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ABSTRACT. We study the quantitative properties of Lipschitz mappings from Euclidean spaces into
metric spaces. We prove that it is always possible to decompose the domain of such a mapping into
pieces on which the mapping “behaves like a projection mapping” along with a “garbage set” that is
arbitrarily small in an appropriate sense. Moreover, our control is quantitative, i.e., independent of
both the particular mapping and the metric space it maps into. This improves a theorem of Azzam-Schul
from the paper “Hard Sard”, and answers a question left open in that paper. The proof uses ideas of
quantitative differentiation, as well as a detailed study of how to supplement Lipschitz mappings by
additional coordinates to form bi-Lipschitz mappings.
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1. INTRODUCTION

In this paper, we study the quantitative properties of Lipschitz mappings from Euclidean spaces into
metric spaces. We prove that it is always possible to decompose the domain into pieces on which the
mapping “behaves like a projection mapping”, along with a “garbage set” that is arbitrarily small in
an appropriate sense. Moreover, this decomposition is quantitative. This improves the main result of
[1] and answers the question posed in Remark 6.15 of that paper.

Before stating our new results precisely, we begin with some background.

1.1. Background. This paper is concerned with the quantitative structure of Lipschitz mappings from
Euclidean spaces into metric spaces. In particular, we are interested in decomposing the domain of a
given Lipschitz mapping f, which in our case will be the unit cube @y = [0, 1]¢, into a finite number
of pieces on which f is well-behaved in some specific way, along with a “garbage” set which is small
in some sense.

Moreover, we will aim for our decompositions to satisfy these properties in a quantitative way. That
1s, we will aim to control

e the number of pieces in the decomposition,
e the properties and bounds that f will satisfy on each piece, and
e the size of the garbage set

in a way which is independent of the particular mapping f or the metric space it maps into.

As a starting point, we recall Rademacher’s theorem, which states that Lipschitz mappings between
Euclidean spaces are differentiable almost everywhere. Using this, one can show that if f : Qo — R*
is Lipschitz, then there are countably many sets F; on which f is bi-Lipschitz and such that

HY(f(Qo \ UiE;)) = 0.

(See [I8, Lemma 3.2.2].) Here, ¢ denotes d-dimensional Hausdorff measure. Note that this result is
interesting only if £ > d.

This gives a decomposition of the domain of f into nice pieces F; on which f acts as a bi-Lipschitz
homeomorphism and a garbage set (o \ U; E; whose image has zero measure. On the other hand,
this decomposition is not quantitative: there is no control on the number of pieces, which may be
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infinite, or on the bi-Lipschitz constants for f on each piece. It is much more difficult to obtain such
control, but this was accomplished by work of David, Jones, and Semmes beginning in the late 1980’s,
motivated by applications to singular integrals and uniform rectifiability [3, [12, 20]. A very general
statement in this vein, allowing arbitrary metric space targets, was proven by Schul [19]:

Theorem 1.1 (Schul, Theorem 1.1 of [19]). Given o € (0,1) and d € N, there are constants M =
M («, d) and L = L(d) with the following properties:
Let X be any metric space, QQ the unit cube of R, and f: Qo — X a 1-Lipschitz map. Then there
are sets 1, ..., Ey C Qo such that
(i) f|g, is a~'-bi-Lipschitz for eachi € {1,..., M}, and
(ii) Ho(f(Qo \ UiE)) < La.

(In fact, [19, Theorem 1.1] is slightly stronger than what we have stated here.) Note that here the
smallness of the garbage set Q \ UE; is measured by the d-dimensional Hausdorff content H% of its
image, rather than d-dimensional Hausdorff measure. See subsection [2.2]for these definitions.

In a different direction, which we will not pursue here, one may consider the existence of such
decompositions of Lipschitz mappings when the domain is a more general, non-Euclidean, metric
space. We point the reader to [18} 16, 17,16, [7] for more on this interesting area.

Theorem [I.1] gives a complete answer to the question of finding good decompositions of Lipschitz
mappings from [0, 1]¢, in the case when the image has positive d-dimensional Hausdorff measure.

The question of finding quantitative decompositions of Lipschitz mappings becomes more difficult
when the image dimension is smaller than the domain dimension, e.g., for mappings f: R?® — R2
Here, one cannot of course expect any bi-Lipschitz behavior in the mapping on a set of positive 3-
dimensional measure. (While Theorem [I. 1] applies, it is vacuous.)

A natural question in this dimension-lowering setting is whether f can be decomposed, quanti-
tatively, into pieces on which it “looks like” a projection mapping. In [1], Azzam and Schul give
a necessary and sufficient condition for mapping to admit a large piece on which it “looks like” a
projection from R™™™ to R". (But see Remark [1.9] below.)

Their condition involves the following notion.

Definition 1.2. Let £ C @)y = [0, 1]"*™ be a set. We define the “(n, m)-mapping content” of f on E
(or just the “mapping content” if n, m are understood) as

HY™(f,E) : mfZH” ;))side(Q;)™,

where the infimum is taken over all coverings {Qz} of E by dyadic cubes with disjoint interiors in ().

As discussed in [1]], H™ serves in some sense as a “coarse” substitute for the L'-norm of the
Jacobian of f.

What is meant by “looking like a projection” is encapsulated by the notion of a “Hard Sard pair”
for a mapping f defined on ()y. This pair consists of a set &/ and a globally bi-Lipschitz change of
coordinates, such that, in these coordinates, f|r becomes a mapping that is constant on “vertical”
m-planes and bi-Lipschitz on “horizontal” n-planes. (The name is adapted from the title of [1]], and is
meant to evoke quantitative analogs of Sard’s theorem.)
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Definition 1.3. Let £ C Qo = [0, 1]""™, g : E — R™™ be a bi-Lipschitz mapping, and f: Qo — X
a Lipschitz mapping into a metric space. We call (E, g) a Hard Sard pair for f if there is a constant
C'Lip such that the following conditions hold.
Write R"*™ = R™ x R™ in the standard way, and points of R"*™ as (x, y) withz € R andy € R™.
Let F = fog '
We ask that:
(i) g extends to a globally C'p;,-bi-Lipschitz homeomorphism from R"*™ to R+,
(i) If (z,y) and (2',y') are in g(E), then F(z,y) = F(2',y') if and only if x = 2/. Equivalently,

F7Y(F(z,y)) Ng(E) = ({z} x R™) N g(E)
(ii1)) The map

(z,y) = (F(z,9),9)
is Cp;,-bi-Lipschitz on the set g(E). In particular, for all y € R™, the restriction

F|nx ypng()
is C'r;p-bi-Lipschitz.

If E C @ is a set and there exists a mapping g: R"*™ — R"*™ satisfying (i)-(iii) for F, then we
call £ a Hard Sard set for f.

We think of g as a globally bi-Lipshitz change of coordinates that “straightens out” the fibers of
f|z- Conditions and say, to quote [1]], that “inside g(E), F is independent of y, and for fixed
y, the function F'is bi-Lipschitz in z.”

Observe that the linear projection mapping 7(x,y) = = on Qy satisfies all the properties requested
for the map F' = f o g~! on g(E) in Definition [1.3] Thus, we interpret Definition [1.3]as saying that f
“looks like a projection” when restricted to £/, up to globally a bi-Lipschitz change of coordinates g.

As a small note, it is clear that if (E, ¢) is a Hard Sard pair for a Lipschitz map f, then so is (E, g),
so a Hard Sard set can always be taken compact.

Azzam and Schul prove the following in [1].

Theorem 1.4 (Theorem I of [1l]). Let Qg be the unit cube of R"*™. Suppose that f: Qy — X is a
1-Lipschitz function into a metric space,

0 < H"(f(Qo)) <1,

and
0<d <H"(f, Qo)

Then there are constants C'r;;, > 1 and i) > 0, depending only on n, m, and ¢, such that there is a
Hard Sard pair (E, g) for [ in Qo with

H"T™(E) >n > 0.

Remark 1.5. Due to our slightly stronger Definition the version of Theorem [1.4] stated above is
not quite what is stated in [1]], though it is what is proven there. See Remark [I.9]for further discussion.
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As explained in [1], Theorem [I.4] can be viewed as a “quantitative implicit function theorem” for
Lipschitz maps into metric spaces. In rough terms, Theorem says that if H2™(f, Qo) > 0 and
0 < H"(f(Qo)) < 1, then there is a large set on which f looks like a projection (up to globally
bi-Lipschitz change of coordinates). In [, Corollary 1.4] (see also Lemma [3.5] below), Azzam and
Schul observe that the condition H%™(f, Qo) > 0 is also necessary, in a quantitative sense, for the
conclusion of the theorem to hold. (But see Remark [I.9]for some discussion of this point.)

We note that a “qualitative” version of Theorem[I.4] was recently proven by Hajtasz-Zimmerman in
[10].

The condition H%™(f, Qo) > 0 appearing in Theorem [1.4]is quite subtle, as the following result of
Kaufman shows.

Theorem 1.6 (Kaufman [13]). There is a surjective C* mapping g: [0,1]> — [0, 1]*> whose derivative
has rank 1 everywhere. In particular, H2) (g, [0,1]*) = 0 even though H*(¢([0,1]*)) > 0.

The second statement in Theorem [I.6] follows from Proposition [3.3|below and was not part of [13].
Note that the mapping g in Theorem |1.6| could not be C?, by Sard’s theorem. Further discussion of
Kaufman’s theorem and its relatives appears in subsection [I.4]below.

