IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

9265

A Generalized Explanation Framework for
Visualization of Deep Learning Model Predictions

Pei Wang

Abstract—Attribution-based explanations are popular in com-
puter vision but of limited use for fine-grained classification prob-
lems typical of expert domains, where classes differ by subtle
details. In these domains, users also seek understanding of ‘“why”
a class was chosen and ‘“why not” an alternative class. A new
GenerAlized expLanatiOn fRamEwork (GALORE) is proposed to
satisfy all these requirements, by unifying attributive explanations
with explanations of two other types. The first is a new class of
explanations, denoted deliberative, proposed to address the “why”
question, by exposing the network insecurities about a predic-
tion. The second is the class of counterfactual explanations, which
have been shown to address the ‘“why not” question but are now
more efficiently computed. GALORE unifies these explanations by
defining them as combinations of attribution maps with respect to
various classifier predictions and a confidence score. An evaluation
protocol that leverages object recognition (CUB200) and scene
classification (ADE20 K) datasets combining part and attribute
annotations is also proposed. Experiments show that confidence
scores can improve explanation accuracy, deliberative explanations
provide insight into the network deliberation process, the latter
correlates with that performed by humans, and counterfactual ex-
planations enhance the performance of human students in machine
teaching experiments.

Index Terms—Attribution, confidence scores, counterfactual
explanations, deep learning, deliberative explanations, explainable
AL

1. INTRODUCTION

HILE deep learning systems enabled significant ad-
W vances in computer vision, their black-box nature cre-
ates difficulties for many applications. In general, it is difficult
to trust a system that cannot justify its decisions. This motivated
a large literature on explainable Al (XAI) methods, which
complement network predictions with human-understandable
explanations [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. In
computer vision, the dominant XAl paradigm is that of visual
explanations computed by attribution functions, which generate
heatmaps localizing the image pixels [8], [11], [12], [13] or
regions [14],[15], [16], [17] responsible for network predictions.
Fig. 1 (center) shows the heatmap produced for a bird image by
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a deep learning system that predicts the label *Cardinal’ with
confidence value 0.76.

While attributive explanations provide a coarse justification
for the predictions, e.g., localizing the object within a larger
background or highlighting one among distinct objects in the
field of view, they are not sufficient for applications that require
fine-grained classification. This can be seen in Fig. 1, where it
is clear that the highlighted pixels belong to the bird but unclear
which regions of the bird are responsible for the ‘Cardinal’
prediction. While the explanation would be satisfactory for
a classification problem opposing ‘Birds’ to ‘Dogs,’ it is not
helpful for one opposing ‘Cardinals’ to ‘Summer Tanagers’ or
other bird species. In this case, the attributive explanation selects
the entire bird and it is hard to know what differentiates one class
from the other.

Fine-grained classification problems are prevalent in expert
domains, such as medical imaging or biology, where there is a
need to distinguish objects that differ in subtle details, and even
for everyday applications that involve a large number of classes.
For such problems, users are likely to demand more from the
explanation system. As Fig. 1 illustrates, given the relatively
low confidence value of 0.76, a user may want to know exactly
why the system chose the ‘Cardinal’ label. Beyond the post-
hoc analysis of classification results, where the user is passive,
explanations also play a critical role in interactive applications,
such as machine teaching systems where users are taught to
annotate images [18], [19], [20]. In this case, users naturally ask
counterfactual questions, such as “why is this a Cardinal and
not a Summer Tanager?” where an alternative or counter-class
(‘Summer Tanager’) is provided. None of these questions can
be satisfied by existing attribution-based visual explanations.

In this work, we propose a GenerAlized expLanatiOn fRamE-
work (GALORE) for the solution of all these problems. Beyond
the popular attributive explanations, GALORE includes a new
class of explanations, denoted as deliberative, and a new version
of counterfactual explanations' that are easier to compute than
those previously available in the literature. Deliberative explana-
tions, illustrated in the left of Fig. 1, address the “why?”” question
by visualizing insecurities about model predictions. These are
the regions that the model considered most ambiguous, together

1.As discussed in [21] and defined in [22], [23], counterfactual explanations
are similar to contrastive explanations. Both aim to answer questions “Why P and
not Q,” although some literature emphasizes that counterfactual explanations
should generate alternative examples, illustrating how objects change for the
alternative decision [24], [25]. We make no distinction and use the two terms
interchangeably.
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Fig. 1. Anideal explainable deep learning system should produce various explanations to satisfy different user requirements. GALORE addresses this problem by

unifying attributive (center), deliberative (left), and counterfactual (right) explanations. Attributive explanations highlight the pixels responsible for the prediction
of the label ‘Cardinal’ for the image shown. Deliberative explanations address the why question, producing a set of insecurities, which are image regions deemed
ambiguous, together with the classes that define the ambiguity. Counterfactual explanations address the why not question, visualizing the input changes needed to

elicit the prediction of a user-provided counter class (‘Summer Tanager’).

with the classes that define the ambiguity. In the example of
the figure, insecurities refer to body parts of bird classes that
are confusable with ‘Cardinal,” such as ‘Pine Grosbeak,” ‘Pur-
ple Finch,” or ‘Summer Tanager’. Counterfactual explanations,
illustrated in the right of the Figure, address the “why not?”
question by visualizing the input changes needed to elicit the
prediction of a user-provided counter class. In the example of
the figure, the explanation shows that the two classes differ
mostly in terms of the bird head. The unification is based on
the definition of all explanations as combinations of multiple
attribution maps, which vary according to the explanation type.
Since attributions are very efficient to compute, the proposed
framework establishes a family of low-complexity explanations
that can be used in various applications, ranging from naive to
expert domains, and supporting both passive post-hoc analysis of
predictions or interactive applications such as machine teaching.

A core requirement of deliberative and counterfactual expla-
nations is the ability to reason in terms of the difficulty posed
to the classification by different image regions. Understanding
why the classifier chose a class requires knowing what other
classes could have been plausibly selected, and what image
regions made those alternatives plausible, i.e., what image re-
gions the classifier found ambiguous for the decision. This is
the essence of deliberative explanations, which produce a list of
such regions, denoted as insecurities, as illustrated in the left of
Fig. 1. On the other hand, counterfactual explanations require
the identification of regions that discriminate the predicted from
the counterfactual class, i.e., which have high probability under
the predicted class and low probability under the counterfactual.
These regions can then be shown to the user, as illustrated in
right of Fig. 1, to identify corresponding parts in objects from
predicted and counter class.

Reasoning about ambiguities or class probabilities requires
the classifier to produce confidence scores [26], [27], [28], [29],
i.e., measure the confidence with which the image belongs to
each of the possible classes. From these scores, it is possible to

derive how difficult the classification is (the probability of the
ground-truth class), how ambiguous it is (similarity between the
probabilities of the top classes), or how much the image discrim-
inates between two classes (large probability for one and small
for another). We refer to the ability to measure these quantities
as self-awareness, since it allows a classifier to quantify the
confidence in its decisions. One of the insights of this work is
that attributions of confidence scores allow the extension of these
measures to image regions, so as to identify which regions are
ambiguous, discriminant, or difficult to classify. This is naturally
integrated in the GALORE framework, by simply combining the
attribution maps for self-awareness with the attributions for class
predictions required to compute the different explanations.
Beyond explanations, a significant challenge to XAl is the
lack of explanation ground truth for performance evaluation.
Besides user-based evaluations [30], whose results are difficult
to replicate, we propose a quantitative metric based on a proxy
localization task. This relies on standard metrics from the object
detection literature and attribute annotations for different object
parts or scene components. We show that these metrics can be
adapted to the evaluation of the different types of explanations
proposed with minor specializations. Compared to human ex-
periments, the proposed proxy evaluation has the advantages of
being substantially easier to perform and fully replicable.
Overall, the paper makes three contributions. First, it proposes
the unified GALORE framework to generate attributive, delib-
erative, and counterfactual explanations. Deliberative explana-
tions are a newly proposed family of explanations that visualize
the deliberations made by a network to reach its predictions.
GALORE also redefines counterfactual explanations as com-
binations of attributive explanations, significantly increasing
their computational efficiency. Second, the paper shows how
to leverage self-awareness to improve explanation accuracy,
for different types of explanations. Third, it proposes a new
experimental protocol for quantitative evaluation of deliberative
and counterfactual explanations. Experimental results, using
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both this protocol and human experiments, show that the pro-
posed deliberative explanations are intuitive, suggesting that the
deliberative process of modern networks correlates with human
reasoning, and that counterfactual explanations can substantially
benefit applications like machine teaching.

