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ABSTRACT. We study the quantitative properties of Lipschitz mappings from Euclidean spaces into
metric spaces. We prove that it is always possible to decompose the domain of such a mapping into
pieces on which the mapping “behaves like a projection mapping” along with a “garbage set” that is
arbitrarily small in an appropriate sense. Moreover, our control is quantitative, i.e., independent of
both the particular mapping and the metric space it maps into. This improves a theorem of Azzam-Schul
from the paper “Hard Sard”, and answers a question left open in that paper. The proof uses ideas of
quantitative differentiation, as well as a detailed study of how to supplement Lipschitz mappings by
additional coordinates to form bi-Lipschitz mappings.
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1. INTRODUCTION

In this paper, we study the quantitative properties of Lipschitz mappings from Euclidean spaces into
metric spaces. We prove that it is always possible to decompose the domain into pieces on which the
mapping “behaves like a projection mapping”, along with a “garbage set” that is arbitrarily small in
an appropriate sense. Moreover, this decomposition is quantitative. This improves the main result of
[1] and answers the question posed in Remark 6.15 of that paper.

Before stating our new results precisely, we begin with some background.

1.1. Background. This paper is concerned with the quantitative structure of Lipschitz mappings from
Euclidean spaces into metric spaces. In particular, we are interested in decomposing the domain of a
given Lipschitz mapping f , which in our case will be the unit cube Q0 = [0, 1]d, into a finite number
of pieces on which f is well-behaved in some specific way, along with a “garbage” set which is small
in some sense.

Moreover, we will aim for our decompositions to satisfy these properties in a quantitative way. That
is, we will aim to control

• the number of pieces in the decomposition,
• the properties and bounds that f will satisfy on each piece, and
• the size of the garbage set

in a way which is independent of the particular mapping f or the metric space it maps into.
As a starting point, we recall Rademacher’s theorem, which states that Lipschitz mappings between

Euclidean spaces are differentiable almost everywhere. Using this, one can show that if f : Q0 → Rk

is Lipschitz, then there are countably many sets Ei on which f is bi-Lipschitz and such that

Hd(f(Q0 \ ∪iEi)) = 0.

(See [8, Lemma 3.2.2].) Here, Hd denotes d-dimensional Hausdorff measure. Note that this result is
interesting only if k ≥ d.

This gives a decomposition of the domain of f into nice pieces Ei on which f acts as a bi-Lipschitz
homeomorphism and a garbage set Q0 \ ∪iEi whose image has zero measure. On the other hand,
this decomposition is not quantitative: there is no control on the number of pieces, which may be
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infinite, or on the bi-Lipschitz constants for f on each piece. It is much more difficult to obtain such
control, but this was accomplished by work of David, Jones, and Semmes beginning in the late 1980’s,
motivated by applications to singular integrals and uniform rectifiability [3, 12, 20]. A very general
statement in this vein, allowing arbitrary metric space targets, was proven by Schul [19]:

Theorem 1.1 (Schul, Theorem 1.1 of [19]). Given α ∈ (0, 1) and d ∈ N, there are constants M =
M(α, d) and L = L(d) with the following properties:

Let X be any metric space, Q0 the unit cube of Rd, and f : Q0 → X a 1-Lipschitz map. Then there
are sets E1, . . . , EM ⊆ Q0 such that

(i) f |Ei
is α−1-bi-Lipschitz for each i ∈ {1, . . . ,M}, and

(ii) Hd
∞(f(Q0 \ ∪iEi)) < Lα.

(In fact, [19, Theorem 1.1] is slightly stronger than what we have stated here.) Note that here the
smallness of the garbage set Q0 \ ∪Ei is measured by the d-dimensional Hausdorff content Hd

∞ of its
image, rather than d-dimensional Hausdorff measure. See subsection 2.2 for these definitions.

In a different direction, which we will not pursue here, one may consider the existence of such
decompositions of Lipschitz mappings when the domain is a more general, non-Euclidean, metric
space. We point the reader to [18, 6, 17, 16, 7] for more on this interesting area.

Theorem 1.1 gives a complete answer to the question of finding good decompositions of Lipschitz
mappings from [0, 1]d, in the case when the image has positive d-dimensional Hausdorff measure.

The question of finding quantitative decompositions of Lipschitz mappings becomes more difficult
when the image dimension is smaller than the domain dimension, e.g., for mappings f : R3 → R2.
Here, one cannot of course expect any bi-Lipschitz behavior in the mapping on a set of positive 3-
dimensional measure. (While Theorem 1.1 applies, it is vacuous.)

A natural question in this dimension-lowering setting is whether f can be decomposed, quanti-
tatively, into pieces on which it “looks like” a projection mapping. In [1], Azzam and Schul give
a necessary and sufficient condition for mapping to admit a large piece on which it “looks like” a
projection from Rn+m to Rn. (But see Remark 1.9 below.)

Their condition involves the following notion.

Definition 1.2. Let E ⊆ Q0 = [0, 1]n+m be a set. We define the “(n,m)-mapping content” of f on E
(or just the “mapping content” if n,m are understood) as

Hn,m
∞ (f, E) := inf

∑
Qi

Hn
∞(f(Qi))side(Qi)

m,

where the infimum is taken over all coverings {Qi} of E by dyadic cubes with disjoint interiors in Q0.

As discussed in [1], Hn,m
∞ serves in some sense as a “coarse” substitute for the L1-norm of the

Jacobian of f .
What is meant by “looking like a projection” is encapsulated by the notion of a “Hard Sard pair”

for a mapping f defined on Q0. This pair consists of a set E and a globally bi-Lipschitz change of
coordinates, such that, in these coordinates, f |E becomes a mapping that is constant on “vertical”
m-planes and bi-Lipschitz on “horizontal” n-planes. (The name is adapted from the title of [1], and is
meant to evoke quantitative analogs of Sard’s theorem.)



4 GUY C. DAVID AND RAANAN SCHUL

Definition 1.3. Let E ⊆ Q0 = [0, 1]n+m, g : E → Rn+m be a bi-Lipschitz mapping, and f : Q0 → X
a Lipschitz mapping into a metric space. We call (E, g) a Hard Sard pair for f if there is a constant
CLip such that the following conditions hold.

Write Rn+m = Rn×Rm in the standard way, and points of Rn+m as (x, y) with x ∈ Rn and y ∈ Rm.
Let F = f ◦ g−1.

We ask that:
(i) g extends to a globally CLip-bi-Lipschitz homeomorphism from Rn+m to Rn+m.

(ii) If (x, y) and (x′, y′) are in g(E), then F (x, y) = F (x′, y′) if and only if x = x′. Equivalently,

F−1(F (x, y)) ∩ g(E) = ({x} × Rm) ∩ g(E)

(iii) The map
(x, y) 7→ (F (x, y), y)

is CLip-bi-Lipschitz on the set g(E). In particular, for all y ∈ Rm, the restriction

F |(Rn×{y})∩g(E)

is CLip-bi-Lipschitz.
If E ⊆ Q0 is a set and there exists a mapping g : Rn+m → Rn+m satisfying (i)-(iii) for E, then we

call E a Hard Sard set for f .

We think of g as a globally bi-Lipshitz change of coordinates that “straightens out” the fibers of
f |E . Conditions (ii) and (iii) say, to quote [1], that “inside g(E), F is independent of y, and for fixed
y, the function F is bi-Lipschitz in x.”

Observe that the linear projection mapping π(x, y) = x on Q0 satisfies all the properties requested
for the map F = f ◦ g−1 on g(E) in Definition 1.3. Thus, we interpret Definition 1.3 as saying that f
“looks like a projection” when restricted to E, up to globally a bi-Lipschitz change of coordinates g.

As a small note, it is clear that if (E, g) is a Hard Sard pair for a Lipschitz map f , then so is (E, g),
so a Hard Sard set can always be taken compact.

Azzam and Schul prove the following in [1].

Theorem 1.4 (Theorem I of [1]). Let Q0 be the unit cube of Rn+m. Suppose that f : Q0 → X is a
1-Lipschitz function into a metric space,

0 < Hn(f(Q0)) ≤ 1,

and
0 < δ ≤ Hn,m

∞ (f,Q0).

Then there are constants CLip > 1 and η > 0, depending only on n, m, and δ, such that there is a
Hard Sard pair (E, g) for f in Q0 with

Hn+m(E) ≥ η > 0.

Remark 1.5. Due to our slightly stronger Definition 1.3, the version of Theorem 1.4 stated above is
not quite what is stated in [1], though it is what is proven there. See Remark 1.9 for further discussion.
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As explained in [1], Theorem 1.4 can be viewed as a “quantitative implicit function theorem” for
Lipschitz maps into metric spaces. In rough terms, Theorem 1.4 says that if Hn,m

∞ (f,Q0) > 0 and
0 < Hn(f(Q0)) ≤ 1, then there is a large set on which f looks like a projection (up to globally
bi-Lipschitz change of coordinates). In [1, Corollary 1.4] (see also Lemma 3.5 below), Azzam and
Schul observe that the condition Hn,m

∞ (f,Q0) > 0 is also necessary, in a quantitative sense, for the
conclusion of the theorem to hold. (But see Remark 1.9 for some discussion of this point.)

We note that a “qualitative” version of Theorem 1.4 was recently proven by Hajłasz-Zimmerman in
[10].

The condition Hn,m
∞ (f,Q0) > 0 appearing in Theorem 1.4 is quite subtle, as the following result of

Kaufman shows.

Theorem 1.6 (Kaufman [13]). There is a surjective C1 mapping g : [0, 1]3 → [0, 1]2 whose derivative
has rank 1 everywhere. In particular, H2,1

∞ (g, [0, 1]3) = 0 even though H2(g([0, 1]3)) > 0.

The second statement in Theorem 1.6 follows from Proposition 3.3 below and was not part of [13].
Note that the mapping g in Theorem 1.6 could not be C2, by Sard’s theorem. Further discussion of
Kaufman’s theorem and its relatives appears in subsection 1.4 below.

1.2. New Results. After proving Theorem 1.4, Azzam and Schul asked if the result could be pushed
further: Beyond guaranteeing a set of a certain size on which the map looks like a projection, can we
provide a quantitative decomposition of the domain Q0 into finitely many pieces on which the map
looks like a projection, combined with a garbage set which is small in some sense? Observe that
Theorem 1.1 has this property: it not only guarantees a single nice set where good behavior happens,
it guarantees a quantitative exhaustion of the domain by such sets, up to a small garbage set.

To be more specific, Azzam and Schul asked the following:

Question 1.7 ([1], Remark 6.15). LetQ0 be the unit cube in Rn+m and let f : Q0 → X be a 1-Lipschitz
map into a metric space X with

Hn(f(Q0)) ≤ 1.

Given γ > 0, do there exist constants M and CLip, depending only on n, m, and γ, and Hard Sard
pairs (E1, g1), . . . , (EM , gM) such that

(1.1) Hn,m
∞ (f,Q0 \ ∪Ei) < γ?

A more tempting requirement, to replace (1.1), would be to ask that

Hn
∞(f(Q0 \ ∪Ei)) < γ,

but Kaufman’s example in Theorem 1.6 shows that this is not in general achievable.
Here, we answer Question 1.7 in the affirmative. This gives a quantitative decomposition of Lips-

chitz mappings into a general metric space, up to set with small “mapping content”. The following is
the main result of this paper.

Theorem A. Let Q0 be the unit cube in Rn+m and let f : Q0 → X be a 1-Lipschitz map into a metric
space X with

Hn(f(Q0)) ≤ 1.
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Given any γ > 0, we can write

Q0 = E1 ∪ · · · ∪ EM ∪G,
where Ei are Hard Sard sets and

Hn,m
∞ (f,G) < γ.

The constant M and the constants CLip associated to the Hard Sard pairs (Ei, gi) depend only on n,
m, and γ.

Theorem A implies Theorem 1.4, but a number of the techniques used by Azzam-Schul in [1] also
appear in some form in our proof. The main new ingredient in the proof of Theorem A is Proposition
D below. In the proof of Proposition D, newer and more refined arguments than those in [1, 19] are
needed to obtain a decomposition rather than a single large set. See Remark 1.10 for more details.
Theorem A is new even in the case X = Rn.

Remark 1.8. It is natural to ask whether the assumptions in Theorem A are necessary. In Lemma 3.5,
which is a slight reworking of [1, Corollary 1.4], we observe that the condition Hn,m

∞ (f,Q0) > 0 is
quantitatively necessary in order for f to admit any Hard Sard pair.

With a bit more effort, in Proposition 10.1, we also show by an explicit construction that the condi-
tion Hn(f(Q0)) ≤ 1 is also necessary for Theorem A to hold (with quantitative control).

A natural question, given Theorems 1.4, A, and 1.6, is: Under what conditions can one guarantee
positivity of Hn,m

∞ (f,Q0), and hence a Hard Sard set for f? Theorem 1.6, as well as the the con-
struction in Section 2 of [1], indicates that this is not an easy question, and we discuss it further in
subsection 1.4. We give a simple quantitative condition in the case n = 1:

Theorem B. Let m be a non-negative integer and α > 0. Then there is an η > 0, depending only on
m and α, with the following property: If f : [0, 1]1+m → X is 1-Lipschitz and diamf([0, 1]1+m) ≥ α,
then H1,m

∞ (f, [0, 1]1+m) ≥ η.

In particular, suppose that f satisfies the assumptions of Theorem B and H1(f([0, 1]1+m)) ≤ 1.
Then, using either Theorem 1.4 or Theorem A, f is guaranteed a Hard Sard set whose H1+m-measure
is bounded below depending only on m and the diameter of the image of f .

Remark 1.9. We take this opportunity to remark on some small differences between the statements
of [1] and our statements.

Definition 1.3 actually contains two strengthenings of the conclusions in [1, Theorem I].
First of all, the analog of Condition (ii) in [1, Theorem I] states only a containment

F−1(F (x, y)) ∩ g(E)) ⊆ ({x} × Rm) ∩ g(E),
where as Definition 1.3 requires an equality of these fibers.

Second of all, the analog of Condition (iii) in [1, Theorem I] contains only the statement that each
restriction

F |(Rn×{y})∩g(E)

is CLip-bi-Lipschitz, and not the stronger condition that

(x, y) 7→ (F (x, y), y)
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is CLip-bi-Lipschitz on the set g(E).
Thus, our statement of Theorem 1.4, which is [1, Theorem I], is slightly stronger than the one given

in [1]. In fact, the stronger version is actually achieved by the proof in [1], though not stated explicitly.
In any case, our proof of Theorem A will use the stronger version of Definition 1.3 given above, and
does not rely on Theorem 1.4.

The importance of the strengthened Definition 1.3 lies in Lemma 3.5 and Proposition 10.1. (In fact,
the proof of the analog of Lemma 3.5 in [1, Corollary 1.4] is incorrect as written, and actually requires
our strengthened Condition (iii) of Definition 1.3.)

1.3. The two main propositions in the proof of Theorem A. Theorem A cannot be proven by a
naive iteration of Theorem 1.4. Theorem 1.4 is a statement about the structure of maps on the unit
cube (and its proof heavily reflects this). If one uses it to generate a large Hard Sard set E1 ⊆ Q0, one
cannot apply it again to generate another large Hard Sard set E2 in the complement of E1. Of course,
one can locate small cubes in the complement of E1 and apply a suitably rescaled Theorem 1.4 on
each of those, but then one apparently gives up all quantitative control on the size and number of these
sets.

Thus, the proof of Theorem A occupies the main part of the paper, from Section 4 through Section
8. The theorem essentially follows from two main preliminary results that may be of independent
interest, and which we now describe.

For the remainder of this discussion, we fix the unit cube Q0 ⊆ Rn+m. As in Definition 1.3, we
write Rn+m = Rn × Rm and points of Rn+m as (x, y) where x ∈ Rn and y ∈ Rm.

The first main step in the proof of Theorem A is to show that finding Hard Sard sets for a mapping
f can be reduced to a different problem: that of “supplementing” f by a linear projection in a way that
yields a bi-Lipschitz map.

Proposition C. Let F ⊆ Q0 be a Borel set and f : F → X a 1-Lipschitz mapping into a metric space.
Let α > 0 and L ≥ 1.

Assume that
Hn(f(F )) ≤ 1

and that the map h : F → X × [0, 1]m defined by

(1.2) h(x, y) = (f(x, y), y)

is L-bi-Lipschitz on F .
Then we can write

F = E1 ∪ · · · ∪ EM ∪G,
where Ei are Hard Sard sets for f and

Hn+m(G) < α.

