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Abstract—Cognitive communication utilizes transient openings
in the spectrum to communicate opportunistically, which is a
promising technique to enable more efficient spectrum usage in an
increasingly congested spectrum environment. We aim to address
two main challenges associated with cognitive communication: (i)
spectrum sensing should be fast and energy efficient for processing
a large bandwidth in a short time; (ii) the spectrum sensing
approach should be able to simultaneously recognize multiple
signals that are present. In this paper, we propose to address these
challenges with a novel design framework that consists of a fast on-
chip spectrum sensing in conjunction with a novel learning-based
spectrum analysis model at the edge to enhance the optimizations
for spectrum agility. We first utilize a model of a programmable
analog-based high-quality factor (Q) on-chip spectrum sensor that
is capable of scanning the sub-6 GHz band to detect the spectrum
usage in less than 1us. The proposed spectrum sensor also en-
hances the energy efficiency of the sensing. To complement the on-
chip spectrum sensor, a deep learning (DL) model is deployed for
a fine-grained signal detection between channels in the 400 MHz
to 6 GHz range, which is intended to be executed on edge devices.
Simulation results show that the DL model can detect multiple
different modulated signals with a mean Intersection-over-Union
(IoU) of 86.8 % in highly-variable bandwidth and center frequency
scenarios. Finally, we present a system-level model of our frame-
work to demonstrate the spectrum sensing and classification in the
sub-6 GHz frequency band.

Index Terms—Spectrum sensing, cognitive radio, dynamic spec-
trum access (DSA), interference sensing, integrated sensing and
communications.

I. INTRODUCTION

N unprecedented growth of Internet of Things (IoT) de-
vices accessing the sub-6 GHz range to support various
applications such as healthcare [1], [2], smart home [3], [4],
and agriculture devices [5], [6] has rendered the spectrum
exceptionally crowded.
An anticipated 50 billion IoT devices are expected to be
absorbed into the spectrum by the year 2030 [7]. This would
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Fig. 1. Visualization of how the underused/underutilized sub-6 GHz spectrum
offers opportunities for dynamic spectrum access.

further overwhelm the already resource-limited wireless spec-
trum. There is a compelling need to design radio networks that
will handle such scale of congestion while assuring the desired
quality of service (QoS). In [8], it is reported that there is a
spatio-temporal under-utilization of the licensed bands that are
otherwise reserved for incumbent users. Agile communication,
which uses cognitive radio (CR), exploits this feature of the
licensed bands to opportunistically access the band when the
incumbent user is inactive, with hopping onto the next available
band when the incumbent user is detected. Spectrum sensing
is a key component of CR, which identifies spectral openings
known as spectral opportunities to enable dynamic spectrum
access (DSA). Fig. 1 exemplifies spectrum occupancy and
visualizes the utilization of spectral bands, highlighting those
that are either unused or underutilized.

Wideband spectrum sensing techniques are highly favorable
over conventional narrow-band sensing techniques [9] on ac-
count of two main factors: (i) they offer a wider detection range,
and (ii) at higher frequencies, the possibility of a higher channel
throughput (Shannon’s channel capacity). Several wideband
spectrum sensing techniques reported in the literature [10]-[16]
include sampling of the RF signals using a high-bandwidth
analog-to-digital converter (ADC) followed by a digital fast
Fourier transform (FFT) block [15]. Sub-Nyquist sampling
techniques, which involve the sub-sampling of a sparse chan-
nel, have been employed to reduce the power consumption
of Nyquist-based ADCs based on low sparsity with unknown
sparsity basis. The assumption of sparsity, on which this sens-



ing is based, becomes less reliable in massive IoT networks
where activity depends on spatial-temporal dynamics and time-
varying fading channels [17]. These techniques involve a higher
sensing time, high power consumption (100s of milliwatt) and
associated higher computational costs, making them prohibitive
for spectrum sensing with low-power IoT devices.

Energy detection-based techniques measure the power level
of RF signals in the band of interest, and compare it with the
expected noise power in the absence of RF signals [16]. Energy
detection-based spectrum sensing is a promising solution as
a cost effective technique, providing an ability to detect the
spectral opportunities by analyzing the energy content in dif-
ferent sub-bands in the sensing bandwidth. It promises to be a
suitable sensing technique for low-power loT devices due to its
high energy efficiency. However, limited detection range and
performance under poor signal-to-noise ratio (SNR) have been
major drawbacks that limit its adoption for DSA. Moreover,
energy detection is a blind detection technique, implying that it
is unable to differentiate between cognitive communication and
the incumbent user. As a result, deep learning (DL) approaches
are proposed to classify different signals in the spectrum [18]-
[23] to enable more complex spectrum policies such that differ-
ent wireless signals can have different priorities.