II. RELATED WORK

XAl for Computer Vision. Many variants of XAl have been
proposed in the literature. For computer vision, explanations
can be based on concepts [31], [32], [33], examples [1], [34],
[35], [36], image transformations [30], [37], language [38], [39],
[40], etc. Among these, the visualization of saliency maps is
a widely used approach [16], [17], [41], [42], [43], which we
pursue in this work. XAI methods can also be divided into two
groups that depend on the design stage where predictions and
explanations are performed. One possibility is to design models
to be interpretable [2], [43], [44], [45], another to perform post-
hoc analysis on pre-trained models [16], [17], [46]. In this paper,
we mainly discuss post-hoc methods. Several survey papers [47],
[48], [49], [50] provide a more comprehensive review of the
field.

Attributive Explanations. The most successful post-hoc XAl
approach to create saliency maps is to rely on attribution func-
tions [8], [12], [14], [17], [51]. While many attribution functions
have been proposed [8], [11], [12], [13], [17], [51], [52], the most
popular approach is to compute some variant of the gradient
of the classifier prediction with respect to a chosen network
layer and then backproject to the input [15], [16]. Other pop-
ular attribution methods include SHAP [53], score-CAM [17],
LIME [54], and RISE [55]. The proposed GALORE framework
is compatible with any attribution function.

Contrastive and Counterfactual Explanations. Counterfac-
tual visual explanations transform an image of class A so as
to elicit its classification into the counter class B [38], [56],
[57], [58], [59], [60]. The simplest example are adversarial
attacks [23], [56], which optimize perturbations to map an image
of class A into class B. However, these perturbations usually
push the perturbed image outside the boundaries of the space
of natural images. Generative methods have been proposed to
address this problem, computing large perturbations that gener-
ate realistic images [57], [61], [62], [63]. This is guaranteed by
the introduction of regularization constraints, auto-encoders, or
GANSs [64]. However, because realistic images are difficult to
synthesize, these approaches have only been applied to simple,
MNIST or CelebA [65] style, datasets and domains that do not
require expertise [37], [61], [63]. StylEx [59] and C3LT [66] are
two recent methods, leveraging a GAN to produce the explana-
tions. They, however, require training on large-scale data, which
is not a necessity for other methods. A more plausible alternative
is to exhaustively search the space of features extracted from a
large collection of images, to find replacement features that map
the image from class A to B [30]. While this has been shown to
perform well on fine-grained datasets, exhaustive search is too
complex for interactive applications.

XAl Evaluation. Explanations are frequently evaluated though
human-in-the-loop experiments that measure their consistency
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with human intuition [16], [23], [53], [67] or evaluate if expla-
nations improve user performance on some task [30]. It is also
possible to assemble a dataset to generate human-driven ground-
truth explanations [68]. An alternative approach is automated
evaluation, using a proxy task without human participation. A
typical example is to erase or add features and observe how
the model predictions change [69], [70], [71], [72]. Another
is localization, where regions of features deemed important
by the explanation are compared to regions deemed intuitive
for classification by humans [16], [73]. Another component of
the evaluation of explanations is to test their robustness via
sanity checks [74], [75], [76], [77]. In this work, we introduce
a quantitative protocol for the evaluation of both deliberative
and counterfactual visual explanations, which includes sanity
checks.

Self-Awareness. Self-aware systems have some ability to mea-
sure their limitations or predict failures. This includes out-of-
distribution detection [78], [79], [80], [81] or open set recogni-
tion [82], [83], [84], [85], where classifiers are trained to reject
non-sensical images, adversarial attacks, or images from classes
on which they were not trained. All these problems require the
classifier to produce a confidence score for image rejection. The
most popular solution is to guarantee that the posterior class
distribution is uniform, or has high entropy, outside the space
covered by training images [86], [87]. This, however, is not
sufficient for deliberative explanations, which have to precisely
characterize the ambiguity of image regions, or counterfactual
explanations, which require precise confidence scores for classes
Aand B. These explanations are more closely related to realistic
classification [88], where a classifier must identify and reject
examples that it deems too difficult to classify.

III. A UNIFIED VIEW OF EXPLAINABLE Al

In this section, we discuss the different types of explanations
implemented by the proposed GALORE framework. The de-
tailed computations required to produce the explanations are
discussed in Section IV.

A. Attributive Explanations

Attributive explanations identify pixels responsible for a clas-
sifier prediction. This is intuitive but prone to generate explana-
tions that are too generic. For example, when asked “why is an
object a truck?” an attributive system would answer “because
it has wheels, a hood, seats, a steering wheel, a flatbed, head
and tail lights, and rearview mirrors,” i.e., generate a list of all
the truck parts. After all, all parts are responsible for the ‘truck’
label. The problem is that, while insightful, the explanation does
not inform on what distinguishes the truck from, for example, a
car. The explanation for ‘car’ would share all components other
than the flatbed.

Similarly, visual attributive explanations tend to highlight all
pixels of objects in the predicted class. This is sensible for coarse
grained classification, e.g., ‘birds’ versus ‘cats,’” but not for fine-
grained, e.g., the CUB birds dataset [89] from which the images
of Figs. 1,2 and 3 were taken. On this dataset, where most images
contain a single bird, methods like Grad-CAM [16] (used in these
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A counterfactual explanation is derived from a pair of discriminant explanations. Given a query image (Cardinal) and a counterfactual class (Summer

Tanager), discriminant explanations are obtained by combining attribution maps for each of the two classes and the confidence score. In this way, they bridge the
gap between attributive and counterfactual explanations, enabling fast optimization-free computation of the latter.

examples) produce heatmaps that 1) cover most of the bird, and
2) vary little across classes of largest posterior probabilities,
leading to very uninformative explanations. In this work, we
seek better explanations for the fine-grained setting.

B. Deliberative Explanations

In this setting, visual concepts differ in subtle ways. There are
frequently two or more classes of very similar appearance, and
the classification can be quite ambiguous. This is illustrated in
both Figs. 1 and 2, which present several similar birds, difficult

to differentiate for a layperson. Due to this ambiguity, even an
expert could reasonably oscillate between different interpreta-
tions while deliberating about the class to predict. An extreme
example of this process are visual illusions such as that depicted
in the left of Fig. 2, where different image regions provide
support for conflicting image interpretations. In this example, the
image could depict a ‘country scene’ or a ‘face.” Most humans
would consider the two interpretations while deliberating on a
final prediction. When asked to explain the latter, they would say
something like: “I see a cottage in region A, but region B could
be a tree trunk or a nose, and region C looks like a mustache, but
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could also be a shirt. Since there are sheep in the background, I
am going with country scene.” More generally, different regions
can provide evidence for two or more distinct predictions and
there may be a need to deliberate between multiple classes.

Having access to this deliberative process is important to trust
an Al system. For example, in medical diagnosis, a single predic-
tion can appear unintuitive to a doctor, even if accompanied by a
heatmap. The doctor’s natural reaction would be to ask “why did
you reach that conclusion?” Ideally, instead of simply outputting
a predicted label and a heat map, the Al system should visualize
its deliberations, producing a list of image regions that support
other plausible predictions. For example, when categorizing
medical images with respect to interstitial lung diseases [90],
[91], the AI system should explain a prediction of ‘emphysema’
by highlighting the regions of greatest uncertainty between this
and alternative predictions, such as ‘normal’ or ‘fibrosis’. We
denote these regions as insecurities, since they cast doubt on the
validity of the predicted label. To accomplish this, we propose
a new type of explanations based on heatmaps of network inse-
curities. These are denoted as deliberative explanations, since
they visualize the network deliberations.

Asillustrated in the right of Fig. 2, the deliberative explanation
provides a list of insecurities (center inset), each consisting
of 1) an image region and 2) an ambiguity, formed by the
pair of classes that led the network to be uncertain about the
region. Example images from the ambiguous classes can also
be displayed, as shown in the right inset. For example, the first
insecurity of Fig. 2 reflects the fact that the head of the Pelagic
Cormorant is similar to those of the Brandt Cormorant and the
Common Raven. Hence, this region raises uncertainty about the
"Pelagic Cormorant’ label predicted by the classifier. The de-
tailed implementation of deliberative explanations is discussed
in Section IV-D.

C. Counterfactual Explanations

Returning to the ’truck’ example, domain experts will likely
not be satisfied by the simply listing of all truck parts. Instead,
they are likely to request more precise explanations, for instance
asking the question “Why is it a truck and not a car?”” The answer
“because it has a flatbed. If it did not have a flatbed it would
be a car,” is known as a counterfactual explanation [23], [30],
[38], [92]. Counterfactual explanations, by supporting a specific
query with respect to a counterfactual class (B), allow expert
users to zero-in on a specific ambiguity between two classes,
which they already know to be plausible predictions. Unlike at-
tributions, these explanations scale naturally with user expertise.
As the latter increases, the class and counterfactual class simply
become more fine-grained. In computer vision, counterfactual
explanations are usually implemented as “correct class is A.
Class B would require changing the image as follows,” where “as
follows” is some visual transformation. Possible transformations
include image perturbations akin to those used in adversarial
attacks [23], image synthesis [37], [60], or replacing image
regions by regions of some images in the counter class B, found
by the exhaustive search of a large feature pool [30]. However,
image perturbations and synthesis frequently leave the space of
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natural images, only working on simple non-expert domains,
and feature search is too complex for interactive applications.

