif.rachmatullah, hui.yang, christopher.ortiz} @sri.com
SRI International

Abstract: ‘Algorithms’ is a core CS concept included in the K-12 CS standards, yet student
challenges with understanding different aspects of algorithms are still not well documented,
especially for younger students. This paper describes an approach to decompose the broad middle-
school ‘algorithms’ standard into finer grained learning targets, develop formative assessment tasks
aligned with the learning targets, and use the tasks to explore student understanding of, and
challenges with, the various aspects of the standard. We present a number of student challenges
revealed by our analysis of student responses to a set of standards-aligned formative assessment
tasks and discuss how teachers and researchers interpreted student responses differently, even when
using the same rubrics. Our study underscores the importance of carefully designed standards-
aligned formative assessment tasks for monitoring student progress and demonstrates the need for
teacher content knowledge to effectively use formative assessments during CS instruction.

1. Introduction

The demand for computer science (CS) learning opportunities in K-12 is rapidly increasing as it becomes clear to
policy makers, educators, and parents that an understanding of computing is essential to success in a technology and
automation-rich society. One of the most fundamental CS concepts is the algorithm, an ordered set of precise and clear
instructions to solve a problem or generate a desired output. An algorithm is often a first step towards planning the
logical flow of a computer program. Algorithmic thinking encompasses knowledge and skills specific not only to CS
and programming but also to general problem-solving and computational thinking (ISTE, 2016).

The Computer Science Teachers Association (CSTA) K-12 CS Standards identify ‘Algorithms and
Programming’ as a key CS concept across all grade bands and ‘Algorithms’ as one of its five sub-concepts (CSTA,
2017). Most state CS standards in the U.S. also include algorithms as a core CS concept (Guo & Ottenbreit-Leftwich,
2020). Algorithms are often introduced in K-12 through simple activities such as students writing instructions for
making a peanut butter and jelly sandwich and teachers enacting the instructions. These lessons are appropriate for
communicating the idea that computers will execute instructions as written (rather than as intended) but they do not
touch upon other important ideas emphasized in the ‘algorithms’ standards such as representation, interpretation,
comparison, testing and debugging of algorithms. In our review of several existing K-12 CS curricula, we have found
that many of them do not include the full scope of concepts and practices covered by ‘algorithms’ standards. CS
education research currently provides little guidance on how to unpack the broad ‘algorithms’ standards, making it
difficult for educators to understand the full scope of the standards and the range of skills that comprise proficiency.

A thorough understanding of the algorithms standards is a necessary, though not sufficient, component of
teachers’ ability to develop and effectively use formative assessments on algorithms (Basu et al., 2022). In addition to
content knowledge, a deep understanding of how K-12 students think about algorithms would allow teachers to
identify and address student challenges and advance student understanding. Formative assessment tasks that
intentionally target individual aspects of algorithms standards can reveal useful information about student
understanding and specific challenges on each of those aspects (Basu et al., 2022). The ability to use such standards-
aligned formative assessments to measure and support student progress on CS standards is articulated as part of the
CS teacher standards (CSTA, 2020). However, there is currently limited literature on K-12 students’ conceptualization
of, and challenges with, the concept of ‘algorithms’, and many CS teachers report feeling underprepared to use
formative assessments to monitor student learning (Gordon & Heck, 2019).

In this paper, we unpack a broad CSTA middle school ‘algorithms’ standard, 2-AP-10, “Use flowcharts
and/or pseudocode to address complex problems as algorithms™ into finer grained learning targets. We then discuss
an approach to developing aligned formative assessment tasks (and rubrics) and describe how we used a set of tasks
to explore student understanding of, and challenges with, the fine-grained learning targets underlying the standard.
Finally, we compare our evaluation of student responses with how middle school CS teachers evaluated the same
student responses using the same rubrics and how teachers’ own understanding of algorithms informed their evaluation

()

of student responses. By looking at both students’ responses and teachers’ interpretations, we are able to infer student

understanding and challenges as well as explore how teacher knowledge mediates the impact of formative assessment.

We are guided by the following research questions:

RQI1: How can formative assessment tasks be developed to examine student understanding on various aspects of the
middle school algorithms standard?