Moreover, the bi-Lipschitz maps gi associated to each Hard Sard set Ei in this decomposition are
“shears” on Ei, in the sense that there are Lipschitz maps ψi : Ei → Rn such that

(1.3) gi(x, y) = (ψi(x, y), y) for all (x, y) ∈ Ei.
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The constant M and the constants CLip associated to the Hard Sard sets Ei depend only on n, m,
L, and α.

We note that Proposition C can be proven by iterating certain arguments in [1] and keeping careful
track of the constants.

As a consequence of Proposition C, proving Theorem A boils down to finding sets on which f can
be supplemented by a linear projection to yield a bi-Lipschitz map. It is not easy to find such sets
directly, but we show that if one is willing to pre-compose f by bi-Lipschitz mappings, then this can
be arranged. This is the content of the second main step in the proof of Theorem A:

Proposition D. Let f : Q0 → X be a 1-Lipschitz mapping into a metric space X .
For each α > 0, there is a decomposition of Q0 into Borel sets

Q0 = F1 ∪ F2 ∪ · · · ∪ FN ∪G

with the following properties:
• For each i ∈ {1, . . . , N}, there is a bi-Lipschitz map ϕi : Fi → Q0 such that the map

(1.4) (x, y) 7→ (f(ϕ−1
i (x, y)), y),

is bi-Lipschitz on ϕi(Fi), and
• Hn,m

∞ (f,G) < α.

The number of sets N and the bi-Lipschitz constants for ϕi and for the mappings in (1.4) depend only
on α,n, and m.

Remark 1.10. Proving Proposition D is where much of the work in the paper occurs. Here there are
significant differences from the proofs in [1, 19]. For example, in [1] the authors show essentially that
under certain conditions one can already find a single large set on which (f(x, y), y) is bi-Lipschitz.
However, decomposing most of the mapping content into such sets seems to require new arguments
and the auxiliary mappings ϕi that we introduce in the proof of Proposition D.

We also note that, unlike Theorem A and Proposition C, Proposition D does not require any as-
sumption on the Hn-measure of the image of f , and thus has wider applicability. See, for example,
Corollary E.

Remark 1.11. In an earlier version of this paper, we overlooked that Proposition D is closely related
to ideas of David and Semmes in [5]. David and Semmes study a sub-class of Lipschitz mappings
between Euclidean spaces known as “(s, t)-regular mappings”. In [5, Theorem 6.1], they prove that
such a mapping admits a single large piece on which it can be supplemented by a linear mapping
to become bi-Lipschitz. Furthermore, in [5, Section 10], they give a somewhat informal outline of
a method to supplement such mappings by more general “weakly Lipschitz” mappings to obtain a
“weakly bi-Lipschitz” mapping on the whole domain. (We do not use this terminology, so we defer
the definitions to that paper.) This is closely related to the decomposition result in Proposition D, and
implies something quite similar for regular mappings.

Our Proposition D applies to general Lipschitz mappings (not only regular mappings), which re-
quires bringing in the notion of mapping content, and it allows the target of the mapping to be an



QUANTITATIVE DECOMPOSITIONS OF LIPSCHITZ MAPPINGS INTO METRIC SPACES 9

arbitrary metric space, rather than a Euclidean space. Proposition D can therefore be viewed as simul-
taneously extending to a new setting and filling in all the details of the informal outline in [5, Section
10]. (For the regular mappings studied in [5], the mapping content is not necessary and the garbage
set can be controlled by simpler quantities.)

Our proof is also somewhat different; in particular, we do not use Carleson’s Corona construction.
That said, the reader will certainly notice many similarities between our approach to Proposition D
and the ideas in [5, Section 10], and it was a serious oversight on our part to overlook this.

It should now not be difficult to believe that Propositions C and D combine to prove Theorem A,
and we provide the details in Section 8.

1.4. Additional questions and relation to quantitative topology. We conclude this introduction
by connecting our results to some recent developments in quantitative topology, and stating a few
questions.

1.4.1. When is mapping content small? Many of our questions are specific instances of the following
general question:

Question 1.12. What can be said about the map f if Hn,m
∞ (f,Q0) = 0? If Hn,m

∞ (f,Q0) is small?

Let us discuss the status of this question in the first few cases:
• If n = 0 in Question 1.12, then Hn,m

∞ (f,Q0) is simply (comparable to) the m-dimensional
Hausdorff content of Q0, and thus can never be small.

• If m = 0, then Hn,m
∞ (f,Q0) ≈ Hn

∞(f(Q0)) (see Lemma 3.4), so Question 1.12 can be an-
swered by saying that the mapping has small image in dimension n.

• If n = 1 in Question 1.12, then Theorem B implies that diam(f(Q0)) is zero or small, i.e.,
that f must be constant or near constant. This completely answers Question 1.12 in that case.

Thus, the first unanswered case of Question 1.12 is the case n = 2,m = 1. In this scenario, Kaufman’s
construction (Theorem 1.6) already shows that no such simple statement is available, as it yields a
highly non-trivial mapping g with H2,1

∞ (g,Q0) = 0. A class of related examples, mapping into general
metric spaces, was given is discussed in [1, Section 2.2]. Kaufman’s example and Azzam-Schul’s
examples have the property that the mappings involved factor through trees.

For us, a tree is a compact, geodesic metric space T such that every two points in T are the endpoints
of a unique arc in T . We say that a Lipschitz mapping f : Q0 → X factors through a tree if there is
a tree T and Lipschitz maps g : Q0 → T and h : T → X such that f = h ◦ g. (A number of recent
papers consider this notion; see [21, 22].)

For the first unanswered case of Question 1.12 (the case n = 2 and m = 1), we pose the following
conjecture.

Conjecture 1.13. Let Q0 = [0, 1]3 and let f : Q0 → X be a 1-Lipschitz mapping into a metric space.
Assume without loss of generality that X ⊆ ℓ∞.

• (Qualitative version) If H2,1
∞ (f,Q0) = 0, then f factors through a tree.

• (Quantitative version) For every ϵ > 0, there is a δ = δ(ϵ) with the following property: If
H2,1

∞ (f,Q0) < δ, then there is a 1-Lipschitz map g : Q0 → ℓ∞ that factors through a tree and
satisfies ∥g − f∥∞ < ϵ.



10 GUY C. DAVID AND RAANAN SCHUL

As far as we know, the analog of Conjecture 1.13 may hold even if n = 2 and m is allowed to be
arbitrary. The techniques in [21] may be relevant here.

For still higher dimensions n, one might hope that Question 1.12 could be answered by reference
to some type of quantitative topological non-degeneracy of the mapping in dimension n. Here the
picture appears to be significantly more complicated and it is unclear (at least to the present authors)
what conjectures to make. The following theorem of Wenger-Young indicates this.

Theorem 1.14 ([21], Theorem 2). Let n ≤ n+m− 1 < 2n− 3. Then any Lipschitz map

f : ∂[0, 1]n+m → ∂[0, 1]n

can be extended to a Lipschitz map
f̂ : [0, 1]n+m → Rn

whose derivative has rank ≤ n− 1 almost everywhere.

(We have modified the original statement slightly to fit our framework: Given n,m, our statement
corresponds to setting Wenger-Young’s n as our n− 1, their k as our n− 1+m, and making the usual
Lipschitz identifications between balls and cubes.) As a concrete choice in Theorem 1.14, one may
take n = 4 and m = 1.

In particular, the map f̂ in Theorem 1.14 will always have Hn,m
∞ (f, [0, 1]n+m) = 0 (by Proposition

3.3 below), but if f is chosen correctly then f̂ will not be able to factor through a tree for topological
reasons. For further discussion of the topology behind Theorem 1.14, and more recent developments,
we refer the reader to [21, 9].

1.4.2. Alternative versions of mapping content. In the definitions of Hausdorff content and Hausdorff
measure, it does not much matter whether one allows covers by balls, as we do above, or by dyadic
cubes, or by arbitrary sets. This affects the definition only up to dimensional constants, as an easy
computation shows.

One can ask the same question about mapping content Hn,m
∞ : could one get an equivalent quantity

allowing covers by arbitrary sets rather than only dyadic cubes? To be more specific, if f : Q0 → X
is a mapping and A ⊆ Q0, let

(1.5) Ĥn,m
∞ (f, A) = inf

∑
i

Hn
∞(f(Si))diam(Si)

m,

where the infimum is over all countable covers {Si} of A by arbitrary subsets of Q0. It is clear that

(1.6) Ĥn,m
∞ (f, A) ≲n,m Hn,m

∞ (f, A),

because dyadic cubes Qi are admissible sets, and the diameter of a dyadic cube is comparable to its
side length. (In particular, the statement of Theorem A is a priori stronger for using Hn,m

∞ than it
would be if it used Ĥn,m

∞ .)
However, a similar bound in the reverse direction does not seem to be easy to show. If one is given

a good cover of A by arbitrary sets Si that almost achieve the infimum in (1.5), then one can certainly
cover each Si by dyadic cubes Qi,j to get an admissible cover for Hn,m

∞ (f, A). However, since the
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cubes Qi,j may contain points outside of ∪iSi, and the images f(Qi,j) may overlap, it does not seem
to be clear how to control ∑

Hn,m
∞ (f(Qi,j))side(Qi,j)

m

by the sum over Si in (1.5).
As a short corollary of one of our main results (Proposition D), we show that the two versions of

mapping content are related in a weak sense for 1-Lipschitz mappings into metric spaces. In particular,
they vanish simultaneously, with some quantitative control.

Fix n and m, and let Q0 denote the unit cube of Rn+m.

Corollary E. For each δ > 0, there is a δ′ > 0 with the following property:
If f : Q0 → X is a 1-Lipschitz mapping into a metric space, and A ⊆ Q0 has

Hn,m
∞ (f, A) ≥ δ,

then
Ĥn,m

∞ (f, A) ≥ δ′.

The number δ′ depends only on δ, n, and m.

We prove Corollary E in Section 11. As observed above, we do not know if there is a simple direct
argument that yields Corollary E, independently of the results of this paper.

It is natural to ask if there is in fact a linear relationship between these two quantities:

Question 1.15. Is there a constant c = cn,m such that

Ĥn,m
∞ (f, A) ≥ cHn,m

∞ (f, A)

for all 1-Lipschitz maps f : Q0 → X into a metric space and all A ⊆ Q0?

One could also imagine alternative versions based on covers by balls or other families of sets, and
the same types of questions would apply.

1.5. Structure of the paper. In Section 2, we give the basic definitions and notations in the paper.
We also state some necessary theorems from [1] and [2] that underlie the proof of Theorem A.

In Section 3, we outline some basic properties of the “mapping content” Hn,m
∞ .

Section 4 contains the proof of Proposition C, which builds on ideas from [1, Section 6] with an
additional iteration scheme.

Sections 5 and 6 provide some preliminary results needed in the proof of Proposition D. The former
gives two lemmas allowing the coding and splitting of families of cubes into families with various
useful properties, and the latter shows how to control the mapping content of a certain family of cubes
that will form part of the “garbage set” in Proposition D.

We then prove Proposition D in Section 7, and combine Propositions C and D to prove Theorem A
in Section 8.

Section 9 contains the proof of Theorem B, which is essentially independent from the rest of the
paper.

Finally, Section 10 contains an explicit construction (mentioned in Remark 1.8) showing that the as-
sumption Hn(f(Q0)) ≤ 1 is quantitatively necessary for Theorem A to hold, and Section 11 contains
the proof of Corollary E.



12 GUY C. DAVID AND RAANAN SCHUL

2. PRELIMINARIES

This section contains notation, definitions and a few fundamental results used in the rest of the
paper.

2.1. Basic metric space and mapping notions. Throughout most of the paper, (X, d) will be an
arbitrary metric space, usually written X if the metric is understood. If (X, dX) and (Y, dY ) are metric
spaces, there are a number of natural, bi-Lipschitz equivalent metrics to put on the product X × Y .
For convenience, unless otherwise noted, we will equip X × Y with the metric

(2.1) dX×Y ((x, y), (x
′, y′)) = max{dX(x, x′), dY (y, y′)}.

An exception to this rule is when we write Rn+m as Rn × Rm, in which case we continue to equip it
with the standard Euclidean metric.

We will use the notation

πX : X × Y → X and πY : X × Y → Y

to denote the projections mapping (x, y) ∈ X × Y to x and y, respectively.
If E is a subset of a metric space X , we write

diam(E) = sup{d(x, y) : x, y ∈ E}.
If x ∈ X , we write

dist(x,E) = inf{d(x, y) : y ∈ E}.
If δ > 0, the δ-neighborhood of E in X is

Nδ(E) = {x ∈ X : dist(x,E) < δ}.
A mapping f from a metric space (X, dX) to a metric space (Y, dY ) is called Lipschitz (or C-

Lipschitz to emphasize the constant) if there is a constant C such that

dY (f(x), f(y)) ≤ Cd(x, y) for all x, y ∈ X.

The mapping F is called bi-Lipschitz (or C-bi-Lipschitz) if

C−1dX(x, y) ≤ dY (f(x), f(y)) ≤ CdX(x, y) for all x, y ∈ X.

2.2. Hausdorff measure and Hausdorff content. For a metric space (X, d) and a (not necessarily
integer) constant k ≥ 0, the k-dimensional Hausdorff measure Hk(A) of a subset A ⊆ X is

Hk(A) = lim
δ→0

inf
∑
B∈Bδ

diam(B)k,

where the infimum is taken over all covers Bδ of A by closed balls of diameter at most δ. In Rk, it is
standard that Hk is comparable to the k-dimensional Lebesgue measure.

The k-dimensional Hausdorff content Hk
∞(A) is defined similarly, but without the restriction to

small diameters:
Hk

∞(A) = inf
∑
B∈B

diam(B)k,
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where the infimum is taken over all covers B ofA by closed balls. It is easy to see that Hk
∞ is countably

sub-additive, but not in general a measure.
In general, one always has the trivial inequality Hk

∞(A) ≤ Hk(A). Moreover, the two quantities
vanish simultaneously: Hk(A) = 0 if and only if Hk

∞(A) = 0 [11, Exercise 8.6]. Lastly, in Rd, it is a
standard fact that the d-dimensional Hausdorff content and measure are always comparable:

Lemma 2.1. For each d ≥ 1, there is a constant Cd such that

Hd
∞(A) ≤ Hd(A) ≤ CdHd

∞(A)

for all subsets A ⊆ Rd.

Proof. The first inequality is immediate from the definitions, as noted above. For the second, fix ϵ > 0
arbitrary. Let B be a cover of A by closed balls such that∑

B∈B

diam(B)d ≤ Hd
∞(A) + ϵ.

Let B′ ⊆ B be a disjoint subcollection such that

A ⊆ ∪B∈B′(5B).

(See, e.g., [11, Theorem 1.2].) Then

Hd(A) ≤
∑
B∈B′

Hd(5B) ≲ 5d
∑
B∈B′

diam(B)d ≲ Hd
∞(A) + ϵ.

Sending ϵ to 0 completes the proof. □

We will also occasionally refer to Lebesgue measure on Rn+m, rather than Hausdorff measure
Hn+m. Lebesgue measure will be denoted simply by | · |. Since we have not bothered with normaliza-
tion constants in the definition of Hn+m, these measures are comparable rather than equal.

2.3. Grassmannians and Hausdorff distance. We write Gr(k, d) to denote the appropriate Grass-
mannian: the space of k-dimensional vector subspaces of Rd. We will often refer to elements of
Gr(k, d) as “k-planes in Rd”.

Occasionally, it will be useful to have a metric on Gr(k, d). In general, the Hausdorff distance
between subsets A,B of a metric space X is defined by

dHausdorff(A,B) = inf{ϵ > 0 : dist(a,B) < ϵ and dist(b, A) < ϵ for all a ∈ A, b ∈ B}.

This is well-known to be a metric on the compact subsets of X .
We will occasionally use this to define a metric D on Gr(k, d) as

D(P,Q) := dHausdorff(P ∩B(0, 1), Q ∩B(0, 1)).

The space Gr(k, d) is compact with this metric.
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2.4. Dyadic cubes. In a fixed Rd, with d generally understood from context, we write Q0 for the unit
cube, i.e.,

Q0 = [0, 1]d.

We write ∆ for the collection of all dyadic cubes Q ⊆ Q0, and ∆k for the collection of those dyadic
cubes with side length 2−k.

If Q ∈ ∆, we write side(Q) for the side-length of Q. Thus, side(Q) = 2−k if and only if Q ∈ ∆k.
If Q ∈ ∆ and C > 0, we write CQ for a cube with the same center but C times the side length.

In particular, if C is an odd positive integer, then CQ is a union of Cd distinct cubes of the same side
length as Q.

Lastly, we occasionally call a collection of cubes “almost-disjoint” if they have disjoint interiors.
Such collections arise in the definition of Hn,m

∞ .