In this work, we propose the computation of counterfactual
explanations by a simple and robust procedure, based on at-
tributions. We start by introducing discriminant explanations
that, as shown in Fig. 3, connect attributive to counterfactual
explanations. Like attributive explanations, they consist of a
single heatmap. This, however, is an attribution map for the
discrimination of classes A and B, attributing high scores to
image regions that are informative of A but not of B, and
high classification confidence, indicating that the discrimination
between the two classes is clear and easy to identify. The
detailed generation of discriminant explanations is discussed
in Section IV-E. The final counterfactual explanation is then
composed by two discriminant explanations, with the roles of A
and B reversed. It identifies the image regions informative of A
but not B and the regions informative of B but not A.

Asillustrated in Figs. 1 and 3, the presentation of these regions
side by side allows the user to visualize how the image of A
would need to be changed in order to be classified as B (and
vice-versa). This shows that counterfactual explanations can be
seen as a generalization of attributive explanations, computed by
a combination of attribution and confidence prediction methods
that is much more efficient to compute than previous methods.
In fact, our experiments show that their computation is 50 to
1000 x faster for popular networks. This is quite important for
applications such as machine teaching, where explanation al-
gorithms should operate in real-time, ideally in low-complexity
platforms such as mobile devices.

IV. IMPLEMENTATION OF GALORE

In this section, we discuss a unified framework for implemen-
tation of the explanations discussed above.

A. Explanation Framework

Consider an object recognition system H : X — ), mapping
images x € X into classes y € Y = {1,...,C}, according to a
classifier

y" = argmax hy(x), (1
y

where h(x) : X — [0,1]¢ is a C-dimensional probability dis-
tribution with 25:1 hy(x) = 1, usually computed by a con-
volutional neural network (CNN). The classifier is denoted
self-aware if it produces a confidence scores(x) € [0, 1], en-
coding the strength of its belief that the image x belongs to
the predicted class y*. The confidence score can be generated
by the classifier itself, in which case it is denoted as self-
referential, or by a complementary network, in which case it is
non-self-referential. Both the classifier and the confidence score
generator are learned from a training set D of N? i.i.d. sam-
ples D = {(x,,,yn)}\_,, where y,, €  is the label of image
X, € X. Classification performance is evaluated on a disjoint
test set T = { (X, ym ) } M.
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TABLE I
IMPLEMENTATION OF DIFFERENT EXPLANATION STRATEGIES UNDER THE GALORE FRAMEWORK

explanation heatmap m®(a) mP(a) m7(a) C s(x)
Attributive A(x, y*) a 1 1 None None
Self-aware attributive A(x,y*) a 1 a None s(x)
Deliberative Z(x,C) 1 a a {a, b} s(x) 1 —s(x)
Counterfactual R(x,y*,y° x°) a max; j a;; — a;j a {y“} s(x)
Multiclass deliberative Z(x,C) 1 a a {ay,...av} | s(x) 1 —s(x)
Multiclass counterfactual | R(x,y*,C, ngl x") a max; j a;; — a;j a {yt, ..y} s(x)

In this work, we propose a GenerAlized expLanatiOn fRamE-
work (GALORE) to unify various visualization-based expla-
nations, accounting for both confidence scores and a set C of
class labels of interest beyond the prediction y*. All GALORE
explanations are implemented with a heat map

M@j(X, hy*,C)
= m®(a;,j (hy (%)) ] [ m” (@55 (hye (x)))-m7 (255 (5(x))),
ceC
2

where - denotes multiplication, a;_; (.) is an attribution function,
which measures how the spatial feature of x at location (3, )
contributes to a prediction. m®, m? and m” are three functions
that depend on the explanation. The detailed implementation of
these functions for each type of explanation is discussed in the
following sections and summarized in Table I.

The definition of (2) as a multiplication of attribution maps
strengthens the heat map M at the locations where all the
attributions are large and attenuates it when at least one of them
is low. This can be seen as a measure of agreement of the differ-
ent attributions that drastically penalizes disagreements. In this
way, only locations that receive significant attribution from the
different components are identified as salient, resulting in sharp
heat maps that are informative of object details, as illustrated in
Figs. 2 and 3. The process can also be seen as equating attribution
maps to probability density functions of independent random
variables and M to the resulting joint distribution. While this is
not exact, since the attributions of h,(x), hy(x), and s(x) are
not independent, it provides a computationally efficient approx-
imation. Explanations are provided in the form of collections
image segments [54], [93], [94] obtained by thresholding the
heat map. We next discuss how (2) is used to implement different
visualization strategies.

B. Attributive Explanations

Attributive explanations visualize how strongly the prediction
y* is attributed to different regions of image x [8], [11], [12],
[13], [51]. They are obtained from (2) by setting m®(x) = z,
mP(z) = m7(x) = 1, leading to heat map (for brevity, we omit
location subscript in the rest of the paper)

A(x,y") = a(hy(x)). 3)

The attribution function a(.) is usually applied to a tensor of
activations F € RW>H*D of gpatial dimensions W x H and
D channels, extracted at some layer of a deep network with

x at the input. While many attribution functions have been
proposed, they are usually some variant of the gradient of k- (x)
with respect to F'. This results in an attribution map where the
amplitude of A;;(.) encodes the attribution of the prediction to
each entry 7, j along the spatial dimensions of F. Two attributive
heatmaps of an image of a ”Cardinal” with respect to predictions
”Cardinal” and ”Summer Tanager,” are shown in the top row of
Fig. 3.

C. Self-Aware Attributive Explanations

Attributive explanations can be extended to account for con-
fidence scores by setting m? (x) = . In this case, the attributive
explanation becomes

Alx,y7) = alhy (x)) - a(s(x)). @

GALORE is compatible with any classification confidence score
s(x). A few examples that we compare in our experiments
are discussed in Section V-B. Large heatmap entries indicate
regions that not only contribute to the prediction but also make
the classifier confident about it. When compared to standard
attributive explanations, the self-aware version emphasizes more
class-specific regions. In experiments, we will see that these
regions usually cover the attributes discriminant for the predicted
classes, providing a sharper and more convincing explanation for
the classifier prediction.

D. Deliberative Explanations

A deliberative explanation consists of a set of () insecurities
{(rq, aq, bq)}q(’_“):1 that provide insight on the reasoning per-
formed by the classifier to reach prediction y*. Each insecurity is
a triplet (r, a, b), where r is the segmentation mask of a region
responsible for classifier uncertainty, and (a,b) an ambiguity
composed by a pair of class labels. Altogether, the insecurity
shows that the network is insecure as to whether the image region
defined by r should be attributed to class a or b. Note that none
of a or b has to be the prediction y*, although this could happen
for one of them. In Fig. 2, y* is the label ‘“Pelagic Cormorant,”
and appears in insecurities 2, 5, and 6, but not on the remaining.
This reflects the fact that certain parts of the bird could actually
be shared by many classes.

Insecurities are generated by first identifying the set C =
{y!,...,yF} of the E classes y of largest posterior probability
hy(x). A candidate class ambiguity set A = (g) is then created
with all class pairs in C. For each ambiguity (a,b) € A, an am-
biguity map is computed using (2) withC = {a, b}, m*(z) = 1,
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mP(x) = m?(x) = x, and s(x) replaced with 1 — s5(x),
I(%,C) = a(ha(x)) - a(hy(x)) - a(l — s(x). (5

Using as self-awareness score the complement of the belief in the
prediction assigns larger scores to regions where the prediction
is most ambiguous, reflecting the difficulty of the classifier de-
cision. Z; ; is large only when location (4, j) is deemed difficult
to classify (large difficulty attribution a(l — s(x)), ;) and this
difficulty is due to large attributions to both classes a and b. The
ambiguity map is thresholded to obtain the segmentation mask

r{a,b}(x) = lz>7, (6)

where 15 is the indicator function of set S and 7" a threshold. The
ambiguity (a, b) and the mask r{a, b}(x) form an insecurity.