Although DL shows significant advantage in signal classifi-
cation in low SNR [24] and dynamic path loss [25] scenarios, it
operates only on the baseband signal and requires knowledge
of the signal’s carrier frequency for implementation. Such
approaches intrinsically assume that both the transmitter and
receiver operate at the same frequency. Conventional DL ap-
proaches typically take the entire spectrum data at the receiver’s
center frequency as input, resulting in a single label output for
signal types. However, signals in the wideband spectrum may
not always be centered around the receiver’s frequency, and
there may be multiple signals present simultaneously. Conse-
quently, conventional DL algorithms are limited in providing
detailed information about signal locations in the wideband
spectrum. In essence, an effective wideband spectrum sensing
approach requires addressing two critical aspects: determining
the signal type and identifying its location in the spectrum. In
this regard, conventional DL approaches are not well suited for
blind detection in wideband scenarios. Very recently, computer
vision based approaches were proposed to jointly determine
the signal type and carrier frequency in a wide band [26],
[27]. These works convert the wideband spectrum to images
using signal processing approaches, such as the short-time
Fourier transform, and apply object detection algorithms from
computer vision applications such as YOLOv3 [28] directly
to spectrum images. However, such vision-based approaches
require pre-processing for converting the spectrum to images
and post-processing such as non-maximum suppression to filter
the detection, resulting in a large delay for computation [27].

To alleviate the above issues, we first propose a wideband
energy detection-based spectrum sensor. This is implemented
using analog-based spectrum sensor that detects the energy in
the sub-6 GHz band using programmable high-quality factor
(Q) filters. We use a differential topology to improve the accu-
racy of filtering with a sensing bandwidth of 40 MHz. Further,
in contrast to vision-based signal classification methods, we

introduce an innovative approach, namely semantic spectrum
segmentation, with a new deep neural network (DNN) archi-
tecture that directly operates on 1-dimensional waveform data
of the spectrum without additional processing. As a result, it
significantly reduces the computation resources as well as the
inference latency. Furthermore, the proposed algorithm parti-
tions the spectrum into multiple sub-channels in the frequency
domain and assigns labels to each sub-channel based on the
semantic features of the signal. In contrast to conventional DL-
based approaches that cannot identify the location of signals,
the classifier can jointly classify the type of multiple signals
as well as localize them in the wideband spectrum without
the prior knowledge of the carrier frequency, enabling a better
optimization of spectrum policies [29].

The DL algorithm is introduced to complement the on-
chip spectrum sensor, providing fine-grained information of
signals in 40 MHz band for real-time optimizations in agile
IoT networks. We present a system design that combine the
cost benefit of energy detection-based spectrum sensing to-
gether with our agile communication platform, which enables
wideband sensing and signal feature identification for low-
power IoT networks. The proposed framework has the potential
to be applied to a diverse range of applications such as in
smartphones and wearable devices [30]-[33]. To the best of our
knowledge, no prior work has reported the incorporation of on-
chip spectrum sensing and DL signal classification at the edge
into CR.

The main contributions of this paper are as follows:

« It introduces an analog spectrum sensor architecture to
perform fast spectrum scanning of the sub-6 GHz band in
less than 1us.

o It proposes a DL algorithm for fine-grained spectrum
analysis in sub-bands. The proposed DL model can jointly
localize and classify signals by semantic segmentation
without pre- or post-processing. Compared to existing
work, the proposed approach is able to reduce the latency
by 61.15% while having adequate classification perfor-
mance.

e A combined agile simulation platform is presented to
integrate analog spectrum sensing with DL-based signal
classification.

The rest of the paper is organized as follows. Section II
discusses the system architecture of the agile spectrum sensing
and classification approach. Section III and IV provides the
details of the on-chip spectrum sensor and the DL algorithm for
edge devices respectively. In Section V, we describe a system
model of the architecture in Simulink and present simulation re-
sults for the spectrum sensing, classification and authentication.
Finally, conclusions are presented in Section VI.

II. SYSTEM ARCHITECTURE

Fig. 2 displays the proposed agile communication approach
with multiple IoT nodes containing analog spectrum sensors
and an edge device containing both, an analog spectrum sensor
and a DNN classifier. On the IoT nodes side, the spectrum
sensor will scan and perform energy detection in the sub-6 GHz
band. This is achieved by a concurrent sensing in each channel
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Fig. 2. Envisioned agile platform consisting of IoT devices equipped with energy detection-based analog spectrum sensors and an edge device with a spectrum

sensor and a DNN signal classifier for intelligent identification.

