

Exploring Middle School Students’ Understanding of Algorithms
Using Standards-aligned Formative Assessments: Teacher and Researcher

Perspectives

Satabdi Basu, Daisy Rutstein, Carol Tate, Arif Rachmatullah, Hui Yang, and Christopher Ortiz

{satabdi.basu, daisy.rutstein, carol.tate, arif.rachmatullah, hui.yang, christopher.ortiz}@sri.com

SRI International

Abstract: ‘Algorithms’ is a core CS concept included in the K-12 CS standards, yet student

challenges with understanding different aspects of algorithms are still not well documented,

especially for younger students. This paper describes an approach to decompose the broad middle-

school ‘algorithms’ standard into finer grained learning targets, develop formative assessment tasks

aligned with the learning targets, and use the tasks to explore student understanding of, and

challenges with, the various aspects of the standard. We present a number of student challenges

revealed by our analysis of student responses to a set of standards-aligned formative assessment

tasks and discuss how teachers and researchers interpreted student responses differently, even when

using the same rubrics. Our study underscores the importance of carefully designed standards-

aligned formative assessment tasks for monitoring student progress and demonstrates the need for

teacher content knowledge to effectively use formative assessments during CS instruction.

1. Introduction
The demand for computer science (CS) learning opportunities in K-12 is rapidly increasing as it becomes clear to

policy makers, educators, and parents that an understanding of computing is essential to success in a technology and

automation-rich society. One of the most fundamental CS concepts is the algorithm, an ordered set of precise and clear

instructions to solve a problem or generate a desired output. An algorithm is often a first step towards planning the

logical flow of a computer program. Algorithmic thinking encompasses knowledge and skills specific not only to CS

and programming but also to general problem-solving and computational thinking (ISTE, 2016).

The Computer Science Teachers Association (CSTA) K-12 CS Standards identify ‘Algorithms and

Programming’ as a key CS concept across all grade bands and ‘Algorithms’ as one of its five sub-concepts (CSTA,

2017). Most state CS standards in the U.S. also include algorithms as a core CS concept (Guo & Ottenbreit-Leftwich,

2020). Algorithms are often introduced in K-12 through simple activities such as students writing instructions for

making a peanut butter and jelly sandwich and teachers enacting the instructions. These lessons are appropriate for

communicating the idea that computers will execute instructions as written (rather than as intended) but they do not

touch upon other important ideas emphasized in the ‘algorithms’ standards such as representation, interpretation,

comparison, testing and debugging of algorithms. In our review of several existing K-12 CS curricula, we have found

that many of them do not include the full scope of concepts and practices covered by ‘algorithms’ standards. CS

education research currently provides little guidance on how to unpack the broad ‘algorithms’ standards, making it

difficult for educators to understand the full scope of the standards and the range of skills that comprise proficiency.

A thorough understanding of the algorithms standards is a necessary, though not sufficient, component of

teachers’ ability to develop and effectively use formative assessments on algorithms (Basu et al., 2022). In addition to

content knowledge, a deep understanding of how K-12 students think about algorithms would allow teachers to

identify and address student challenges and advance student understanding. Formative assessment tasks that

intentionally target individual aspects of algorithms standards can reveal useful information about student

understanding and specific challenges on each of those aspects (Basu et al., 2022). The ability to use such standards-

aligned formative assessments to measure and support student progress on CS standards is articulated as part of the

CS teacher standards (CSTA, 2020). However, there is currently limited literature on K-12 students’ conceptualization

of, and challenges with, the concept of ‘algorithms’, and many CS teachers report feeling underprepared to use

formative assessments to monitor student learning (Gordon & Heck, 2019).

In this paper, we unpack a broad CSTA middle school ‘algorithms’ standard, 2-AP-10, “Use flowcharts

and/or pseudocode to address complex problems as algorithms” into finer grained learning targets. We then discuss

an approach to developing aligned formative assessment tasks (and rubrics) and describe how we used a set of tasks

to explore student understanding of, and challenges with, the fine-grained learning targets underlying the standard.

Finally, we compare our evaluation of student responses with how middle school CS teachers evaluated the same

student responses using the same rubrics and how teachers’ own understanding of algorithms informed their evaluation

of student responses. By looking at both students’ responses and teachers’ interpretations, we are able to infer student

understanding and challenges as well as explore how teacher knowledge mediates the impact of formative assessment.