1.2. New Results. After proving Theorem [[.4] Azzam and Schul asked if the result could be pushed
further: Beyond guaranteeing a set of a certain size on which the map looks like a projection, can we
provide a quantitative decomposition of the domain () into finitely many pieces on which the map
looks like a projection, combined with a garbage set which is small in some sense? Observe that
Theorem [I.1] has this property: it not only guarantees a single nice set where good behavior happens,
it guarantees a quantitative exhaustion of the domain by such sets, up to a small garbage set.

To be more specific, Azzam and Schul asked the following:

Question 1.7 ([1]], Remark 6.15). Let ), be the unit cube in R and let f: Qy — X be a 1-Lipschitz
map into a metric space X with

H"(f(Qo)) < 1.

Given v > 0, do there exist constants M and (', depending only on n, m, and ~y, and Hard Sard
pairs (E1, 1), - - -, (Eur, gar) such that

(1.1) H"(f, Qo \UE;) <77
A more tempting requirement, to replace (I.1]), would be to ask that
Hoo(f(Qo \ UE})) <,

but Kaufman’s example in Theorem [I.6] shows that this is not in general achievable.

Here, we answer Question |1.7]in the affirmative. This gives a quantitative decomposition of Lips-
chitz mappings into a general metric space, up to set with small “mapping content”. The following is
the main result of this paper.

Theorem A. Let (g be the unit cube in R"™™ and let f: Qo — X be a 1-Lipschitz map into a metric
space X with

H"(f(Qo)) < 1.
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Given any v > 0, we can write
Q0:E1UUEMUG,

where E; are Hard Sard sets and

HY"(f,G) <.
The constant M and the constants C',;, associated to the Hard Sard pairs (E;, g;) depend only on n,
m, and 7.

Theorem |A|implies Theorem but a number of the techniques used by Azzam-Schul in [1]] also
appear in some form in our proof. The main new ingredient in the proof of Theorem |A|is Proposition
below. In the proof of Proposition |D| newer and more refined arguments than those in [1, [19] are
needed to obtain a decomposition rather than a single large set. See Remark [I.10] for more details.
Theorem [A]is new even in the case X = R™.

Remark 1.8. It is natural to ask whether the assumptions in Theorem [A]are necessary. In Lemma[3.5]
which is a slight reworking of [1, Corollary 1.4], we observe that the condition H%"™(f, Qo) > 0 is
quantitatively necessary in order for f to admit any Hard Sard pair.

With a bit more effort, in Proposition [10.1]} we also show by an explicit construction that the condi-
tion H"(f(Qo)) < 11is also necessary for Theorem [A]to hold (with quantitative control).

A natural question, given Theorems [I.4] [A] and [I.6] is: Under what conditions can one guarantee
positivity of H2™(f,Qo), and hence a Hard Sard set for f? Theorem as well as the the con-
struction in Section 2 of [1]], indicates that this is not an easy question, and we discuss it further in
subsection [I.4] We give a simple quantitative condition in the case n = 1:

Theorem B. Let m be a non-negative integer and o« > 0. Then there is an 1 > 0, depending only on
m and «, with the following property: If f : [0, 1]**™ — X is 1-Lipschitz and diam f ([0, 1]1*™) > q,
then 12" (f,[0,1]'F™) = .

In particular, suppose that f satisfies the assumptions of Theorem [B|and H'(f ([0, 1]'™™)) < 1.
Then, using either Theorem |1.4|or Theorem|A| f is guaranteed a Hard Sard set whose H'™™-measure
is bounded below depending only on m and the diameter of the image of f.

Remark 1.9. We take this opportunity to remark on some small differences between the statements
of 1] and our statements.

Definition |1.3|actually contains two strengthenings of the conclusions in [, Theorem IJ.

First of all, the analog of Condition (1) in [1, Theorem I] states only a containment

FH(F(z,y)) Ng(E)) € ({z} x R™) N g(E),

where as Definition [1.3|requires an equality of these fibers.
Second of all, the analog of Condition in [1, Theorem I] contains only the statement that each
restriction
Bl xtypng(m)
is C'r;p-bi-Lipschitz, and not the stronger condition that

(z,y) = (F(z,9),9)
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is C;,-bi-Lipschitz on the set g(E).

Thus, our statement of Theorem|[I.4] which is [1, Theorem IJ, is slightly stronger than the one given
in [1]. In fact, the stronger version is actually achieved by the proof in [1], though not stated explicitly.
In any case, our proof of Theorem [A] will use the stronger version of Definition [I.3] given above, and
does not rely on Theorem[1.4]

The importance of the strengthened Definition [I.3|lies in Lemma 3.5]and Proposition (In fact,
the proof of the analog of Lemma(3.5|in [1, Corollary 1.4] is incorrect as written, and actually requires
our strengthened Condition of Definition [[.3])

1.3. The two main propositions in the proof of Theorem [A] Theorem [A] cannot be proven by a
naive iteration of Theorem [[.4, Theorem [I.4]is a statement about the structure of maps on the unit
cube (and its proof heavily reflects this). If one uses it to generate a large Hard Sard set £y C (), one
cannot apply it again to generate another large Hard Sard set Es in the complement of £;. Of course,
one can locate small cubes in the complement of £ and apply a suitably rescaled Theorem on
each of those, but then one apparently gives up all quantitative control on the size and number of these
sets.

Thus, the proof of Theorem [A] occupies the main part of the paper, from Section [ through Section
Bl The theorem essentially follows from two main preliminary results that may be of independent
interest, and which we now describe.

For the remainder of this discussion, we fix the unit cube Qg € R"™™. As in Definition (1.3 we
write R"™™ = R" x R™ and points of R"*™ as (x,y) where z € R" and y € R™.

The first main step in the proof of Theorem [A]is to show that finding Hard Sard sets for a mapping
f can be reduced to a different problem: that of “supplementing” f by a linear projection in a way that
yields a bi-Lipschitz map.

Proposition C. Let ' C )y be a Borel set and f : F' — X a 1-Lipschitz mapping into a metric space.
Let oo > 0and L > 1.
Assume that

H(f(F)) <1
and that the map h : F — X x [0, 1]™ defined by
(1.2) hz,y) = (f(z,y),y)
is L-bi-Lipschitz on F'.

Then we can write
F=FU---UEyUG,

where E; are Hard Sard sets for f and

H'T(G) < a.

Moreover, the bi-Lipschitz maps g; associated to each Hard Sard set E; in this decomposition are
“shears” on Fj, in the sense that there are Lipschitz maps v; : E; — R"™ such that

(13) gz(x7y) = (wz(xuy))y)forall (I’,y) € EZ



8 GUY C. DAVID AND RAANAN SCHUL

The constant M and the constants C'r;, associated to the Hard Sard sets E; depend only on n, m,
L, and o.

We note that Proposition [C] can be proven by iterating certain arguments in [1] and keeping careful
track of the constants.

As a consequence of Proposition |C] proving Theorem [A|boils down to finding sets on which f can
be supplemented by a linear projection to yield a bi-Lipschitz map. It is not easy to find such sets
directly, but we show that if one is willing to pre-compose f by bi-Lipschitz mappings, then this can
be arranged. This is the content of the second main step in the proof of Theorem [A}

Proposition D. Letr f: Qo — X be a 1-Lipschitz mapping into a metric space X.
For each o > 0, there is a decomposition of Qg into Borel sets

Qo=FUFRU---UFyUG

with the following properties:
e Foreachi € {1,..., N}, there is a bi-Lipschitz map ¢;: F; — Qo such that the map

(1.4) (z,y) = (f(67 ' (2,9)).9).
is bi-Lipschitz on ¢;(F};), and
o HY™(f,G) < a.
The number of sets N and the bi-Lipschitz constants for ¢; and for the mappings in (1.4) depend only
on a,n, and m.

Remark 1.10. Proving Proposition [D]is where much of the work in the paper occurs. Here there are
significant differences from the proofs in [1,[19]. For example, in [1] the authors show essentially that
under certain conditions one can already find a single large set on which (f(z,y),y) is bi-Lipschitz.
However, decomposing most of the mapping content into such sets seems to require new arguments
and the auxiliary mappings ¢, that we introduce in the proof of Proposition D}

We also note that, unlike Theorem [A] and Proposition [C| Proposition [D] does not require any as-
sumption on the H"-measure of the image of f, and thus has wider applicability. See, for example,
Corollary

Remark 1.11. In an earlier version of this paper, we overlooked that Proposition [D]is closely related
to ideas of David and Semmes in [5]. David and Semmes study a sub-class of Lipschitz mappings
between Euclidean spaces known as “(s, t)-regular mappings”. In [5, Theorem 6.1], they prove that
such a mapping admits a single large piece on which it can be supplemented by a linear mapping
to become bi-Lipschitz. Furthermore, in [5, Section 10], they give a somewhat informal outline of
a method to supplement such mappings by more general “weakly Lipschitz” mappings to obtain a
“weakly bi-Lipschitz” mapping on the whole domain. (We do not use this terminology, so we defer
the definitions to that paper.) This is closely related to the decomposition result in Proposition D} and
implies something quite similar for regular mappings.