of 40 MHz bandwidth (141 channels), which involves amplify-
ing the signal content and processing it using the received signal
strength indicator (RSSI) circuit in each 40 MHz window.
Based on a specified signal energy detection threshold level,
the spectrum sensor classifies the congestion state of the band.
This fast spectrum sensing provides a coarse classification of
the channel as a foundation of agile communication. The IoT
cognitive radio then sends a request to the edge device for a con-
nection in the identified minimally congested (free) band, and
will wait a period of time for handshaking. The IoT cognitive
radio transmitter (Tx) is responsible to send a synchronization
(SYN) request to the edge device, and once it sends a SYN
packet, a timer for receiving an acknowledgement (ACK) is
started accordingly. The cognitive radio receiver (Rx) triggers
communication once it receives the ACK packet from the edge
device within the time buffer. The proposed cognitive radio
(Tx/Rx) with a fast start-up further reduces communication
latency. On the other hand, the edge device will function as a
cluster center, monitoring the spectrum usage and communicat-
ing with IoT nodes. The fast chip-level spectrum sensor at the
edge, unlike those on IoT nodes that detect low energy, will
select channels whose state changes from low energy to high
energy (i.e., where the connection request from the IoT node
might have occurred).

In addition, powerful computation resources such as Graphic
Processing Units (GPUs) can be utilized on the edge device
to enable the fine-grained detection in selected channels. The
waveform in selected channels are acquired by the cognitive
radio receiver and will be processed by DNN classifier to
generate a more detailed classification map in the frequency
domain.

Fig. 3 depicts the methodology for spectrum sensing and
signal classification to establish incumbent user-aware dynamic
spectrum access in the identified band between the IoT node
and edge device. When the communication between the IoT
node to edge device is intended, the spectrum sensor on the
IoT node begins to scan the sub-6 GHz range in windows of
40 MHz to detect the signal energy in each band. In this way, the

spectrum sensor continues to locate an unoccupied (or partially
occupied) spectral band to be used for communication. Once
a free band is identified, the IoT node sends a SYN request
to the edge device. The edge device, in the meantime, will
keep scanning the spectrum periodically with the fast chip-
level spectrum sensor. Once occupied (or partially occupied)
channels are detected based on energy contents, the DNN
classifier will perform further more accurate spectrum analysis
in those channels. If there is no collision between the IoT
packet and other incumbent signals, the edge device will send
an ACK packet within the identified band, and hence establish a
communication link with the newly registered IoT device. Oth-
erwise, if there is congestion in the channel or if the IoT device
does not receive the ACK packet back, then the connection is
closed and the IoT node will choose another free channel for
re-transmission after the expiration of the ACK timer. Once the
communication link between the IoT node and edge device is
established, the DNN classifier continues to process the signal
in the band. In case the incumbent user is detected, the edge
device will close the connection, causing the IoT node to re-
scan for the next available band. This feature classification,
performed at the edge device, overcomes the blind detection
limitation of the energy detection-based spectrum sensing.

A. Discussion on the packet structure

Without loss of generality, we consider the case when one
IoT node communicates with an edge device. In Fig. 4, we
present transmission timing details for the spectrum sensing
and agile communication. The IoT node first scans the complete
sub-6 GHz band for a time of tior_sense. Once a free channel is
detected, the IoT node sends a SYN packet at tjor_gtart t0 connect
with the edge device, and initiates the timer with tigr ACK_timer
for handshaking. Once the edge device detects the occupied
channel, it begins to acquire time domain in-phase/quadrature-
phase (I/Q) samples in that channel during tmr, 1g_acq, and
afterwards performs fine-grained detection during tmy_classify-
It sends an ACK packet immediately if the IoT signal is
detected without concurrent incumbent signal. A timer is set
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as tioT_ACK_timer = IML_IQ_ACQ + tML_classify + tbuffer> Where thufer
is a buffer time for receiving the ACK. Once the IoT node
receives the ACK packet, it starts to communicate with the edge
device. If the IoT node does not receive ACK packet within
tIoT_ACK_timer» it automatically begins to re-scan the sub-6 GHz
band for any spectral opportunities.

III. ON-CHIP SPECTRUM SENSOR

Fig. 5(a) shows the block diagram of the proposed agile
energy detection-based RF spectrum sensor, in which spec-
trum sensing is performed using programmable active res-
onators with high-Q factors designed using transconductance
(gm) stages. The tunability feature offered by g,,-C filters has
been proven advantageous in the design of tunable-bandwidth
filters [34]-[37]. The proposed on-chip spectrum sensor will

sweep the sub-6 GHz frequency range in less than 1us to iden-
tify available channels for communication. Furthermore, it will
use the active resonators to enable transmission and reception
of RF signals. The proposed on-chip analog spectrum sensor is
comprised of a tunable filter followed by energy detection in the
tuned band. We use tunability for the center frequency and the
resonance bandwidth of the circuit. This technique is rooted in
the analog domain without high-frequency, high dynamic range
analog-to-digital converters (ADC) as required by approaches
that are entirely based on digital signal processing (DSP).
Active resonators also play a critical role in reducing the power
consumption and start-up time for transceiver designs, which
are discussed in the following subsection.
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A. On-chip Tunable Filter

Wideband sensing can be accomplished using two active
resonators with same resonance frequency (w,) but different
quality factors (Q; and Q;). The proposed on-chip filter is a
second-order system, and can be represented by the standard
form of second-order system:

2

w
H(s)= —Lo
s2 + %s + w?