We are guided by the following research questions:

RQ1: How can formative assessment tasks be developed to examine student understanding on various aspects of the

middle school algorithms standard?

RQ2: What can we infer about middle school students’ understanding of and challenges with the concept of algorithms

from students’ responses to standards-aligned formative assessment tasks?

RQ3: How do teachers’ interpretations of middle school students’ understanding of algorithms compare to researchers'

interpretations, when using the same assessment tasks and rubrics?

2. Theoretical perspectives

2.1 Relevant related work

2.1.1 Characterizing and assessing students’ understanding of algorithms.
Recent research in CS education includes efforts to assess K-12 students’ algorithmic thinking skills and have been

situated within a computational thinking (CT) framework (e.g., Basu et al., 2021). These research studies have noted

middle school students’ challenges with devising algorithms to solve real-world problems (e.g., Wong & Jiang, 2018)

and comparing algorithms when the comparison is based on multiple criteria (Basu et al., 2021).

However, there is still limited research on several aspects of the ‘algorithms’ concept. For example, the

middle school standard for algorithms includes the practices of representing algorithms as flowcharts and pseudocode,

testing algorithms with a wide variety of inputs, predicting algorithm behavior, and debugging algorithms, many of

which are currently under-investigated. Assessments for algorithmic thinking are typically part of broader CT

assessments and hence do not cover all aspects of the ‘algorithms’ concept. Some research on high school students’

understanding of algorithms has revealed challenges with using flowcharts to create, call, and manage different sub-

algorithms (Rahimi et al., 2018), as well as misconceptions related to the efficiency of algorithms, thinking that fewer

lines of code and fewer variables characterize algorithm efficiency (Gal-Ezer & Zur, 2004).

2.1.2 Teachers’ content knowledge and pedagogy related to algorithms.
While information about how teachers conceptualize algorithms and perceive their own knowledge of algorithms is

limited, there have been some studies that explore teachers’ understanding of algorithmic thinking in the context of

CT. Rich and colleagues found that elementary school teachers who are new to the field of CT associated the term

‘algorithmic thinking’ with the mathematical term algorithm that specifies steps for performing traditional arithmetic

operations, and conceptualized algorithmic thinking as “following steps”, and “discovering and explaining strategies”

(Rich et al., 2019, p. 179). Research has also shown that appropriate professional development (PD) opportunities can

expand teachers’ knowledge of algorithmic thinking. For example, Yadav and colleagues (2018) analyzed and

compared teacher responses before and after a year-long CT PD and found that teachers initially made generic

comments about algorithms but were later able to identify and discuss specific characteristics of algorithms such as

efficiency, abstraction, and generalization.

Given the fundamental role of algorithms in CS education, researchers have sought to understand how

teachers teach algorithms. A common instructional task is having students construct an algorithm in the form of a

flowchart or pseudocode to solve a given problem. A study by Vivian and Falkner (2019) found that teachers with

high confidence in teaching a digital CS curriculum frequently used algorithmic language, made more connections to

learning objectives on algorithms and programming, and were more likely to engage students in algorithm

development and manipulation activities before programming. In our current study, several middle school teachers

mentioned that their teaching of algorithms was limited to facilitating activities such as instructions for creating peanut

butter and jelly sandwiches, because the CS curricula they used did not include specific lessons on algorithms.

Teachers remarked that they formatively assessed their students’ understanding of algorithms based on completion of

project-based activities rather than the knowledge and skills students demonstrated on individual activities.

2.2 Evidence-centered design (ECD)
We employed ECD (Mislevy & Riconscente, 2006), a principled assessment design approach, to analyze and unpack

the middle school ‘algorithms’ standard and develop aligned formative assessment tasks. ECD helps 1) define what

to measure, 2) identify the evidence needed to measure these goals, and 3) design tasks to produce this desired

evidence. The ECD process starts with analyzing the target domain (outlining the scope of the middle-school

algorithms standard) and decomposing the standard into a set of finer-grained knowledge, skills, and abilities that

students should possess. The ECD process results in a set of assessment tasks that elicit desired evidence on different

aspects of the standard as well as aligned rubrics.