RQ2: What can we infer about middle school students’ understanding of and challenges with the concept of algorithms
from students’ responses to standards-aligned formative assessment tasks?

RQ3: How do teachers’ interpretations of middle school students’ understanding of algorithms compare to researchers'
interpretations, when using the same assessment tasks and rubrics?

2. Theoretical perspectives

2.1 Relevant related work

2.1.1 Characterizing and assessing students’ understanding of algorithms.

Recent research in CS education includes efforts to assess K-12 students’ algorithmic thinking skills and have been
situated within a computational thinking (CT) framework (e.g., Basu et al., 2021). These research studies have noted
middle school students’ challenges with devising algorithms to solve real-world problems (e.g., Wong & Jiang, 2018)
and comparing algorithms when the comparison is based on multiple criteria (Basu et al., 2021).

However, there is still limited research on several aspects of the ‘algorithms’ concept. For example, the
middle school standard for algorithms includes the practices of representing algorithms as flowcharts and pseudocode,
testing algorithms with a wide variety of inputs, predicting algorithm behavior, and debugging algorithms, many of
which are currently under-investigated. Assessments for algorithmic thinking are typically part of broader CT
assessments and hence do not cover all aspects of the ‘algorithms’ concept. Some research on high school students’
understanding of algorithms has revealed challenges with using flowcharts to create, call, and manage different sub-
algorithms (Rahimi et al., 2018), as well as misconceptions related to the efficiency of algorithms, thinking that fewer
lines of code and fewer variables characterize algorithm efficiency (Gal-Ezer & Zur, 2004).

2.1.2 Teachers’ content knowledge and pedagogy related to algorithms.

While information about how teachers conceptualize algorithms and perceive their own knowledge of algorithms is
limited, there have been some studies that explore teachers’ understanding of algorithmic thinking in the context of
CT. Rich and colleagues found that elementary school teachers who are new to the field of CT associated the term
‘algorithmic thinking” with the mathematical term algorithm that specifies steps for performing traditional arithmetic
operations, and conceptualized algorithmic thinking as “following steps”, and “discovering and explaining strategies”
(Rich etal., 2019, p. 179). Research has also shown that appropriate professional development (PD) opportunities can
expand teachers’ knowledge of algorithmic thinking. For example, Yadav and colleagues (2018) analyzed and
compared teacher responses before and after a year-long CT PD and found that teachers initially made generic
comments about algorithms but were later able to identify and discuss specific characteristics of algorithms such as
efficiency, abstraction, and generalization.

Given the fundamental role of algorithms in CS education, researchers have sought to understand how
teachers teach algorithms. A common instructional task is having students construct an algorithm in the form of a
flowchart or pseudocode to solve a given problem. A study by Vivian and Falkner (2019) found that teachers with
high confidence in teaching a digital CS curriculum frequently used algorithmic language, made more connections to
learning objectives on algorithms and programming, and were more likely to engage students in algorithm
development and manipulation activities before programming. In our current study, several middle school teachers
mentioned that their teaching of algorithms was limited to facilitating activities such as instructions for creating peanut
butter and jelly sandwiches, because the CS curricula they used did not include specific lessons on algorithms.
Teachers remarked that they formatively assessed their students’ understanding of algorithms based on completion of
project-based activities rather than the knowledge and skills students demonstrated on individual activities.

2.2 Evidence-centered design (ECD)

We employed ECD (Mislevy & Riconscente, 2006), a principled assessment design approach, to analyze and unpack
the middle school ‘algorithms’ standard and develop aligned formative assessment tasks. ECD helps 1) define what
to measure, 2) identify the evidence needed to measure these goals, and 3) design tasks to produce this desired
evidence. The ECD process starts with analyzing the target domain (outlining the scope of the middle-school

| 4
“/ ¢ International Society of
“ISLS the Learning Sciences

algorithms standard) and decomposing the standard into a set of finer-grained knowledge, skills, and abilities that
students should possess. The ECD process results in a set of assessment tasks that elicit desired evidence on different
aspects of the standard as well as aligned rubrics.