(D

Tunability of w, and the scanning bandwidth is achieved
by varying the parameters in (1). In Fig. 6, we present the
SPICE simulation results of a tunable active resonator design.
At resonance, the filter would amplify the incoming RF signal.
In case there is RF power contents at w,,, each active resonator
will provide different gain for the incoming signal owing to
their different Q factor. Consequently, a differential voltage
(AV) will be developed at the output of the RSSI circuit as
labelled in Fig. 5(a). However, absence of RF power at w,, will
result in AV = 0, indicating the availability of that channel
for agile communication. The proposed differential sensing
technique will also help in reducing the noise level, thereby
making the design more sensitive.
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Fig. 7. Comparison of RSSI circuit and model simulation results. Vo fitrer
is the input to the RSSI circuit obtained from the output of the on-chip filter,
and RSSIpy is the output of the RSSI circuit.

B. Received Signal Strength Indicator

RSSIs are routinely used to control gain by obtaining the
power level of the incoming signal [38]-[42]. Fig. 5(b)
shows the block diagram of an successive detection architec-
ture (SDA)-based RSSI circuit that we implemented using five
differential amplifier (diff-amp) based limiting amplifiers. The
incoming signal V;,, is amplified in each stage of the cascaded
amplifier with a gain A. This amplified signal moves through
the chain of amplifiers. It will accordingly be limited/clipped
at the saturation voltage level (Vg). The output of each stage
is summed and filtered using a low-pass filter (LPF), which
removes the ripple from this output to provide a DC signal V,,,;
that corresponds to the power of the incoming signal. This RSSI
exhibits a logarithmic characteristic, enabling signal strength
detection.

N
Vour = ) A Vi, @)
i=1

Equation (2) represents the output of the i + 17" stage as



the sum of the outputs of each stage and depending on the
input amplitude, where the output of each stage may or may
not be saturated. The proposed RSSI circuit will be used to
perform two main functions. First, in the spectrum sensing
mode of the CR-system, the RSSI will provide the power
level of the received RF signal. In a receiver system, the RSSI
output information will be used to control the gain of a low-
noise amplifier (LNA) to prevent the saturation of the output
in the receiver path through automatic gain control (AGC). In
Fig. 7, we present the simulation results of the SDA-based RSSI
circuit.

C. Digitization

To classify the bands, we have implemented adaptive
threshold-based comparators, which classify the channel based
on the energy detected in that band into fully occupied, partially
occupied, and free band (or black, gray and white [43]). The
RSSI circuit, which outputs a DC value corresponding to the
signal energy level, enables processing of the signals in the
baseband. This allows to implement a coarse classification of
the detected spectral energy using ultra-low power compara-
tors [41], [44].

Formally, in a binary classification scenario, let Hy and
H; denote the hypotheses of the free and occupied bands,
respectively. Considering a Bayesian detection case, given an
observation r, the decision is determined by

P(r|Hy) Ho P(Hy)
P(r|Ho) 1, P(Hy)’

where P(r|Hy) and P(r|H}) are conditional probabilities of r
given by Hy and H) respectively, while P(Hy), P(H) are prior
probabilities of Hy, H| respectively.

Equation (3) can be fully described by its sufficient statistics
— the voltage value V,,; of the RSSI circuit and a detection
threshold V;:

3)

Hy
Vour s Vy. “)
H,

We note that P(Hy) and P(H;) on the IoT node side should
be different from the prior probability on the edge device side.
This is because the IoT node tends to transmit, resulting in a
larger P(Hy); while the edge device aims to detect occupation,
resulting in a larger P(H). To this end, the threshold V; should
be different at the edge device and IoT node. Let V;; and V;;
denote the threshold at the edge and IoT node respectively, then
(4) can be rewritten as

Hy

Vout s th’ (5)
H,
Hy

Vout s sz, (6)
H,

where (5) characterizes the decision boundary at the edge while
(6) denotes the decision boundary at IoT nodes.

To unify (5) and (6), we redefine V;; < V,,y < Vi as
“partially occupied”. Let Hy, H; and H, denote the hypotheses
of free, partially occupied and fully occupied bands, such that
the classification problem is determined by

H{UH, HyUH,
Vit s Vour s Va. (7
Hy H;
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Equation (7) implies that on-chip spectrum sensors will have
different Bayesian test thresholds V;; and V;, at the edge and
IoT respectively, classifying the channel into “free”, “partially
occupied” and “fully occupied”. The edge device will fur-
ther perform fine-grained detection in “partially occupied” and
“fully occupied” channels, while IoT devices tend to transmit
in “free” or “partially occupied” channels.