3. Methods and Data Sources

3.1 Designing standards-aligned formative assessments
We employed the ECD approach to define the scope of the 2-AP-10 standard by clarifying the knowledge and skills

expected of this standard relative to elementary and high school ‘algorithms’ standards. We found that this middle-

school standard transitions students from interpreting algorithms in upper-elementary grades to creating algorithms

that solve complex problems and testing algorithms using a variety of inputs. The standard focuses on fluency with

representations such as flowcharts and pseudocode that represent the steps to solve a problem pictorially or using plain

language description. It includes the ability to identify relevant information from a problem description (e.g., inputs,

goals and decision points) and translate it into an algorithm, as well as the practices of testing and debugging

algorithms. Analyzing the scope of the 2-AP-10 standard helped us to decompose the broad standard into a set of ten

fine-grained learning targets (LTs) on which we could individually examine student understanding (see Figure 1).

Specific LTs enable teachers and curriculum developers to design targeted instruction and assessment opportunities

to check student understanding and help students overcome specific learning gaps (Basu et al., 2022).

Figure 1. The CSTA Middle School ‘Algorithms’ standard and its description, followed by out

decomposition of the standard into ten fine-grained learning targets.

Figure 2. An Example 2-AP-10 Assessment Task Aligned with LT 1 “Knowledge that an algorithm is a

step-by-step, ordered set of instructions for solving a problem, and in order to be computer-

understandable, the instructions must be precise and unambiguous.”

Next, we followed the ECD framework to develop a set of formative assessment tasks, each focused on

eliciting evidence of student understanding on one LT (see Figures 2, 3 for examples). Task formats included multiple

choice questions, short-answer prompts, and open-ended explanations. Tasks were short enough to be practical for in-

class use to diagnose student understanding of the LTs. Each sub-task was accompanied by one of two rubric types

(see Table 1). A RC rubric grouped student responses into Response Categories (RCs) such that each RC was

indicative of a certain level of student understanding (a student can be in only one RC). An IC rubric listed a set of

Indicated Challenges (ICs) that could be inferred from student responses (a student can have multiple ICs).

Figure 3. An Example 2-AP-10 Assessment Task Aligned with LT 9 ‘Ability to identify meaningful test

cases (including edge cases) for testing an algorithm’.

Table 1. Rubric for analyzing student responses to Task 2AP10.LT1.1 shown in Figure 2
Rubric for Part 1 Rubric for Part 2

Student

Response

Possible inference about

student understanding

Response

Category
Student Response

Possible inference about

student understanding

Indicated

Challenge

A only

Challenges with order and final

goal: Student does not realize that

the steps of an algorithm need to

be in order/sequential and the last

step should be the goal which is

making hot chocolate.

RC1

Student does NOT

indicate that their

selected options

contain instructions

that are “clear” or

“specific”.

Student may have

difficulty recognizing that

an algorithm needs to

include a set of clear or

specific instructions.

IC1

C only

Challenge with representation:

Student does not realize that an

algorithm is a process or ordered

set of steps to get to a goal state;

a static diagram depicting objects

is not an algorithm.

RC2

Student does NOT

indicate that their

selected options

contain instructions

that are ordered in a

logical way.

Student may have

difficulty recognizing that

an algorithm includes

instructions that are

ordered in a logical

sequence.

IC2

B and D

Student understands what

defines an algorithm and can

recognize an algorithm in

various forms.

RC3

Student does NOT

mention that the

algorithm will fulfil

the goal of making

hot chocolate.

Student may have

difficulty recognizing that

the instructions in an

algorithm need to fulfil the

goal of the algorithm.

IC3

B only

or

 D only

Student understands what defines

an algorithm but can only

recognize an algorithm in certain

forms (i.e., flowchart/diagram

process or procedure list).

RC4

Students states that

the algorithm

“makes sense” or

that is how they

would make hot

chocolate.

Student may not recognize

that their explanation

should include

characteristics of an

algorithm instead of their

personal opinion.

IC4

Any other

response

Student may not understand what

an algorithm is.

RC5

Student only

restates the

algorithm without

explaining why it is

an algorithm.

Student has difficulty

understanding the concept

of algorithms and/or

articulating it.

IC5

Student states

something that is

incorrect or not

relevant

Student has difficulty

understanding the concept

of algorithms and/or

articulating it.