Our Proposition [D] applies to general Lipschitz mappings (not only regular mappings), which re-
quires bringing in the notion of mapping content, and it allows the target of the mapping to be an
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arbitrary metric space, rather than a Euclidean space. Proposition [D|can therefore be viewed as simul-
taneously extending to a new setting and filling in all the details of the informal outline in [, Section
10]. (For the regular mappings studied in [S]], the mapping content is not necessary and the garbage
set can be controlled by simpler quantities.)

Our proof is also somewhat different; in particular, we do not use Carleson’s Corona construction.
That said, the reader will certainly notice many similarities between our approach to Proposition [D]
and the ideas in [5, Section 10], and it was a serious oversight on our part to overlook this.

It should now not be difficult to believe that Propositions [C] and [D] combine to prove Theorem [A]
and we provide the details in Section [§]

1.4. Additional questions and relation to quantitative topology. We conclude this introduction
by connecting our results to some recent developments in quantitative topology, and stating a few
questions.

1.4.1. When is mapping content small? Many of our questions are specific instances of the following
general question:

Question 1.12. What can be said about the map f if H™(f, Qo) = 02 If H(f, Q) is small?

Let us discuss the status of this question in the first few cases:

e If n = 0 in Question then H™(f, Qo) is simply (comparable to) the m-dimensional
Hausdorff content of (), and thus can never be small.

e If m = 0, then H2™(f, Qo) ~ H™(f(Qo)) (see Lemma 3.4), so Question can be an-
swered by saying that the mapping has small image in dimension 7.

e If n = 1 in Question then Theorem [B| implies that diam(f(Qy)) is zero or small, i.e.,
that f must be constant or near constant. This completely answers Question [1.12]in that case.

Thus, the first unanswered case of Question[I.12]is the case n = 2, m = 1. In this scenario, Kaufman’s
construction (Theorem [I.6)) already shows that no such simple statement is available, as it yields a
highly non-trivial mapping g with H%!(g, Qo) = 0. A class of related examples, mapping into general
metric spaces, was given is discussed in [1, Section 2.2]. Kaufman’s example and Azzam-Schul’s
examples have the property that the mappings involved factor through trees.

For us, a tree is a compact, geodesic metric space 7' such that every two points in 7" are the endpoints
of a unique arc in 7". We say that a Lipschitz mapping f: QQg — X factors through a tree if there is
a tree 1" and Lipschitz maps g: Qo — T and h: T" — X such that f = h o g. (A number of recent
papers consider this notion; see [21} 22]].)

For the first unanswered case of Question[I.12](the case n = 2 and m = 1), we pose the following
conjecture.

Conjecture 1.13. Let Qo = [0, 1] and let f: Qo — X be a 1-Lipschitz mapping into a metric space.
Assume without loss of generality that X C (..
e (Qualitative version) If H%(f, Qo) = 0, then f factors through a tree.
e (Quantitative version) For every € > 0, there is a § = O(€) with the following property: If
H2L(f, Qo) < 6, then there is a 1-Lipschitz map g: Qo — s that factors through a tree and
satisfies ||g — f|loo < €.
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As far as we know, the analog of Conjecture [I.13| may hold even if n = 2 and m is allowed to be
arbitrary. The techniques in [21] may be relevant here.

For still higher dimensions n, one might hope that Question [I.12] could be answered by reference
to some type of quantitative topological non-degeneracy of the mapping in dimension n. Here the
picture appears to be significantly more complicated and it is unclear (at least to the present authors)
what conjectures to make. The following theorem of Wenger-Young indicates this.

Theorem 1.14 ([21], Theorem 2). Letn < n +m — 1 < 2n — 3. Then any Lipschitz map
f:0[0,1]""™ — 9[0,1]"
can be extended to a Lipschitz map
folo ] — R
whose derivative has rank < n — 1 almost everywhere.

(We have modified the original statement slightly to fit our framework: Given n, m, our statement
corresponds to setting Wenger-Young’s n as our n — 1, their £ as our n — 1 + m, and making the usual
Lipschitz identifications between balls and cubes.) As a concrete choice in Theorem |1.14] one may
taken =4andm =1.

In particular, the map f in Theorem will always have H™(f,[0,1]""™) = 0 (by Proposition
below), but if f is chosen correctly then f will not be able to factor through a tree for topological
reasons. For further discussion of the topology behind Theorem [I.14] and more recent developments,
we refer the reader to [21,[9].

1.4.2. Alternative versions of mapping content. In the definitions of Hausdorff content and Hausdorff
measure, it does not much matter whether one allows covers by balls, as we do above, or by dyadic
cubes, or by arbitrary sets. This affects the definition only up to dimensional constants, as an easy
computation shows.

One can ask the same question about mapping content H”>™: could one get an equivalent quantity
allowing covers by arbitrary sets rather than only dyadic cubes? To be more specific, if f: Qg — X
is a mapping and A C @, let

(1.5) HE(f, A) = inf Yy HI(f(S;))diam(S;)™,

where the infimum is over all countable covers {S;} of A by arbitrary subsets of ). It is clear that
(1.6) HE™ (f, A) S HE™ (], A),

because dyadic cubes (); are admissible sets, and the diameter of a dyadic cube is comparable to its
side length. (In particular, the statement of Theorem |A|is a priori stronger for using H"™ than it
would be if it used H™%™.)

However, a similar bound in the reverse direction does not seem to be easy to show. If one is given
a good cover of A by arbitrary sets .S; that almost achieve the infimum in (1.3), then one can certainly
cover each S; by dyadic cubes (); ; to get an admissible cover for H2™(f, A). However, since the



QUANTITATIVE DECOMPOSITIONS OF LIPSCHITZ MAPPINGS INTO METRIC SPACES 11

cubes (); ; may contain points outside of U,.S;, and the images f((); ;) may overlap, it does not seem

to be clear how to control
D HE(f(Qig))side(Qi )™

by the sum over S; in (I.5).

As a short corollary of one of our main results (Proposition @, we show that the two versions of
mapping content are related in a weak sense for 1-Lipschitz mappings into metric spaces. In particular,
they vanish simultaneously, with some quantitative control.

Fix n and m, and let () denote the unit cube of R,

Corollary E. For each 6 > 0, there is a 0’ > 0 with the following property:
If f : Qo — X is a 1-Lipschitz mapping into a metric space, and A C @y has

H"(f,A) =6,

then R
HE"(f, A) >0
The number &' depends only on 6, n, and m.

We prove Corollary [E]in Section As observed above, we do not know if there is a simple direct
argument that yields Corollary [E|, independently of the results of this paper.
It is natural to ask if there is in fact a linear relationship between these two quantities:

Question 1.15. Is there a constant ¢ = ¢, ,, such that
H"(f,A) 2 GHI(f, A)
for all 1-Lipschitz maps f : )y — X into a metric space and all A C ()?

One could also imagine alternative versions based on covers by balls or other families of sets, and
the same types of questions would apply.

1.5. Structure of the paper. In Section 2| we give the basic definitions and notations in the paper.
We also state some necessary theorems from [1] and [2] that underlie the proof of Theorem [A]

In Section 3} we outline some basic properties of the “mapping content” H%.".

Section [] contains the proof of Proposition [C] which builds on ideas from [1, Section 6] with an
additional iteration scheme.

Sections [5|and [6] provide some preliminary results needed in the proof of Proposition D] The former
gives two lemmas allowing the coding and splitting of families of cubes into families with various
useful properties, and the latter shows how to control the mapping content of a certain family of cubes
that will form part of the “garbage set” in Proposition

We then prove Proposition [D]in Section [7, and combine Propositions [C|and [D]to prove Theorem [A]
in Section 8

Section [9] contains the proof of Theorem [B] which is essentially independent from the rest of the
paper.

Finally, Section[I0|contains an explicit construction (mentioned in Remark|[I.8]) showing that the as-
sumption H"(f(Qo)) < 1 is quantitatively necessary for Theorem |A|to hold, and Section 11| contains
the proof of Corollary
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2. PRELIMINARIES

This section contains notation, definitions and a few fundamental results used in the rest of the
paper.

2.1. Basic metric space and mapping notions. Throughout most of the paper, (X, d) will be an
arbitrary metric space, usually written X if the metric is understood. If (X, dx) and (Y, dy) are metric
spaces, there are a number of natural, bi-Lipschitz equivalent metrics to put on the product X x Y.
For convenience, unless otherwise noted, we will equip X x Y with the metric

(2.1 dxxy((z,y), (2, y)) = max{dx(z,z"),dy (y,y")}.

An exception to this rule is when we write R as R™ x R™, in which case we continue to equip it
with the standard Euclidean metric.
We will use the notation

mx: X XY —=>Xandnmy : X XY =Y

to denote the projections mapping (z,y) € X x Y to x and y, respectively.
If E is a subset of a metric space X, we write

diam(F) = sup{d(z,y) : =,y € E}.
If z € X, we write

dist(z, F) = inf{d(z,y) : y € E}.
If 0 > 0, the d-neighborhood of E in X is

Ns(E) ={z € X : dist(z, E) < 0}.

A mapping f from a metric space (X,dy) to a metric space (Y,dy) is called Lipschitz (or C-
Lipschitz to emphasize the constant) if there is a constant C' such that
dy (f(x), f(y)) < Cd(x,y) forall z,y € X.
The mapping F' is called bi-Lipschitz (or C-bi-Lipschitz) if
Cldx(x,y) < dy(f(2), f(y)) < Cdx(z,y) forall z,y € X.