D. Cognitive Radio Transmitter

Another critical requirement besides short spectrum sensing
time is the ability of the transmitter to quickly tune parameters
in order to utilize the identified spectral opportunity. The low-
startup time of the oscillator at high frequency ensures low
latency in the transmission. In the proposed transmitter archi-
tecture, we utilize the active resonator for oscillator design to
generate the carrier frequency corresponding to the spectral
opportunity. With this design approach, we benefit from the
active resonator’s characteristics to enable transmission in the
band. Once the channels are known, they can be utilized for
communication, which requires the generation of the carrier
frequency for the selected channel. We leverage the active
resonator to generate such carrier frequency. In this case, the
resonator is connected across a high-bandwidth inverting am-
plifier as shown in Fig. 8, which creates an oscillator whose
resonance frequency is determined by the resonator. This signal
is modulated by a modulator based on the data stream. The
modulated signal is then amplified by a power amplifier (PA)
and transmitted wirelessly after passing through a matching
network (Z,).

E. Cognitive Radio Receiver

Fig. 9 displays the design of the cognitive receiver architec-
ture. A wideband LNA circuit will be used to amplify the RF
signal. A parallel AGC using an RSSI is used to prevent the
receiver from saturating. The LNA output is fed to the active
resonators operating differentially as discussed earlier. The
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output of the both resonators are fed to rectifiers to demodulate
the signal. The rectifier outputs are then summed together to
remove out-of-band and adjacent channel interferers. The final
output represents the received symbols.

IV. DNN CLASSIFIER

This section discusses the signal model used for simulation,
and it summarize the data processing as well as the DNN
architecture for signal classification.

A. Signal Model

Similar to other modulation classification works [18], [45],
we model the wireless imperfection as three parts:

« Multipath effects: self-interference due to the reflection,
diffraction, diffusion and movement of objects, usually
described by statistic models such as Rayleigh and Rician
channels with different delay spread T and Doppler shift
ofa-

« Frequency and phase offsets: frequency and time domain
mismatches caused by drift of local oscillators that can be
described by a random clock offset dc.

« Additive noise: hardware sensitivity that can be modeled
as a stationary Gaussian random process with different
power levels.

Since we process the signal after down-conversion, here we
are only interested in the distortion of the low-pass (baseband)
equivalent signal. Without loss of generality, we denote the
transmitted signal s(7) as a baseband complex sinusoid:

s(t) = /7St 8)

In (8), s(¢) is a ideal waveform without any imperfection
and f; is the sampling frequency of the baseband signal. The
received signal r(¢) can be written as

r(t) =s"(t) ® h(t) +n(1)
= Z a(r)e 2700t (t — 1) + n(r).

Equation (9) indicates that the received signal r(¢) is modeled
as the convolution of a distorted signal s’(f) with a finite
impulse filter A (¢) and an additive factor n(t), where h(z) is the

€))

1x 1 Conv
(b)
TABLE I
PARAMETERS FOR DATA GENERATION AND PREPROCESSING
([ Parameters [ Values 1]
Maximum clock offset Ac (ppm) 5
Delay spread 7 (us) [0, 1.8, 3.4]

Maximum doppler shift A fz (Hz) 10

Number of signals in channel n U(l,4)
Carrier frequency shift é f. (MHz) U(-20,20)
Signal to Noise Ratio (dB) U (0, 18)

channel model and n(t) is additive noise. s’ (¢) is the distorted
version of (8) due to the frequency and time domain mismatches
between transmitter and receiver.

In (9), k() can be modeled as a linear filter whose impulse
response describes the phase shift and attenuation of the multi-
path components. It is usually characterized by statistic models
such as Rayleigh and Rician distribution with the delay spread
7 as well as Doppler shift 6 f; [46].

s’ (t) can be written as

S’(t) — ej27r(f;+6f}+6f(¢)t+6¢, . (10)

In (10), 6 f; and 6¢; are the frequency and phase shifts
characterized by a random clock offset dc. As the spectrum
sensor performs blind detection to the transmitted signal, the
receiver has no knowledge about the carrier frequency f. of the
exact transmitted signal. ¢ f.. is the carrier frequency mismatch
between the transmitter and receiver.

B. Data Generation and Preprocessing

Due to the susceptibility of wireless signals to environmental
changes and additive noise, a DL algorithm that performs well
on one dataset may fail to generalize to another. Therefore, it
is crucial to gather an adequate dataset from diverse environ-
ments to ensure the robustness of deep learning algorithms.
However, the challenge lies in how to collect such a varied
dataset, which remains an open problem [47]. This problem
becomes more severe in wideband spectrum sensing scenarios
because spectrum is an open resource, where unmanageable
interference exists without clear labeling. As a compromise,
synthetic datasets generated with realistic wireless models are
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Fig. 11. (a) DNN classification performance under different SNR levels (from 0 to 18 dB); (b) precision and recall comparison between our DNN and the state of
the art [27]; (c) complexity and latency comparison between our DNN and the state of the art.
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Fig. 12. Synthetic spectrograms and classification maps with different SNR and
bandwidth: (Top) 16-QAM (20 MHz), GFSK (2 MHz) and OQPSK (2 MHz)
with 3 dB; (Bottom) PAM4 (1 MHz), QPSK (5 MHz) and BPSK (2 MHz) with
10 dB.

commonly used to validate the efficacy of DL models in the
literature [18], [23], [24], [45], [48]. To this end, we have
developed a data generation pipeline capable of simulating the
wideband spectrum.