IC6

3.2 Small-scale classroom study
We collaborated with eight middle school CS teachers from an urban school district in the Midwestern U.S. who used

code.org’s CS Discoveries (CSD) curriculum for their teaching. All teachers had participated in CSD PD offered by

code.org prior to participating in our study. The teachers varied widely in terms of overall teaching experience (1-21

years), but they had all taught CS for less than three years. We provided teachers with professional learning in the

form of educative resources on unpacking the 2AP10 standard and standards-aligned formative assessments for

algorithms. Teachers participated in an hour-long, online, synchronous PD session on algorithms where we introduced

them to the 2-AP-10 standard, corresponding state standards, our unpacking of the standard, and the aligned formative

assessment tasks and rubrics that we had developed. Throughout the PD session, the teachers were engaged in short

activities that provided us with important information about their understanding of and familiarity with the

‘algorithms’ standard. For example, teachers had to identify the LTs with which a given task was aligned. They were

also asked to indicate which LTs they were already addressing during instruction and which they planned to address

in the future. Teachers were divided into two groups where each group looked at two examples of student responses

to an algorithm task (see Figure 3) and discussed how to evaluate the responses using the provided rubrics or by

modifying the given rubrics. Teacher responses and discussions were recorded for future analyses. Teachers took a

CS pedagogical content knowledge (PCK) survey before participating in the PD and at the end of the classroom study.

We designed the survey to measure teachers’ attitudes towards CS, knowledge of algorithms and programming

concepts, and ability to interpret student work. For this paper, we analyzed teachers’ pre-survey responses to two tasks

that asked teachers to interpret and compare students’ algorithms and predict possible student challenges.

Here we report on student data from formative assessments administered by two out of the eight CS teachers

– Dina and Remi (pseudonyms) – who consented to sharing student work and their evaluation of student work. Dina

and Remi administered a subset of the formative assessment tasks to their students, evaluated student responses, and

shared both student responses and their evaluations with our research team. We collected student data for 36 students

across grades 7 and 8. Most students had taken at least one other CS class in the previous school year, though classes

were disrupted by school closures and remote instruction during the global pandemic. At the time of the study, students

in both Dina and Remi’s classes had completed CSD units 1 and 2 (Problem Solving, Web Development) and were

working on CSD Unit 3 (Interactive Animations and Games). We gathered data on student responses to six algorithm

tasks aligned with LTs 1, 6, 8, and 9, with each task yielding 15 to 36 student responses. Using the same task-specific

rubrics we shared with teachers, we coded student responses to the tasks. For each open-ended prompt, at least two

researchers coded student responses into RC or IC categories. Researchers met regularly to discuss discrepancies in

their coding until they reached consensus. Memos were recorded throughout the discussion and used to refine the

rubrics. We then compared our coding to that of the teachers. We conducted descriptive and thematic analyses

(Saldaña, 2016) of our coding of student responses and the comparison findings to explore students’ understanding of

algorithms and the similarities and differences in how teachers and researchers coded students’ responses.

4. Findings

4.1 Students’ understanding of algorithms
We summarize our findings about middle school students’ understanding of algorithms in terms of the LTs targeted

by the tasks we analyzed. These findings have implications for CS instruction, curriculum design, and PD design.

LT1: Understanding what an algorithm is. Analysis of student responses to two tasks aligned with this LT

revealed that most students understood what an algorithm is. For example, for task 2AP10.LT1.1 shown in Figure 2,

21 of 35 (60%) students who completed the task were able to identify both options B and D as algorithms for making

hot chocolate, while 10 (29%) students identified only one of options B and D. However, only nine of the 31 students

who selected options B and/or D could justify their selection(s) to any degree. Explanations often mentioned ordered

steps, clear instructions, or achieving the goal of making hot chocolate, but rarely included all aspects (see Table 2).

LT6: Selecting flowcharts representing problem solutions. Students responded to one task asking them to

select a flowchart that appropriately represents a delivery robot’s actions. Ten of 15 (67%) students who worked on

this task could represent the given text-based problem solution for the robot as a flowchart. Among the remaining five

students, three struggled with using a decision box and selected a flowchart where the decision box did not have an

arrow labeled ‘NO’ flowing out of it. Two students had difficulty understanding that the steps of an algorithm should

appear in the same order regardless of the algorithm representation, whether text-based or pictorial as in a flowchart.