E. Counterfactual Explanations

Counterfactual explanations assume an image x, a prediction
y*, and a user provided counterfactual class y© # y*. A popular
approach is to highlight the differences between x and an image
x¢ from class y° by displaying matched bounding boxes on the
two images. [30] showed that explanation performance is nearly
independent of the choice of x°, i.e., it suffices to use a random
image x° from class y°. We adopt a similar strategy in this work,
implementing counterfactual explanations as

R(x,y"y%x%) = (D(x, 4", 9%), D(x% % y%), (D)

where D(x, y*, y°) and D(x°, y©, y*) are discriminant heatmaps
for images x and x¢, respectively. The first map identifies the
regions of x that are informative of the predicted class but not
the counter class while the second identifies the regions of x°
informative of the counter class but not of the predicted class.
Altogether, the explanation shows that the regions highlighted in
the two images are matched: the region of the first image depicts
features that only appear in the predicted class while that of the
second depicts features that only appear in the counterfactual
class. The discriminant map of x is thresholded to obtain the
segmentation mask

I‘{y*7yc}(X) = ﬂD(x,y*,yC)>T‘ (8)

Similarly, a segmentation mask is generated for x° using

r{yc’y*}(xc) = ]lD(xC,yC,y*)>T' 9

Fig. 3 illustrates the construction of a counterfactual explanation
with two discriminant explanations.

To compute the heatmaps of (7), [30] proposed to exhaus-
tively compare all combinations of features in x and x¢, which
is expensive. We propose a much simpler and more effective
procedure that leverages a new class of attributive explanations,
denoted as discriminant and defined as in (2), with m®(x) =
m7(z) =z, C = {y°}, and m”(a(.)) the complement of a(.).
ie.,

m(a(.)i; = maxai; —aij, (10)
i,J
leading to heatmap
D(x,y",y°) = a(hy (x)) - m” (a(hy(x))) - a(s(x)). (1D

9271

This is large only at locations (i, j) that contribute strongly to the
prediction of class y* but little to that of class y©, and where the
discrimination between the two classes is easy, i.e., the classifier
is confident. This, in turn, implies that location (i, j) is strongly
specific to class y* but not specific to class y¢, which is the
essence of the counterfactual explanation.

Discriminant explanations have commonalities with both at-
tributive and counterfactual explanations. Like counterfactual
explanations, they consider both the prediction y* and coun-
terfactual class y©. Like attributive explanations, they compute
a single attribution map D. The difference is that this map
attributes the discrimination between the prediction y* and
counter y© class to regions of x, identifying pixels strongly
informative of class y* but uninformative of class y°. Fig. 3
shows how these explanations benefit from the fact that the
self-awareness attribution map is usually much sharper than the
other two maps. This is critical to identify the object details that
differentiate the two classes.

F. Multi-Class Extensions

So far, we considered explanations involving single classes or
class pairs. More generally, explanations may require, or benefit
from, considering multiple classes. For example, deliberative
explanations may involve ambiguities between several classes,
such as a region compatible with the “Brandt Cormorant,” “Fish
Crow” and “Common Raven” classes in Fig. 2. In the extreme,
the class posterior distribution h(x) could be approximately
uniform for certain image regions. Similarly, for counterfactual
explanations, a user could have more than a single counterfactual
class in mind. We now consider the multi-class extension of GA-
LORE, for both deliberative and counterfactual explanations.
We define the dimension of ambiguity V as the number of classes
involved.

For deliberative explanations of dimension V, the candidate
class ambiguity set is first assembled by finding all class V-
tuples A = (T) in the candidate class list C. This is illustrated
in Fig. 4, where V' = 3, C contains the five classes shown on
the left (green) and the set A includes the five ambiguities
composed by 3-tuples of these classes, as shown in the right. For
each ambiguity (aq, as,...,ay) in A, an ambiguity map is then
computed using (2) with C = {ay,as,...,av}, m*(z) =1,
mP(z) = m"(x) = z, and s(x) replaced by 1 — s(x), i.e.,

\4

I(x,C) = [T alha, (%) -a(l - s(x)).

v=1

12)

This leads to large Z; ; only when location (4, j) has strong
attributions for all classes in C and is deemed difficult to classity
by the self-awareness predictor. The thresholding of (6) is finally
used to create a segmentation mask.

Counterfactual explanations of dimension V' and counterfac-
tual class set C = {y',...,y"} are implemented as

14
Rix,y",C, | %) = (Dlx,y",€), ), D(X",y",C})),
v=1
(13)
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CYT attribution

Common Yellow Throat (CYT)

B

WEW vs CYT vs TK

Tropical Kingbird (TK) a(l — s(x)) I(x,C) Insecurity for
Candidate Attributive each ambiguity in A
class set (C) Explanations Deliberative Explanations
Fig.4. Multiclass deliberative explanation of dimension V' = 3. Left (top and

green): image x and candidate class set C = {‘Philadelphia Vireo’ (PV), ‘Worm
Eating Warbler’ (WEW), ‘Red Eyed Vireo’ (BEV), ‘Common Yellow Throat’
(CYT)), ‘Tropical Kingbird (TK)}. Center: attributions to each of the classes
in C. Right: ambiguity map computed for each 3-tuples ambiguous classes in
the candidate class ambiguity set A with (12) and resulting segmentation. For
brevity, only six of the ten 3-tuples are randomly selected for display in the
figure.

where D(x,y*,C) is the discriminant explanation for counter-
factual class set C, C,, = C\ {y"} U{y*}, and @, represents
the side-by-side concatenation of explanations, as illustrated in
Fig. 5. Similarly to (11), discriminant explanations are heat maps
computed using (2) with the m®(-), m?(-),and m? (-) definitions
of (11),i.e.,

D(x,y",C) = a(h, (x)) - [ m® (a(hy» (x))) - a(s(x)).

ceC

(14)
As shown in the top row of Fig. 5, attributions are first computed
with respect to the prediction h,:(x), the predictions hyw(x)
of all the other classes y” € C, and the confidence score s(x),
for image x. This is then repeated for images x", replacing x
by each x”, as shown in the remaining rows. The discriminant
maps D(x, y*,C) and D(x, y", C.)) are then computed with (14),
as shown in the green box. These maps emphasize regions that
are predictive of class y* but unpredictive of all other classes in
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C, highlighting the class-specific features of y* that are discrim-
inant with regard to C. The explanations are finally thresholded
using (8) and (9) to obtain r{y*,C}(x) and r{y",C,}(x) for
Yo e{l,...,V}L

G. Explanation Strength

The clarity of explanations that involve several regions and
several classes, such as deliberative or counterfactual, can benefit
from a quantitative score, which we denote as the explanation
strength, summarizing the relative importance of the different
components. For example, ordering insecurities by degree of
ambiguity helps guide user attention to the most important ones.
To allow this type of manipulation, we define the strength of
insecurity r” as the average intensity of the ambiguity map of
(5) or (12) within the associated image segment

p(r) :ﬁ Z Lyy-

(z,y)er

15)

Similarly, adding strengths to counterfactual explanations
informs how much the explanation differentiates the prediction
from each counter class. We define the strength of explanation
R(x,y*, y°, x) as

p(R(x,y",y°,x°))

1
TP W) Dx, (Xay*7yc)
IR ’

zy)er{y’,y°}(x)
1
BT PR L
’ (zy)er{y,y }(x)
Note that we make sure the segment size of two discriminant
explanations are equal, i.e., |[r{y*, v} (x)| = [r{y°, v*}(x)|, by
tuning the thresholds 7" in (8) and (9). This follows [30], and
works well when the objects have roughly the same size in each
image, which is the case for the datasets that we consider in
our experiments. A different strategy may be needed in other
cases. We leave the optimal threshold tuning strategy as a
topic for future research. Similarly, multi-class counterfactual
explanations have strength

.
p(R(x,y",C, [ x"))

1
S 2

(zy)er{y*,C}(x)

1
+;(V+1)r|( >

z,y)er{y”,C, }(x)

D, y(x,y",C)

Dm,y(xva yv, C:})'
a7

V. IMPLEMENTATION

Table I summarizes how GALORE produces different
visualization-based explanations, including different types of
attributive, deliberative, and counterfactual explanations. All

2.Here we omit ambiguity (a, b) or C for brevity.
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Attributive Explanations

Fig. 5.

a(hy(x")) and a(hy(x"))

9273

a(s(x))

v v ol
D(x",y",Cy)
Discriminant
Explanations

r{y’,C,}(x)
Counterfactual
Explanations

Multi-class counterfactual explanation of dimension V' = 2. Left: query image of a ‘Scarlet Tanager’ (upper left) and two images randomly selected from

the counterfactual class set C = {‘Red Headed Woodpecker,” ‘Summer Tanager’ }. Middle-left: attributive maps are computed for the query and each of counter
images, with respect to class predictions hy+ and hyv,y" € C and confidence predictor s. Middle-right: attributive maps are combined with (14) to generate
discriminant explanations. Right: discriminant explanations are thresholded to generate a multi-class counterfactual explanation.

explanations are obtained by combinations of attribution maps
and classification confidence scores using (2). In this section,
we discuss how these are computed.