2.2. Hausdorff measure and Hausdorff content. For a metric space (X, d) and a (not necessarily
integer) constant k > 0, the k-dimensional Hausdorff measure H*(A) of a subset A C X is

HE(A) = (lsl_r)r(l)mf Z diam(B)",
BeB;
where the infimum is taken over all covers B; of A by closed balls of diameter at most . In R, it is
standard that H* is comparable to the k-dimensional Lebesgue measure.

The k-dimensional Hausdorff content H”_ (A) is defined similarly, but without the restriction to
small diameters:

HE(A) = inf ) ~ diam(B)*,



QUANTITATIVE DECOMPOSITIONS OF LIPSCHITZ MAPPINGS INTO METRIC SPACES 13

where the infimum is taken over all covers BB of A by closed balls. Itis easy to see that H_ is countably
sub-additive, but not in general a measure.

In general, one always has the trivial inequality H* (A) < H*(A). Moreover, the two quantities
vanish simultaneously: H*(A) = 0 if and only if H* (A) = 0 [T} Exercise 8.6]. Lastly, in R, itis a
standard fact that the d-dimensional Hausdorff content and measure are always comparable:

Lemma 2.1. For each d > 1, there is a constant C; such that
HI(A) < HU(A) < CyHI(A)
for all subsets A C R<.

Proof. The first inequality is immediate from the definitions, as noted above. For the second, fix e > 0
arbitrary. Let B be a cover of A by closed balls such that

Z diam(B)? < H? (A) +e.

BeB
Let B’ C B be a disjoint subcollection such that
(See, e.g., [11, Theorem 1.2].) Then

HYA) < > HU5B) <5 diam(B)! S HL(A) +e.
BeB' BeB'
Sending e to 0 completes the proof. U
We will also occasionally refer to Lebesgue measure on R"*™, rather than Hausdorff measure

H™ ™. Lebesgue measure will be denoted simply by | - |. Since we have not bothered with normaliza-
tion constants in the definition of H"*™, these measures are comparable rather than equal.

2.3. Grassmannians and Hausdorff distance. We write Gr(k, d) to denote the appropriate Grass-
mannian: the space of k-dimensional vector subspaces of RY. We will often refer to elements of
Gr(k,d) as “k-planes in R%”,

Occasionally, it will be useful to have a metric on Gr(k,d). In general, the Hausdorff distance
between subsets A, B of a metric space X is defined by

duausdortt (A, B) = inf{e > 0 : dist(a, B) < e and dist(b, A) < eforalla € A,b € B}.

This is well-known to be a metric on the compact subsets of X.
We will occasionally use this to define a metric D on Gr(k, d) as

D(Pv Q) = dHausdorff(P N E(O, 1), Q N E(O, 1))

The space Gr(k, d) is compact with this metric.
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2.4. Dyadic cubes. In a fixed R?, with d generally understood from context, we write (), for the unit
cube, i.e.,
Qo = [0,1]"

We write A for the collection of all dyadic cubes () C )y, and Ay for the collection of those dyadic
cubes with side length 2%,

If Q € A, we write side(Q) for the side-length of (). Thus, side(Q) = 2% if and only if Q € A,.

If @ € Aand C' > 0, we write C'() for a cube with the same center but C' times the side length.
In particular, if C'is an odd positive integer, then C'(Q is a union of C'¢ distinct cubes of the same side
length as Q).

Lastly, we occasionally call a collection of cubes ‘“almost-disjoint” if they have disjoint interiors.
Such collections arise in the definition of H™.

2.5. Metric derivatives. Let X be a metric space and f: RY — X a 1-Lipschitz function. We will use
some results and notation from [2]], which were in turn inspired by the idea of metric differentiability
in [[15].

For a cube Q C R? let

1
md ;= ————inf sup |d(f(x), — ||z — ,
Q)= gy s i (). £) = = = o
where the infimum is taken over all seminorms || - || on R%. If the function f is understood, we will

simply write md(Q).

The quantity md(()) measures how well the pullback of the distance in X under f can be ap-
proximated by a seminorm in (). For metric space valued functions, it serves as a replacement for
measuring “deviation from linearity”.

We will use the following result of [2], which is a quantitative differentiation result for Lipschitz
mappings into metric spaces:

Theorem 2.2 ([2]], Theorem 1.1). Let X be a metric space and f: R? — X a 1-Lipschitz function.
Let e > 0 and Cy > 0. Then

> {101 Q € A,md;(CoQ) > ¢} < Ca.
The constant C. 4 depends only on €, Cy, and d but not on the space X or the function f.

Note that Theorem 1.1 in [2] is stated only for C;y = 3, but the version above follows easily.
In the remainder of the paper, we will only apply Theorem 2.2 with d = n + m and

(2.2) Co = 10(n +m),

which is why we suppress the dependence of C 4 on Cj in the notation of Theorem [2.2]

Consider Qg = [0, 1]"*™, Cy as above, and f : Qo — X a Lipschitz function into a metric space.
Note that standard compactness arguments show that if f is Lipschitz and () € A, then there is a
seminorm that minimizes the infimum in the definition of md;(Cy()). Thus, we write

(2.3) (R
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for a seminorm || - || that minimizes the quantity
sup || f(z) = f(y)| = ll= = ylll
z,y€Co@Q
If the mapping f is understood from context, we may call the seminorm simply || - ||¢.

A basic fact about these seminorms is the following simple lemma.

Lemma 2.3. Let f : Qo — X be a 1-Lipschitz function into a metric space X, v a vector in R"t™,
and Q € A. If md;(CyQ)) < € and the Euclidean norm |v| of v satisfies |v| < Cyside(Q)), then

(2.4) |vllr.o < |v] + Coeside(Q),

Proof. Consider any point z € Cy() for which z + v is also in C,(). Then, by definition of md; and
| - || .0, we have

[ollr.@ < 1f(x) = f(z +v)| + Coeside(Q) < |v] + Coeside(Q).
0J

2.6. Bi-Lipschitz extension. An important step in Azzam-Schul’s proof of Theorem is the fol-
lowing bi-Lipschitz extension result.

Theorem 2.4 (Theorem I of [1]]). Let D > n and k € (0, 1). There is a constant M = M (k, D) such
that if f: R™ — RP is 1-Lipschitz, then the following hold:

(i) There are sets E+, ..., Ey such that
H (f ([0,1]" \UES)) Sp +.
(ii) Foreachi € {1,..., M}, there is an L-bi-Lipschitz map F;: R"* — R?, with L <p % such that
g =f
Theorem |2.4]allows one to not only find bi-Lipschitz pieces of Lipschitz mappings, but to ensure that

those bi-Lipschitz pieces can be globally extended. In fact, we will only use the following immediate
consequence of this result.

Corollary 2.5. Let D > n, C > 1, and k € (0,1). There are constants M = M (r,C, D) and
L = L(k,C, D) such that if A C [0,1]" and f: A — RP is C-bi-Lipschitz, then the following hold:
(i) There are sets E+, ..., Ey such that
H (A\UE;) < k.
(ii) Foreachi € {1,..., M}, there is an L-bi-Lipschitz map F;: R" — R such that
Proof. Letn, D, C, k, and f: A — RP be as in the statement of the corollary.
By rescaling, we may assume without loss of generality that f is 1-Lipschitz and C-bi-Lipschitz on

A. Furthermore, we may extend f to a 1-Lipschitz mapping from R" to R, by Kirszbraun’s theorem.
Apply Theorem[2.4]to f to obtain sets E, ..., Ej; such that

HL (f ([0,1]" \UE;)) < 5/C"
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— RP,

In that case, since f is C-bi-Lipschitz on A, we have
Ho (ANUE) < C"HL, (f ([0,1]" \UE})) < &
This completes the proof. 0

3. ABOUT MAPPING CONTENT

In this section, we summarize some basic properties of the “mapping content” H’>™. Most of the
statements and arguments appear already in [1]] and [[10], but we have included proofs in cases where
we have modified the original statements.

For the remainder of this section, let Qg = [0, 1]""™ C R™"™ and let X be an arbitrary metric
space. The first two observations are simple consequences of the definition.

Lemma 3.1. If f: Qg — X is a mapping, then
H"(f, Qo) < HL(f(Qo))-

Proof. This is immediate from the definition: just use the single cube () in the infimum defining

HL™ ([, Qo)- U

Lemma 3.2. If f: Qo — X is Lipschitz, then H2™ is countably sub-additive on subsets of QQy. In
other words, if { A;}52, is a countable collection of subsets of Qo then

i=1
Proof. Fix ¢ > 0. For each A;, let {Qf }jes; denote a collection of almost-disjoint dyadic cubes
covering A; such that

D HL(F(Q)))side(Q)™ < HL(f, Ai) + €27
JEJ;
Let
Q={Q]:ieN,jeJi}
and let Q, be the collection of maximal cubes in Q. Then Q, forms an almost-disjoint cover of UA;
by dyadic cubes, and so

HI(f,UA) < 37 HE((Q))side(@)™ < 3 S HE(F(Q]))side(Q))" <6+ZH"’”f’ i)

Qe i€N jeJ;

Sending e to zero completes the proof. U

With more precise information about the pointwise behavior of the mapping, one can get more
precise upper bounds for #7.". We do not use the next result (Proposition[3.3) in the remainder of the
paper, but we state it to give the reader a better feeling for the quantity H>". The following notation
and result are from [10]; the result generalizes [1, Lemma 6.13].
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If f: Qo — X is Lipschitz and = € Q,, define the quantity
" (f(B
0"(f, 2) = lim inf Heel/B@:1) N Go))

r—0 rn

Note that ©7( f, ) is bounded above, with bound depending only on n and the Lipschitz constant of
f
Proposition 3.3 ([10]], Propositions 5.1 and 5.2). Let f: QQqg — X be Lipschitz. We then have:
(i)
H () S [ ensm)ds
0

with implied constants depending only on n, m.
(ii) If X = R", then

OL(f.x) =" f| == \/Idet (Df)(x) - Df(x)T)|
fora.e. x € Q.