LT8: Interpreting and comparing algorithms. Students responded to two tasks involving comparison of

algorithms. The first task involved comparing three simple algorithms for navigating a robot based on time and cost

criteria. Most students (23 of 34 or 68%) correctly identified the algorithms that would reach the goal, the fastest

algorithm and the cheapest algorithm. However, students found it challenging to compare algorithms based on

multiple criteria. Only 37% students could compare the algorithms correctly when considering both speed and cost

criteria simultaneously. This finding is similar to that observed by Basu and colleagues (2021) with students in grades

4-6 in Hong Kong. The second task involved comparing two relatively complex algorithms that included user input

and compound conditionals. Only 20 of 36 (56%) students were able to correctly interpret the individual algorithms.

Several students seemed to have difficulty following the logic of conditional statements in the algorithms. Twenty-

two (61%) students were able to compare the algorithms and decide which one to use for solving a given problem.

However, few of these students could justify their selection. Seven students gave a fully correct explanation, 2 students

gave a partially correct explanation, and 13 students were not able to give any suitable explanation for their selection.

LT9: Selecting meaningful test cases to test algorithms. Student responses to Task 2AP10.LT9.1 (Figure 3)

revealed that only 5 of 20 (25%) students could identify appropriate test cases (i.e., numbers in different ranges that

would test all three program rules). Several (40%) students identified test cases that only tested one of three program

rules, while others tested two of the rules. Only four of 20 (20%) students could justify their selection of test cases by

describing how they were trying to test all three rules included in the program (see Table 3 for sample responses).

Table 2. Analysis of sample student responses to Task 2AP10.LT1.1 (Figure 2) using the rubric shown in Table 1.
Selection

for part 1
Response to part 2 Possible inferences about student understanding

B, D

(RC3)

They're both algorithms for making hot chocolate

because they're in the correct order and they give

the instructions in a stepwise, efficient order that

can be easily read and followed through. (no IC)

Student can recognize algorithms and understands the

characteristics that define an algorithm.

B, D

(RC3)

I selected both of those answers because they're

explaining the instructions clearly. (IC2, IC3)

Student can recognize algorithms but may not understand

all the characteristics that define an algorithm.

D

 (RC4)

I think my answer is an algorithm for making hot

chocolate because this would be how I make my

hot chocolate. (IC1, IC2, IC3, IC4)

Student can only recognize algorithms written as a list of

steps, may not be aware of characteristics of an algorithm,

and is using their experiences to explain their choices.

Table 3. Sample student responses to Task 2AP10.LT9.1 shown in Figure 3

Value

1

Value

2

Value

3

Value

4

Other

values

Explanation for choice of

values to test

Possible inferences about student

understanding

55

mph

50

mph

49

mph

30

mph

29

mph,

20

mph

I would use these speeds to

see if the program gives each

of the three messages only

when it is supposed to.

Student is able to identify meaningful test

cases to test all three rules (both values in the

range and at the boundaries of the rules).

40

mph

30

mph
5 mph 0 mph

-

I would use these values of

speed to make sure the

program works as it should.

Student is able to identify some meaningful

test cases but may not recognize that testing

an algorithm requires testing all of its rules or

conditions.

49

mph

48

mph

47

mph

46

mph

45

mph,

44

mph

I would use these speeds to

see if I need to be exactly on

50 mph to slow down.

Student struggles to identify a full range of

meaningful test cases and has challenges

recognizing that they need to test the

algorithm under different scenarios to make

sure it works for all three rules.

4.2 Teacher interpretation of student work
Next, we compare our evaluation of student responses with teachers’ interpretations of the same responses. Teachers

used the same set of rubrics as the researchers, and though they were encouraged to modify the rubrics as needed,

neither Dina nor Remi changed the rubric for any of the tasks. Teachers were consistent with researchers when

evaluating the multiple-choice tasks, which allowed no room for subjectivity in terms of which rubric category each

response corresponded to. For the open-ended tasks, such as selecting meaningful test cases and explaining selection

of algorithms, there were several differences in teacher and researcher interpretations of the same student responses.

For example, for Task 2AP10.LT1.1 Part 2 (Figure 2) where students explain why they think their selection is an

algorithm, teacher and researcher categorization of student responses matched for only 25% of the responses. While

researchers considered certain explanations to be inadequate evidence of student understanding of what constitutes an

algorithm (e.g., “I chose these because you end up with the right result”, “I think my answers are algorithms because

they make sense”), teachers did not select any ICs and interpreted those responses to be indicative of a complete

understanding of the ‘algorithms’ concept. When evaluating student explanations that compared two relatively

complex algorithms (aligned to LT8), agreement between researchers and teachers was fairly high (agreement on 30

of 36 or 83% responses). In instances where there were disagreements, there was no clear pattern. Teachers appeared

to focus only on student explanations and not on students’ choice of algorithm when applying the rubric, leading to

differences in overall interpretation of student understanding.