A. Attribution Maps

Given a feature tensor F'(x) in some deep network layer, attri-
bution map a; ;(h,(x)) quantifies how the activations F; ;(x)
at locations (i, j) contribute to prediction y. This could be either
a class prediction or the prediction of a confidence score. In
this section, we make no distinction between the two, simply
denoting p(x) = g,(F(x)), where g is the mapping from acti-
vation tensor F into prediction vector g(F) € [0, 1], For class
predictions P = C, the prediction pis aclass y, and g, (F(x)) =
hy(x). For confidence predictions P = 1, the prediction is a
confidence score, and g, (F(x)) = s(x).

GALORE is compatible with any attribution function in the
literature [8], [11], [16], [17], [41], [51]. One of the most popular
class of such functions is that of gradient-based attributions [11],
[16], [51], which are derived from Vg, (F(x)) and F(x), i..,
have the form ¢([Vg,(F(x))]:,;, Fi ;(x)) for some function g.
Our implementation uses the vanilla gradient based function
of [11], which computes the dot-product of the partial deriva-
tives of prediction p with respect to activations F(x) by these
activations,

ay; = [Vgp(F)|{,;F

,J

4,4 (18)
Here we omit the dependency on x for simplicity.

This is compared to two more complex attribution functions,
integrated gradient (InteGrad) [51] and GradCAM [16]. Inte-
Grad is based on the Riemman approximation of the integral of
the gradient Vg, along a linear path from a reference F° to the

observed activation tensor F',

. T
Jij - 5) (Fi; —F)),

FO+ L x(F-F0)
(19)

where (2 is the number of steps in the approximation and set to
50. The reference F° is defined by the user and often chosen
to be the image that induces zero activation. Unlike (18), which
only uses the partial derivative at activation F; ;(x), InteGrad
computes the average gradient along the linear path from F°
to F. Grad-CAM [16] assigns a unique weight per activation
channel k, which is the spatial mean of the activations of this
channel

Q
ay; = (Z[Vgp(F)

k=1

af,j = ReLU Zkai,j,k ) (20)
2

where w;, = ﬁ Zl j gg#(fz. In our implementation, the at-
tribution maps of (18), (l9j,’(20) are normalized to [0,1] by
min-max normalization, i.e., subtracting the minimum value and
dividing by the maximum.

GALORE is also compatible with non gradient-based attribu-
tion functions [17], [53], [54], [55]. In experiments, we present
results for score-CAM [17] and SHAP [53], two representa-
tives of these methods. Like Grad-CAM, the attribution map of
score-CAM is a weighted sum of channel activation maps but the
weight wy, of (20) is not derived from gradients, involving for-
ward computations only. SHAP quantifies the element strength
of an attribution map by its Shapley value. We omit the details

for brevity.
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GALORE explanation architecture (x: Cardinal, x°: Summer Tanager.). Feature activations F'5, and F'3 are computed for pre-determined layers of the

classifier (upper branch) and confidence predictor (lower branch), respectively. Attributions for prediction h,, ambiguous or counter class hy, and confidence score
s are computed by attribution functions g(., .) according to (18), (19), (20). a, b are a class pair of candidate class ambiguities set for deliberative explanations,
and y*, y© for counterfactual explanations. These attributions are combined with (5) or (11) to obtain the final map, which is thresholded to produce explanations.
Multiple pairs (a, b) are shown for deliberative explanations, where a is Cardinal (Ca), and b Pine Grosbeak (PG), Purple Finch (PF) or Summer Tanager (ST).
Counterfactual explanations are obtained by additionally reversing the roles of x and x¢ and thresholding the discriminant heat maps.

B. Confidence Scores

Beyond attribution maps, GALORE is compatible with many
classification confidence scores. We consider three scores of
different characteristics. The softmax score [28] is the largest
class posterior probability

5°(x) = max hy(x). 21
y

It is computed by adding a max pooling layer to the network

output. The certainty score is the complement of the normalized

entropy of the softmax distribution [29],

logCZh

Its computation requires an additional layer of log non-linearities
and average pooling. These two scores are self-referential. We
also consider the non-self-referential easiness score of [88],

59(x) = 1 — s"P(x)

s°(x) = x) log hy (x). (22)

(23)

where s"P(x) is computed by an external predictor S, which
predicts the difficulty of classifying each example and is trained
jointly with the classifier. S is implemented by a network
shP(x) : X — [0, 1] whose output is a sigmoid unit.

C. Network Implementation

Fig. 6 shows a network implementation of (2). Given a query
image x of class y*, a user-selected counter class y° # y*, a
predictor h,(x), and a confidence predictor s(x) are used to
produce the explanation. Note that s(x) can share weights with
hy(x) (self-referential) or be separate (non-self-referential). x
is forwarded through the network, generating activation tensors
F,.(x), Fs(x) in pre-chosen network layers and predictions
ha(x), hy(x), s(x), which depend on the explanation strategy.
For deliberative explanations, the predictions are classes a, b
from the candidate ambiguities set. For counterfactual expla-
nations, they are hy(x), hye(x), s(x). The attributions of a,
b and s(x) to x, i.e., A(x,a), A(x,b), A(x,s(x)) are then

computed with (18), (19), or (20), which reduce to a back-
propagation step with respect to the desired layer activations
and a few additional operations. These attributions can also be
computed by other non-gradient-based functions. Finally, the
attributions are combined with (5) or (11). Thresholding the
resulting heatmap with (6) or (8) produces the deliberative expla-
nation r{a, b}(x) or discriminant explanation r{y*, y°} (x). For
counterfactual explanations, the network is simply applied to x¢
to compute r{y, y*}(x°). Multi-class deliberative extensions
simply require a larger set of classes and replace (5) by (12). For
multi-class counterfactual explanations, (11) is replaced by (14)
and the process repeated for each counterfactual image x".

VI. EVALUATION

Explanations can be difficult to evaluate, since ground truth is
usually not available. Two major classes of evaluation strategies
have been proposed.

A. User Experiments

One possibility is to perform Turk experiments, e.g., mea-
suring whether humans can predict a class label given a visu-
alization, or identify the most trustworthy of two models that
make identical predictions from their explanations [16]. We use
a similar strategy for deliberative explanations, by measuring
whether, given an insecurity produced by the explanation al-
gorithm, humans can predict the associated ambiguities. For
counterfactual explanations, we use instead a machine teaching
setting, testing whether the explanation helps humans distin-
guish different classes. While these strategies directly measure
how intuitive the explanations appear to humans, they require
subject experiments that are somewhat cumbersome to perform
and difficult to replicate.

B. Proxy Tasks

A second evaluation strategy uses a proxy task, such as local-
ization [15], [16] on datasets with object bounding boxes. While
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this is much easier to implement, there is usually no groundtruth
for regions of importantance to the classification of animage. We
overcome this problem by leveraging datasets annotated® with
parts and attributes. Specifically, where the k" part of an object
of class c is annotated with a semantic descriptor ¢ containing
the attributes present in this class. For example, in a bird dataset,
the “eye” part can have color attribute values “green,” “blue,”
“brown,” etc. The descriptor is a probability distribution over
these values, characterizing the variability of attribute values
of the part per class. Explanation ground-truth is derived from
attribute distributions, as described next.

1) Deliberative Explanations: For deliberative explanations,
we define insecurities as ambiguous parts, namely object parts
common to multiple object classes or scene parts (e.g., objects)
shared by scene classes. This reduces evaluation to insecurity
localization.

For binary explanations, the similarity between classes a and
b according to part k is defined as af , = y(¢%, ¢y), where
v is a dataset dependent similarity measure. This reflects the
strength of the ambiguity between classes a and b, declaring
as ambiguous parts that have similar attribute distributions un-
der the two classes. To generate ground-truth, the values of

O‘Z,b are computed for all parts py and class pairs (a,b). The

M triplets G = {(p;, a;, b;)} M, of largest similarity in G =
{(pi, ai, b;)|a; # b;}*C*K are selected as insecurity ground-
truth, where K is the total number of parts. For multi-class
explanations, given an ambiguity class setV = {a1,...ay }, the
similarity of the V' classes, according to part k, is defined as
of, =n(ek ..., ¢k ), wherenis adataset-dependent function.
The similarities a{“, are computed for all pi and V, and the
M tuples G™ = {(ps, V) } M, of largest similarity selected as
insecurity ground-truth.

Given this groundtruth, two metrics are used to evaluate
the quality of the explanations, depending on the nature of
part annotations. For datasets where parts are labelled with a
single location (usually the geometric center of the part), i.e.,
pi is a point, the quality of segment r{a, b}(x) is computed

J

by precision (P) and recall (R). Here, P = TBrer]]® R=

J .
Hil(pi,ai,bi)€G,a;=a,b;=b}] and J = |,{Z‘pi < I‘., @i :,a’ b; - b}|
is the number of ground-truth parts included in the insecurities
that compose the explanation. Precision-recall curves are pro-
duced by varing the threshold 7" of (6). For datasets where parts

have segmentation masks, the quality of r{a, b} (x) is computed
_ [r0p|
= [rupl

by the intersection over union (IoU) metric IoU where

p = {pil(pi,a;,b;) € G4, a; = a,b; = b}.