3. Methods and Data Sources

3.1 Designing standards-aligned formative assessments

We employed the ECD approach to define the scope of the 2-AP-10 standard by clarifying the knowledge and skills
expected of this standard relative to elementary and high school ‘algorithms’ standards. We found that this middle-
school standard transitions students from interpreting algorithms in upper-elementary grades to creating algorithms
that solve complex problems and testing algorithms using a variety of inputs. The standard focuses on fluency with
representations such as flowcharts and pseudocode that represent the steps to solve a problem pictorially or using plain
language description. It includes the ability to identify relevant information from a problem description (e.g., inputs,
goals and decision points) and translate it into an algorithm, as well as the practices of testing and debugging
algorithms. Analyzing the scope of the 2-AP-10 standard helped us to decompose the broad standard into a set of ten
fine-grained learning targets (LTs) on which we could individually examine student understanding (see Figure 1).
Specific LTs enable teachers and curriculum developers to design targeted instruction and assessment opportunities
to check student understanding and help students overcome specific learning gaps (Basu et al., 2022).

Figure 1. The CSTA Middle School ‘Algorithms’ standard and its description, followed by out

decomposition of the standard into ten fine-grained learning targets.
2-AP-10: Use flowcharts and/or pseudocode to address complex problems as algorithms.

Complax problems are problems thal would be diffcult for stvdents lo solve compulationally. Students should use pseudocode andior
flowcharts fo organizée and sequence an algodnthm hat addresses a complex problem, even though they may nat actually program the solutions.
For example, students might express an aligonthm thal produces a recommendation for purchasing sneakers based an inpuls such as size,
colors, brand, comfort, and cost. Testing the algorithm with a wide range of inpuls and users allows students lo refine their recommendalion
algonitim and to idenlify other inputs they may hawve inttially excluded.

Learning targets for 2-AP-10

1.Knowledge that an algorithm is a step-by-step, ordered set of instructions for solving a problem, and in order to be computer-understandable,
tha instructions must be precise and unambiguous.

2. Knowladge that pseudocode is an informal way lo describe code without striclly following any specific programming language and can be
used to skatch out code before programming.

3. Knowladge that a flowchart is a diagrammatic represantation of an algorithm that spacifies a step-by-stap way to complate a task.

4_Ability to frace an algorithm (in the form of pseudocode or a flowcharl) and describa its behaviour or oulput when given a specific sel of
inputs.

5.Ability to recognize ralavant infarmation from a problem to identify possible inputs and goals of an algorithm, decision points that may require
branching, test cases, stopping conditions, and constraints such as cost, time or dalivery platform.

G.Ability 1o selact and use appropriate representations (pseudocode or flowchart) to plan a problem solution that handles the desired range of
inputs and is able o deal with edge casas.

T_Ability to generate multiple ways o solve a problam and represent each using a flowchart or pseudocode.

B Ability to compare the trade-offs between different algorithms or approaches lo problem solving based on certain evaluation criteria or
consiraints.

B_Abdlity to identify meaningful test cases (including edge casas) for testing an algarithm.

10.Ability to test and debug algorithms using a systematic and iterative process lo ensura the algorithms function appropriately.

Figure 2. An Example 2-AP-10 Assessment Task Aligned with LT 1 “Knowledge that an algorithm is a

step-by-step, ordered set of instructions for solving a problem, and in order to be computer-

understandable, the instructions must be precise and unambiguous.”
Task 2AP10.LT1.1

1. Which of the following is an algorithm a person could use to make hot chocolate? There may be more than one cormect answer. Select all that apply.

Step 1. Buy hot chocolate packet. Step 1. First, bring water to a boil in a kettle,

Add 300 ml wazer Boil water and wait Open one hot

Step 2. Get a clean mug. 1o bettle for 3 minutes chocolate pack ,:" L Step 2. Open ane hot chocolate pack.
Step 3. Turn on the music. 8 S . D Step 3. Put the hot chocolate powder into a mug.
. . c. Step 4. When the water is between 195°F and
Step 4. Drink hot chocolate. When the water ks 205°F, add it into the mug.
A, . N Hot chocolate is || 200F, add 200 mi Put the chocolate
Step 5. Boil water in a kettle. ready boded water inta || powder into a mug Step 5. Stir it and serve

the mug

2. Why do you think your answer or answers are algorithms for making hot chocolate?

Next, we followed the ECD framework to develop a set of formative assessment tasks, each focused on
eliciting evidence of student understanding on one LT (see Figures 2, 3 for examples). Task formats included multiple
choice questions, short-answer prompts, and open-ended explanations. Tasks were short enough to be practical for in-
class use to diagnose student understanding of the LTs. Each sub-task was accompanied by one of two rubric types

()

(see Table 1). A RC rubric grouped student responses into Response Categories (RCs) such that each RC was
indicative of a certain level of student understanding (a student can be in only one RC). An IC rubric listed a set of
Indicated Challenges (ICs) that could be inferred from student responses (a student can have multiple ICs).