To simulate a real shared spectrum, an abundant signal set
containing multiple modulation and bandwidth is needed. We
generated a signal set consisting of 6 different modulation types
that are often used in the literature [45], [48]-[50]: BPSK,
QPSK, 8PSK,16-QAM, GFSK, CPFSK, PAM4, and OQPSK.
For each type of modulation, 1,000 instances were generated
with random bandwidth from 1 MHz to 20 MHz.

For the frequency and phase offsets, we model dc as a
random variable that is uniformly distributed U[-Ac,Ac],
where Ac is the maximum clock offset. The carrier frequency
mismatch is uniformly distributed (6 f, € U[-20,20] MHz).
Similarly, the maximum Doppler shift A f; is used for modeling
movement (6 fy € [-Afq,Afq]). We selected both Rayleigh
and Rician channels for a realistic simulation. Noise power
is described by various SNR values from 0 to 18 dB. We do
not consider signals with lower SNR because the DNN signal
classifier acts after the on-chip spectrum sensor to classify
signals with high RSSI outputs. Furthermore, since we are
solving the signal co-existence problem in the 40 MHz band,
we should also consider a random number of signals between 1
and 5 that co-exist in the spectrum. The simulation parameters

are summarized in Table I.

Fig. 10(a) depicts the proposed data generation and pre-
processing pipeline to create an adequate spectrum dataset. It
can be divided into two parts: offline data generation and online
data augmentation. In the offline data generation phase, a set of
ideal waveforms with various modulation types and bandwidths
are first generated. Then, a random frequency and phase offset
is introduced to each instance, followed by a Rayleigh or Rician
channel fading. The generated signals are stored in a signal set
for further preprocessing before feeding them to the DNN clas-
sifier. In the online data augmentation phase, a random number
of signals from the signal set will be sampled and stitched
together to generate a wideband spectrum. The power of each
signal will be adjusted based on its SNR level. Subsequently,
the carrier frequency of each signal will be shifted randomly
from -20 MHz to 20 MHz. The ultimate output of the online
data augmentation is a superimposition of multiple signals and
random additive noise, simulating the coexisting transmissions
in the 40 MHz channel. In each generated spectrum data, the
number of signals, SNR, and carrier frequency are randomized.
To this end, our data processing pipeline is able to have an
exhaustive combination with a finite signal set.

C. DNN architecture

Inspired by semantic segmentation, we propose a new
DNN architecture based on a Fully Convolutional Network
(FCN) [51] to perform 1/Q level classification in the frequency
domain. It will take 1024 1/Q samples in the time domain, and
output a classification map that represents 1024 channels in
the frequency domain. Unlike the original FCN, we utilize a
Convolutional-LSTM-DNN (CLDNN) structure that has shown
its efficacy for signal processing in [52] for feature extraction.
Fig. 10(b) depicts the detail of our proposed model architecture.
the CLDNN has 2 convolutional layers (1 X 3 Conv) and a
Long Short-Term Memory (LSTM). After each convolutional
layer, there is a batch normalization and a rectified linear unit
(ReLU) activation, whereas the LSTM is only followed by
ReLU activation. A shortcut is used as the residual connec-
tion [53] between the input and LSTM. The complete FCN
comprises 7 CLDNN blocks designed to produce feature maps
with varying levels of granularity. These levels are adjusted
by incorporating maxpooling layers (maxpool) between each
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Fig. 13. (a) System architecture of the proposed analog spectrum sensor and the corresponding system modeling. (b) Results from simulation of the Simulink-

based tunable filter model.

CLDNN block. To decode these feature maps, a series of
upsampling layers (upsample) of different scales are initially
applied to resize the feature maps to their original dimensions.
Subsequently, a concatenation layer (concat) followed by a
pointwise convolution (1 X 1 Conv) is employed to blend the
diverse features and generate the classification map.

Different from other signal classification works that can
only classify one signal at its center frequency [48]-[50], our
approach can generate a classification map in a wideband spec-
trum that can jointly classify multiple signals at different center
frequencies. Compared to other signal classification based on
vision-driven object detection [26], [27], we directly process the
1-dimensional waveform data and do not transform to image,
resulting in less computation complexity and latency.