2) Counterfactual Explanations: For counterfactual expla-
nations, where the goal is to localize a region predictive of
class A but unpredictive of class B, groundtruth is assembled by
identifying parts with attributes specific to A that do not appear
in B. This enables the evaluation of counterfactual explanations
as a class-specific part localization problem.

3.Note that part and attribute annotations are only required to evaluate the
accuracy of insecurities, not to compute the visualizations. These require no
annotation.
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For two-class explanations, where a’; , measures the similar-

ity between two classes according to part k, a small o/;’ , indicates
that part k£ discriminates between the two classes. To generate
ground-truth, the N parts of smallest similarity in G, G¢ =
{(pi,ai, b;)} Y, are selected as counterfactual ground-truth. For
multiple counterfactual classes V = {1, ..., yv }, ground-truth
consists of a set of parts that discriminates class a from those
in V, which is defined as G¥ = N\_, {pi|(pi, a, bi) € G, b; =
Yy € V}.

For two-class counterfactual explanations, evaluation is based
on the precision-recall and IoU metrics used for deliberative
explanations. For multi-class explanations, the definitions are
generalized to account for the multiple counterfactual classes.
Given a region r{a,V}, R = WTJE‘JX}\’ where J = |{i|p; €

r,pi; € GV}| and ToU = }:Dg} , where p = {p;|p; € GY'}. On
datasets with point-based ground truth, evaluation is based on
precision and recall of the generated counterfactual regions. On
datasets with mask-based ground truth, the IoU is used.

We also define a metric that captures the semantic consistency
of two segments, r{a, b}(x) and r{b, a}(x°), by calculating the
consistency of the parts included in them. This is denoted as the
part IoU (PIoU),

PloU =

‘{k‘(plﬁaﬂ b) € r{a7 b}(X)} n {k|(pk7 b, a’) € I'{b, a}(XC)H

[{El(pr a,b) € r{a,b}(x)} U {k|(Pk, b, a) € r{ba}(x)}|
(24)

This metric provides a fair comparison of different explanations
if their counterfactual regions have the same size. Region size
is controlled by 7" in (8) and (9).

User expertise has an impact on counterfactual explanations.
Beginner users tend to choose random counterfactual classes,
while experts tend to pick counterfactual classes similar to the
true class. Hence, explanation performance should be measured
for the two user types. In this work, users are simulated by
choosing a random counterfactual class b for beginners and the
class predicted by a small CNN for advanced users. Class a is
the prediction of the classifier used to generate the explanation,
which is a larger CNN.

3) Attributive Explanations: For attributive explanations,
ground-truth consists of parts with unique attributes, present in
the ground truth class and lacking in all other classes. This is sim-
ilar to the ground truth of multi-class counterfactual explanations
but V now contains all dataset classes other than y*. However, it
is frequently impossible to find a part whose attributes appearina
single class. Hence, we randomly select L classes from ) \ {y*},
to create a label set £ = {y1,...,yr} and use the evaluation
metrics discussed for multi-class counterfactual explanations
with V = L. The difference is that, in the counterfactual setting,
V is selected by the user.

VII. EXPERIMENTS

In this section we discuss an experimental evaluation of the
explanations generated by GALORE.
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A. Experimental Setup

Datasets. Experiments were performed on the CUB200 [89]
and ADE20K [95] datasets. CUB200 [89] is a densely-labeled
dataset of fine-grained bird classes, annotated with parts. 15
part locations (points) are annotated including back, beak, belly,
breast, crown, forehead, left/right eye, left/right leg, left/right
wing, nape, tail and throat. Attributes are defined and assigned
to each part according to [89]. ADE20K [95] is a fine-grained
scene image dataset with more than 1000 scene categories and
segmentation masks for 150 objects. In this case, objects are
seen as scene parts and each object has a single attribute, which
is its probability of appearance in a scene. Both datasets were
subject to standard normalizations. All results are presented on
the standard CUB200 test set and the official validation set of
ADE20 K.

Networks. VGG16 [96] is the most popular architecture in
the explanation literature. Unless otherwise noted, it is used for
all visualizations. It is also compared to the ResNet-50 [97]
and AlexNet [98]. All predictors are trained by standard strate-
gies [29], [88], [96], [97], [98]. The last convolutional layer
output, widely used in the visualization literature [15], [16], [99],
is used to create all explanations.

Evaluation. On CUB200, where all semantic descriptors
¢* are multidimensional, similarities a’;,b are computed with
Y(F, ¢F) = e~ {KL(@allof)+KL(S1I#0)} [100], where KL(.||.)
is the Kullback—Leibler divergence. a{i is computed with
n(dh .., 0k ) = ming jey iz; 7(0F, ¢F), ie., the minimum
similarity (¢%, ¢F) between all class pairs in V. To generate
groundtruth for insecurities and discriminant regions, the set G
of region and class tuples was divided into two subsets. The
size M of the set of groundtruth insecurities was set to the 20%
insecurities (p;, a;,b;) or (p;, V) of strongest ambiguity. The
size N of the set of discriminant groundtruth regions was set
to the remaining 80% parts (p;,a;,b;) or (p;, V) of smallest
similarity. This division reflects the fact that dissimilar parts
dominate G. Since parts are labelled with points, accuracy is
measured with precision and recall.

On ADE20 K, the semantic descriptors ¢* are scalar (where
k€ {1,...,150}) namely the probability of occurrence of part
(object) k in scenes of class c. This is estimated by the rel-
ative frequency with which the part appears in scenes of the
class. Only parts such that ¢* > 0.3 are considered. For de-
liberative explanations, ambiguity strengths are computed with
(%, o) = 3(oF + ¢f). This is large when object k appears
very frequently in both classes, i.e., the object adds ambiguity.
Due to the sparsity of the matrix of ambiguity strengths « Z,b’ the
number M of ground-truth insecurities is set to the 1% triplets of
strongest ambiguity. On the other hand, counterfactual ground
truth consists of the triplets (p;, a;, b;) with ¢¥ > 0 and ¢} = 0,
i.e., where object k appears in class a but not in class b.

Since deliberative explanations aim to explain examples that
are difficult to classify, explanations are produced only for the
100 test images of largest difficulty score on each dataset. The
W =5 top classes are used to produce the class ambiguity set
(see Section IV-D). In counterfactual explanations, AlexNet pre-
dictions [98] are used to mimic advanced users. For multi-class
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explanations, V' is set to V' = 3 for deliberative and V' = 2 for
counterfactual. This reflects the fact that users typically do not
pose counterfactuals with large numbers of classes.

B. Ablation Study

Self-Awareness Scores. Fig. 7 shows the impact of the con-
fidence scores of (21)—-(23) on precision-recall curves (on
CUB200) and IoU (on ADE20 K) for three explanation strate-
gies. Some conclusions can be drawn. First, self-awareness is
useful for all explanations. For attributive explanations, self-
awareness attribution functions highlight more class-specific
features. For counterfactual explanations, the gains are larger
for expert users than for beginners. This is because the counter
and predicted classes are more similar for the former, producing
attribution maps that overlap. Second, the easiness score sub-
stantially outperforms the remaining scores, for all but counter-
factual explanations with beginner users, where counter classes
are easy to distinguish. Third, for deliberative explanations, only
the easiness score s°(x) improves on the baseline. This suggests
that self-referential difficulty scores are not always reliable.
For this reason, the easiness score is used in the remaining
experiments.

Attribution Function. * GALORE is compatible with any
attribution function. Fig. 8 (left) compares different functions:
baseline gradient (‘Grad’), the integrated gradient of [51] (‘Inte-
Grad’), Grad-CAM [16], score-CAM [17], and SHAP [53]. For
brevity, we only present deliberative and counterfactual results
for advanced users. A few conclusions are possible. First, while
the four more complex functions always outperform Grad, the
differences are small, especially on ADE20 K. This is probably
because ADE20 K is more difficult (more than 1000 cate-
gories and only about 16 examples per category) than CUB200
(200 categories and 26 examples per category). Second, while
GALORE benefits from advanced attribution functions, there
is little difference between InteGrad, Grad-CAM, SHAP and
score-CAM. No attribution function is consistently better than
all others.