Task 2AP10.LT9.1

Enter a value of speed

described above.

Value 1: Value 2:

Value 4:

You are testing a program which is supposed to monitor traffic based on 3 rules as shown below:

-

+ Rule 1: If the speed is 50 mph or faster, the program shows the message "You need to slow down”;

. Rule 2: If the speed is 30 mph or faster but slower than 50 mph, the message is "You are in the safe range”™
+« Rule 3: If the speed is less than 30 mph, the message is "You can speed up”.

i. Pick at least four values of speed that you would enter to test if the program is working correctly for all 3 rules

Vales of speed | would enter to test if the program s working for all 3 riles:

Value 3:

Other values:

ii. Explain why you would use these values of speed to test your program.

Table 1. Rubric for analyzing student responses to Task 2AP10.LT1.1 shown in Figure 2

Figure 3. An Example 2-AP-10 Assessment Task Aligned with LT 9 ‘Ability to identify meaningful test
cases (including edge cases) for testing an algorithm’.

Rubric for Part 1 Rubric for Part 2
Student Possible inference about Response Seudent Resy nee Possible inference about | Indicated
Response student understanding Category student understanding Challenge
Challenges with order and final Student does NOT | Student may have IC1
goal: Student does not realize that indicate that their | difficulty recognizing that
A only the steps of an algorithm need to RCI selected options | an algorithm needs to
be in order/sequential and the last contain instructions | include a set of clear or
step should be the goal which is that are “clear” or | specific instructions.
making hot chocolate. “specific”.
Challenge with representation: Student does NOT | Student may have 1C2
Student does not realize that an indicate that their | difficulty recognizing that
C only algorithm is a process or ordered RC2 selected options | an algorithm includes
set of steps to get to a goal state; contain instructions | instructions that are
a static diagram depicting objects that are ordered ina | ordered in a logical
is not an algorithm. logical way. sequence.
Student understands what Student does NOT | Student may have IC3
defines an algorithm and can mention that the | difficulty recognizing that
Band D | recognize an algorithm in RC3 algorithm will fulfil | the instructions in an
various forms. the goal of making | algorithm need to fulfil the
hot chocolate. goal of the algorithm.
Student understands what defines Students states that | Student may not recognize IC4
an algorithm but can only the algorithm | that their explanation
B only - . . . « v .
or recognize an algorithm in certain RC4 make_:s sense” or | should o include
D only forms (i.e., ﬂowchgrt/dlagram that is how they chara.cterlst.lcs of an
process or procedure list). would make hot | algorithm instead of their
chocolate. personal opinion.
Student may not understand what Student only | Student has difficulty IC5
an algorithm is. restates the | understanding the concept
algorithm without | of algorithms and/or
explaining why itis | articulating it.
Ar:S}];glt]};Zr RC5 an algorithm.
Student states | Student has difficulty IC6
something that is | understanding the concept
incorrect or not | of algorithms and/or
relevant articulating it.

3.2 Small-scale classroom study
We collaborated with eight middle school CS teachers from an urban school district in the Midwestern U.S. who used
code.org’s CS Discoveries (CSD) curriculum for their teaching. All teachers had participated in CSD PD offered by