For Task 2AP10.LT9.1 (Figure 3), there was a 43% agreement between teacher and researcher evaluations

of student responses to part i, where students identified a range of test cases, and a 67% agreement on part ii, where

students explained their choice of test cases. Teachers consistently assigned student responses to a category that was

indicative of greater student understanding. Though the rubric explicitly mentioned various acceptable values or value

ranges for students to use as test cases so that they could test all the rules in the program, teachers could not identify

student challenges when students picked distinct values that tested only one or two of the three rules (e.g., “45, 39,

25, 47”) or when students picked non-numeric values (e.g., “45, 40, safe range, 40”). For the explanations,

disagreements in evaluating student responses seemed to stem from teachers’ preference for articulate, logical, and

well written explanations, rather than explanations that articulated the need to test all three rules of the program.

Teachers’ knowledge of algorithms. While some of these disagreements between teachers and researchers

may have been caused by lack of clarity in the rubrics, our analysis of teacher engagement during the PD and teachers’

PCK survey responses suggest that some of the disagreement may have also stemmed from teachers’ lack of

knowledge of the full scope of the ‘algorithms’ standard. During the PD, when asked about which LTs teachers already

use in their instruction, most teachers identified LT1 and LT5, but no teacher selected LT9, indicating that testing

algorithms and identifying test cases were not things they associated with ‘algorithms.’ Additionally, during a PD

group activity where teachers practiced applying rubrics to evaluate example student responses to Task 2AP10.LT9.1,

we found that teachers struggled to identify negative numbers as legitimate test cases. Also, consistent with what we

found when teachers evaluated their students’ work, teachers evaluated correct explanations to be inadequate during

PD just because they were short and did not provide enough details about the program’s behavior. Further, analysis

of teachers’ pre-PD PCK survey responses revealed teachers’ challenges with interpreting and comparing algorithms.

These algorithms included nested conditionals or nested loops and were more complex than those featured in students’

formative assessment tasks. Most teachers, including Dina and Remi, had difficulty interpreting some of the individual

algorithms which then translated to difficulty comparing the algorithms.

5. Discussion, Limitations and Conclusion
In response to the current demand for quality CS learning opportunities and useful CS pedagogy in K-12, we offer an

approach to unpack a broad CS standard into fine-grained LTs, develop formative assessments aligned with the LTs,

and use the assessments to reveal student understanding and challenges related to the standard. Both CS educators and

curriculum developers can benefit from this approach by gaining a more complete understanding of CS standards and

known student challenges. This approach allows teachers to focus on conceptual understanding of CS standards and

formative assessment practices, which they can then leverage in any curriculum to improve CS instruction.

In this paper, we chose a fundamental CS concept, ‘algorithms,’ and demonstrated our approach by

decomposing a middle school CS standard on algorithms into ten discrete LTs. We employed an ECD approach to

design formative assessments that capture information about student understanding and challenges for each LT (RQ1).

The assessments we developed allowed us to identify common student challenges related to aspects of the ‘algorithms’

concept, such as comparing, and testing algorithms (RQ2). This work aligns with and adds to a growing literature on

middle school students’ understanding of algorithms. These are, however, preliminary findings, and we acknowledge

that generalizations from this study are limited by our small sample size. Another limitation of our study is that the

requirements of our formative assessment tasks did not always align well with typical middle school CS classroom

expectations. For example, many of our tasks required open-ended responses and/or explanations of selected responses

– something many students were not accustomed to doing in CS class. In many CS classrooms, teachers do not always

expect detailed written responses from students and when they do, they often provide students with clear rubrics.

Hence, it is unclear whether some student responses to our formative assessment tasks are truly indicative of a lack of

understanding or merely reflect students’ understanding of classroom expectations.

This paper also adds to the limited literature on middle school teachers’ understanding of algorithms and

describes how teachers’ understanding of CS standards may influence their interpretation of student work and their

ability to identify student challenges. While our teacher sample was limited, all teachers in our sample agreed that

they did not associate the concept of ‘algorithms’ with testing algorithms systematically and identifying test cases.