Network Architectures. Fig. 8 (right) compares the expla-
nations produced by ResNet-50, VGG16 and AlexNet. For
counterfactual explanations, only the former two are compared
because AlexNet is used to simulate the users. On CUB200,
ResNet-50 has the best performance. Interestingly, although
ResNet-50 and VGG16 have similar classification performance
on these two datasets, the ResNet segments are much more
accurate than those of VGG16. This suggests that the ResNet
architecture uses more intuitive, i.e., human-like, deliberations.
On ADE20 K, where the classification task is harder (< 60%
mean accuracy), there is no clear difference between the three
architectures.

C. Multi-Class Explanations

Fig. 9 summarizes the performance of multi-class deliberative
counterfactual explanations. These results are similar to those

4.Since no new algorithm is proposed for attributive explanations, ablations
are restricted to deliberative and counterfactual explanations in the remainder
of the paper.
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Fig. 9. Precision-recall of multi-class explanations on CUB200.

obtained with binary explanations. An interesting observation
is that, for a given recall level, the precision of deliberative
explanations is even higher than for binary insecurities. This is
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Impact of attribution function (left) and network architecture (right) on GALORE explanation performance. Top: precision-recall on CUB200. Bottom:

seemingly counter intuitive, since more classes should increase
the difficulty of the explanation. We hypothesize it happens
because the three classes are very similar, having many attributes
in common. Combining three attribution maps decreases the
risk of missing common attributes. Another observation is that,
similarly to binary deliberative and counterfactual explanations,
the differences between attribution functions are small.

D. Segment Strength

The accuracy of segment strengths was evaluated by the
Pearson correlation coefficient between strength and quality
of the explanation, measured by segment precision. Table II
shows a strong positive correlation for all explanations. This
is sensible because strength is defined as the average intensity
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TABLE II
PEARSON CORRELATION COEFFICIENT (p) AND P-VALUE BETWEEN SEGMENT
STRENGTH AND QUALITY OF THE EXPLANATION ON CUB200

[ explanation [ p [ p-value |
[ Deliberative |
Binary 0.62 0.01
Multiclass 0.57 0.02
[ Counterfactual |
Binary 0.63 8e-3
Multiclass 0.59 0.03

explanation
—— deliberative
0.90  —— counterfactual

10 20 30 40 50 60 70 80 90
threshold (%)

Fig. 10.  Robustness of GALORE to image shifts on CUB200.
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Fig. 11. Precision-recall of GALORE explanations obtained with pre-trained
and random weights on CUB200.

of the attribution map inside the segment. Hence, the explanation
should be more class-specific for larger strengths, corresponding
to segments of higher quality.

E. Sanity Checks

Recent works have shown that attribution maps can be sen-
sitive to data shifts and model variance [76], [77]. Data shift
checks [76] test the robustness of the explanation to input shifts.
For this, test images were randomly translated by 1 to 10 pixels
along four directions. The resulting insecurities and counterfac-
tual segments were compared to those obtained without trans-
lations, by measuring the similarity (IoU) between segments.
The average IoU across all segments and examples is shown in
Fig. 10 as a function of the threshold 7". While these are plots
for the ‘easiness-Grad-VGG’ configuration, they are typical.
The average IoU is almost always above 75% showing that the
explanations of GALORE are robust to image shifts. Parameter
randomization tests [77] compare the explanation of well-trained
and random initialized models. Similar outputs indicate that the
explanation method is insensitive to model parameters, which is
undesirable. Fig. 11 shows that all attribution functions passed
the sanity check, since pre-trained models always outperformed
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random initialization. This was especially true for score-CAM
and the differences were larger for counterfactual explanations.

F. Comparison to State of the Art

GALORE was compared with state of the art explanation
methods, with the results of Table III. The left side of the table
presents a counterfactual explanation comparison between GA-
LORE, the method of [30], and CounteRGAN [63], for the two
user types considered in this work. To the best of our knowledge
there have been no other attempts in the literature to produce
deliberative explanations. The right side of the table compares
the deliberative explanations of GALORE to a baseline that we
have designed, inspired by the method of [30] for counterfactual
explanations.

This baseline is as follows. Given the query image x and
associated candidate class ambiguity set A, a pair of images
is randomly sampled from the training set for each ambiguity
(a,b) € A: x0, of class a, and x>, of class b. A sliding
window is defined over x. For each window WV, we exhaus-
tively search matching windows W, in x*% and W, in x>°.
The matching is defined as follows. Let x, (x;) be x with
W replaced by W, (W,). The matching windows are those
that minimize the change of prediction when inserted in x,
ie, |ha(x?) — ho(x)| + |hp(x®) — hp(x)|. Regions W, and
W, should have features that are common to the two ambiguous
classes, and thus be most confusing for the classifier.

For fair comparison, these experiments use the softmax score
of (21), so that model sizes are equal for both [30] and the pro-
posed approach. The size of the counterfactual (or deliberative)
region is the receptive field size of one unit (7757 ~ 0.005 of
image size for VGG16 and % ~ 0.02 for ResNet-50). This
is constrained by the speed of the algorithm of [30], where
the counterfactual region is determined by exhaustive feature
matching. For CounteRGAN, we guarantee the same region size
by thresholding the residual outputs of the generator.

Several conclusions can be drawn from the table. First, GA-
LORE outperforms the counterfactual explanations of [30], [63]
and the baseline deliberative explanation for almost all metrics.
Second, GALORE is much faster, improving the speed of [30]
by 1000+ times on VGG and 50+ times on ResNet. This is
because it does not require exhaustive feature matching. These
gains increase with the size of the counterfactual (or deliberative)
region, since computation time is constant for GALORE but
exponential on region size for [30]. Third, due to the small size
used in these experiments, PloU is relatively low for all methods.
Itis, however, larger for GALORE explanations with large gains
in some cases (VGG &amp; advanced). Fig. 14 shows that PloU
can raise to 0.5 for regions of 10% (VGG) or 20% (ResNet) of
the image size. This suggests that, for such regions sizes, region
pairs have matching semantics.

G. Visualizations

Fig. 12 shows two examples of deliberative explanations of
two insecurities each. The left of the figure shows the insecurities
of the classifier for an image of a ‘Glaucous gull’. For GALORE,
the top insecurity covers the leg/belly region, which is a region of
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TABLE III
COMPARISON TO THE STATE OF THE ART IN COUNTERFACTUAL EXPLANATIONS. (IPS: IMAGES PER SECOND, IMPLEMENTED ON NVIDIA TITAN XP. RESULTS ARE
OMITTED FOR THE COUNTERGAN [63] DUE TO THE VERY LONG TRAINING TIMES IT REQUIRES.) RESULTS ARE SHOWN AS MEAN(STDDEV)
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Counterfactual explanations Deliberative explanations
Beginner User Advanced User
Arch. Metric | Goyal [30] | CounteRGAN [63] | GALORE Goyal [30] | CounteRGAN [63] | GALORE Baseline GALORE
R 0.02 (0.01) 0.03 (0.00) 0.05 (0.01) 0.05 (0.00) 0.05 (0.00) 0.05 (0.00) [ 0.02 (0.00) 0.04 (0.00)
VGG16 P 0.76 (0.01) 0.78 (0.00) 0.84 (0.01) 0.56 (0.01) 0.61 (0.00) 0.64 (0.01) || 0.43 (0.03) 0.48 (0.02)
PloU | 0.13 (0.00) 0.13 (0.00) 0.15 (0.00) || 0.09 (0.00) 0.12 (0.00) 014 (0.02) || N/A N/A
IPS | 0.02 (0.00) N/A 26.51 (0.71) N/A N/A N/A <0.01 3.78 (0.31)
R 0.03 (0.01) 0.06 (0.00) 0.09 (0.02) 0.12 (0.01) 0.17 (0.00) 0.16 (0.00) [ 0.03 (0.00) 0.06 (0.00)
ResNet-50 P 0.77 (0.01) 0.74 (0.01) 0.81 (0.01) 0.57 (0.02) 0.56 (0.00) 0.60 (0.01) || 0.67 (0.03) 0.72 (0.04)
PloU | 0.18 (0.01) 0.20 (0.00) 0.16 (0.01) || 0.15 (0.00) 0.14 (0.00) 0.15(0.01) || N/A N/A
IPS | 1.13 (0.07) N/A 78.54 (11.87) || N/A N/A N/A || 012 (0.06) | 8.41 (0.45)
Glaucous Gull Black Tern
[ Insecurity ] Ambiguity ] 11T Insecurity ] Ambiguity |
Class: Glaucous gull E Class: California gull Class: Herring gull é Class: Black tern E Class: Artictern  Class: Elegant tern '
: | Shared Part: 1 Shared Part:
! E * Legcolor E * Tail shapeis
! 1 isbuff; ! forked;
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H 1 whiteand H is solid;
H | patternis H
E E solid; E
é Class: Western gull Class: Glaucous gullé Class: Black tern H
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: 1+ Forehead ! * Wing shape
H ! coloris ! is long;
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A . | . . is solid;
Baseline GALORE | : Baseline GALORE :

Fig. 12.