D. DNN Performance

We report the instance level classification performance of our
DNN in Fig. 11(a), where the Intersection-over-Union (IoU)
metric from computer vision tasks was adopted to evaluate the
instance level performance. For each instance (i.e., 1024 1/Q
samples in the time domain), we compute the miss rate (P,,),
false alarm rate (Py,) and detection rate (P4) over the classi-
fication map (i.e., classification of 1024 frequency channels).
The IoU is computed as

Py

IoU= ——-—7—.
Py+Pg+Pyy

1D
Equation (11) denotes the IoU metric; where P4, P,,, and Pz,
are detection rate, miss rate and false alarm rate, respectively.
When SNR increases from 0 to 6 dB, the average IoU
increases from 59.05% to 83.36%. The average IoU is up to
86.84% under 18 dB SNR, with only 3.48% improvement.
The experimental results show the stable performance of our
approach for various SNRs. This SNR range is guaranteed by

the on-chip spectrum sensor deployed at the edge since we only
classify signals in the occupied channels.

Note that the IoU is a more comprehensive performance
metric than other metrics such as precision and recall scores
that are computed as

P
Precision = 4 , (12)
Py+ Py,
P
Recall = —94. (13)
Pm + Pd

Equation (12) and (13) denote the precision and recall scores,
respectively. Compared to (12) and (13), (11) always has a
lower score as P, and Pr, are non-negative. In other state
of the art [27], the IoU is only treated as an optimization
metric while precision and recall are used for evaluation. This
is because [27] directly applies to computer vision based object
detectors, which relies on a set of predefined anchors. Such
predefined anchors will introduce bias to the objects’ locations
and shapes, showing difficulty to achieve very precise IoU
score [28], [54]. On the other hand, our approach is based on
semantic segmentation [51] that can provide better information
about the objects’ boundaries.

We compare the classification performance with the state-
of-the-art technique that can classify multiple signals in the
spectrum using a YOLOvV3 object detector [27]. To ensure a
fair comparison, we present precision and recall scores sim-
ilar to [27]. In a scenario with moderate SNR (10 dB), our
segmentation approach achieves 94.2% precision and 93.8%
recall rates, respectively. These rates are approximately 10%
higher than the IoU metric, supporting that the IoU is more
comprehensive for performance evaluation. On the other hand,
the object detection-based approach achieves a precision rate
of 92.6% and a recall rate of 94.9%. As depicted in Fig. 11(b),
it has less than 2% difference in classification performance
between our method and the current state of the art.
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We also compare the computation complexity and latency
of our model with YOLOv3 [27]. Fig. 11(c) shows the infer-
ence latency and number of parameters of YOLOvV3 and our
approach. The latency is tested on a Linux machine with a 12th
Generation Intel(R) Core(TM) i7-12700K and a GPU RTX-
A4000 with a 7.5 computation capability. The YOLOV3 latency
is evaluated following the same setup as in [27]. The latency of
our approach is 2.63 ms while the YOLOv3 has a latency of
6.77 ms. Compared to the state of the art, our DNN reduces
the latency by 61.15%. In addition, the parameter number
of YOLOV3 is 65.3 million while ours is only 0.46 million.
Note that the computation resources and latency can be further
reduced by implementing the DNN on a Field-Programmable
Gate Arrays (FPGAs) or as an Application-Specific Integrated
Circuit (ASIC) [55].

Based on the comparisons discussed above, our approach
demonstrates similar classification performance while exhibit-
ing significantly reduced latency compared to the current state
of the art. This is because the other works are currently derived
from computer vision tasks, which were originally tailored
for extracting high-level information from 2-dimensional pix-
els, resulting in excessive computational overhead for wireless
tasks. On the other hand, our approach operates directly on the
1-dimensional waveform-level features of signals, drastically
reducing complexity while maintaining equivalent accuracy
levels.

Fig. 12 shows two different scenarios of spectrograms and
the related DNN outputs. The synthetic spectrum is generated
by our data generation pipeline depicted in Fig. 10(a). The
classification map is a horizontal stack of multiple DNN outputs
in the time domain. The DNN can classify multiple signals with

different bandwidths, center frequencies and different SNR
in the spectrum. We note that the classification accuracy can
be further enhanced by aggregating multiple DNN outputs in
the time domain with low SNR scenarios. With the powerful
parallel computing provided by the GPU on the edge device,
the performance can be easily enhanced without increasing the
latency.

V. SYSTEM MODELING

The proposed on-chip spectrum sensor validation is heavy
on computational resources when done using circuit level sim-
ulations. To overcome this, we validate the proposed analog
spectrum sensing technique using a system model implemented
in MATLAB-Simulink. Circuit-level non-idealities have been
considered in the implementation of the system model based on
the techniques in [56], [57]. Fig. 13(a) visualizes the Simulink
modeling of different components of the spectrum sensor. The
modeling details for different blocks are discussed below.