()

code.org prior to participating in our study. The teachers varied widely in terms of overall teaching experience (1-21
years), but they had all taught CS for less than three years. We provided teachers with professional learning in the
form of educative resources on unpacking the 2AP10 standard and standards-aligned formative assessments for
algorithms. Teachers participated in an hour-long, online, synchronous PD session on algorithms where we introduced
them to the 2-AP-10 standard, corresponding state standards, our unpacking of the standard, and the aligned formative
assessment tasks and rubrics that we had developed. Throughout the PD session, the teachers were engaged in short
activities that provided us with important information about their understanding of and familiarity with the
‘algorithms’ standard. For example, teachers had to identify the LTs with which a given task was aligned. They were
also asked to indicate which LTs they were already addressing during instruction and which they planned to address
in the future. Teachers were divided into two groups where each group looked at two examples of student responses
to an algorithm task (see Figure 3) and discussed how to evaluate the responses using the provided rubrics or by
modifying the given rubrics. Teacher responses and discussions were recorded for future analyses. Teachers took a
CS pedagogical content knowledge (PCK) survey before participating in the PD and at the end of the classroom study.
We designed the survey to measure teachers’ attitudes towards CS, knowledge of algorithms and programming
concepts, and ability to interpret student work. For this paper, we analyzed teachers’ pre-survey responses to two tasks
that asked teachers to interpret and compare students’ algorithms and predict possible student challenges.

Here we report on student data from formative assessments administered by two out of the eight CS teachers
— Dina and Remi (pseudonyms) — who consented to sharing student work and their evaluation of student work. Dina
and Remi administered a subset of the formative assessment tasks to their students, evaluated student responses, and
shared both student responses and their evaluations with our research team. We collected student data for 36 students
across grades 7 and 8. Most students had taken at least one other CS class in the previous school year, though classes
were disrupted by school closures and remote instruction during the global pandemic. At the time of the study, students
in both Dina and Remi’s classes had completed CSD units 1 and 2 (Problem Solving, Web Development) and were
working on CSD Unit 3 (Interactive Animations and Games). We gathered data on student responses to six algorithm
tasks aligned with LTs 1, 6, 8, and 9, with each task yielding 15 to 36 student responses. Using the same task-specific
rubrics we shared with teachers, we coded student responses to the tasks. For each open-ended prompt, at least two
researchers coded student responses into RC or IC categories. Researchers met regularly to discuss discrepancies in
their coding until they reached consensus. Memos were recorded throughout the discussion and used to refine the
rubrics. We then compared our coding to that of the teachers. We conducted descriptive and thematic analyses
(Saldafia, 2016) of our coding of student responses and the comparison findings to explore students’ understanding of
algorithms and the similarities and differences in how teachers and researchers coded students’ responses.

4. Findings

4.1 Students’ understanding of algorithms
We summarize our findings about middle school students’ understanding of algorithms in terms of the LTs targeted
by the tasks we analyzed. These findings have implications for CS instruction, curriculum design, and PD design.
LTI: Understanding what an algorithm is. Analysis of student responses to two tasks aligned with this LT
revealed that most students understood what an algorithm is. For example, for task 2AP10.LT1.1 shown in Figure 2,
21 of 35 (60%) students who completed the task were able to identify both options B and D as algorithms for making
hot chocolate, while 10 (29%) students identified only one of options B and D. However, only nine of the 31 students
who selected options B and/or D could justify their selection(s) to any degree. Explanations often mentioned ordered
steps, clear instructions, or achieving the goal of making hot chocolate, but rarely included all aspects (see Table 2).
LT6: Selecting flowcharts representing problem solutions. Students responded to one task asking them to
select a flowchart that appropriately represents a delivery robot’s actions. Ten of 15 (67%) students who worked on
this task could represent the given text-based problem solution for the robot as a flowchart. Among the remaining five
students, three struggled with using a decision box and selected a flowchart where the decision box did not have an
arrow labeled ‘NO’ flowing out of it. Two students had difficulty understanding that the steps of an algorithm should
appear in the same order regardless of the algorithm representation, whether text-based or pictorial as in a flowchart.
LT8: Interpreting and comparing algorithms. Students responded to two tasks involving comparison of
algorithms. The first task involved comparing three simple algorithms for navigating a robot based on time and cost
criteria. Most students (23 of 34 or 68%) correctly identified the algorithms that would reach the goal, the fastest
algorithm and the cheapest algorithm. However, students found it challenging to compare algorithms based on
multiple criteria. Only 37% students could compare the algorithms correctly when considering both speed and cost
criteria simultaneously. This finding is similar to that observed by Basu and colleagues (2021) with students in grades

()