Deliberative explanation comparisons produced by the baseline method and GALORE for two images from CUB. Left: a Glaucous Gull creates two

insecurities. Top: the insecurity shown on the left elicits ambiguity between the California and Herring Gull classes. The attributes of the image region covered by
the GALORE insecurity are listed on the right. Bottom: insecurity with ambiguity between Western and Glaucous Gull classes. Right: similar for Black Tern.
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Fig. 13.

ambiguity with classes ‘California gull’ and ‘Herring gull’ that
also have leg color ‘buff, belly color ‘white,” and belly pattern
‘solid’. The lower insecurity covers the bill/forhead region of the
gull, due to an ambiguity between the ‘Glaucous gull’ and the
‘Western gull” with whom the ‘Glaucous gull” shares a ‘hooked’
bill shape and a ‘white’ colored forehead. The right side of
the figure shows insecurities for a ‘Black tern,” due to a tail
ambiguity with ‘Artic’ and ‘Elegant’ terns and a wing ambiguity

Deliberative explanations produced by GALORE for four images from ADE20 K.

with ‘Elegant’ and ‘Forsters’ terns. These insecurities are much
more informative of class ambiguity than those produced by
the baseline, which sometimes localizes irrelevant regions, like
backgrounds. Fig. 13 shows single GALORE insecurities from
four images of ADE20 K. In all cases, the insecurities correlate
with regions of attributes shared by different classes. This shows
that deliberative explanations unveil truly ambiguous image
regions, generating intuitive insecurities that help understand
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Fig. 14.  PloU of proposed counterfactual explanations as a function of the

segmentation threshold on CUB200. Left: VGG16, right: ResNet-50.
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True: Laysan Albatross (white throat, yellow bill)
Counter: Sooty Albatross (black throat, black bill)
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True: Green Violetear (needle bill shape, black bill color)
Counter: Indigo Bunting (cone bill shape, grey bill color)

GALORE Goyal et al

CounteRGAN

Fig. 15.
each example, ground truth class-specific part attributes in parenthesis). Left:
GALORE. Center: [30]. Right: CounteRGAN [63].

Counterfactual explanations (true and counter classes shown below

network predictions. Note, for example, how the visualization of
insecurities tends to highlight classes that are semantically very
close, such as the different families of gulls or terns and class
subsets such as ‘plaza,” ‘hacienda,” and ‘mosque’ or ‘bedroom’
and ‘living room’. All of this suggests that the deliberative
process of the network correlates well with human reasoning.

Fig. 15 shows two examples of counterfactual visualizations
on CUB200. The regions selected in the query and counter class
image are shown in red. For CounteRGAN [63], the generated
explanatory images are shown. The true y* and counter y¢ class
are shown below the images and followed by the ground truth
discriminative attributes for the image pair. Note how GALORE
explanations identify semantically matched and class-specific
bird parts on both images. For example, the throat and bill
that distinguish Laysan from Sooty Albatrosses. This feedback
enables a user to learn that Laysans have white throats and
yellow bills, while Sootys have black throats and bills. This
is unlike the regions produced by [30], also shown in the
figure, which sometimes highlight irrelevant cues, such as the
background. CounteRGAN, only generates some patterns from
the counterfactual classes (zoom in for more detail), but not
realistic images. This is consistent with the well known difficulty
of GANs to translate images across hundreds of fine-grained
classes. Fig. 16 presents similar figures for ADE20 K, where
the proposed explanations tend to identify scene-discriminative
objects. For example, that a promenade deck contains objects
‘floor, ‘ceiling,” ‘sea,” while a bridge scene includes ‘tree,
‘river’ and ‘bridge’.
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True: Playroom (desk, ceiling)
Counter: Playground (tree, sky)

True: Promenade deck (floor, ceiling, sea)

Counter: Bridge (tree, river, bridge)

True: Parking garage indoor (ceiling)
Counter: Street (sky, streetlight)

True: Bus interior (pole)
Counter: Storage room (box, closet)

Fig. 16. Counterfactual explanations by GALORE on ADE20 K.

Which categories does the bird belong to?

Taysan Albatross

Basic Instructions

The image above shows part of a bird. On the right,
you can see examples from five bird categories.

‘e two categories that you believe
the bird above is most likely to belong to. Please
note that

« exactly two categories must be chosen
« ifitis too hard to decide, just choose “Don't know”

Fig. 17.  MTurk interface for human evaluation of deliberative explanations.

VIII. HUMAN STUDIES
A. Insecurity Evaluation

Fig. 17 shows the interface of the human experiment used
to evaluate deliberative explanations on Amazon MTurk. The
region of support of the uncertainty is shown on the left and
examples from five classes are displayed on the right. These
include the two ambiguous classes a and b found by the ex-
planation algorithm, the “Laysan Albatross” and the “Glaucous
Winged Gull”. The Tuker is asked to select, among the five
classes shown, the two to which the segment on the left is most
likely to belong. If these two classes match the ambiguities
found by the explanation algorithm the insecurity is consid-
ered intuitive. Otherwise, it is not. Turker performance was
compared for insecurities generated by the explanation algo-
rithm and randomly cropped regions of the same size. Turkers
agreed amongst themselves on classes a and b for 59.4% of
the insecurities and 33.7% of randomly cropped regions. They
agreed with the algorithm for 51.9% of the insecurities and
26.3% of the random crops. This shows that 1) insecurities are
much more predictive of the ambiguities sensed by humans,
and 2) the algorithm predicts those ambiguities with significant
levels of consistency. In both cases, the “Don’t know” rate was
around 12%.
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Kentucky Warbler Sctophaga Citrina

Fig. 18.  Visualization of machine teaching experiment.

B. Application to Machine Teaching

Goyal et al. [30] used counterfactual explanations to design an
experiment to teach humans distinguish two bird classes. During
a training stage, learners are asked to classify birds. When they
make a mistake, they are shown counterfactual feedback of the
type of Fig. 15, using the true class as y* and the class they
chose as y©. This helps them understand why they chose the
wrong label, and learn how to better distinguish the classes. In a
test stage, learners are then asked to classify a bird without visual
aids. Experiments reported in [30] show that this is much more
effective than simply telling them whether their answer is cor-
rect/incorrect, or other simple training strategies. We made two
modifications to this set-up. The first was to replace bounding
boxes with highlighting of the counterfactual regions, as shown
in Fig. 18. We also instructed learners not to be distracted by
the darkened regions. Unlike [30], this guarantees that they do
not exploit cues outside the counterfactual regions to learn bird
differences. Second, to verify this, we added two experiments
where 1) highlighted regions are generated randomly (without
telling the learners); 2) the entire images are lighted. If these
produce the same results, one can conclude that the explanations
do not promote learning.

We also chose two more difficult birds, the Setophaga Citrina
and the Kentucky Warbler (see Fig. 18), than [30]. These classes
have large intra-class diversity and cannot be distinguished by
color alone, unlike those of [30]. The experiment has three steps.
The firstis a pre-learning test, where humans are asked to classify
20 examples of the two classes, or choose a ‘Don’t know’ option.
The second is a learning stage, where counterfactual explana-
tions are provided for 10 bird pairs. The third is a post-learning
test, where humans are asked to answer 20 binary classification
questions. In this experiment, all students chose ‘Don’t know’
in the pre-learning test. However, after the learning step, they
achieved 95% mean accuracy, compared to 60% (random high-
lighted regions) and 77% (entire images lighted) in the contrast
settings. These results suggest that the proposed counterfactual
explanations can help teach naive humans distinguish categories
from an expert domain.

IX. CONCLUSION

In this work, we have proposed a new framework, GALORE,
for visualization-based explanations of deep neural networks
predictions. GALORE unifies attributive, counterfactual, and
deliberative explanations, aiming to satisfy the requirements
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of a diverse set of end-users. Attributive explanations visualize
how different pixels contribute to a class prediction, deliberative
explanations address the “why?” question, and counterfactual
explanations the "why not?” question. All explanations are based
on a combination of attributions with respect to class predic-
tions and confidence scores. This makes them very efficient
to compute, in some cases orders of magnitude faster than
the state of the art. We have also introduced an experimental
protocol to evaluate explanation accuracy, which sidesteps the
difficulty of replicating user experiments. We believe this will
facilitate research in the visualization based XAl problem. Both
this protocol and human experiments were used to evaluate
GALORE on two fine-grained datasets, demonstrating that its
explanations are more accurate than those previously available,
intuitive, and correlate with human perception. In this process,
we have also validated the importance of self-awareness both to
define different explanations and to increase their accuracy. The
counterfactual explanation results have shown to be beneficial
for machine teaching.
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