A. Channel Model

To model the spatio-temporal non-idealities of the channel,
we have used a Rician channel model as described in Sec-
tion IV-A. We have evaluated our model with unmodulated
continuous wave On-Off Keying (OOK) and other modulation
techniques listed in Section IV-B.

B. Tunable On-chip Filter

The proposed on-chip filter is modeled using a second-order
system as described by Eqn. 1. To achieve tunability we vary
w, and the Q-factor in the sub-6 GHz range. Furthermore, we
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use the active resonators in a differential topology to reduce the
effects of the out-of-band blockers (Section III-A). Fig. 13(b)
displays the Simulink model-based simulation results, which
are in close agreement with the circuit level (g,,-C filter-based)
simulation results (Fig. 6).

C. RSSI Circuit

The RSSI model was implemented in Simulink, which is
based on the SDA RSSI topology discussed in Section III-B. To
accurately model the RSSI circuit, we have designed it using
five stages of cascaded differential amplifiers followed by a
summing circuit. The final output is generated after filtering
with a low-pass filter. Fig. 7 compares the transistor-level RSSI
circuit simulation results with the results from the Simulink
model, which are monitored at the low-pass filter (Vour, fitrer)
while processing the output of a 6 GHz active resonator with
inputs varying from 0.1 mV to 1 V. The Simulink model
implementation shows a dynamic range similar to the simulated
transistor-level circuit design.

D. Digitization and classification map

For a coarse classification of the detected energy level, we
have implemented the digitization block using three compara-
tors to classify the channel into fully occupied, partially oc-
cupied and free bands. To make the decision threshold level
adjustable, we have included a tunable voltage range in the
model.

E. Cognitive Transmitter and Receiver

We have modeled the cognitive transmitter and receiver
similar to its circuit implementation (Fig. 8 and Fig. 9). The

spectrum sensors on the IoT node and edge device have the
same architecture. However, while the spectrum sensor on the
IoT node scans for a free channel, the spectrum sensor on
the edge device looks for an occupied channel for further
processing.

F. Simulation Results

1) Spectrum sensing and communication: Fig. 14 includes
an example simulation result with free channel identification
and communication on that free channel. The IoT node spec-
trum sensor begins to scan the channel, performs energy detec-
tion in each band, and obtains a congestion map. Using this
congestion map, the free channel is identified, and the IoT
node’s cognitive transmitter sends a connection request to the
edge device for connection in this free band. Meanwhile, the
spectrum sensor on the edge device is scanning the sub-6 GHz
band for congested channels.

These congested channels are then processed for IoT node
identification as discussed in Fig. 3. Fig. 14 shows the change
of the energy in the previously free channel that is now occupied
from the signal from the IoT node. The coarse classification of
channels obtained from the spectrum sensor are then processed
by the DNN classifier. The DNN will further perform fine-
grained signal classification only in the channel whose state
changed from free to occupied. It will output a classification
map of the spectrum as demonstrated in Fig. 12. Once the IoT
node is identified, the edge device sends the ACK packet to
the IoT node. This handshake between the IoT node and edge
device establishes the intended communication.

2) Detection of an incumbent user: Fig. 15 depicts a sce-
nario wherein the incumbent user of the channel intends to use
the channel in which the IoT node is opportunistically commu-



nicating with the edge device. In this case, the DNN classifier
identifies the incumbent user and terminates the connection
with the IoT node. Once the edge device stops transmitting the
packets, the timer on the IoT node detects the termination of
the connection from the edge device, and the IoT node begins
to scan the channel for the next available band as discussed
in Fig. 3. This response overcomes the blind detection limita-
tion of conventional energy detection-based spectrum sensing,
which in our agile platform involves offloading to the edge
device to improve the energy efficiency of the low-power IoT
devices.

VI. CONCLUSIONS

This paper described an agile communication platform for
spectrum sensing and communication for congested networks
of IoT devices. To achieve fast spectrum sensing, we have in-
troduced an energy detection-based approach that leverages an
on-chip analog spectrum sensor to scan the sub-6 GHz band in
less than 1us. A novel DL-based algorithm achieves a mean IoU
up to 86.8%, which was employed to classify multiple signals
jointly in the shared spectrum for enhanced spectrum agility.
The sensing and communication methodology was assessed
with Simulink-based system modeling and simulations. The ag-
ile platform overcomes past limitations associated with energy
detection-based spectrum sensing (i.e., narrowband sensing and
blind detection), while allowing to maintain low-power IoT
nodes through offloading of computations to the edge device.

Our DL approach reduces both computation complexity and
latency compared to existing works, but it relies on powerful
computational resources such as GPUs for efficient parallel pro-
cessing to achieve low latency. In future endeavors, a potential
direction is to implement the proposed DL model on FPGAs
or as an ASIC to further diminish computational demands and
latency. Furthermore, the DL algorithm is trained on synthetic
data and the proposed framework was tested with simulations.
Future work may involve deploying a hardware implementation
to test devices with real data collected in the field.
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