2.5. Metric derivatives. LetX be a metric space and f : Rd → X a 1-Lipschitz function. We will use
some results and notation from [2], which were in turn inspired by the idea of metric differentiability
in [15].

For a cube Q ⊆ Rd let

mdf (Q) :=
1

side(Q)
inf
∥·∥

sup
x,y∈Q

|d(f(x), f(y))− ∥x− y∥| ,

where the infimum is taken over all seminorms ∥ · ∥ on Rd. If the function f is understood, we will
simply write md(Q).

The quantity mdf (Q) measures how well the pullback of the distance in X under f can be ap-
proximated by a seminorm in Q. For metric space valued functions, it serves as a replacement for
measuring “deviation from linearity”.

We will use the following result of [2], which is a quantitative differentiation result for Lipschitz
mappings into metric spaces:

Theorem 2.2 ([2], Theorem 1.1). Let X be a metric space and f : Rd → X a 1-Lipschitz function.
Let ϵ > 0 and C0 > 0. Then ∑

{|Q| : Q ∈ ∆,mdf (C0Q) > ϵ} ≤ Cϵ,d.

The constant Cϵ,d depends only on ϵ, C0, and d but not on the space X or the function f .

Note that Theorem 1.1 in [2] is stated only for C0 = 3, but the version above follows easily.
In the remainder of the paper, we will only apply Theorem 2.2 with d = n+m and

(2.2) C0 = 10(n+m),

which is why we suppress the dependence of Cϵ,d on C0 in the notation of Theorem 2.2.
Consider Q0 = [0, 1]n+m, C0 as above, and f : Q0 → X a Lipschitz function into a metric space.

Note that standard compactness arguments show that if f is Lipschitz and Q ∈ ∆, then there is a
seminorm that minimizes the infimum in the definition of mdf (C0Q). Thus, we write

(2.3) ∥ · ∥f,Q
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for a seminorm ∥ · ∥ that minimizes the quantity

sup
x,y∈C0Q

||f(x)− f(y)| − ∥x− y∥| .

If the mapping f is understood from context, we may call the seminorm simply ∥ · ∥Q.
A basic fact about these seminorms is the following simple lemma.

Lemma 2.3. Let f : Q0 → X be a 1-Lipschitz function into a metric space X , v a vector in Rn+m,
and Q ∈ ∆. If mdf (C0Q) < ϵ and the Euclidean norm |v| of v satisfies |v| < C0side(Q), then

(2.4) ∥v∥f,Q ≤ |v|+ C0ϵside(Q),

Proof. Consider any point x ∈ C0Q for which x + v is also in C0Q. Then, by definition of mdf and
∥ · ∥f,Q, we have

∥v∥f,Q ≤ |f(x)− f(x+ v)|+ C0ϵside(Q) ≤ |v|+ C0ϵside(Q).

□

2.6. Bi-Lipschitz extension. An important step in Azzam-Schul’s proof of Theorem 1.4 is the fol-
lowing bi-Lipschitz extension result.

Theorem 2.4 (Theorem II of [1]). Let D ≥ n and κ ∈ (0, 1). There is a constant M =M(κ,D) such
that if f : Rn → RD is 1-Lipschitz, then the following hold:

(i) There are sets E1, . . . , EM such that

Hn
∞ (f ([0, 1]n \ ∪Ei)) ≲D κ.

(ii) For each i ∈ {1, . . . ,M}, there is an L-bi-Lipschitz map Fi : Rn → RD, with L ≲D
1
κ

, such that

Fi|Ei
= f |Ei

.

Theorem 2.4 allows one to not only find bi-Lipschitz pieces of Lipschitz mappings, but to ensure that
those bi-Lipschitz pieces can be globally extended. In fact, we will only use the following immediate
consequence of this result.

Corollary 2.5. Let D ≥ n, C ≥ 1, and κ ∈ (0, 1). There are constants M = M(κ,C,D) and
L = L(κ,C,D) such that if A ⊆ [0, 1]n and f : A→ RD is C-bi-Lipschitz, then the following hold:

(i) There are sets E1, . . . , EM such that

Hn
∞ (A \ ∪Ei) < κ.

(ii) For each i ∈ {1, . . . ,M}, there is an L-bi-Lipschitz map Fi : Rn → RD such that

Fi|Ei
= f |Ei

.

Proof. Let n, D, C, κ, and f : A→ RD be as in the statement of the corollary.
By rescaling, we may assume without loss of generality that f is 1-Lipschitz and C-bi-Lipschitz on

A. Furthermore, we may extend f to a 1-Lipschitz mapping from Rn to RD, by Kirszbraun’s theorem.
Apply Theorem 2.4 to f to obtain sets E1, . . . , EM such that

Hn
∞ (f ([0, 1]n \ ∪Ei)) < κ/Cn
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and f |Ei
admits a globally L-bi-Lipschitz extension Fi : Rn → RD.

In that case, since f is C-bi-Lipschitz on A, we have

Hn
∞ (A \ ∪Ei) ≤ CnHn

∞ (f ([0, 1]n \ ∪Ei)) < κ

This completes the proof. □

3. ABOUT MAPPING CONTENT

In this section, we summarize some basic properties of the “mapping content” Hn,m
∞ . Most of the

statements and arguments appear already in [1] and [10], but we have included proofs in cases where
we have modified the original statements.

For the remainder of this section, let Q0 = [0, 1]n+m ⊆ Rn+m and let X be an arbitrary metric
space. The first two observations are simple consequences of the definition.

Lemma 3.1. If f : Q0 → X is a mapping, then

Hn,m
∞ (f,Q0) ≤ Hn

∞(f(Q0)).

Proof. This is immediate from the definition: just use the single cube Q0 in the infimum defining
Hn,m

∞ (f,Q0). □

Lemma 3.2. If f : Q0 → X is Lipschitz, then Hn,m
∞ is countably sub-additive on subsets of Q0. In

other words, if {Ai}∞i=1 is a countable collection of subsets of Q0, then

Hn,m
∞ (f,∪iAi) ≤

∞∑
i=1

Hn,m
∞ (f, Ai).

Proof. Fix ϵ > 0. For each Ai, let {Qj
i}j∈Ji denote a collection of almost-disjoint dyadic cubes

covering Ai such that ∑
j∈Ji

Hn
∞(f(Qj

i ))side(Qj
i )

m ≤ Hn,m
∞ (f, Ai) + ϵ2−i.

Let
Q = {Qj

i : i ∈ N, j ∈ Ji}
and let Q0 be the collection of maximal cubes in Q. Then Q0 forms an almost-disjoint cover of ∪Ai

by dyadic cubes, and so

Hn,m
∞ (f,∪iAi) ≤

∑
Q∈Q0

Hn
∞(f(Q))side(Q)m ≤

∑
i∈N

∑
j∈Ji

Hn
∞(f(Qj

i ))side(Qj
i )

m ≤ ϵ+
∞∑
i=1

Hn,m
∞ (f, Ai).

Sending ϵ to zero completes the proof. □

With more precise information about the pointwise behavior of the mapping, one can get more
precise upper bounds for Hn,m

∞ . We do not use the next result (Proposition 3.3) in the remainder of the
paper, but we state it to give the reader a better feeling for the quantity Hn,m

∞ . The following notation
and result are from [10]; the result generalizes [1, Lemma 6.13].
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If f : Q0 → X is Lipschitz and x ∈ Q0, define the quantity

Θn
∗ (f, x) := lim inf

r→0

Hn
∞(f(B(x, r) ∩Q0))

rn
.

Note that Θn
∗ (f, x) is bounded above, with bound depending only on n and the Lipschitz constant of

f .

Proposition 3.3 ([10], Propositions 5.1 and 5.2). Let f : Q0 → X be Lipschitz. We then have:
(i)

Hn,m
∞ (f,Q0) ≲

ˆ
Q0

Θn
∗ (f, x) dx,

with implied constants depending only on n,m.
(ii) If X = Rn, then

Θn
∗ (f, x) = |Jnf | :=

√
|det ((Df)(x) ·Df(x)T )|

for a.e. x ∈ Q0.

We now move to some basic facts about the mapping content of subsets of the cube. First of all, we
have the following.

Lemma 3.4. If f : Q0 → X is 1-Lipschitz and A ⊆ Q0, then

Hn,m
∞ (f, A) ≲ Hn+m

∞ (A) ≤ Hn+m(A).

The implied constant depends only on n+m.

Proof. The second inequality is immediate from the definitions of Hausdorff content and Hausdorff
measure.

For the first, fix ϵ > 0 and consider a cover {Bi} of A by balls of radius ri such that∑
i

rn+m
i ≤ Hn+m

∞ (A) + ϵ.

Each Bi is contained a union of at most 2n+m dyadic cubes {Qk
i } with

side(Qk
i ) ≲ ri.

Let {Rj} ⊆ {Qk
i }i,k denote the collection of maximal cubes in this collection, which form an

almost-disjoint cover of A. Then

Hn,m
∞ (A) ≤

∑
i,k

Hn
∞(f(Qk

i ))side(Qk
i )

m ≲
∑
i,k

side(Qk
i )

n+m ≲
∑
i

rn+m
i ≤ Hn+m

∞ (A) + ϵ.

Sending ϵ to zero yields the first inequality. □

Lastly, we point out that the mapping content of a Hard Sard set is comparable to its (n + m)-
dimensional measure, which shows that the condition Hn,m

∞ > 0 is quantitatively necessary to find
Hard Sard sets for a mapping f . The following is a minor modification of Corollary 1.4 of [1]; we
include a proof for convenience. The lemma is not used directly in the rest of the paper.
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Lemma 3.5. If f : Q0 → X is 1-Lipschitz and E ⊆ Q0 is a Hard Sard set for f , then

Hn,m
∞ (f, E) ≈ Hn+m(E),

with constants depending only on n, m, and the Hard Sard constant CLip of E.

Proof. The upper bound
Hn,m

∞ (f, E) ≲ Hn+m(E)

follows from the previous lemma. We now focus on the reversed bound.
We write points in Rn+m as (x, y) with x ∈ Rn and y ∈ Rm. We may assume that Hn+m(E) > 0,

otherwise the inequality we are proving is trivial.
Fix ϵ > 0 arbitrary. Let g : Rn+m → Rn+m be the bi-Lipschitz change of coordinates associated to

the Hard Sard set E. Let F = f ◦ g−1.
Let {Qi} be a cover of E by almost-disjoint dyadic cubes such that∑

Hn
∞(f(Qi))side(Qi)

m < Hn,m
∞ (f, E) + ϵ.

Let Ai = g(Qi) for each i, so that the sets {Ai} form a cover of g(E) with F (Ai) = f(Qi). Note that
diam(Ai) ≈ side(Qi), since g is bi-Lipschitz.

For each i, there is a collection of balls {Bj
i } covering F (Ai) in X such that∑

j

diam(Bj
i )

n ≤ Hn
∞(F (Ai)) + ϵside(Qi)

n.

(Note that without loss of generality, we may assume that diam(Bj
i ) ≲n,m diam(F (Ai)) ≲ diam(Ai)

for each j, i.)
Therefore,

Hn,m
∞ (f, E) ≥

∑
Hn

∞(f(Qi))side(Qi)
m − ϵ(3.1)

=
∑
i

Hn
∞(F (Ai))side(Qi)

m − ϵ(3.2)

≥
∑
i,j

diam(Bj
i )

nside(Qi)
m − 2ϵ(3.3)

Let F̃ denote the map

F̃ (x, y) = (F (x, y), y) : g(E) → X × Rm.

By Condition (iii) of Definition 1.3, F̃ is bi-Lipschitz with constant CLip. Thus,

Hn+m
∞ (F̃ (g(E))) ≈ Hn+m

∞ (E).

Now, for each fixed i,

F̃ (Ai) ⊆
⋃
j

(
Bj

i × πRm(Ai)
)
.
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We can cover each Bj
i × πRm(Ai) by

≲

(
diam(Ai)

diam(Bj
i )

)m

≈
(

side(Qi)

diam(Bj
i )

)m

balls of diameter equal to diam(Bj
i ). Therefore,

Hn+m
∞ (F̃ (Ai)) ≲

∑
j

(
side(Qi)

diam(Bj
i )

)m

diam(Bj
i )

n+m =
∑
j

diam(Bj
i )

nside(Qi)
m,

and so, using (3.3),

Hn,m
∞ (f, E) ≥

∑
i,j

diam(Bj
i )

nside(Qi)
m − 2ϵ

≥ c1
∑
i

Hn+m
∞ (F̃ (Ai))− 2ϵ

≥ c2Hn+m
∞ (F̃ (g(E)))− 2ϵ

≥ c3Hn+m
∞ (E)− 2ϵ

≥ c4Hn+m(E)− 2ϵ,

where c1, c2, c3, c4 depend only on n, m, and the Hard Sard constant CLip of (E, g). (The last step uses
Lemma 2.1.) Sending ϵ to zero completes the proof.

□

4. BI-LIPSCHITZ SUPPLEMENTS YIELD HARD SARD SETS

In this section, we prove Proposition C. Recall that, informally, this says that if one can find a set F
on which the map

h(x, y) = (f(x, y), y)

is bi-Lipschitz, then one can quantitatively decompose F further into Hard Sard sets for f . We refer
to the statement of Proposition C above for the precise assumptions and conclusions.

For the remainder of this section, we fix the unit cube Q0 ⊆ Rn+m. As in Definition 1.3, we write
Rn+m = Rn × Rm and points of Rn+m as (x, y) where x ∈ Rn and y ∈ Rm.

For y ∈ Rm, we write Ly = [0, 1]n × {y}. If E ⊆ Q0, we write Ey = E ∩ Ly.
We will need the following lemma, which is [1, Lemma 6.12]. As we state it slightly differently,

we include a proof for convenience.

Lemma 4.1 ([1], Lemma 6.12). Let F ⊆ Q0 be a Borel set and f : F → X a 1-Lipschitz mapping
into a metric space.

Let E ⊆ F be a Borel subset, with Hn+m(E) > 0, on which the mapping h defined in (1.2) is
L-bi-Lipschitz, for L ≥ 1.

Then there is a y′ ∈ Rm such that

(4.1)
ˆ
[0,1]m

Hn(f(Ey′) ∩ f(Ez))dHm(z) ≳n,m L−nHn+m(E)2

Hn(f(E))
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Proof. It suffices to assume that E is compact and find a y′ ∈ Rm for which

(4.2)
ˆ
[0,1]m

Hn(f(Ey′) ∩ f(Ez))dHm(z) ≳n,m L−nHn+m(E)2

Hn(f(E))

The result for more general sets then follows by applying this to a compact subset of E of at least half
the Hn+m-measure. Thus, we now assume E is compact and prove (4.2).

We can also assume that Hn(f(E)) > 0. If not, then Hn+m(h(E)) ≤ Hn+m(f(E)× [0, 1]m) = 0,
so Hn+m(E) = 0 as h|E is bi-Lipschitz, contradicting our assumption.

We now consider the function K : X × [0, 1]m × [0, 1]m → {0, 1} ⊆ R defined by

K(p, y, z) = χf(Ey)(p)χf(Ez)(p).

Recall the function h(x, y) = (f(x, y), y). For fixed t ∈ (0, 1), the set

K−1((t,∞)) = {(p, y, z) ∈ X × [0, 1]m × [0, 1]m : p ∈ f(Ey) and p ∈ f(Ez)}
= {(p, y, z) ∈ X × [0, 1]m × [0, 1]m : (p, y) ∈ h(E) and (p, z) ∈ h(E)},

is evidently compact and hence Borel. For t > 1, this set is empty, and for t < 0 this set is all of
X × [0, 1]m × [0, 1]m. Thus, K is Borel measurable on X × [0, 1]m × [0, 1]m.

We now consider the integral

I =

ˆ
X

ˆ
[0,1]m

ˆ
[0,1]m

K(p, y, z) dHm(y)dHm(z)dHn(p).