Several teachers remarked that they did not introduce their students to algorithmic representations such as flowcharts

because it was not covered in the middle school CS curricula they used. Upon examining the types of student responses

for which teachers and researchers differed in their interpretation of student understanding of algorithms, despite using

the same set of rubrics (RQ3), we concluded that some inconsistencies could be reduced by increasing the clarity of

our rubrics, while others needed to be addressed through additional teacher training on the concept of ‘algorithms.’

Our findings indicate that middle school CS teachers may benefit from additional PD on the ‘algorithms’

standard, in particular the concepts of algorithm representation, comparison, and testing and debugging. Merely

designing principled formative assessments and rubrics that can elicit evidence of student understanding may not be

sufficient to support teachers; teachers also need deep content knowledge to ensure they can use the formative

assessments effectively. While it may seem unsurprising that teachers who lack content knowledge are not able to

support their students adequately, empirical data to showcase these connections between teacher knowledge and

student learning is important in a nascent field like CS education research, especially when many CS teachers claim

to learn along with their students and be self-taught. We hope that with a more complete understanding of the

‘algorithms’ standard, teachers can move beyond just using the peanut butter and jelly sandwich activity to employing

a range of activities and assessments that promote a more complete understanding of algorithms.

This work is part of a larger project to support middle school CS teachers with their understanding of five

different ‘algorithms and programming’ standards and their ability to use formative assessment tools aligned with

these standards. Next steps on this project will involve similar research using different standards and examining

whether the findings in this paper hold with a larger sample of students and teachers.

References
Basu, S., Rutstein, D., Tate, C., Rachmatullah, A., & Yang, H. (2022, February). Standards-Aligned Instructional

Supports to Promote Computer Science Teachers' Pedagogical Content Knowledge. In Proceedings of the

53rd ACM Technical Symposium on Computer Science Education V. 1 (pp. 404-410).

Basu, S., Rutstein, D. W., Xu, Y., Wang, H., & Shear, L. (2021). A principled approach to designing computational

thinking concepts and practices assessments for upper elementary grades. Computer Science

Education, 31(2), 169-198.

Computer Science Teachers Association (2017). CSTA K-12 computer science standards. Revised 2017. Retrieved

from http://www.csteachers.org/standards

Gal-Ezer, J., & Zur, E. (2004). The efficiency of algorithms—misconceptions. Computers & Education, 42(3), 215-

226.

Gordon, E. M., & Heck, D. J. (2019). 2018 NSSME+: Status of High School Computer Science.

Guo, M., & Ottenbreit-Leftwich, A. (2020, October). Exploring the K-12 computer science curriculum standards in

the US. In Proceedings of the 15th Workshop on Primary and Secondary Computing Education (pp. 1-6).

International Society for Technology in Education (ISTE). (2016). ISTE Standards: Students.

https://www.iste.org/standards/iste-standards-for-students

Mislevy, R.J., & Riconscente, M.M. (2006). Evidence-centered assessment design. In S. M. Downing & T. M.

Haladyna (Eds.), Handbook of test development (pp. 61-90). Mahwah, NJ: Erlbaum.

Rahimi, E., Barendsen, E., & Henze, I. (2018, October). An instructional model to link designing and conceptual

understanding in secondary computer science education. In Proceedings of the 13th Workshop in Primary

and Secondary Computing Education (pp. 1-4).

Rich, K. M., Yadav, A., & Schwarz, C. V. (2019). Computational thinking, mathematics, and science: Elementary

teachers’ perspectives on integration. Journal of Technology and Teacher Education, 27(2), 165-205.

Saldaña, J. (2021). The coding manual for qualitative researchers. The coding manual for qualitative researchers, 1-

440.

Vivian, R., & Falkner, K. (2019, July). Identifying teachers' Technological Pedagogical Content Knowledge for

computer science in the primary years. In Proceedings of the 2019 ACM conference on international

computing education research (pp. 147-155).

Wong, G. K., & Jiang, S. (2018, December). Computational thinking education for children: Algorithmic thinking

and debugging. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for

Engineering (TALE) (pp. 328-334). IEEE.

Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational thinking in elementary classrooms: Measuring

teacher understanding of computational ideas for teaching science. Computer Science Education, 28(4), 371-

400

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant No. DRL-2010591. Any

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science Foundation.

https://www.iste.org/standards/iste-standards-for-students