4-6 in Hong Kong. The second task involved comparing two relatively complex algorithms that included user input
and compound conditionals. Only 20 of 36 (56%) students were able to correctly interpret the individual algorithms.
Several students seemed to have difficulty following the logic of conditional statements in the algorithms. Twenty-
two (61%) students were able to compare the algorithms and decide which one to use for solving a given problem.
However, few of these students could justify their selection. Seven students gave a fully correct explanation, 2 students
gave a partially correct explanation, and 13 students were not able to give any suitable explanation for their selection.
LT9Y: Selecting meaningful test cases to test algorithms. Student responses to Task 2AP10.LT9.1 (Figure 3)
revealed that only 5 of 20 (25%) students could identify appropriate test cases (i.e., numbers in different ranges that
would test all three program rules). Several (40%) students identified test cases that only tested one of three program
rules, while others tested two of the rules. Only four of 20 (20%) students could justify their selection of test cases by
describing how they were trying to test all three rules included in the program (see Table 3 for sample responses).

Table 2. Analysis of sample student responses to Task 2AP10.LT1.1 (Figure 2) using the rubric shown in Table 1.

S EEHO Response to part 2 Possible inferences about student understanding
for part 1
B,D They're both algorithms for making hot chocolate Student can recognize algorithms and understands the
(RC3) because they're in the correct order and they give characteristics that define an algorithm.
the instructions in a stepwise, efficient order that
can be easily read and followed through. (no IC)
B,D I selected both of those answers because they're Student can recognize algorithms but may not understand
(RC3) explaining the instructions clearly. (IC2, IC3) all the characteristics that define an algorithm.
D I think my answer is an algorithm for making hot Student can only recognize algorithms written as a list of
(RC4) chocolate because this would be how I make my steps, may not be aware of characteristics of an algorithm,
hot chocolate. (IC1, IC2, IC3, IC4) and is using their experiences to explain their choices.
Table 3. Sample student responses to Task 2AP10.LT9.1 shown in Figure 3
Value | Value | Value | Value | Other Explanation for choice of Possible inferences about student
1 2 3 4 values values to test understanding
29 I wquld use these speeds to Student is able to identify meaningful test
55 50 49 30 mph, | see if the program gives each .
cases to test all three rules (both values in the
mph mph mph mph 20 of the three messages only .
. range and at the boundaries of the rules).
mph | when it is supposed to.
I would use these values of Student is able to identify some meamngful
40 30 test cases but may not recognize that testing
5mph | 0 mph speed to make sure the
mph mph - . an algorithm requires testing all of its rules or
program works as it should. o,
conditions.
45 Student struggles to identify a full range of
mph, | I would use these speeds to | meaningful test cases and has challenges
49 48 47 46 - °.
moh mph mph mph 44 see if I need to be exactly on | recognizing that they need to test the
P mph | 50 mph to slow down. algorithm under different scenarios to make
sure it works for all three rules.

4.2 Teacher interpretation of student work

Next, we compare our evaluation of student responses with teachers’ interpretations of the same responses. Teachers
used the same set of rubrics as the researchers, and though they were encouraged to modify the rubrics as needed,
neither Dina nor Remi changed the rubric for any of the tasks. Teachers were consistent with researchers when
evaluating the multiple-choice tasks, which allowed no room for subjectivity in terms of which rubric category each
response corresponded to. For the open-ended tasks, such as selecting meaningful test cases and explaining selection
of algorithms, there were several differences in teacher and researcher interpretations of the same student responses.
For example, for Task 2AP10.LT1.1 Part 2 (Figure 2) where students explain why they think their selection is an
algorithm, teacher and researcher categorization of student responses matched for only 25% of the responses. While
researchers considered certain explanations to be inadequate evidence of student understanding of what constitutes an
algorithm (e.g., “I chose these because you end up with the right result”, “I think my answers are algorithms because
they make sense”), teachers did not select any ICs and interpreted those responses to be indicative of a complete
understanding of the ‘algorithms’ concept. When evaluating student explanations that compared two relatively
complex algorithms (aligned to LTS), agreement between researchers and teachers was fairly high (agreement on 30
of 36 or 83% responses). In instances where there were disagreements, there was no clear pattern. Teachers appeared

()

to focus only on student explanations and not on students’ choice of algorithm when applying the rubric, leading to
differences in overall interpretation of student understanding.