One application of Fubini’s theorem allows us to rewrite this as

I =

ˆ
[0,1]m

ˆ
[0,1]m

Hn(f(Ey) ∩ (f(Ez)) dHm(y)dHm(z),

with an integrand that is Borel measurable for a.e. joint choice of y and z in [0, 1]m × [0, 1]m.
Now write πX and πRm for the projections from X × [0, 1]m to X and [0, 1]m, respectively. Below,

we follow the lead of [1] and label each Hausdorff measure by a subscript denoting the space on which
it is supported. For example, Hn

Rn denotes Hausdorff n-measure on Rn and Hn
X denotes Hausdorff

n-measure on X .
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Using Fubini’s theorem repeatedly, we can write

I =

ˆ
X

ˆ
[0,1]m

ˆ
[0,1]m

K(p, y, z)dHm
Rm(y)dHm

Rm(z)dHn
X(p)(4.3)

=

ˆ
X

(ˆ
[0,1]m

χf(Ey)(p) dHm
Rm(y)

)(ˆ
[0,1]m

χf(Ez)(p) dHm
Rm(z)

)
dHn

X(p)(4.4)

=

ˆ
X

Hm
X×[0,1]m

(
π−1
X (p) ∩ h(E)

)2
dHn

X(p)(4.5)

≥ 1

Hn
X(f(E))

(ˆ
X

Hm
X×[0,1]m

(
π−1
X (p) ∩ h(E)

)
dHn

X(p)

)2

(4.6)

=
1

Hn
X(f(E))

(Hn
X ×Hm

Rm) (h(E))2(4.7)

=
1

Hn
X(f(E))

(ˆ
[0,1]m

Hn
X×[0,1]m(π

−1
Rm(y) ∩ h(E)) dHm

Rm(y)

)2

(4.8)

=
1

Hn
X(f(E))

(ˆ
[0,1]m

Hn
X×[0,1]m(h(Ey)) dHm

Rm(y)

)2

(4.9)

≥ 1

Hn
X(f(E))

(L−n)

(ˆ
[0,1]m

Hn
Rn(Ey) dHm

Rm(y)

)2

(4.10)

= L−nH
n+m
Rn+m(E)2

Hn
X(f(E))

(4.11)

Most manipulations above are by Fubini’s theorem. Equation (4.6) is by the Cauchy-Schwarz inequal-
ity, and (4.10) is a consequence of the fact that h is L-bi-Lipschitz on E.

We thus haveˆ
[0,1]m

ˆ
[0,1]m

Hn(f(Ey) ∩ (f(Ez)) dHm(y)dHm(z) = I ≥ L−nHn+m(E)2

Hn(f(E))
.

It follows that there is a choice of y′ ∈ [0, 1]m for whichˆ
[0,1]m

Hn(f(Ey′) ∩ (f(Ez)) dHm(z) ≳n,m L−nHn+m(E)2

Hn(f(E))

with Borel measurable integrand. □

We now prove Proposition C. The proof uses many of the ideas from the proof of [1, Theorem 6.1],
combined with a new iteration argument.

Proof of Proposition C. Let F ⊆ Q0, f : F → X , and h(x, y) = (f(x, y), y) satisfy the assumptions
of Proposition C. Fix α > 0.

Our goal is to decompose F into Hard Sard sets for f , plus a “garbage set” of small Hn+m-measure.
Let α′ = α/2. Assume Hn+m(F ) ≥ α′. (Otherwise, we stop, since the conclusion of Proposition C

then holds trivially with F = G.)
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Given z ∈ [0, 1]m, we write Fz for F ∩ (Rn × {z}) as above.
By Lemma 4.1, there is a y′ ∈ Rm such thatˆ

Hn(f(Fy′) ∩ f(Fz))dHm(z) ≳
Hn+m(F )2

Hn(f(F ))
≥ (α′)2 ≈α 1.

The implied constant in the first inequality depends only on n, m, and the bi-Lipschitz constant L of
h. Therefore we have a constant η = η(n,m, α, L) > 0 such that

(4.12)
ˆ
[0,1]m

Hn(f(Fy′) ∩ f(Fz))dHm(z) ≥ η.

Let
E1 = F ∩ f−1(f(Fy′)).

Note that, since h(x, y) = (f(x, y), y) and h is L-bi-Lipschitz on F , we see that f is L-bi-Lipschitz
on Fy′ .

Define two functions:

p1 : f(Fy′) → Rn by p1(z) = πRn ◦ (f |Fy′
)−1(z),

and

(4.13) g1 : E1 → Rn+m by g1(x, y) = (p1(f(x, y)), y).

We know that h is L-bi-Lipschitz on F ⊇ E1, and so p1 is L-bi-Lipschitz on f(Fy′). It follows that g1

is L-Lipschitz and (L1)-bi-Lipschitz on E1, with L1 = 2L2.
We first make an observation about the size of E1.

Claim 4.2. We have Hn+m(E1) ≥ L−2(n+m)η.

Proof of Claim 4.2. This is as in [1, p.1114], with slightly different notation. Note that, for any z ∈
Rm, we have

g1(E1
z ) = p1(f(E1

z ) ∩ f(Fy′))× {z}.
In addition, we observe that g1 only distorts the x-coordinate of points in E1. In other words,

πRm(g1(x, z)) = y if and only if z = y.

Therefore, for each z ∈ Rm, we have

Hn(g1(E1)z) = Hn(g1(E1
z ))

= Hn((p1(f(E1
z ) ∩ f(Fy′)))× {z})

≥ L−nHn(f(E1
z ) ∩ f(Fy′))

= L−nHn(f(F 1
z ) ∩ f(Fy′))

The inequality in the third line is because p1 is L-bi-Lipschitz on f(Fy′), and the final equality is
because f(E1

z ) ∩ f(Fy′) = f(Fz) ∩ f(Fy′) by definition of E1.
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Since g1 is L-Lipschitz, we conclude that

Hn+m(E1) ≥ L−n−mHn+m(g1(E1))

= L−n−m

ˆ
Hn(g1(E1)z)dHm(z)

≥ L−2n−m

ˆ
Hn(f(Fz) ∩ f(Fy′))dHm(z)

≥ L−2(n+m)η

using (4.12). □

Let α′′ = αη
10Cn+mL3(n+m) . Here Cn+m is the constant from Lemma 2.1 in dimension d = n + m.

Note that α′′ depends only on n,m, α, and L.
We now apply Corollary 2.5 to g1 on A = E1 with parameter κ = α′′. We obtain numbers M ′ =

M ′(n,m, α′′) and L′ = L′(n,m, α′′) such that the set E1 ⊆ F ⊆ Q0 admits a decomposition

E1 = E1
1 ⊔ · · · ⊔ E1

M ′ ⊔G1

where

(4.14) g1|E1
i
is bi-Lipschitz, and moreover extends to an L′ − bi-Lipschitz map on all Rn+m

and
Hn+m(G1) ≤ Cn+mHn+m

∞ (G1) < Cn+mα
′′.

Observe that g1|E1
i

satisfies (1.3) immediately from the definition of g1 in (4.13).
Similarly as in [1], we now have the following claim.

Claim 4.3. For each i ∈ {1, . . . ,M ′}, the pairs (E1
i , g

1|E1
i
) are Hard Sard pairs for f , and the map

g1 satisfies (1.3).

Proof of Claim 4.3. That g1 satisfies (1.3) is immediate from the definition of g1 in (4.13).
We verify that (E1

i , g
1|E1

i
) satisfy the three conditions of Definition 1.3. Condition (i) is established

in (4.14).
Write F = f ◦ (g1)−1 on g1(E1

i ). Consider any (x, y) = g1(a, y) ∈ g1(E1
i ). Then, by definition of

g1, x = p1(f(a, y)), from which it follows that

(4.15) F (x, y) = f(a, y) = f(x, y′)

and moreover that (x, y′) ∈ Fy′ ⊆ F .
Thus, if (x, y1) and (x, y2) are in g1(E1

i ), then

F (x, y1) = f(x, y′) = F (x, y2).

Conversely, if (x1, y1) and (x2, y2) are in g1(E1
i ) and F (x1, y1) = F (x2, y2), then

f(x1, y
′) = f(x2, y

′) and (x1, y
′), (x2, y

′) ∈ F,

and this implies that x1 = x2 because the map h(x, y) = (f(x, y), y) is bi-Lipschitz on F . This
verifies Condition (ii) of Definition 1.3.
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To verify Condition (iii) of Definition 1.3, consider points (x1, y1) and (x2, y2) in g1(E1
i ). Then,

using (4.15) and the fact that h(x, y) is L-bi-Lipschitz on F ⊇ E1
i , we have

d ((F (x1, y1), y1), (F (x2, y2), y2)) = d ((f(x1, y
′), y1), (f(x2, y

′), y2))

≈ d(f(x1, y
′), f(x2, y

′)) + |y1 − y2|
≈ |x1 − x2|+ |y1 − y2|
≈ |(x1, y1)− (x2, y2)|

The implied constants here depend only on n, m, and L. This verifies Condition (iii) of Definition 1.3.
□

To recap, we have now given the following decomposition of F :

F = (F \ E1) ⊔ E1 = (F \ E1) ⊔ E1
1 ⊔ · · · ⊔ E1

M ′ ⊔G1,

where
• each (E1

i , g
1|E1

i
) is a Hard Sard pair,

• Hn+m(F 1 \ E1) ≤ Hn+m(F 1)−Hn+m(E1) ≤ Hn+m(F 1)− L−2(n+m)η, and
• Hn+m(G1) < Cn+mα

′′

Writing F 1 = F , let F 2 = F 1 \ E1. If Hn+m(F 2) ≥ α′, we may repeat the exact same procedure
on F 2. Continuing inductively in this way, if F k−1 is defined and has a decomposition as above, set
F k = F k−1 \Ek−1. If Hn+m(F k) ≥ α′, we may follow the same procedure to obtain a decomposition
of F k:

F k = (F k \ Ek) ⊔ Ek = (F k \ Ek) ⊔ Ek
1 ⊔ · · · ⊔ Ek

M ′ ⊔Gk,

where
(i) each (Ek

i , g
k|E1

i
) is a Hard Sard pair satisfying (1.3),

(ii) Hn+m(F k \ Ek) ≤ Hn+m(F k)− L−2nη, and
(iii) Hn+m(Gk) < Cn+mα

′′

Notice that the constants L, η, L1,M
′ remain uniform throughout this process.

We end this iteration when FN = FN−1 \ EN−1 has Hn+m(FN) < α′. This procedure ends after
at most L2(n+m)

η
steps by property (ii). (It may even be the case that Hn+m(F 1) < α′ at the very first

step, in which case E1 = ∅ and we end immediately.)
In the final tally, we have a collection of at mostM ′·L2(n+m)

η
Hard Sard pairs in direction P contained

in F .
The remainder of F consists of all the sets Gk (k = 1, . . . , N ) that we constructed along the way,

and the final stage FN at which we stopped the iteration. We now show that those remaining sets have
small total area.

We generated at most L2(n+m)

η
sets Gk in the above iteration scheme. Each of these sets has

Hn+m(Gk) < Cn+mα
′′ by (iii).

The final stage FN at which we end the iteration has, by construction,

Hn+m(FN) < α′.
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Thus, the complement of all Hard Sard sets Ek
i that we formed in this procedure has total Hn+m

measure at most (
L2(n+m)

η

)
(Cn+mα

′′) + α′.

By our choice of the constants α′ and α′′, this quantity is less than α. This completes the proof of
Proposition C. □

5. CODING AND SPLITTING CUBES

In this section and the next, we proceed with some preliminary work necessary to prove Proposition
D, which along with Proposition C is the other main ingredient in the proof of Theorem A.

We need two lemmas, used in the proof of Proposition D to code and split cubes into useful families.
The first is a “coding” lemma which is a slight variant of now-standard arguments used, e.g., in [12,

p. 199-121], [4, p. 81-82], [19, p. 8]. We give a brief proof here.

Lemma 5.1. Let Q0 be the unit cube of Rd, and let f : Q0 → X be a 1-Lipschitz map into a metric
space. Fix C0 ≥ 1, ϵ > 0 and η > 0. Then we can decompose Q0 into sets

Q0 = A1 ∪ A2 ∪ . . . AMmd ∪Gmd

with the following two properties:
(i) If x, y ∈ Ai for some 1 ≤ i ≤Mmd and Q ∈ ∆ is a dyadic cube of minimal side length such that

x, y ∈ 3Q, then
md(C0Q) < ϵ.

(ii) Hd
∞(Gmd) < η.

The number of sets Mmd depends only on ϵ, η, and d.

Proof. We may assume that f extends to a 1-Lipschitz map defined on all of Rd. (This can be done
by simply extending f “radially” to agree with its values on the boundary of Q0, or by applying the
Kuratowski embedding theorem to embed X in ℓ∞(X) and performing a 1-Lipschitz extension into
ℓ∞(X).)

We will use Theorem 2.2, from which we deduce (with appropriate constants C ′ and ϵ′, to be shortly
fixed, depending on the dimension d) that for N large enough we have

G := {x ∈ Q0 : x ∈ R1 ⊊ R2 ⊊ ... ⊊ RN ⊂ Q0;md(C ′Ri) ≥ ϵ′}

has measure, hence content, less than η/2d (here, we assume Ri ∈ ∆).
Consider now x ∈ Q0 \ G. Each such x has at most N − 1 cubes R ∋ x such that md(C ′R) > ϵ′,

which we may denote by R1(x), ...RN(x), where N(x) < N . By using an alphabet of m letters (m
depending only on d), we may assign to each x ∈ Q0 a word w(x) (a sequence of < N letters) such
that if w(x) = w(y) then a minimal cube Q such that Q ∋ x, y has md(C ′Q) < ϵ′.

We now use the “1
3

trick”: apply the above construction to all 2d dyadic grids formed by shifting the
standard dyadic partition by 1

3
in any combination of coordinate directions. (See [19, p. 5].)
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Note that if Q is a smallest cube (from the original dyadic grid) such that 3Q ∋ x, y, then C0Q is
contained in C ′Q′, for some minimal cube Q′ containing x, y in one of the shifted dyadic grids and
satisfying side(Q′) ≈d side(Q).

Thus, after repeating this 2d times on all the new dyadic grids, each x ∈ Q0 that is outside of the
union of 2d sets G as above has been assigned words

w1(x), . . . , w2d(x).

These words have the property that if for all j wj(x) = wj(y), then a smallest cube Q such that
3Q ∋ x, y has md(C0Q) < ϵ. The sets {Ai} are then defined as all the sets on which the function
x 7→ (wj(x))

2d

j=1 is constant. Note that this yields a controlled number of sets, as the length of each
word and the size of the alphabet is controlled. Here we determine C ′ and ϵ′ to depend linearly on
their counterparts C0 and ϵ, with a dependence depending on the ambient dimension d. □

The next lemma allows for splitting a family of almost-disjoint cubes into a controlled family of
well-separated cubes, at the cost of throwing a way a set of small measure.

Lemma 5.2. Let Q be a collection of almost-disjoint cubes in Q0 ⊆ Rd, η > 0, and Λ an odd natural
number. Then we can partition Q into families {Qk}k0k=1 and G such that

(i) every cube of Q is in exactly one of the sets Qk or G ,
(ii) if Q,Q′ ∈ Qk, then ΛQ ∩ ΛQ′ = ∅, and

(iii) the Hd-measure of the union of all cubes in G is < η.
The number of families k0 depends only on η, Λ, and d.

Proof. It suffices to assume that the family Q is finite, which we do for convenience.
Let Q1 ⊆ Q be a subset defined inductively as follows: Put the largest cube in Q in Q1, breaking

ties arbitrarily. Then at each step add to Q1 the largest cube Q in Q \Q1 such that ΛQ∩ΛQ′ = ∅ for
all Q′ ∈ Q1. Continue this process until no more cubes can be added to Q1.

Denoting Lebesgue measure by | · |, we will first prove the following:

Claim 5.3. There is a constant c = c(d,Λ) > 0 such that

| ∪Q∈Q1 Q| ≥ c| ∪Q∈Q Q|.

Proof. Given Q ∈ Q1, let

EQ = {Q′ ∈ Q : ΛQ ∩ ΛQ′ ̸= ∅ and side(Q′) ≤ side(Q)}.

For each Q ∈ Q1 and Q′ ∈ EQ, we have Q′ ⊆ (2Λ + 1)Q. Therefore,

| ∪Q′∈EQ
Q′| ≤ |(2Λ + 1)Q| = (2Λ + 1)d|Q|.

Now, if Q′ ∈ Q \ Q1, then Q′ ∈ EQ for some Q ∈ Q1. (Otherwise, Q′ would have been placed in
Q1.)