We now move to some basic facts about the mapping content of subsets of the cube. First of all, we
have the following.

Lemma 3.4. If f : Qo — X is 1-Lipschitz and A C )y, then
H(f, A) S HI(A) < 1 A).
The implied constant depends only on n + m.

Proof. The second inequality is immediate from the definitions of Hausdorff content and Hausdorff
measure.
For the first, fix ¢ > 0 and consider a cover { B;} of A by balls of radius r; such that

D o < HIA) F e
Each B; is contained a union of at most 2"+ dyadic cubes {Q*} with

side(Q) < 7.

Let {R;} C {QF};) denote the collection of maximal cubes in this collection, which form an
almost-disjoint cover of A. Then

HEM(A) < Z’H" (f(QF))side(Q¥)™ < Z side(Q7)"™ < Z < HIE(A) + €.

Sending € to zero ylelds the first inequality. 0

Lastly, we point out that the mapping content of a Hard Sard set is comparable to its (n + m)-
dimensional measure, which shows that the condition H™ > 0 is quantitatively necessary to find
Hard Sard sets for a mapping f. The following is a minor modification of Corollary 1.4 of [1]; we
include a proof for convenience. The lemma is not used directly in the rest of the paper.
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Lemma 3.5. If f : Qo — X is 1-Lipschitz and E C () is a Hard Sard set for f, then
H(f E) = 1" (E),
with constants depending only on n, m, and the Hard Sard constant C',, of E.

Proof. The upper bound
H"(f. E) S HT(E)

follows from the previous lemma. We now focus on the reversed bound.

We write points in R""™ as (z,y) with z € R"” and y € R™. We may assume that H"*™(E) > 0,
otherwise the inequality we are proving is trivial.

Fix € > 0 arbitrary. Let g: R"™™ — R""™ be the bi-Lipschitz change of coordinates associated to
the Hard Sard set E. Let ' = fo g L.

Let {Q;} be a cover of E by almost-disjoint dyadic cubes such that

D HL(F(Qi))side(Qi)™ < HI(f, E) + e

Let A; = g(Q;) for each i, so that the sets { A;} form a cover of g(F) with F(A;) = f(Q;). Note that
diam(A4;) ~ side(Q;), since g is bi-Lipschitz.
For each i, there is a collection of balls { B} } covering F'(A;) in X such that

Z diam(B?)" < 1" (F(A;)) + eside(Q;)".

(Note that without loss of generality, we may assume that diam(B?) <, diam(F(4;)) < diam(A,)
for each j,1.)

Therefore,
(3.1) HE(f,B) 2 ) HE(F(Qi))side(Qi)™ — €
(3.2) =) HL(F(A;))side(Q;)™ — e
(3.3) > diam(B/)"side(Q;)™ — 2¢

ihj

Let F denote the map

F(z,y) = (F(z,y),y) : g(E) = X x R™.
By Condition (i) of Definition[1.3] F' is bi-Lipschitz with constant C;,. Thus,
M (F(g(E))) = HZ ™ (E).

Now, for each fixed 7,

F(A) C U (B} x mam(4;)) -
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We can cover each B/ x mpm (4;) by

< (ji—g;)m” Gd;—((%)))m

balls of diameter equal to diam(B?). Therefore,

side(Q "
H(F diam(B!)"*™ = " diam(B?)"side(Q;)™,
<3 (G B =3 @)

and so, using (3.3)),
HU™(f, E) > Zdiam (B Y side(Q;)™ —

> C1 Z Hn-i—m — 2¢
> e (F(g(E)) — 2
> csHIT™(E) — 2¢

> e, H" M (E) — 2,

where c1, ¢2, ¢3, ¢4 depend only on n, m, and the Hard Sard constant C';, of (E, g). (The last step uses
Lemma [2.1]) Sending € to zero completes the proof.
O

4. BI-LIPSCHITZ SUPPLEMENTS YIELD HARD SARD SETS

In this section, we prove Proposition [C| Recall that, informally, this says that if one can find a set F’
on which the map

h(z,y) = (f(z,y),y)

is bi-Lipschitz, then one can quantitatively decompose F' further into Hard Sard sets for f. We refer
to the statement of Proposition |C|above for the precise assumptions and conclusions.

For the remainder of this section, we fix the unit cube )g C R"™™. As in Definition we write
R = R™ x R™ and points of R"*" as (z, y) where x € R" and y € R™,

Fory € R™, we write L, = [0,1]" x {y}. If E C Qo, we write E, = EN L,.

We will need the following lemma, which is [1, Lemma 6.12]. As we state it slightly differently,
we include a proof for convenience.

Lemma 4.1 ([1]], Lemma 6.12). Let ' C Qg be a Borel set and f : F — X a 1-Lipschitz mapping
into a metric space.

Let E C F be a Borel subset, with H"*™(E) > 0, on which the mapping h defined in (I.2)) is
L-bi-Lipschitz, for L > 1.

Then there is ay' € R™ such that

(1) ) 0 SEDIH ) 2 L
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Proof. Tt suffices to assume that £ is compact and find a 3/ € R™ for which

@2 BN BN ) o L

The result for more general sets then follows by applying this to a compact subset of F of at least half
the H"*™-measure. Thus, we now assume F is compact and prove (4.2).

We can also assume that H"(f(E)) > 0. If not, then H""™(h(E)) < H"*™(f(E) x [0,1]™) =0,
so H"™™(E) = 0 as h|g is bi-Lipschitz, contradicting our assumption.

We now consider the function K : X x [0, 1]™ x [0,1]™ — {0, 1} C R defined by

K(p,y,2) = X8, P)Xs5.)(P)-
Recall the function h(z,y) = (f(z,y),y). For fixed t € (0,1), the set

K7 ((t,00)) = {(p,y,2) € X x [0,1]™
={(p,y,2) € X x[0,1]"

x[0,1]":pe f(E,)andp € f(E,)}
x [0,1]™ : (p,y) € h(E) and (p, z) € h(E)},

is evidently compact and hence Borel. For ¢ > 1, this set is empty, and for ¢ < 0 this set is all of
X x [0,1]™ x [0, 1]™. Thus, K is Borel measurable on X x [0, 1]™ x [0, 1]™.
We now consider the integral

1= / / K (p,y, 2) dH™(y)dH™(2)dH" (p).
X [0,1]7" [0,1]7"

One application of Fubini’s theorem allows us to rewrite this as
= [ Gm) ) e ),
0,1 J[0,1)m

with an integrand that is Borel measurable for a.e. joint choice of y and z in [0, 1]™ x [0, 1]™.

Now write 7y and g for the projections from X x [0, 1] to X and [0, 1]™, respectively. Below,
we follow the lead of [[1]] and label each Hausdorff measure by a subscript denoting the space on which
it is supported. For example, Hp. denotes Hausdorff n-measure on R™ and H’y denotes Hausdorff
n-measure on X.
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Using Fubini’s theorem repeatedly, we can write

an = [ [ Ky e G
an = [ (e ) ([ e mgne) ase
4.5) = [ Hisoape (750) O R(E)) @i )
(4.6) > W (/ H o (73 (0) N A(E)) dH}(P))
1 n m 2
4.7) = W (f(B) (Hx x Hgm) (R(E))
4.8 = = H am(Y) N R(E)) dHE, 2
49 =y (L M ) ) a2 )
1 - 2
@9 =iy UL e 008 0z 0)
1 . . . 2
(4.10) W(L ) ( o %R"(Ey)dHRm(y))
4.11) =L %

Most manipulations above are by Fubini’s theorem. Equation (4.6) is by the Cauchy-Schwarz inequal-
ity, and (4.10) is a consequence of the fact that h is L-bi-Lipschitz on E.
We thus have

[ [ wm)nsEy e =12 1
[0,2)™ J[0,1]™
It follows that there is a choice of 3/ € [0, 1]™ for which

[mw’ﬂ (f(Ey) N (f(E.)) dH™(2) Znm L H(F(E)

with Borel measurable integrand. 0

H(f(E))

We now prove Proposition [C| The proof uses many of the ideas from the proof of [1, Theorem 6.1],
combined with a new iteration argument.

Proof of Proposition|C] Let F' C Qo, f: ' — X, and h(z,y) = (f(x,y),y) satisfy the assumptions
of Proposition [C] Fix o > 0.
Our goal is to decompose F' into Hard Sard sets for f, plus a “garbage set” of small H"*™-measure.
Let @’ = /2. Assume H" ™™ (F) > o/. (Otherwise, we stop, since the conclusion of Proposition [(]

then holds trivially with F' = G')
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Given z € [0, 1]™, we write F}, for F'N (R™ x {z}) as above.
By Lemma[4.1] there is a ¢/ € R™ such that

n+m 2

LW

H*(f(F))

The implied constant in the first inequality depends only on n, m, and the bi-Lipschitz constant L of
h. Therefore we have a constant 7 = n(n, m, a, L) > 0 such that

/ HA(F(Fy) O () dH™ () > (@' o L.