For Task 2AP10.LT9.1 (Figure 3), there was a 43% agreement between teacher and researcher evaluations
of student responses to part i, where students identified a range of test cases, and a 67% agreement on part ii, where
students explained their choice of test cases. Teachers consistently assigned student responses to a category that was
indicative of greater student understanding. Though the rubric explicitly mentioned various acceptable values or value
ranges for students to use as test cases so that they could test all the rules in the program, teachers could not identify
student challenges when students picked distinct values that tested only one or two of the three rules (e.g., “45, 39,
25, 47”) or when students picked non-numeric values (e.g., “45, 40, safe range, 40”). For the explanations,
disagreements in evaluating student responses seemed to stem from teachers’ preference for articulate, logical, and
well written explanations, rather than explanations that articulated the need to test all three rules of the program.

Teachers’ knowledge of algorithms. While some of these disagreements between teachers and researchers
may have been caused by lack of clarity in the rubrics, our analysis of teacher engagement during the PD and teachers’
PCK survey responses suggest that some of the disagreement may have also stemmed from teachers’ lack of
knowledge of the full scope of the ‘algorithms’ standard. During the PD, when asked about which LTs teachers already
use in their instruction, most teachers identified LT1 and LTS5, but no teacher selected LT9, indicating that testing
algorithms and identifying test cases were not things they associated with ‘algorithms.” Additionally, during a PD
group activity where teachers practiced applying rubrics to evaluate example student responses to Task 2AP10.LT9.1,
we found that teachers struggled to identify negative numbers as legitimate test cases. Also, consistent with what we
found when teachers evaluated their students” work, teachers evaluated correct explanations to be inadequate during
PD just because they were short and did not provide enough details about the program’s behavior. Further, analysis
of teachers’ pre-PD PCK survey responses revealed teachers’ challenges with interpreting and comparing algorithms.
These algorithms included nested conditionals or nested loops and were more complex than those featured in students’
formative assessment tasks. Most teachers, including Dina and Remi, had difficulty interpreting some of the individual
algorithms which then translated to difficulty comparing the algorithms.

5. Discussion, Limitations and Conclusion

In response to the current demand for quality CS learning opportunities and useful CS pedagogy in K-12, we offer an
approach to unpack a broad CS standard into fine-grained LTs, develop formative assessments aligned with the LTs,
and use the assessments to reveal student understanding and challenges related to the standard. Both CS educators and
curriculum developers can benefit from this approach by gaining a more complete understanding of CS standards and
known student challenges. This approach allows teachers to focus on conceptual understanding of CS standards and
formative assessment practices, which they can then leverage in any curriculum to improve CS instruction.

In this paper, we chose a fundamental CS concept, ‘algorithms,” and demonstrated our approach by
decomposing a middle school CS standard on algorithms into ten discrete LTs. We employed an ECD approach to
design formative assessments that capture information about student understanding and challenges for each LT (RQ1).
The assessments we developed allowed us to identify common student challenges related to aspects of the ‘algorithms’
concept, such as comparing, and testing algorithms (RQ2). This work aligns with and adds to a growing literature on
middle school students’ understanding of algorithms. These are, however, preliminary findings, and we acknowledge
that generalizations from this study are limited by our small sample size. Another limitation of our study is that the
requirements of our formative assessment tasks did not always align well with typical middle school CS classroom
expectations. For example, many of our tasks required open-ended responses and/or explanations of selected responses
— something many students were not accustomed to doing in CS class. In many CS classrooms, teachers do not always
expect detailed written responses from students and when they do, they often provide students with clear rubrics.
Hence, it is unclear whether some student responses to our formative assessment tasks are truly indicative of a lack of
understanding or merely reflect students’ understanding of classroom expectations.

This paper also adds to the limited literature on middle school teachers’ understanding of algorithms and
describes how teachers’ understanding of CS standards may influence their interpretation of student work and their
ability to identify student challenges. While our teacher sample was limited, all teachers in our sample agreed that
they did not associate the concept of ‘algorithms’ with testing algorithms systematically and identifying test cases.
Several teachers remarked that they did not introduce their students to algorithmic representations such as flowcharts
because it was not covered in the middle school CS curricula they used. Upon examining the types of student responses
for which teachers and researchers differed in their interpretation of student understanding of algorithms, despite using
the same set of rubrics (RQ3), we concluded that some inconsistencies could be reduced by increasing the clarity of
our rubrics, while others needed to be addressed through additional teacher training on the concept of ‘algorithms.’