Therefore,
| ∪Q′∈Q\Q1 Q

′| ≤
∑
Q∈Q1

| ∪Q′∈EQ
Q′| ≤ (2Λ + 1)d

∑
Q∈Q1

|Q|.
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It follows that

| ∪Q∈Q Q| = | ∪Q∈Q1 Q|+ | ∪Q′∈Q\Q1 Q
′| ≤ (1 + (2Λ + 1)d)| ∪Q∈Q1 Q|,

which proves the claim. □

Once the claim is proven, the lemma follows: For each i ≥ 2, apply the same construction to
Q \ ∪i−1

j=1Qj to obtain collections

Qi ⊆ Q \ ∪i−1
j=1Qj ⊆ Q

satisfying (ii) and having
| ∪Q∈Qi

Q| ≥ c| ∪Q∈Q\∪i−1
j=1Qj

Q|.
It follows that, for each i ≥ 1,

| ∪Q∈Q\∪i
j=1Qj

Q| = | ∪Q∈Q\∪i−1
j=1Qj

Q| − | ∪Q∈Qi
Q|

≤ (1− c)| ∪Q∈Q\∪i−1
j=1Qj

Q|

Hence
| ∪Q∈Q\∪i

j=1Qj
Q| ≤ (1− c)i| ∪Q∈Q |Q| ≤ (1− c)i for each i ≥ 1

Thus, for k0 sufficiently large depending on η and c = c(d,Λ) (and recalling the comparability of
Lebesgue and Hausdorff measures), we can ensure the set

G = Q \ ∪k0
j=1Qj

has a union with total Hd-measure < η. This completes the proof of the lemma.
□

6. CUBES COMPRESSED IN MANY DIRECTIONS

In the proof of Theorem A (via Proposition D), we will need to discard a collection of cubes which,
while they may have small md, are “compressed” by f in many different directions. This collection
will eventually form part of the “garbage set” G in Proposition D and Theorem A.

For the remainder of this section, we work under the following assumptions: Q0 is the unit cube of
Rn+m and f : Q0 → X is a 1-Lipschitz map from Q0 into a metric space. We will write md for mdf

in this section and the following one.
Let P be the set of all coordinate n-planes in Gr(n, n+m). That is,

(6.1) P = {span({ei1 , ei2 , . . . , ein}) : 1 ≤ i1 < · · · < in ≤ n+m},
where ei represent the n+m standard basis vectors of Rn+m.

Recall the constant C0 defined in (2.2). For each cube Q ∈ ∆, we fix a seminorm ∥ · ∥Q on Rn+m

that minimizes md(C0Q).
Our goal in this section is to prove the following lemma.

Lemma 6.1. Fix ϵ > 0 and δ > 0. Let Q = Q(ϵ, δ) be the collection of all cubes such that
(i) md(C0Q) < ϵ, and

(ii) for all P ∈ P , there is a unit vector vP ∈ P such that ∥vP∥Q < δ.
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Then
Hn,m

∞ (f,∪Q(3Q)) ≲ ϵ+ δ.

The implied constant depends only on n and m.

As a first step, we need the following linear algebra fact.

Lemma 6.2. Let K be a subspace of dimension ≤ m in Rn+m. Then K ∩ P = {0} for at least one
P ∈ P .

In other words, K cannot contain a non-zero vector in every coordinate n-plane.

Proof. It suffices to show that an m-plane K in Rn+m cannot contain a non-zero vector in every
coordinate n-plane. The proof is by induction on n, for each fixed m ≥ 1.

First, suppose that n = 1, and thatK ∈ Gr(m, 1+m) contains a non-zero vector in every coordinate
1-plane. Then K contains a non-zero multiple of every standard basis vector ei, which implies that
K ⊇ span({ei : i = 1 . . . 1 +m}) = R1+m and yields a contradiction.

Now suppose that n ≥ 1 and K ∈ Gr(m,n+m). As above, there must be a standard basis vector
ei0 such that K ∩ span({ei0}) = {0}; if not, K would be all of Rn+m. Let

V = span{e1, e2, . . . , ei0−1, ei0+1, . . . , en+m}.
Let K ′ = πV (K). Since K ∩ ker(πV ) = {0}, the space K ′ is an m-dimensional subspace of V ∼=
R(n−1)+m.

By induction, K ′ cannot contain a vector in each coordinate (n − 1)-plane of V . In other words,
there is a collection

{ei1 , . . . , ein−1}
of standard basis vectors (none of which are ei0) such that

K ′ ∩ span({ei1 , . . . , ein−1}) = {0}.
Let

P = span({ei0} ∪ {ei1 , . . . , ein−1}) ∈ P .
This is a coordinate n-plane in Rn+m. If v is a non-zero vector in K ∩ P , then

πV (v) ∈ K ′ ∩ span({ei1 , . . . , ein−1}) = {0},
and so v ∈ span({ei0}). But ei0 was chosen above so that K ∩ span({ei0}) = {0}, so v must be zero.

Thus, K ∩ P = {0}, as desired.
□

A compactness argument then yields the following quantitative version of the previous lemma.

Lemma 6.3. For each n,m ≥ 1, there is a constant c = c(n,m) with the following property:
Let K be a subspace of dimension ≤ m in Rn+m. Then there is a coordinate n-plane P ∈ P such

that
dist(w,K) ≥ c > 0

for all unit vectors w ∈ P .
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Proof. First of all, it clearly suffices to prove the lemma assuming that dim(K) = m.
Suppose that the lemma were false for some fixed n,m ≥ 1.
Then there would be a sequence Kj ∈ Gr(m,n +m) such that, for every P ∈ P , there is a unit

vector wP
j ∈ P with

dist(wP
j , Kj) <

1

j
.

The sequence Kj has a subsequence converging in the metric D defined in subsection 2.3 to a
subspace K ∈ Gr(m,n + m). In addition, we may pass to further subsequences for which each
sequence {wP

j }∞j=1 converges to a unit vector wP ∈ P . It then follows that

wP ∈ K ∩ P.
Thus, K is an m-plane containing a non-zero (indeed, unit) vector in every P ∈ P . This contradicts
Lemma 6.2. □

We now prove Lemma 6.1.

Proof of Lemma 6.1. Recall the definition of C0 from (2.2), and let c = c(n,m) denote the constant
from Lemma 6.3.

We may assume in proving the lemma that ϵ and δ are both small, depending on n and m, e.g., that

(6.2) δ + ϵ < c(100C0)
−1,

otherwise the lemma is trivial.
Recall that if a cube Q is in the collection Q defined in the statement of Lemma 6.1, then

md(C0Q) < ϵ

and for every P ∈ P , there is unit vector vP ∈ P such that

(6.3) ∥vP∥Q < δ.

We establish Lemma 6.1 via some intermediary claims.

Claim 6.4. If Q ∈ Q, there is an (m+ 1)-plane K0 ∈ Gr(m+ 1, n+m) such that

(6.4) ∥v∥Q ≤ C1δ|v| for all v ∈ K0,

where C1 is a constant depending only on n and m.

Proof. For each P ∈ P , there is a unit vector vP ∈ P satisfying (6.3). Fix c′ = c
2
. Let S = {v1, . . . , vℓ}

be a maximal subset of {vP : P ∈ P} that satisfies

(6.5) dist(vi, span({v1, . . . , vi−1}) ≥ c′ for each i ∈ {1, . . . , ℓ}.
In other words, S is a maximal “quantitatively linearly independent” subset of {vP : P ∈ P} (with
parameter c′).

We will show that
K = span(S)

has dim(K) ≥ m+ 1 and satisfies (6.4).
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First, we argue that K satisfies (6.4). Any v ∈ K can be written as

v =
ℓ∑

i=1

aivi

where
ℓ∑

i=1

|ai| ≤ C1|v|,

because S satisfies (6.5). Here C1 is a constant depending on n, m, and c′, and thus ultimately only on
n and m.

Hence

∥v∥Q ≤
ℓ∑

i=1

|ai|∥vi∥Q ≤ δ
ℓ∑

i=1

|ai| ≤ C1δ|v|,

where C1 depends only on n and m. This proves that K satisfies (6.4).
Now we show that dim(K) ≥ m + 1. Suppose, towards a contradiction, that dim(K) ≤ m. Then

by Lemma 6.3, there is a coordinate n-plane P ∈ P such that

(6.6) dist(w,K) ≥ c > 0

for all unit vectors w ∈ P .
Let vP be the unit vector associated to P , as in (6.3). In particular, since vP ∈ P , we have

dist(vP , K) ≥ c > 0.

In that case, however, we should have appended vP to S. In other words, this contradicts the
maximality of the set S defined above.

Therefore, K must have dimension at least m + 1, and it satisfies (6.4). It follows that K contains
an (m+ 1)-dimensional subspace K0 that satisfies (6.4), and hence proves Claim 6.4.

□

Claim 6.5. Let Q ∈ Q and let R be either Q or a neighbor of Q of the same scale. Then

Hn
∞(f(R)) ≲ (δ + ϵ)side(R)n,

where the implied constant depends only on n and m.

Proof of Claim 6.5. Assume by rescaling that side(Q) = side(R) = 1. Let K0 be an (m+1)-plane as
in Claim 6.4, so that

∥v∥Q ≤ C1δ|v| for all v ∈ K0.

Let P = K⊥
0 , which is an (n− 1)-plane in Rn+m.

Let P0 be an affine (n− 1)-plane parallel to P and passing through the center of R. Fix x ∈ R and
let xP0 denote the closest point to x in P0. Note that x and xP0 are in C0Q by our choice of C0 in (2.2).

We have
d(f(x), f(xP0)) ≤ ∥x− xP0∥Q + C0ϵ ≲ C1C0δ + C0ϵ ≤ C2(δ + ϵ),

since x − xP0 ∈ K0 and |x − xP0| ≤ diam(C0Q) ≲ C0. Here C2 is again a constant depending only
on n and m.
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Since x ∈ R was arbitrary, we have shown that

f(R) ⊆ NC2(δ+ϵ)f(P0 ∩ C0Q).

Given r > 0, we can cover P0 ∩C0Q by ≲ r−(n−1) balls of radius r, with implied constant depending
only on n and m. Hence, we can cover f(R) by ≲ r−(n−1) balls of radius r + C2(δ + ϵ). Choosing
r = C2(δ + ϵ) allows us to bound

Hn
∞(f(R)) ≲ (C2(δ + ϵ))−(n−1)(2C2(δ + ϵ))n ≲ δ + ϵ.

This proves Claim 6.5. □

We now use Claim 6.5 to complete the proof of Lemma 6.1. Let Q̂ denote the collection of all cubes
that are either in Q, or adjacent to an element of Q of the same scale. Let {Rj} enumerate all maximal
cubes of Q̂. Note that ∪Q∈Q(3Q) ⊆ ∪jRj . Thus, using Claim 6.5,

Hn,m
∞ (f,∪Q(3Q)) ≤

∑
j

Hn
∞(f(Rj))side(Rj)

m

≲ (δ + ϵ)
∑

side(Rj)
n+m

≤ δ + ϵ.

This completes the proof of Lemma 6.1. □

7. ADDING PROJECTIONS TO FORM BI-LIPSCHITZ MAPS

Our goal in this section is to prove Proposition D. Thus, we will decompose the unit cube into pieces
on which, after a bi-Lipschitz change of coordinates, our given Lipschitz map can be supplemented
by the projection to the x-axis to form a bi-Lipschitz map.

For the entirety of Section 7, let Q0 be the unit cube of Rn+m and f : Q0 → X be a 1-Lipschitz
mapping into a metric space.

Remark 7.1. No condition on Hn(f(Q0)) is assumed for this particular section.

These are the same standing assumptions as in Section 6.
Recall the definition of the collection of coordinate n-planes P in (6.1). Let P0 ∈ P denote the span

of the first n standard basis vectors in Rn+m. Thus, if we write Rn+m = Rn × Rm in the usual way,
then πP0(x, y) = x and πP⊥

0
(x, y) = y.

Note that the maps
(x, y) 7→ (f(ϕ−1

i (x, y)), y),

described in Proposition D, which we will discuss below, can be written using this notation as

(f ◦ ϕ−1
i , πP⊥

0
).

As one final remark before beginning the proof, part of the conclusion of Proposition D is that the
sets Fi and G we construct will be Borel. However, if Fi is one of the sets in the proposition, then Fi

has the same property, so this will not be a concern in the remainder of the proof.
We now begin the proof of Proposition D in earnest, which will take a number of steps. Fix a

parameter α > 0 as in the statement of the proposition.
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A number of constants, such as C0 defined in (2.2), depend only on n and m, and will often be
suppressed using the ≲n,m notation.

At the moment we fix

(7.1) α′ = α/(10C),

where C ≥ 1 is larger than the implied constant in Lemma 3.4, which depends only on n+m. Thus,
α′ depends only on α, n,m.

The most important further positive constants we will define will be δ, chosen sufficiently small
depending only on α, n, and m; δ′ chosen sufficiently small depending only on α, n,m, and δ; and ϵ,
chosen sufficiently small depending on α, n,m, δ, and δ′. The needed requirements will be specified
in the course of the proof. A number of other constants will be defined based on these as we go.

Recall that for each cube Q ∈ ∆, we have fixed a seminorm ∥ · ∥Q that minimizes the quantity
md(C0Q).

We now define three sub-collections of cubes in ∆ that we will use in the remainder of the proof.

Definition 7.2. Given positive constants δ and ϵ as above, define:
• Qmd := {Q ∈ ∆ : md(C0Q) ≥ ϵ}.
• Qcompressed := {Q ∈ ∆ : md(C0Q) < ϵ and each plane P ∈ P contains a unit vector vP ∈
P with ∥vP∥Q < δ}.

• Qgood := ∆ \ (Qmd ∪Qcompressed).

Thus, the fact that a given cube Q ∈ Qgood means that

md(C0Q) < ϵ

and that there is an n-plane PQ ∈ P such that

(7.2) ∥v∥Q ≥ δ for all v ∈ PQ.

We assign to each cube Q ∈ Qgood a fixed coordinate n-plane PQ ∈ P with the above property.

7.1. Initial decomposition of Q0 into starting cubes. We begin with the following initial decompo-
sition of Q0.

Lemma 7.3. There is a constant K1 = K1(α, δ, ϵ, n,m) such that

Hn,m
∞

f, ⋃
Q∈∆k\Qgood

Q

 < α′

for some k ≤ K1.

Proof. Fix K1 ∈ N arbitrary for the moment.
Then, using Theorem 2.2,

K1∑
k=1

∑
Q∈∆k∩Qmd

|Q| ≲n,m,ϵ 1.
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Therefore, for some choice of 1 ≤ k ≤ K1,

Hn,m
∞ (f,

⋃
Q∈∆k∩Qmd

Q) ≤
∑

Q∈∆k∩Qmd

|Q| ≲n,m,ϵ
1

K1

.

Furthermore, Lemma 6.1 implies that

Hn,m
∞

f, ⋃
Q∈∆k∩Qcompressed

Q

 ≲n,m δ + ϵ.

It follows that

Hn,m
∞

f, ⋃
Q∈∆k\Qgood

Q

 < α′

if K1 is chosen large depending on n,m, α, α′, and ϵ, and δ and ϵ are small depending on n,m, α.
(This uses Lemma 3.2.)

□

7.2. Stopping time argument. Let k be as in Lemma 7.3. Let Q0 be a cube in ∆k ∩ Qgood, which
will be fixed for the next few subsections. We will view Q0 as the top cube of a certain stopping time
argument.

The fact that Q0 ∈ Qgood means that

md(C0Q
0) < ϵ

and that there is an n-plane PQ0 ∈ P such that

∥v∥Q0 ≥ δ for all unit v ∈ PQ0 .

Let S0 = {Q0}. We inductively define collections Si ⊆ Qgood, each of which consists of pairwise
disjoint cubes, as follows. Assume we have defined

Si−1 = {Qi−1
1 , . . . , Qi−1

ki−1
}.

A cube Q will be placed in Si if it satisfies the following conditions:
(1) Q ∈ Qgood.
(2) Q ⊆ Qi−1

j for some cube Qi−1
j ∈ Si−1.

(3) there exists a unit vector v ∈ PQi−1
j

with

∥v∥Q < δ′,

(4) Q is a maximal sub-cube of Qi−1
j satisfying (1) and (3).

The above conditions define a disjoint family of cubes Si with the property that each cube of Si is
in Qgood and is contained in a cube of Si−1.

One can view the above construction of the families Si in the following way: We begin with a
starting cube Q0 ∈ Qgood with an associated “good plane” PQ0 , in the sense that (7.2) holds for Q0

and PQ0 . We proceed down each branch of the tree of descendants of Q0. We stop at the first time we
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see a cube Q1 ∈ Qgood for which PQ0 is a “bad plane” for Q1, in the sense that there is a unit vector
v ∈ PQ0 such that

∥v∥Q1 < δ′.

In that case, we add Q1 to S1, find a new good plane PQ1 for Q1, and continue the process. The largest
good descendant of Q1 for which PQ1 is no longer a good plane will be added to S2, etc.

Thus, cubes in S := ∪∞
i=1S

i are those good cubes for which the appropriate plane “switches” to
another element of P , in a quantitative way.

7.3. Packing condition. Fix a k as in Lemma 7.3 and Q0 ∈ ∆k ∩Qgood.
Our next goal is to prove that most points of Q0 cannot lie in too many nested cubes of S, i.e., that

Si for large i has small Hn+m-measure.