(4.12) H'(f(Fy) 0 f(F))dH™(2) = .

[071]'m
Let
E'=Fn f_1<f(Fy’>>‘

Note that, since h(x,y) = (f(z,y),y) and h is L-bi-Lipschitz on F', we see that f is L-bi-Lipschitz
on Fy.
Define two functions:

Pt f(Fy) = R by p'(2) = mgn o (flr,) " (2),
and
(4.13) g' BN - R by g (z,y) = (0" (f(2,9)), )

We know that / is L-bi-Lipschitz on F' O E*, and so p' is L-bi-Lipschitz on f(F,/). It follows that ¢*
is L-Lipschitz and (L, )-bi-Lipschitz on E*', with L; = 2L
We first make an observation about the size of E*.

Claim 4.2. We have H"™(EY) > [~2ntmy,

Proof of Claim[{.2] This is as in [1}, p.1114], with slightly different notation. Note that, for any z €
R™, we have

g (E;) = p' (f(E:) N f(Fy)) x {z}.
In addition, we observe that ¢ only distorts the z-coordinate of points in E'. In other words,
7rm (g* (2, 2)) = y if and only if z = .
Therefore, for each z € R™, we have
H (9" (E"):) = H" (g (E2))

=H"((p" (F(E:) N f(Ey))) x {=})
> LT"HM(f(E2) N f(Fy))
= LT"H"(f(F2) N f(Fy))

The inequality in the third line is because p' is L-bi-Lipschitz on f(F,/), and the final equality is
because f(E!)N f(F,) = f(F.) N f(F,) by definition of E*.
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Since g' is L-Lipschitz, we conclude that
Hn—l—m(El) > L_n_mHn+m( 1 (El))

— ’”/H ).)aH" (2)
> L2 [0 () 0 fR a2
> L n+m
using (@.12)). O
Let o = Wﬂm Here C,,,, is the constant from Lemma in dimension d = n + m.

Note that o’ depends only on n, m, «, and L.
We now apply Corollary 2.5/to g* on A = E' with parameter x = . We obtain numbers M’ =
M'(n,m,a”) and L' = L'(n,m, ") such that the set E* C F' C Q) admits a decomposition
E'=FE U---UE, UG
where

(4.14) g'l E! is bi-Lipschitz, and moreover extends to an L' — bi-Lipschitz map on all R"""

and
HT™(GY) < Crp HE™(G) < Crymad”.
Observe that g'| ;1 satisfies (I.3) immediately from the definition of ¢* in @.13).
Similarly as in [T}, we now have the following claim.

Claim 4.3. For eachi € {1,...,M'}, the pairs (E}, gl|Ei1) are Hard Sard pairs for f, and the map
g' satisfies (1.3).

Proof of Claim That ¢' satisfies (T.3)) is immediate from the definition of g' in @13).
We verify that (E}, g'| p1) satisfy the three conditions of Definition Condition (i) is established

in @.14).
Write F' = f o (¢*)~! on g'(E}). Consider any (z,y) = ¢g*(a,y) € g'(E}). Then, by definition of
g', © = p*(f(a,y)), from which it follows that
(4.15) F(z,y) = fla,y) = f(z,y)
and moreover that (z,y’) € F,y C F.
Thus, if (z,y;) and (z,y») are in g' (E}), then
F(xayl) = f(xay/) = F(%ZD)

Conversely, if (z1,y1) and (79, y2) are in g'(E}) and F(x1,y1) = F(x9,%2), then

f(x1,y) = f(w2,y) and (21, 9), (22,9) € F,

and this implies that ;1 = x5 because the map h(z,y) = (f(z,y),y) is bi-Lipschitz on F. This
verifies Condition () of Definition
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To verify Condition of Definition consider points (x1,%;) and (xq,y2) in g*(E}). Then,
using (#.13)) and the fact that i(x,y) is L-bi-Lipschitz on F' O E}, we have

d((F(z1,91),91), (F(22,92),92)) = d ((f(21,9), 1), (f(22,9), 92))
~d(f(x1,y), f(z2,9)) + ly1 — ¥2
~ |1 — 22| + Y1 — 1o
~ |(w1,91) — (2, Y2)]

The implied constants here depend only on n, m, and L. This verifies Condition of Definition|[I.3]
0

To recap, we have now given the following decomposition of F:
F=(F\EhYUE'=(F\E)YUElU---UE}, UG
where
e each (B}, g'| 1) is a Hard Sard pair,
o H(EY\ BY) < W (EY) < H(EY) < HU(EY) < L0, and
o H" (G < Chyma”

Writing F! = F, let F? = F'\ EL. If H"™™(F?) > o, we may repeat the exact same procedure
on F2. Continuing inductively in this way, if F*~! is defined and has a decomposition as above, set
F* = FrF=1\ =10 H ™ (FF) > o, we may follow the same procedure to obtain a decomposition
of I

FF = (FF\ EMYUE* = (FF\ E*)UEYU---UEY, UGF,
where

(i) each (B}, g"| ) is a Hard Sard pair satisfying (L.3),

(ii) H ™ (F*\ EF) < HP(FR) — L=, and
(iii) H"F(GF) < Cpyma”
Notice that the constants L, 7, L1, M’ remain uniform throughout this process

We end this iteration when F'N = FN=1\ EN=1 has H"+™(FN) < /. This procedure ends after
at most L steps by property (ii). (It may even be the case that H"™™(F') < o at the very first
step, in Wthh case E' = () and we end immediately.)

In the final tally, we have a collection of at most M- L2 Hard Sard pairs in direction P contained
in F'.
The remainder of F consists of all the sets G* (k = 1,..., N) that we constructed along the way,

and the final stage F'V at which we stopped the iteration. We now show that those remaining sets have
small total area.

We generated at most @ sets G* in the above iteration scheme. Each of these sets has
H ™ (Gy) < Cpima” by ().

The final stage FN at which we end the iteration has, by construction,

HT(EN) < o
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Thus, the complement of all Hard Sard sets E¥ that we formed in this procedure has total H"™™
measure at most

L2(n+m)
( p ) (Crama”) + .

By our choice of the constants o’ and «”, this quantity is less than «. This completes the proof of
Proposition [C] O

5. CODING AND SPLITTING CUBES

In this section and the next, we proceed with some preliminary work necessary to prove Proposition
D] which along with Proposition [C]is the other main ingredient in the proof of Theorem

We need two lemmas, used in the proof of Proposition D|to code and split cubes into useful families.

The first is a “coding” lemma which is a slight variant of now-standard arguments used, e.g., in [12,
p. 199-121], [4} p. 81-82], [19! p. 8]. We give a brief proof here.

Lemma 5.1. Let Qg be the unit cube of R%, and let f : Qo — X be a 1-Lipschitz map into a metric
space. Fix Cy > 1, € > 0 and np > 0. Then we can decompose () into sets

Qo= A UAyU. .. Ay, UGna

with the following two properties:

(i) If x,y € A; for some 1 < i < Mg and Q) € A is a dyadic cube of minimal side length such that
x,y € 3Q), then

md(C’OQ) < €.
(ii) HE (Gma) < 1.
The number of sets Mg depends only on €, n, and d.

Proof. We may assume that f extends to a 1-Lipschitz map defined on all of R?. (This can be done
by simply extending f “radially” to agree with its values on the boundary of )y, or by applying the
Kuratowski embedding theorem to embed X in ¢, (X) and performing a 1-Lipschitz extension into
loo(X).)

We will use Theorem 2.2} from which we deduce (with appropriate constants C” and €', to be shortly
fixed, depending on the dimension d) that for [V large enough we have

G={r€Qy:r€R TR C..C Ry CQyp;md(C'R;) > €'}

has measure, hence content, less than 7/ 27 (here, we assume R; € A).

Consider now = € () \ G. Each such x has at most N — 1 cubes R > z such that md(C'R) > €/,
which we may denote by Ri(z),...Rn(s), Where N(x) < N. By using an alphabet of m letters (m
depending only on d), we may assign to each x € )y a word w(z) (a sequence of < N letters) such
that if w(z) = w(y) then a minimal cube () such that ) > x, y has md(C'Q) < €.

We now use the “3 trick™: apply the above construction to all 24 dyadic grids formed by shifting the
standard dyadic partition by % in any combination of coordinate directions. (See [19, p. 5].)
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Note that if () is a smallest cube (from the original dyadic grid) such that 3Q) > z,y, then Cp( is
contained in C’'Q’, for some minimal cube (' containing x,y in one of the shifted dyadic grids and
satisfying side(Q’) =4 side(Q).

Thus, after repeating this 2¢ times on all the new dyadic grids, each z € Q) that is outside of the
union of 27 sets (G as above has been assigned words

wi(x),. .., wea(x).

These words have the property that if for all j w;(z) = w;(y), then a smallest cube () such that
3Q > z,y has md(CyQ) < €. The sets {A;} are then defined as all the sets on which the function
zr — (w, (:c))?d:1 is constant. Note that this yields a controlled number of sets, as the length of each
word and the size of the alphabet is controlled. Here we determine C” and €’ to depend linearly on
their counterparts C) and ¢, with a dependence depending on the ambient dimension d. U

The next lemma allows for splitting a family of almost-disjoint cubes into a controlled family of
well-separated cubes, at the cost of throwing a way a set of small measure.