()

Our findings indicate that middle school CS teachers may benefit from additional PD on the ‘algorithms’
standard, in particular the concepts of algorithm representation, comparison, and testing and debugging. Merely
designing principled formative assessments and rubrics that can elicit evidence of student understanding may not be
sufficient to support teachers; teachers also need deep content knowledge to ensure they can use the formative
assessments effectively. While it may seem unsurprising that teachers who lack content knowledge are not able to
support their students adequately, empirical data to showcase these connections between teacher knowledge and
student learning is important in a nascent field like CS education research, especially when many CS teachers claim
to learn along with their students and be self-taught. We hope that with a more complete understanding of the
‘algorithms’ standard, teachers can move beyond just using the peanut butter and jelly sandwich activity to employing
a range of activities and assessments that promote a more complete understanding of algorithms.

This work is part of a larger project to support middle school CS teachers with their understanding of five
different ‘algorithms and programming’ standards and their ability to use formative assessment tools aligned with
these standards. Next steps on this project will involve similar research using different standards and examining
whether the findings in this paper hold with a larger sample of students and teachers.

References

Basu, S., Rutstein, D., Tate, C., Rachmatullah, A., & Yang, H. (2022, February). Standards-Aligned Instructional
Supports to Promote Computer Science Teachers' Pedagogical Content Knowledge. In Proceedings of the
53rd ACM Technical Symposium on Computer Science Education V. 1 (pp. 404-410).

Basu, S., Rutstein, D. W., Xu, Y., Wang, H., & Shear, L. (2021). A principled approach to designing computational
thinking concepts and practices assessments for upper elementary grades. Computer Science
Education, 31(2), 169-198.

Computer Science Teachers Association (2017). CSTA K-12 computer science standards. Revised 2017. Retrieved
from http://www.csteachers.org/standards

Gal-Ezer, J., & Zur, E. (2004). The efficiency of algorithms—misconceptions. Computers & Education, 42(3), 215-
226.

Gordon, E. M., & Heck, D. J. (2019). 2018 NSSME-+: Status of High School Computer Science.

Guo, M., & Ottenbreit-Leftwich, A. (2020, October). Exploring the K-12 computer science curriculum standards in
the US. In Proceedings of the 15th Workshop on Primary and Secondary Computing Education (pp. 1-6).

International ~ Society for Technology in Education (ISTE). (2016). ISTE Standards: Students.
https://www.iste.org/standards/iste-standards-for-students

Mislevy, R.J., & Riconscente, M.M. (2006). Evidence-centered assessment design. In S. M. Downing & T. M.
Haladyna (Eds.), Handbook of test development (pp. 61-90). Mahwah, NJ: Erlbaum.

Rahimi, E., Barendsen, E., & Henze, 1. (2018, October). An instructional model to link designing and conceptual
understanding in secondary computer science education. In Proceedings of the 13th Workshop in Primary
and Secondary Computing Education (pp. 1-4).

Rich, K. M., Yadav, A., & Schwarz, C. V. (2019). Computational thinking, mathematics, and science: Elementary
teachers’ perspectives on integration. Journal of Technology and Teacher Education, 27(2), 165-205.

Saldafia, J. (2021). The coding manual for qualitative researchers. The coding manual for qualitative researchers, 1-
440.

Vivian, R., & Falkner, K. (2019, July). Identifying teachers' Technological Pedagogical Content Knowledge for
computer science in the primary years. In Proceedings of the 2019 ACM conference on international
computing education research (pp. 147-155).

Wong, G. K., & Jiang, S. (2018, December). Computational thinking education for children: Algorithmic thinking
and debugging. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for
Engineering (TALE) (pp. 328-334). IEEE.

Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational thinking in elementary classrooms: Measuring
teacher understanding of computational ideas for teaching science. Computer Science Education, 28(4), 371-
400

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. DRL-2010591. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

https://www.iste.org/standards/iste-standards-for-students