Lemma 7.4. There is a choice of K = K(n,m, α′, δ, δ′, ϵ) ∈ N such that

Hn+m
(
∪Q∈SKQ

)
< α′Hn+m(Q0).

The main step in the proof of Lemma 7.4 is the following.

Lemma 7.5. Let Q ∈ Si for some i ≥ 1. Then the collection of all R ∈ Si+1 that are contained in Q
has

Hn+m

 ⋃
R∈Si+1,R⊆Q

R

 < (1− η)Hn+m(Q),

for some η = η(ϵ, δ, n,m) > 0.

Proof. Assume that Q = Q0 for convenience; we can achieve this by simply rescaling. Let P = PQ

as in (7.2).
Let Py = (P + y) ∩Q for y ∈ P⊥ ∩ [0, 1]m. Note that each Py is isometric to the unit cube of Rn.

It will also be convenient to assume that no component of y is of the form k
2n

for any k, n ∈ Z, so that
Hn-a.e. point of Py is in at most one dyadic cube of any given scale.

We first give a lower bound on the size of the image of Py.

Claim 7.6. We have

(7.3) Hn
∞(f(Py)) ≥ (δ − 2C0ϵ)

n.

Proof of Claim 7.6. Observe that if F and F ′ are any pair of opposite (n−1)-dimensional faces of the
unit n-cube Py, then

dist(f(F ), f(F ′)) ≥ δ − 2C0ϵ,

otherwise a vector v ∈ P from a point of F to a point of F ′ would have ∥v∥Q < δ ≤ δ|v|, contradicting
the definition (7.2) of PQ for Q ∈ Si ⊆ Qgood. Equation (7.3) then follows from [14, Corollary
1.6]. □

We next argue an upper bound on the size of the images of Py ∩R, for sub-cubes R ∈ Si+1 that are
contained in Q.
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Claim 7.7. Let R ∈ Si+1 be contained in Q. There is a constant Cn,m depending only on n and m
such that

(7.4) Hn
∞(f(Py ∩R)) ≤ Cn,m(δ

′ + ϵ)side(R)n.

Proof of Claim 7.7. Since R ∈ Si+1, there is a unit vector v ∈ P such that

∥v∥R < δ′.

Let P ′ be the affine (n− 1)-plane inside Py that is orthogonal to v and passes through the center of
the n-dimensional cube Py ∩R. Let t = C0(δ

′√n+ ϵ).
We can cover P ′ ∩ C0R, and hence f(P ′ ∩ C0R), by ≲n,m t−(n−1) balls of radius tside(R). If

x ∈ Py∩R, then the nearest point x′ to x in P ′ lies in P ′∩C0R, and has x−x′ parallel to v. Therefore

d(f(x), f(x′)) < ∥x− x′∥Q + C0ϵside(R) < δ′|x− x′|+ C0ϵside(R) ≤ tside(R).

Thus,

f(Py ∩R) ⊆ Ntside(R)(f(P
′ ∩ C0R)) ⊆ the union of ≲n,m t−(n−1) balls of radius 2tside(R).

Hence

Hn
∞(f(Py ∩R)) ≲n,m t−(n−1)(2tside(R))n = 2ntside(R),

which proves (7.4). □

We will need the following basic fact: For each n ∈ N, there is a constant λn > 0 such that, if R is
a cube in Rn, then

(7.5) Hn
∞(R) = λnside(R)n.

Indeed, up to scaling, all such cubes are isometric, so it suffices to understand that the unit cube in Rn

has positive, finite Hausdorff n-content, which is standard.

We now decompose Py as

Py =
⋃

R∈Si+1,R∩Py ̸=∅

(R ∩ Py) ∪
⋃

R′ /∈Si+1,R∩Py ̸=∅

(R ∩ Py),

where R′ are a collection of almost-disjoint dyadic cubes chosen to cover Py \ ∪R∈Si+1(R ∩ Py).
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Therefore, using Claims 7.6 and 7.7, and (7.5), we obtain:

(δ − 2C0ϵ)
n ≤ Hn

∞(f(Py))

≤
∑

R∈Si+1,R∩Py ̸=∅

Hn
∞(f(R ∩ Py)) +

∑
R′ /∈Si+1,R∩Py ̸=∅

Hn
∞(f(R′ ∩ Py))

≤ Cn,m(δ
′ + ϵ)

∑
R∈Si+1,R∩Py ̸=∅

side(R)n + λn
∑

R′ /∈Si+1,R∩Py ̸=∅

side(R′)n

= Cn,m(δ
′ + ϵ)

∑
R∈Si+1,R∩Py ̸=∅

side(R)n + λn

1−
∑

R∈Si+1,R∩Py ̸=∅

side(R)n


= λn − (λn − Cn,m(δ

′ + ϵ))
∑

R∈Si+1,R∩Py ̸=∅

side(R)n

Rearranging the above inequality yields∑
R∈Si,R∩Py ̸=∅

side(R)n ≤ λn − (δ − 2C0ϵ)
n

λn − Cn,m(δ′ + ϵ)
.

Since δ′ and ϵ are chosen depending on δ, n,m, we may force the fraction on the right hand side to be
bounded strictly away from 1, i.e., so that

(7.6)
∑

R∈Si+1,R∩Py ̸=∅

side(R)n ≤ 1− η,

for η = η(n,m, δ, δ′, ϵ) > 0.
We now apply Fubini’s theorem to estimate the (n+m)-dimensional volume of the set ∪R∈Si,R⊆QR

by integrating (7.6) over y ∈ [0, 1]m. (Note that the set of dyadic points y that we excluded in proving
(7.6) is a set of Hm-measure zero.) Writing | · | for Lebesgue measure in Rn+m, we obtain∣∣∪R∈Si+1,R⊆QR

∣∣ ≤ ˆ
y∈[0,1]m

∑
R∈Si+1,R∩Py ̸=∅

side(R)n ≤ 1− η = (1− η)|Q|.

Therefore
Hn+m

(
∪R∈Si+1,R⊆QR

)
≤ (1− η)Hn+m(Q),

as desired. □

We now complete the proof of Lemma 7.4.

Proof of Lemma 7.4. By Lemma 7.5, we have

Hn+m
(
∪Q∈Si+1Q

)
≤ (1− η)Hn+m

(
∪Q∈SiQ

)
for each i ≥ 0, where η > 0 is the constant from Lemma 7.5.

It follows that, choosing K large enough so that (1− η)K < α′, we obtain

Hn+m
(
∪Q∈SKQ

)
< α′Hn+m(Q0).
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The choice of K depends therefore on α′ and η(n,m, δ, δ′, ϵ). This completes the proof. □

7.4. Splitting and definition of the sets. We continue to work with a fixed Q0 ∈ ∆k ∩ Qgood as in
section 7.2, where k comes from Lemma 7.3.

In section 7.2, we defined collections of cubes S0, S1, S2, · · · ⊆ Qgood ⊆ ∆. Each collection Si

consists of pairwise disjoint dyadic cubes contained in Q0, and each cube of Si+1 is contained a cube
of Si.

In this subsection, we split each Si into a controlled number of disjoint sub-collections Si
j , using

Lemma 5.2. We will then use the Si
j to define the sets required by Proposition D.

For the first step, fix an odd integer Λ > 3, which will depend on δ′, n, and m, and let α′′ = α′

K
,

which depends on α and the constant K = K(n,m, δ, δ′, ϵ) from Lemma 7.4.
Apply Lemma 5.2 to each collection Si, with the parameter η set as α′′ and expansion constant Λ.
This partitions each Si into a controlled number of families Si

j (1 ≤ j ≤ ki ≤ k0(α
′′, n,m)) that

are Λ-disjoint, and a garbage set Gi ⊆ Si whose total Hn+m-measure is less than α′′.
Consider the collection of “words” w taken from the set

(7.7) W =
K⋃
ℓ=0

ℓ∏
i=1

{1, 2, . . . , ki}.

In other words, a word w ∈ W is of the form (j0, j1, j2, . . . , jℓ), where 0 ≤ ℓ ≤ K and 1 ≤ ji ≤ ki
for each i ∈ {1, . . . , ℓ}. (The number of words in W is controlled based only on K and k0, hence
independently of Q0.)

Fix a word w = (j0, j1, j2, . . . , jℓ) ∈ W . This yields collections of cubes:

(7.8) T 0
w = {Q0}

(7.9) T i
w = {Q ∈ Si

ji
: Q ⊆ R for some R in T i−1

w }.
These collections have the following properties for i ≤ ℓ:

• Each T i
w is a sub-collection of Si

ji
⊆ Si.

• If Q,Q′ ∈ T i
w, then ΛQ ∩ ΛQ′ = ∅.

• If i < ℓ and Q ∈ T i+1
w , then Q is contained in a cube of T i

w.
• If Q ∈ Si \Gi, then Q ∈ T i

w for some w ∈ W .
Independently of the above constructions, we may now also apply Lemma 5.1 with parameter η =

α′. This yields a decomposition

(7.10) Q0 = A1 ∪ A2 ∪ · · · ∪ AMmd ∪Gmd,

where Ai have the property described in Lemma 5.1, the number Mmd depends on α′, ϵ, and n +m,
and Hn+m

∞ (Gmd) < α′.
We are now ready to define the sets appearing in Proposition D.

Definition 7.8 (Definition of the sets in Proposition D). Let k be as in Lemma 7.3 and let Q0 ∈
Qgood ∩ ∆k. Let Mmd be as in Lemma 5.1 and let p ∈ {1, . . . ,Mmd}. Let w = (j0, . . . , jℓ) ∈ W as
defined in (7.7).
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We define a set F (Q0, p, w) ⊆ Q0 as follows:

F (Q0, p, w) = Ap ∩

 ℓ⋂
i=1

 ⋃
Q∈T i

w

Q

 \

 ⋃
Q∈Sℓ+1

Q ∪
⋃

Q∈Qcompressed

(3Q)

 .
Here T i

w refer to the cube collections defined in (7.8) and (7.9).

Note that F (Q0, p, w) ⊆ Q0, and its dependence on Q0 is implicit in our construction of the sets Si

and T i
w.

To clarify Definition 7.8, a point x ∈ Q0 is in F (Q0, p, w) if and only if the following conditions
hold:

(i) The point x is in the set Ap from our use of Lemma 5.1 in (7.10).
(ii) For each 0 ≤ i ≤ ℓ, x is contained in a cube of the collection T i

w, where T 0
w = {Q0}.

(iii) The point x is not contained in any cube of Sℓ+1. (Hence, x is contained in exactly ℓ + 1 cubes
of S, those in (ii).)

(iv) The point x is not contained in the triple of any cube of Qcompressed.
These sets F (Q0, p, w), for each choice of “top cube” Q0 provided by Lemma 7.3, each p ∈

{1, . . . ,Mmd}, and each w ∈ W , will comprise the sets (called Fi) in Proposition D. The follow-
ing lemma reflects the fact that there are a controlled number of such sets, and that property (ii) of
Proposition D holds.

Lemma 7.9. Let k be as in Lemma 7.3. As Q0 ranges over all cubes in Qgood ∩ ∆k, p ranges from
1 to Mmd, and w ∈ W the number of sets F (Q0, p, w) is controlled by a constant depending only on
n,m, α, and our previously defined constants δ, δ′, ϵ,K,K1, k0.

Furthermore, we have

(7.11) Hn,m
∞

f,Q0 \
⋃

Q0∈Qgood∩∆k

Mmd⋃
p=1

⋃
w∈W

F (Q0, p, w)

 < α.

Proof. The number of choices of Q0 ∈ Qgood ∩ ∆k is controlled by |∆k| = 2(n+m)k ≤ 2(n+m)K1 ,
where K1 is the constant from Lemma 7.3. The number of choices for p ∈ {1, . . . ,Mmd} is controlled
by Mmd, which depends only on ϵ and n +m. Lastly, the number of choices for w ∈ W is bounded
by a constant depending on the constants K from Lemma 7.4 and the constant k0 arising from Lemma
5.2 with parameters depending on α′, δ, n,m.

It follows that the number of sets F (Q0, p, w) is controlled as desired.
We now focus on bounding the mapping content of the remaining points that are not in any set

F (Q0, p, w). This is just a matter of assembling some prior results.
If a set x ∈ Q0 is not in

⋃
Q0∈Qgood∩∆k

⋃
Fw⊆Q0 Fw, then there are a few options:

(1) x may not be in any of the sets A1, . . . AMmd given by Lemma 5.1 with parameter η = α′.
(2) x may be in a cube Q of ∆k \ Qgood,
(3) x may be in one of the garbage sets Gi, for i ∈ {1 . . . K},
(4) x may be in a cube of SK+1, where K is the constant from Lemma 7.4.
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(5) x may be in a triple of a cube of Qcompressed.
The set of points satisfying (1) has total Hn+m

∞ less than α′, by Lemma 5.1.
The set of points satisfying (2) has total Hn,m

∞ (f, ·) less than α′, by Lemma 7.3.
The set of points satisfying (3) has total Hn+m-measure less than Kα′′ = α′, since there are at most

K sets Gi and each has Hn+m-measure less than α′′ by our use of Lemma 5.2.
The set of points satisfying (4) has total Hn+m-measure less than α′, by Lemma 7.4.
Lastly, the set of points satisfying (5) has total Hn,m

∞ (f, ·) less than C(ϵ+ δ), by Lemma 6.1, where
C depends on n and m.

Thus by ensuring that δ and ϵ are small depending only on α, n, and m, recalling the definition of
α′ from (7.1), and using Lemmas 3.2 and 3.4, we obtain (7.11).

□

7.5. Construction of the bi-Lipschitz mappings. For the remainder of this section, we fix k as in
Lemma 7.3, Q0 ∈ Qgood ∩∆k, p ∈ {1, . . . ,Mmd}, and w = (j0, . . . , jℓ) ∈ W as in (7.7).

We then obtain a set F = F (Q0, p, w) as in Definition 7.8, which will be fixed for the remainder
of the section. We will define a bi-Lipschitz mapping ϕ : F → ϕ(F ) ⊆ Q0. The collection of such
mappings ϕ for all choices of F will comprise the mappings called ϕi in Proposition D.

Recall the cube collections T i
w defined in (7.8) and (7.9). By definition of F , we have

F ⊆ ∩ℓ
i=0

(
∪Q∈T i

w
Q
)
.

As noted below (7.9), the collections T 0
w, . . . , T

ℓ
w satisfy:

• Each T i
w is a sub-collection of Si

ji
⊆ Si.

• If Q,Q′ ∈ T i
w, then ΛQ ∩ ΛQ′ = ∅.

• If Q ∈ T i+1
w , then Q is contained in a cube of T i

w.
Recall that each cube Q in any T i

w is also, by definition, an element of Qgood. Thus, there is a
seminorm ∥ · ∥Q satisfying

sup
x,y∈C0Q

|d(f(x), f(y))− ∥x− y∥Q| ≤ md(C0Q)side(C0Q) < C0ϵside(Q).

Moreover, as noted in (7.2), there is a coordinate n-plane PQ ∈ P such that

∥v∥Q ≥ δ for all unit vectors v ∈ PQ.

For each 1 ≤ i ≤ ℓ, let ϕi :
(
∪Q∈T i

w
Q
)
→ Q0 be a map defined as follows: On each cube Q ∈ T i

w,
the restriction ϕi|Q of ϕi to Q is an affine map AQx+ bQ such that AQ is linear and orthogonal,

ϕi|Q(Q) = Q

and
AQ(PQ) = PQ′ ,

where Q′ is the unique cube of T i−1
w containing Q. Note that PQ and PQ′ are coordinate n-planes (i.e.,

elements of P), so such affine mappings exist.
Similarly, we define ϕ0 : Q0 → Q0 to be an affine map Ax+ b, with A orthogonal, such that

ϕ0(Q0) = Q0
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and
A(PQ0) = P0.

Recall that P0 denotes the span of the first n standard basis vectors in Rn+m.
Thus, each ϕi “rotates in place” the cubes Q ∈ T i

w. The fact that Λ > 3 and ΛQ∩ΛQ′ = ∅ for each
Q,Q′ ∈ T i

w implies that ϕi is well-defined and bi-Lipschitz on the set ∪Q∈T i
w
Q ⊇ F , with an absolute

bi-Lipschitz constant. Moreover, ϕi(∪Q∈T i
w
Q) = ∪Q∈T i

w
Q, since ϕi fixes each cube of T i

w setwise.
Therefore we can define ϕ : F → Q0 by

(7.12) ϕ = ϕ0 ◦ ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕℓ.