Lemma 5.2. Let 2 be a collection of almost-disjoint cubes in Qy C R% 1 > 0, and A an odd natural
number. Then we can partition 2 into families { 2, Y% | and 4 such that

(i) every cube of 2 is in exactly one of the sets 2, or 9,
(ii) if Q, Q" € 2y, then AQ N AQ' = (), and
(iii) the H-measure of the union of all cubes in 9 is < .

The number of families ko depends only on n, A, and d.

Proof. 1t suffices to assume that the family 2 is finite, which we do for convenience.

Let 21 C 2 be a subset defined inductively as follows: Put the largest cube in 2 in 24, breaking
ties arbitrarily. Then at each step add to 2, the largest cube @ in 2\ 2; such that AQ N AQ’ = () for
all ' € 2,. Continue this process until no more cubes can be added to 2.

Denoting Lebesgue measure by | - |, we will first prove the following:

Claim 5.3. There is a constant ¢ = c¢(d, \) > 0 such that
| Ugez, Ql > c|Ugeo Q.

Proof. Given () € 24, let

6o ={Q € 2: A\QNAQ" # 0 and side(Q’) < side(Q)}.
For each () € 2; and Q' € &, we have ()’ C (2A 4 1)Q. Therefore,

|Ugrese @' <120 +1)Q| = (2A +1)9Q).
Now, if ) € 2\ 24, then Q' € & for some () € Z;. (Otherwise, ()’ would have been placed in

Ql’l;)}lerefore,

|Ugeona @< ) [Uges, @1 < A+ 1) D> Q)

QEZ: QE2
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It follows that
| Uge2 Qf = | Ugea, QI+ | Ugrearo, Q'] < (1+ 2A +1)%)| Uges, QI

which proves the claim. 0

Once the claim is proven, the lemma follows: For each i > 2, apply the same construction to
2\ UiZ} 2 to obtain collections

2,C2\U_12,C2
satisfying (ii) and having
| Ugeso, Q| = ¢ UQe,@\u;ﬂ;ll,@j Ql.
It follows that, foreach 7 > 1,
| Ugea\ui_, 2, Ql=| YUoea\ui-l 9, Q| — | Uges Q|
<(1-¢ YUgea\uizl 9, Q|
Hence . .
| Ugea\ui_, 2, Q< (1—1¢)Uge2|Q| < (1 —c¢) foreachi > 1
Thus, for kg sufficiently large depending on 1 and ¢ = ¢(d, A) (and recalling the comparability of
Lebesgue and Hausdorff measures), we can ensure the set
g =2 \ Ufozl"@j

has a union with total H?-measure < 7. This completes the proof of the lemma.

6. CUBES COMPRESSED IN MANY DIRECTIONS

In the proof of Theorem (via Proposition @]) we will need to discard a collection of cubes which,
while they may have small md, are “compressed” by f in many different directions. This collection
will eventually form part of the “garbage set” G in Proposition D] and Theorem

For the remainder of this section, we work under the following assumptions: () is the unit cube of
R™™ and f: QQp — X is a 1-Lipschitz map from @), into a metric space. We will write md for md;
in this section and the following one.

Let P be the set of all coordinate n-planes in Gr(n,n + m). That is,

(6.1) P = {span({e;,, €ip, ..., €, }): 1 <iy < -+ <i, <n+m},

where e; represent the n + m standard basis vectors of R™,

Recall the constant Cj defined in (2.2). For each cube ) € A, we fix a seminorm || - || on R"*™
that minimizes md(CyQ).

Our goal in this section is to prove the following lemma.

Lemma 6.1. Fixe > 0and 6 > 0. Let Q = Q(¢,0) be the collection of all cubes such that

(i) md(CyQ) < ¢, and
(ii) for all P € P, there is a unit vector vp € P such that ||vp||g < 6.
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Then
H"(f,Ue(3Q)) S e +0.
The implied constant depends only on n and m.

As a first step, we need the following linear algebra fact.

Lemma 6.2. Let K be a subspace of dimension < m in R"*™. Then K N P = {0} for at least one
PeP.
In other words, K cannot contain a non-zero vector in every coordinate n-plane.

Proof. 1t suffices to show that an m-plane K in R™"™ cannot contain a non-zero vector in every
coordinate n-plane. The proof is by induction on n, for each fixed m > 1.

First, suppose that n = 1, and that K’ € Gr(m, 1+m) contains a non-zero vector in every coordinate
1-plane. Then K contains a non-zero multiple of every standard basis vector e;, which implies that
K Dspan({e; : i =1...1+m})=R"™ and yields a contradiction.

Now suppose that n > 1 and K € Gr(m,n + m). As above, there must be a standard basis vector
e;, such that K N span({e;,}) = {0}; if not, K would be all of R"*™. Let

V = span{el, €2, .. 3,€i0—15Ci0+1y -+ en-i—m}-

Let K’ = my(K). Since K N ker(m,) = {0}, the space K’ is an m-dimensional subspace of V' =
]R(n—l)—l—m_

By induction, K’ cannot contain a vector in each coordinate (n — 1)-plane of V. In other words,
there is a collection

{62'1, e ,61'”71}
of standard basis vectors (none of which are ¢;,) such that
K'nspan({e;,,...,e; }) = {0}.
Let
P =span({e;,} U{e;,..., €, ,}) €P.
This is a coordinate n-plane in R"*™. If v is a non-zero vector in K N P, then

my(v) € K' Nspan({e;,,...,e;._,}) = {0},

and so v € span({e;, }). But e;, was chosen above so that K N span({e;,}) = {0}, so v must be zero.
Thus, K N P = {0}, as desired.
U

A compactness argument then yields the following quantitative version of the previous lemma.

Lemma 6.3. For each n, m > 1, there is a constant ¢ = c(n, m) with the following property:
Let K be a subspace of dimension < m in R"*™. Then there is a coordinate n-plane P € P such
that

dist(w, K) > ¢ >0

for all unit vectors w € P.
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Proof. First of all, it clearly suffices to prove the lemma assuming that dim(K) = m.
Suppose that the lemma were false for some fixed n, m > 1.
Then there would be a sequence K; € Gr(m,n + m) such that, for every P € P, there is a unit
vector w} € P with
1
dlSt(’lU]P,Kj) < -.
J
The sequence K; has a subsequence converging in the metric D defined in subsection to a

subspace K € Gr(m,n + m). In addition, we may pass to further subsequences for which each
sequence {wf 521 converges to a unit vector w? € P. Tt then follows that

w” e KNP.
Thus, K is an m-plane containing a non-zero (indeed, unit) vector in every P € P. This contradicts
Lemmal6.2] 0

We now prove Lemma [6.1]

Proof of Lemma6.1} Recall the definition of Cj from (2.2), and let ¢ = ¢(n, m) denote the constant
from Lemma
We may assume in proving the lemma that € and 4 are both small, depending on n and m, e.g., that

(6.2) § + e < c(100Cy) ™,

otherwise the lemma is trivial.
Recall that if a cube () is in the collection Q defined in the statement of Lemma|[6.1] then

md(C’oQ) <€
and for every P € ‘P, there is unit vector vp € P such that
(6.3) llvpllg < 6.

We establish Lemma [6.1] via some intermediary claims.

Claim 6.4. If Q) € Q, there is an (m + 1)-plane Ky € Gr(m + 1,n + m) such that
(6.4) lvllg < Cid|v]| forallv € K,
where C' is a constant depending only on n and m.

Proof. Foreach P € P, there is a unit vector vp € P satisfying (6.3). Fix ¢’ = §. Let S = {vy, ..., v}
be a maximal subset of {vp : P € P} that satisfies

(6.5) dist(v;, span({vy, ..., v;_1}) >  foreachi € {1,... (}.

In other words, S is a maximal “quantitatively linearly independent” subset of {vp : P € P} (with
parameter ).
We will show that
K = span(S)
has dim(K') > m + 1 and satisfies (6.4)).
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First, we argue that K satisfies (6.4). Any v € K can be written as

¢
v = Z a;V;
i=1
where

14
Z ’a’l| < Cl|U|>
=1

because S satisfies (6.5]). Here (' is a constant depending on n, m, and ¢/, and thus ultimately only on
n and m.
Hence

l l
ol < lailllville <8 lail < Crdol,
=1 1=1

where C depends only on n and m. This proves that K satisfies (6.4)).
Now we show that dim(K) > m + 1. Suppose, towards a contradiction, that dim(K’) < m. Then
by Lemmal6.3] there is a coordinate n-plane P € P such that

(6.6) dist(w, K) > ¢ > 0

for all unit vectors w € P.
Let vp be the unit vector associated to P, as in (6.3)). In particular, since vp € P, we have

dist(vp, K) > ¢ > 0.

In that case, however, we should have appended vp to S. In other words, this contradicts the
maximality of the set S defined above.
Therefore, ' must have dimension at least m + 1, and it satisfies (6.4)). It follows that /& contains
an (m + 1)-dimensional subspace K that satisfies (6.4), and hence proves Claim
O]

Claim 6.5. Let () € Q and let R be either () or a neighbor of () of the same scale. Then
HL(f(R)) S (04 €)side(R)",
where the implied constant depends only on n and m.