Since each ϕi is bi-Lipschitz on F with absolute constant, the map ϕ is bi-Lipschitz on F with
constant depending only on K, hence only on α, n,m, δ, δ′, ϵ.

Informally, ϕ acts on F as a sort of “clockwork mechanism”. It rotates small scale cubes, then
larger scale cubes, etc. with the goal of “lining up” the planes PQ to match P0. We will see this in the
next section.

7.6. Conclusion of the proof of Proposition D. We continue to fix the set F = F (Q0, p, w) and the
map ϕ defined in (7.12).

To complete the proof of Proposition D, we will show that the map

h̃ = (f ◦ ϕ−1, πP⊥
0
)

is (quantitatively) bi-Lipschitz on ϕ(F ). Since all the component functions are separately Lipschitz,
with bounds depending only on our chosen constants, it is immediate that h̃ is itself Lipschitz, with
constant depending only on α, n, m (and our previously chosen constants, which ultimately will only
depend on these). The remaining work will be to show the lower bound.

Let x and y be distinct points of F , so ϕ(x), ϕ(y) ∈ ϕ(F ). Let Q be a cube of minimal side length
such that 3Q contains both x and y. Since x, y ∈ F ⊆ Q0, we may take Q ⊆ Q0. Observe that

(7.13)
diam(3Q)

|x− y|
≤ diam(C0Q)

|x− y|
≤ C ′

n,m

where C ′
n,m is a dimensional constant depending only on n and m.

Note also that by definition of F , we must have that

Q ∈ Qgood.

Indeed, no points of F can be in a triple of a cube in Qcompressed, and the fact that x, y ∈ F ⊆ Ap

guarantees that Q /∈ Qmd by Lemma 5.1. Thus, Q ∈ Qgood.
Let i0 ∈ {0, 1, . . . , ℓ} be the largest index such that Q ⊆ Qi0 for some Qi0 ∈ T i0

w .
We begin with the following:

Lemma 7.10. With x, y, i0, and Qi0 as above, we have

|πP⊥
0
(ϕ(x))− πP⊥

0
(ϕ(y))| ≥ |πP⊥

Qi0

(x)− πP⊥
Qi0

(y)| −
2C ′

n,m

Λ
|x− y|.

Here C ′
n,m is the dimensional constant defined in (7.13).
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Proof. Note that the map
ψ = ϕ0 ◦ ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕi0 ,

is simply an affine map of full rank when restricted to Qi0 .
By definition of ϕ0, ϕ1, ϕ2, etc., we have

(ψ|Qi0
)(PQi0

) is parallel to P0

and therefore
(ψ|Qi0

)(P⊥
Qi0

) is parallel to P⊥
0 .

By standard linear algebra, there is therefore an isometry ι : P⊥
Qi0

→ P⊥
0 such that

πP⊥
0
◦ (ψ|Qi0

) = ι ◦ πP⊥
Qi0

.

We now consider two cases: i0 = ℓ or i0 < ℓ.
If i0 = ℓ, then ψ = ϕ and it follows that

|πP⊥
0
(ϕ(x))− πP⊥

0
(ϕ(y))| = |ι ◦ πP⊥

Qi0

(x)− ι ◦ πP⊥
Qi0

(y)|

= |πP⊥
Qi0

(x)− πP⊥
Qi0

(y)|,

which proves the lemma in this case.
If i0 < ℓ, then let ψ′ = ϕi0+1 ◦ · · · ◦ ϕℓ, so that ϕ = ψ ◦ ψ′. Then

|πP⊥
0
(ϕ(x))− πP⊥

0
(ϕ(y))| = |ι ◦ πP⊥

Qi0

◦ ψ′(x)− ι ◦ πP⊥
Qi0

◦ ψ′(y)|(7.14)

= |πP⊥
Qi0

◦ ψ′(x)− πP⊥
Qi0

◦ ψ′(y)|(7.15)

Now, x and y are in different cubes Qx
i0+1 and Qy

i0+1 of T i0+1
w (by maximality of i0). Since ψ′ only

rotates cubes at levels i0 + 1, i0 + 2, etc., we see that

ψ′(x) ∈ Qx
i0+1 and ψ′(y) ∈ Qy

i0+1.

Moreover, Qx
i0+1 and Qy

i0+1 are contained in 3Q, and ΛQx
i0+1 and ΛQy

i0+1 are disjoint. Therefore,

|ψ′(x)− x| ≤ diam(Qx
i0+1) ≤

1

Λ
diam(ΛQx

i0+1) ≤
1

Λ
diam(3Q) ≤

C ′
n,m

Λ
|x− y|,

with C ′
n,m as in (7.13). The analogous statement holds for |ψ′(y)− y|.

Therefore, using (7.15),

|πP⊥
0
(ϕ(x))− πP⊥

0
(ϕ(y))| = |πP⊥

Qi0

◦ ψ′(x)− πP⊥
Qi0

◦ ψ′(y)|

≥ |πP⊥
Qi0

(x)− πP⊥
Qi0

(y)| − |ψ′(x)− x| − |ψ′(y)− y|

≥ |πP⊥
Qi0

(x)− πP⊥
Qi0

(y)| −
2C ′

n,m

Λ
|x− y|.

This proves Lemma 7.10. □
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As Q ∈ Qgood, it has a good approximating seminorm for f , namely ∥ · ∥Q. By the stopping time
construction of the sets Si, we must have that

∥v∥Q ≥ δ′|v|
for all v ∈ PQi0

. (If this did not hold, thenQwould have been added to Si0+1, violating the maximality
of i0.)

Write w = x− y = w1 + w2, where w1 ∈ PQi0
and w2 ∈ P⊥

Qi0
. Then, using Lemma 2.3,

∥w∥Q + |w2| ≥ ∥w1∥Q − ∥w2∥Q + |w2| ≥ δ′|w1| − C0ϵside(Q) ≥ δ′|w1| − C ′
n,mϵ|w|

and, trivially,
∥w∥Q + |w2| ≥ |w2|,

from which it follows that

(7.16) ∥w∥Q + |w2| ≳n,m δ′|w| − C ′
n,mϵ|w|,

with the implied constant depending only on n and m.
Using Lemma 7.10 and (7.16), we obtain

d(h̃(ϕ(x)), h̃(ϕ(y))) ≳ d(f(x), f(y)) + |πP0(ϕ(x))− πP0(ϕ(y)))|

≥ ∥x− y∥Q − C0ϵside(Q) + |πP⊥
Qi0

(x)− πP⊥
Qi0

(y)| −
2C ′

n,m

Λ
|x− y|

≥ ∥w∥Q − C0C
′
n,mϵ|w|+ |w2| −

2C ′
n,m

Λ
|w|

≳n,m δ′|w| −
(
C0C

′
n,mϵ+

2Cn,m

Λ

)
|w|

≳ |x− y|
≳ |ϕ(x)− ϕ(y)|

The penultimate line follows by taking ϵ > 0 sufficiently small and Λ > 3 sufficiently large, depending
on n,m, δ′. The final line follows from the fact that ϕ is bi-Lipschitz.

This verifies property (i) of Proposition D, and so along with Lemma 7.9 completes the proof of
this proposition.

8. PROOF OF THEOREM A

We now combine Propositions C and D to prove Theorem A.

Proof of Theorem A. Let f : Q0 → X satisfy the assumptions of Theorem A. Fix γ > 0.
Without loss of generality, we may assume that

Hn(f(Q0)) ≥ Hn
∞(f(Q0)) > 0,

otherwise the conclusion of the theorem is trivial by Lemma 3.1.
By Proposition D, we may decompose Q0 as

Q0 = F1 ∪ F2 ∪ · · · ∪ FN ∪G,
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where

(8.1) Hn,m
∞ (f,G) < γ/2

and, for each i ∈ {1, . . . , N}, there is a bi-Lipschitz map ϕi : Fi → Q0 such that the map

(8.2) (f ◦ ϕ−1
i , πP⊥

0
),

i.e., the map
(x, y) 7→ (f(ϕ−1

i (x, y)), y),

is bi-Lipschitz on ϕi(Fi).
Apply Corollary 2.5 to each map ϕi on Fi with parameter κ = γ/(10Cn,mN), where Cn,m is the

implied constant from Lemma 3.4. This decomposes each set Fi into a controlled number of sets

Fi = Fi,1 ∪ · · · ∪ Fi,Mi
∪Gi

such that each map ϕi|Fi,j
admits a globally bi-Lipschitz extension

ϕi,j : Rn+m → Rn+m

and

(8.3) Hn,m
∞ (f,Gi) ≤ Cn,mHn+m(Gi) <

γ

10N
for each i ∈ {1, . . . , N},

using Lemma 3.4.
Note that the bi-Lipschitz constants of ϕi,j and the constants Mi are controlled depending only on

γ, n, and m. By passing to the closure, we may assume without loss of generality that the sets Fi,j are
each compact.

Write f̃i,j = f ◦ ϕ−1
i,j : ϕi,j(Fi,j) → X . The fact that the map in (8.2) is bi-Lipschitz on ϕi,j(Fi,j)

allows us to apply Proposition C to the map f̃i,j on the set ϕi,j(Fi,j). (Note that, while f̃i,j is not
necessarily 1-Lipschitz, its Lipschitz constant is controlled depending on n,m, γ.)

We thus apply Proposition C to the map f̃i,j on the set ϕi,j(Fi,j) with parameter α = αi,j > 0
sufficiently small, depending on n, m, γ, and the bi-Lipschitz constant of ϕi,j (and thus ultimately
only on n, m, and γ).

This decomposes each set ϕi,j(Fi,j) into

ϕi,j(Fi,j) = Ẽ1
i,j ∪ Ẽ2

i,j ∪ · · · ∪ ẼMi,j

i,j ∪ G̃i,j,

where each Ẽk
i,j is a Hard Sard set for f̃i,j and

(8.4) Hn+m(G̃i,j) < αi,j.

In particular,

(8.5) Hn,m
∞ (f, ϕ−1

i,j (G̃i,j)) ≤ Hn+m(ϕ−1
i,j (G̃i,j)) <

γ

10NMi

,

if we choose αi,j sufficiently small, using Lemma 3.4 and the fact that ϕi,j is quantitatively bi-
Lipschitz.



44 GUY C. DAVID AND RAANAN SCHUL

Note that Mi,j and the Hard Sard constants CLip for Ẽk
i,j are controlled depending only on γ, N ,

and L, and hence only on γ. Let gki,j denote the globally CLip-bi-Lipschitz Hard Sard map for f̃i,j on
the set Ẽk

i,j .
Recall that, because of condition (1.3) in Proposition C, we know that gki,j|Ẽk

i,j
is a “shear” that

preserves the y-coordinate. In particular, if (x, y) ∈ Ẽk
i,j , then

(8.6) gki,j(x, y) = (x′, y) for some x′ ∈ Rn.

Let Ek
i,j = ϕ−1

i,j (Ẽ
k
i,j). Note that the number of these sets was controlled in each step, depending

ultimately only on n, m, and γ.
We now claim that each pair (Ek

i,j, g
k
i,j ◦ ϕi,j) is a Hard Sard pair for our original map f . Let us fix

indices i, j, k as above and call this pair (E, g ◦ ϕ).
First of all, Condition (i) of Definition 1.3 holds, because g and ϕwere constructed above as globally

defined bi-Lipschitz mappings with quantitative constants on Rn+m.
We next verify that Condition (ii) of Definition 1.3 holds for the pair (E, g ◦ ϕ). Fix (x, y) and

(x′, y′) in g ◦ ϕ(E). By construction (ϕ(E), g) is a Hard Sard pair for f ◦ ϕ−1. Therefore,

x = x′ ⇔ f ◦ ϕ−1 ◦ g−1(x, y) = f ◦ ϕ−1 ◦ g−1(x′, y′) ⇔ f ◦ (g ◦ ϕ)−1(x, y) = f ◦ (g ◦ ϕ)−1(x′, y′),

which exactly verifies Condition (ii) for the Hard Sard pair (E, g ◦ ϕ) for f .
Lastly, we verify that Condition (iii) of Definition 1.3 holds for the pair (E, g ◦ ϕ). In other words,

we verify that the mapping

(x, y) 7→ (f ◦ (g ◦ ϕ)−1(x, y), y)

is bi-Lipschitz on g(ϕ(E)), with quantitative control on the bi-Lipschitz constant. We will again use
the fact that (ϕ(E), g) is a Hard Sard pair for f ◦ ϕ−1, as well as property (8.6) of g.

Consider two points (x1, y1) and (x2, y2) in g(ϕ(E)). Using (8.6), we can write

g−1(xi, yi) = (x′i, yi) for i = 1, 2.

Then

d
((
f ◦ (g ◦ ϕ)−1(x1, y1), y1

)
,
(
f ◦ (g ◦ ϕ)−1(x2, y2), y2

))
= d

((
f ◦ ϕ−1(x′1, y1), y1

)
,
(
f ◦ ϕ−1(x′2, y2), y2

))
≈ |(x′1, y1)− (x′2, y2)|
≈ |(x1, y1)− (x2, y2)|.

The second line is because (ϕ(E), g) is a Hard Sard pair for f ◦ ϕ−1, and the third is because g is
bi-Lipschitz. All implied constants depend only on n, m, and the Hard Sard constant associated to
(ϕ(E), g), which we controlled depending on n,m, and γ. This verifies Condition (iii) of Definition
1.3 for (E, g ◦ ϕ).

Thus, each pair (Ek
i,j, g

k
i,j ◦ ϕi,j) defined above is a Hard Sard set for f . From our work above, all

Hard Sard constants CLip and the total number of these sets is controlled, depending only on γ, n, and
m.
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To prove Theorem A, it remains to control the size of the “garbage set” Q0 \ ∪Ek
i,j . This set can be

written as

Ĝ = G ∪
N⋃
i=1

Gi ∪
N⋃
i=1

Mi⋃
j=1

ϕ−1
i,j (G̃i,j).

Thus, we have
Hn,m

∞ (f, Ĝ) < γ

using equations (8.1), (8.3), (8.5), and Lemma 3.2.
This completes the proof of Theorem A.

□

9. PROOF OF THEOREM B

In this section, we prove Theorem B.

Proof of Theorem B. Let Q0 = [0, 1]1+m and let f : Q0 → X be a 1-Lipschitz map into a metric space
X .

Suppose that H1,m
∞ (f,Q0) < η for some η > 0. We will show that diam(f(Q0)) < η′, for some

constant η′ depending only on η andm and tending to 0 as η tends to 0. This suffices to prove Theorem
B.

The fact that H1,m
∞ (f,Q0) < η means that there is a cover Q of Q0 by almost-disjoint dyadic cubes

satisfying
η >

∑
Q∈Q

H1
∞(f(Q))side(Q)m ≈

∑
Q∈Q

diam(f(Q))side(Q)m.

In the equality, we use the fact that for compact, connected sets (like f(Q)), one-dimensional Haus-
dorff content is comparable to diameter.

If m = 0, the result holds, since

diam(f(Q0)) ≲ H1
∞(f(Q0)) ≤

∑
Q∈Q

H1
∞(f(Q)) < η.

For the remainder of the proof, we therefore assume m ≥ 1.
Fix δ > 0, to be specified later, and let

Qδ = {Q ∈ Q : diamf(Q) ≤ δside(Q)}.
Let A be the union of all cubes in Q \ Qδ. Then

(9.1) H1+m(A) = H1+m

 ⋃
Q∈Q\Qδ

Q

 ≤
∑

Q∈Q\Qδ

δ−1diam(f(Q))side(Q)m ≲
η

δ
.

For each i ∈ {1, . . . , 1 +m} and y = (y1, . . . , ym) ∈ [0, 1]m, consider the line segment

Ly
i = {(y1, y2, . . . , yi−1, t, yi, . . . , ym) : t ∈ [0, 1]} ⊆ Q0.

In other words, Ly
i is simply the line segment in coordinate direction i emitting from point y in the

appropriate orthogonal m-plane.
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By (9.1) and Fubini’s theorem, for each i ∈ {1, . . . , 1 +m}, we have
η

δ
≳ |A| =

ˆ
[0,1]m

H1(Ly
i ∩ A) dy

Fix s ∈ (0, 1), also to be specified below. There is therefore a Borel setKi ⊆ [0, 1]m and an absolute
constant c such that

(9.2) |Ki| > 1− c
η

δs
and

H1(Ly
i ∩ A) ≤ s for all y ∈ Ki.

Without affecting these bounds, we may also assume for technical convenience that no coordinate of
any y ∈ Ki is dyadic, i.e., that if y ∈ Ki then y ̸= a2−b for any integers a and b. This removes only a
set of measure zero from Ki.

With this assumption, we see that, for each i ∈ {1, . . . , 1 +m} and y ∈ Ki, the line Ly
i contains no

non-trivial segment that lies on the boundary of a dyadic cube. Hence, if y ∈ Ki,

1 = length(Ly
i ) =

∑
Q∈Q,Q∩Ly

i ̸=∅

diam(Q)

and
s ≥ length(Ly

i ∩ A) =
∑

Q∈Q\Qδ,Q∩Ly
i ̸=∅

diam(Q).

Given y ∈ Ki, we can therefore write

diam(f(Ly
i )) ≤

∑
Q∈Q,Q∩Ly

i ̸=∅

diam(f(Ly
i ∩Q))(9.3)

=
∑

Q∈Qδ,Q∩Ly
i ̸=∅

diam(f(Ly
i ∩Q)) +

∑
Q∈Q\Qδ,Q∩Ly

i ̸=∅

diam(f(Ly
i ∩Q))(9.4)

≤
∑

Q∈Qδ,Q∩Ly
i ̸=∅

δdiam(Q) + s(9.5)

≤ δ + s(9.6)

It follows from (9.2) that Ki is c
(

η
δs

)1/m-dense in [0, 1]m, for some (new) constant c = cm > 0.
Therefore, for each i, the set

K̂i =
⋃
y∈Ki

Ly
i

is c
(

η
δs

)1/m-dense in Q0.
Consider any p, q ∈ Q0. There is a path γ from p to q in Q0 described as follows:

(i) Travel along a segment of length ≤ c
(

η
δs

)1/m from p to a line Ly
1 ⊆ K̂1,

(ii) Travel along a segment in Ly
1 to a point p1 with π1(p1) = π1(q).

(iii) Travel along a segment of length ≤ c
(

η
δs

)1/m from p1 to a line Ly
2 ⊆ K̂2
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(iv) Travel along a segment in Ly
2 to a point p2 with π2(p2) = π2(q) and |π1(p2)− π1(q)| ≲

(
η
δs

)1/m.
(v) Repeat steps (iii) and (iv) for i = 3, 4, . . . , 1 +m, finally reaching a point p1+m with

|πi(p1+m)− πi(q)| ≲
( η
δs

)1/m

for each i = 1, . . . 1 +m

(vi) Lastly, travel along a segment of length ≲
(

η
δs

)1/m from p1+m to q.
The implied constants here depend only on m.

For each of the m+ 1 segments γi in γ lying inside some Ly
i with y ∈ Ki, we have

diamf(γi) ≤ diam(f(Ly
i )) ≤ δ + s,

using (9.6).
In total, therefore,

d(f(p), f(q)) ≤ diamf(γ)

≲
( η
δs

)1/m

+ (δ + s)

Since p and q were arbitrary points in Q0, we have

diamf(Q0) ≲
( η
δs

)1/m

+ (δ + s).

If we now set
δ = s = η

1
m+2

we obtain
diamf(Q0) ≲ η

1
m+2 + η

1
m+2 .

This proves Theorem B (with η ≈ αm+2). □

10. A COUNTEREXAMPLE IF THE IMAGE SIZE IS NOT CONTROLLED

We show by an explicit construction that the condition Hn(f(Q0)) ≤ 1 is necessary for Theorem A
to hold with quantitative bounds, as stated. Our example will show that even assuming Hn(f(Q0)) <
∞ is not sufficient. Our construction in this section will be in the case n = m = 1, so that below
Q0 = [0, 1]2 is the unit cube in R2.

Proposition 10.1. There is an absolute constant δ > 0 with the following property:
For each k ∈ N, there is a metric space X of finite H1-measure and a 1-Lipschitz map

f : Q0 → X

with

(10.1) H1,1
∞ (f,Q0) ≥ δ > 0,

and such that if E1, . . . , EM are Hard Sard sets for f with constant CLip, and if

H1,1
∞ (f,Q0 \ ∪iEi) < δ/2
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then the number of Hard Sard sets M must satisfy

M ≳CLip
δ2k.

We begin by describing the construction of f , then prove that it has the properties given in Proposi-
tion 10.1. By rescaling, it suffices to construct a 4-Lipschitz map with the above properties, and that
is what we will do.

Let k ∈ N be fixed. We first define the metric space X that our example will map into. The space X
will be a one-dimensional simplicial tree of finite length. To be more precise, first let S denote a “star”
that consists of 2k−1 copies of the interval [0, 2−k] glued at the points 0. We call these the “spikes” of
S.

Now consider 2k−1 copies of S: S0, . . . S2k−1−1, each of which has its own central vertex vi. The
space X then consists of the union of S0, . . . , S2k−1 along with a copy of [0, 1], such that vi is attached
to the point i/2k−1 ∈ [0, 1]. We equip X with the intrinsic path metric, which makes X a geodesic
tree with

(10.2) H1(X) ≈ 2k <∞.

See Figure 1 for a picture of X in the case k = 3.

FIGURE 1. The space X in the case k = 3. Each “spike” has length 1/4 = 2−(k−1).

We now define a mapping f : Q0 → X as follows. First, let

Q ⊆ ∆k

denote the collection of dyadic cubes in ∆k that are the “bottom left” cube in their parent of ∆k−1.
Thus, if Q ∈ Q, then Q is of the form

Qa,b = [(2a)2−k, (2a+ 1)2−k]× [(2b)2−k, (2b+ 1)2−k]

where a, b ∈ {0, . . . , 2k−1 − 1}. Let A be the interior of ∪Q∈QQ, an open set in Q0.
Let π : R2 → R be the projection to the x-coordinate. For Q = Qa,b ∈ Q, we define f |Q = ιQ ◦ π,

where ιQ is an isometry that sends the interval π(Q) = [(2a)2−k, (2a+ 1)2−k] to the bth spike of star
Sa, with ιQ((2a)2−k) = va.

It is not hard to see that f |A is 4-Lipschitz. Therefore, f extends to a 4-Lipschitz mapping of Q0

into the tree X . (See [1, section 2.2.2].)
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Moreover, f |A has the following “coarse injectivity” property: if p and p′ are points in the interiors
of distinct cubes of Q, then f(p) ̸= f(p′). (They map to different spikes.)

We now argue that the restriction of f to A has mapping content bounded below, independent of k.

Lemma 10.2. There is a constant δ > 0, independent of k, such that H1,1
∞ (f, A) ≥ δ.

Proof. Consider any (closed) dyadic cube R ∈ ∆ that intersects A. If side(R) ≤ 2−k, then R is
contained in a cube Q ∈ Q and so

H1
∞(f(R)) ≈ diam(f(R)) = side(R).

If side(R) > 2−k, then there are cubes Qa,b and Qa′,b in Q that intersect R and have

|a2−(k−1) − a′2−(k−1)| ≳ side(R),

with an absolute implied constant. It follows that f(R) intersects the stars Sa and Sa′ , and so

H1
∞(f(R)) = diam(f(R)) ≥ dist(Sa, Sa′) = |a− a′|2−(k−1) ≳ side(R).

Thus, for all cubes R ∈ ∆ that intersect A, we have

H1
∞(f(R)) ≳ side(R).

Hence, if {Rj} is an arbitrary collection of almost-disjoint dyadic cubes covering A, we have∑
j

H1
∞(f(Rj))side(Rj) ≳

∑
j:Rj∩A ̸=∅

side(Rj)
2 ≥ |A| = 1

4
.

Therefore
H1,1

∞ (f, A) ≳ 1.

□

Next, we argue that no Hard Sard set E can have large intersection with A.

Lemma 10.3. If E ⊆ Q0 is a Hard Sard set for f , then |E ∩A| ≲ 2−k. The implied constant depends
only on the Hard Sard constant CLip for E, and not on k.

Proof. As E is also a Hard Sard set for f , we may assume without loss of generality that E = E.
Let g be the CLip-bi-Lipschitz mapping associated to E and let F = f ◦ g−1.
We first observe that if Q,Q′ are interiors of cubes in Q, then

(10.3) π(g(E ∩Q)) ∩ π(g(E ∩Q′)) = ∅.

Indeed, if x ∈ π(g(E∩Q))∩π(g(E∩Q′)), then the vertical line x×[0, 1] intersects both g(E)∩g(Q)
and g(E)∩g(Q′). By Condition (ii) of Definition 1.3, (x× [0, 1])∩g(E) is a fiber of F |g(E). It follows
that there are points p ∈ Q and p′ ∈ Q′ with F (g(p)) = F (g(p′)), i.e., f(p) = f(p′). However, by our
construction of f this is impossible: the map f sends Q and Q′ either to different stars Si or to two
different spikes of the same Si. This proves (10.3).
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We can therefore compute

|E ∩ A| ≲ |g(E ∩ A)|

≤
∑

Q the interior of a cube in Q

|g(E ∩Q)|

≤
∑

Q the interior of a cube in Q

2−k|π(g(E ∩Q))|

= 2−k
∑

Q the interior of a cube in Q

|π(g(E ∩Q))|

≤ 2−k,

where in the last line we used (10.3) to bound the sum of the lengths of the disjoint sets π(g(E∩Q)) ⊆
[0, 1] by |[0, 1]| = 1. □

We are now ready to complete the proof of Proposition 10.1

Proof of Proposition 10.1. We refer to the example f : Q0 → X defined above. Note that

H1(f(Q0)) ≤ H1(X) <∞,

as noted in (10.2) and that Lemma 10.2 implies (10.1). The mapping f is 4-Lipschitz, not 1-Lipschitz,
but as noted above this suffices.

Let E1, . . . , EM be Hard Sard sets for f with constant CLip that satisfy

H1,1
∞ (f,Q0 \ ∪iEi) < δ/2,

where δ > 0 is as in Lemma 10.2.
We then have

δ ≤ H1,1
∞ (f, A)

≤ H1,1
∞ (f, A \ ∪iEi) +

M∑
i=1

H1,1
∞ (f, Ei ∩ A)

<
δ

2
+ CM2−k,

where C is a constant depending only on CLip and not on k.
It follows that M ≳ δ2k, as desired. □

11. TWO VERSIONS OF MAPPING CONTENT

In this section, we prove Corollary E. As a reminder, this result concerns the relationship between
the notion of mapping content Hn,m

∞ , used throughout the paper, and an alternative version Ĥn,m
∞

defined in (1.5) that uses arbitrary sets rather than dyadic cubes.
We will need the following lemma concerning the types of sets constructed in Proposition D. As

usual, we write points of Rn+m as (x, y), where x ∈ Rn and y ∈ Rm.
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Lemma 11.1. Let f : Q0 → X be a 1-Lipschitz map into a metric space. LetE ⊆ Q0 and ϕ : E → Q0

a bi-Lipschitz mapping such that the map F̃ : ϕ(E) → X × [0, 1]m defined by

F̃ (x, y) = (f ◦ ϕ−1(x, y), y)

is bi-Lipschitz on ϕ(E).
Then

Ĥn,m
∞ (f, E) ≈ Hn,m

∞ (f, E) ≈ Hn+m
∞ (E),

with constants depending only on n, m, and the bi-Lipschitz constants of ϕ and F̃ .

Proof. By equation (1.6) and Lemma 3.4, we have

Ĥn,m
∞ (f, E) ≲n,m Hn,m

∞ (f, E) ≲n,m Hn+m
∞ (E).

It therefore suffices to show that

Ĥn,m
∞ (f, E) ≳n,m Hn+m

∞ (E).

The proof of this is similar to the proof of Lemma 3.5. Let F = f ◦ϕ−1 on ϕ(E), so that F̃ (x, y) =
(F (x, y), y).

Fix ϵ > 0 arbitrary.
Let {Sj} be a cover of E by arbitrary sets such that∑

Hn
∞(f(Sj))diam(Sj)

m < Ĥn,m
∞ (f, E) + ϵ.

Note that, without loss of generality, we may assume that each Sj ⊆ E, since replacing Sj by Sj ∩ E
can only decrease the left-hand side of the previous equation.

Let {Ti} ⊆ {Sj} be an enumeration of those sets Sj in the cover such that Hn
∞(f(Sj)) > 0. We

will need the following fact.

Claim 11.2. If S ∈ {Sj} \ {Ti}, then Hn+m
∞ (F̃ (ϕ(S))) = 0.

Proof. We may assume that diam(S) > 0 without loss of generality.
The assumption on S implies that Hn

∞(F (ϕ(S))) = Hn
∞(f(S)) = 0. Let S ′ = ϕ(S) and fix

0 < η << diam(S). We can cover F (S ′) by balls Bk such that∑
k

diam(Bk)
n < η.

Observe that
F̃ (S ′) ⊆ F (S ′)× πRm(S).

For each k, we can cover Bk × πRm(S) by ≲ diam(Bk)
−m balls of diameter diam(Bk).

Therefore,

Hn+m
∞ (F̃ (ϕ(S))) ≲

∑
k

diam(Bk)
−mdiam(Bk)

n+m =
∑
k

diam(Bk)
n < η,

and sending η to zero completes the proof of the claim. □
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Let Ai = ϕ(Ti) for each i, so that F (Ai) = f(Ti). Note that diam(Ai) ≈ diam(Ti), since ϕ is
bi-Lipschitz on E.

For each i, there is a collection of balls {Bj
i } covering F (Ai) in X such that∑

j

diam(Bj
i )

n ≤ 2Hn
∞(F (Ai)).

Here we are using the fact that Hn
∞(F (Ai)) = Hn

∞(f(Ti)) > 0. As in Lemma 3.5, we may also
assume without loss of generality that diam(Bj

i ) ≲n,m diam(F (Ai)) ≲ diam(Ai) for each j, i.
Therefore,

Ĥn,m
∞ (f, E) ≥

∑
j

Hn
∞(f(Sj))diam(Sj)

m − ϵ(11.1)

=
∑
i

Hn
∞(f(Ti))diam(Ti)

m − ϵ(11.2)

=
∑
i

Hn
∞(F (Ai))diam(Ti)

m − ϵ(11.3)

≥ 1

2

∑
i,j

diam(Bj
i )

ndiam(Ti)
m − ϵ(11.4)

By assumption, the map F̃ defined above is bi-Lipschitz. Thus,

Hn+m
∞ (F̃ (ϕ(E))) ≈ Hn+m

∞ (E).

Now, for each fixed i,

F̃ (Ai) ⊆
⋃
j

(
Bj

i × πRm(Ai)
)
.

We can cover each Bj
i × πRm(Ai) by

≲

(
diam(Ai)

diam(Bj
i )

)m

≈
(
diam(Ti)

diam(Bj
i )

)m

balls of diameter equal to diam(Bj
i ).

Therefore,

Hn+m
∞ (F̃ (Ai)) ≲

∑
j

(
diam(Ti)

diam(Bj
i )

)m

diam(Bj
i )

n+m =
∑
j

diam(Bj
i )

ndiam(Ti)
m,
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and so, using (11.4),

Ĥn,m
∞ (f, E) ≥ 1

2

∑
i,j

diam(Bj
i )

ndiam(Ti)
m − ϵ

≥ c1
∑
i

Hn+m
∞ (F̃ (Ai))− ϵ

≥ c2Hn+m
∞ (F̃ (ϕ(E)))− ϵ (using Claim 11.2)

≥ c3Hn+m
∞ (E)− ϵ.

The constants c1, c2, c3 > 0 depend only on n, m, and the bi-Lipschitz constants of ϕ and F̃ . Sending
ϵ to zero completes the proof. □

Proof of Corollary E. Fix δ > 0.
Choosing α = δ/2 in Proposition D yields constants N = N(δ, n,m) and L = L(δ, n,m). The

constant N controls the number of sets Fi arising the decomposition of any 1-Lipschitz map f : Q0 →
X in Proposition D, and the constant L controls the bi-Lipschitz constants of the mappings ϕi and

(x, y) 7→ (f ◦ ϕ−1
i (x, y), y)

on Fi.
Consider any f : Q0 → X and any set A ⊆ Q0 with Hn,m

∞ (f, A) ≥ δ. We can then write

Q0 = F1 ∪ F2 ∪ · · · ∪ FN ∪G,
where Fi have the properties given in Proposition D and Hn,m

∞ (f,G) < δ/2.
Let Ai = A ∩ Fi. On each Ai, Lemma 11.1 implies that

Ĥn,m
∞ (f, Ai) ≈ Hn,m

∞ (f, Ai) ≈ Hn+m
∞ (Ai),

with implied constants depending only on n, m, and L = L(n,m, δ).
Thus, at least one Ai0 must have

Ĥn,m
∞ (f, Ai0) ≳δ,n,m Hn,m

∞ (f, Ai0) ≥
1

N
(Hn,m

∞ (f, A)−Hn,m
∞ (f,G)) ≥ δ

2N
.

This proves the corollary.
□
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