Proof of Claim[6.5] Assume by rescaling that side(()) = side(R) = 1. Let K, be an (m + 1)-plane as
in Claim[6.4] so that
lvllg < Cid|v| for all v € K.

Let P = K-, which is an (n — 1)-plane in R™*™.

Let P, be an affine (n — 1)-plane parallel to P and passing through the center of R. Fix z € R and
let 2 p, denote the closest point to = in . Note that = and x p, are in Cy(Q by our choice of Cj in (2.2).

We have

d(f(x), f(xp)) < llz — 2Rl + Coe S C1C00 + Coe < C5(0 +¢),

since x — xp, € Ko and |z — zp,| < diam(CoQ) < Cp. Here Cs is again a constant depending only
on n and m.
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Since x € R was arbitrary, we have shown that
f(R) - NCQ(6+e)f(PO N COQ)

Given r > 0, we can cover Py N Cy@ by <~V balls of radius r, with implied constant depending
only on n and m. Hence, we can cover f(R) by < r~("=V balls of radius 7 + C5(8 + €). Choosing
r = Cy(d + €) allows us to bound

Hi(F(R) S (Ca(d+€) " V(2056 + )" S5+ e
This proves Claim [6.5] O

We now use Claim|6.5[to complete the proof of Lemma Let Q denote the collection of all cubes
that are either in Q, or adjacent to an element of Q of the same scale. Let {Rj} enumerate all maximal

cubes of Q. Note that Ugeo(3Q) C U, R;. Thus, using Claim
H(F,Ua(3Q)) < Y HL(F(Ry))side(R;)"

J
(6+€) ) side(R;)"™
d+e.
This completes the proof of Lemma [6.1] O

VANRRAN

7. ADDING PROJECTIONS TO FORM BI-LIPSCHITZ MAPS

Our goal in this section is to prove Proposition[D] Thus, we will decompose the unit cube into pieces
on which, after a bi-Lipschitz change of coordinates, our given Lipschitz map can be supplemented
by the projection to the x-axis to form a bi-Lipschitz map.

For the entirety of Section [7, let ()y be the unit cube of R™* and f: Qo — X be a 1-Lipschitz
mapping into a metric space.

Remark 7.1. No condition on H"(f(()) is assumed for this particular section.

These are the same standing assumptions as in Section [0

Recall the definition of the collection of coordinate n-planes P in (6.1). Let P, € P denote the span
of the first n standard basis vectors in R"*™, Thus, if we write R"""” = R™ x R™ in the usual way,
then 7p, (2, y) = v and 7p1 (z,y) = .

Note that the maps

(z,y) = (f(67 ' (2,9)), 9),
described in Proposition@], which we will discuss below, can be written using this notation as
(f ° ¢i_177TPOL)'
As one final remark before beginning the proof, part of the conclusion of Proposition [D]is that the
sets F; and G we construct will be Borel. However, if F; is one of the sets in the proposition, then F;
has the same property, so this will not be a concern in the remainder of the proof.

We now begin the proof of Proposition [D] in earnest, which will take a number of steps. Fix a
parameter o > 0 as in the statement of the proposition.
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A number of constants, such as Cy defined in (2.2)), depend only on n and m, and will often be
suppressed using the <,, ,,, notation.
At the moment we fix

(7.1) o = a/(100),

where C' > 1 is larger than the implied constant in Lemma 3.4} which depends only on n + m. Thus,
o depends only on «, n, m.

The most important further positive constants we will define will be §, chosen sufficiently small
depending only on «, n, and m; ¢’ chosen sufficiently small depending only on «, n, m, and J; and e,
chosen sufficiently small depending on «, n, m, d, and 0’. The needed requirements will be specified
in the course of the proof. A number of other constants will be defined based on these as we go.

Recall that for each cube () € A, we have fixed a seminorm || - || that minimizes the quantity

We now define three sub-collections of cubes in A that we will use in the remainder of the proof.

Definition 7.2. Given positive constants ¢ and € as above, define:

e Qi :={Q € A:md(CoQ) > €}.

® Qeompressed ‘= {Q € A : md(CpQ) < e and each plane P € P contains a unit vector vp €
P with ||UP”Q < 5}

L4 ngod =A \ (de U Qcompressed)-

Thus, the fact that a given cube ) € Qgy0q means that

md(C()Q) <€
and that there is an n-plane P € P such that
(7.2) |lvllg > d forall v € Py.

We assign to each cube () € Q004 a fixed coordinate n-plane Py € P with the above property.

7.1. Initial decomposition of (), into starting cubes. We begin with the following initial decompo-
sition of ().

Lemma 7.3. There is a constant K1 = K1 («a, d, €,n, m) such that

el o @) <o

QEAk‘ \ Qg(md

for some k < K.

Proof. Fix K, € N arbitrary for the moment.
Then, using Theorem 2.2}

K
Y 1Rl Swime L

k=1 QEALNCQmg
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Therefore, for some choice of 1 < k < K,

w9 Y 10 S —

QEALNQma QEAKNOm Ky
Furthermore, Lemma [6. 1] implies that

el U Q) Semd+e

Qe A kN QCOIHPFEbSCd

It follows that

wer o U o oe) <«
QEAk\ngod

if K is chosen large depending on n, m, «, o/, and ¢, and 0 and € are small depending on n, m, .
(This uses Lemma[3.2])
O

7.2. Stopping time argument. Let k be as in Lemma Let Q° be a cube in Ay N Qgood, Which
will be fixed for the next few subsections. We will view Q" as the top cube of a certain stopping time
argument.

The fact that Q° € Qgo0a means that

md(CoQ°) < €
and that there is an n-plane Pgo € P such that
|v]|go > ¢ for all unit v € Ppo.

Let S° = {Q"}. We inductively define collections S* C Qgooq, each of which consists of pairwise
disjoint cubes, as follows. Assume we have defined

ST ={Q . ....Q )
A cube @ will be placed in S if it satisfies the following conditions:
(1) Q € ngod'

(2) @ C Q! for some cube Q' € S
(3) there exists a unit vector v € PQH with
J
lvllg < ¢,

(4) @ is a maximal sub-cube of Qé‘l satisfying () and (3).

The above conditions define a disjoint family of cubes S* with the property that each cube of S° is
in Qgooa and is contained in a cube of S 1.

One can view the above construction of the families S? in the following way: We begin with a

starting cube Q° € Qgooa With an associated “good plane” Pgo, in the sense that (7.2) holds for Q°
and Pgo. We proceed down each branch of the tree of descendants of QQ°. We stop at the first time we
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see a cube Q! € Qgood for which Ppo is a “bad plane” for @', in the sense that there is a unit vector
v € Pgo such that

lv]lgr < ¢
In that case, we add Q' to S*, find a new good plane P for Q', and continue the process. The largest
good descendant of Q' for which P is no longer a good plane will be added to S?, etc.

Thus, cubes in S := U, S? are those good cubes for which the appropriate plane “switches” to
another element of P, in a quantitative way.

7.3. Packing condition. Fix a k as in Lemmaand Q" € Ap N Qgond-
Our next goal is to prove that most points of )" cannot lie in too many nested cubes of .S, i.e., that
S* for large i has small H""™-measure.

Lemma 7.4. There is a choice of K = K(n,m,d,9,d¢) € N such that
HrHm (UQESKQ) < (X,Hn+m(Q0).
The main step in the proof of Lemma(7.4]is the following.

Lemma 7.5. Let Q € S° for some i > 1. Then the collection of all R € S**! that are contained in Q
has

el R <(-nHYQ),

ReSi+1 RCQ

for some n = n(e,d,n,m) > 0.

Proof. Assume that () = () for convenience; we can achieve this by simply rescaling. Let P = Py
as in (7.2]).

Let P, = (P +y)NQ fory € P N[0, 1]™. Note that each P, is isometric to the unit cube of R".
It will also be convenient to assume that no component of y is of the form 2% for any k,n € Z, so that
H"-a.e. point of P, is in at most one dyadic cube of any given scale.

We first give a lower bound on the size of the image of P,.

Claim 7.6. We have
(7.3) Ho(f(Py)) > (6 —2Che)".

Proof of Claim[7.6] Observe that if /" and F” are any pair of opposite (n — 1)-dimensional faces of the
unit n-cube P, then

dist(f(F), f(F")) > § — 2Cqe,
otherwise a vector v € P from a point of F' to a point of F” would have ||v||¢g < § < d|v|, contradicting

the definition (7.2) of Py for Q € S° C Qgooa- Equation (7.3) then follows from [14, Corollary
1.6]. O

We next argue an upper bound on the size of the images of P, N R, for sub-cubes R € S*! that are
contained in Q).
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Claim 7.7. Let R € S be contained in Q. There is a constant C,, ,,, depending only on n and m
such that

(7.4) HE(f(P,NR)) < Cpm(d + €)side(R)".
Proof of Claim Since R € S, there is a unit vector v € P such that
lv||lr < ¢

Let P’ be the affine (n — 1)-plane inside P, that is orthogonal to v and passes through the center of
the n-dimensional cube P, N R. Lett = Cy(0'\/n + €).

We can cover P’ N CyR, and hence f(P' N CyR), by <, t~ Y balls of radius tside(R). If
x € P,N R, then the nearest point 2’ to x in P’ lies in P’NCy R, and has x — 2’ parallel to v. Therefore

d(f(z), f(2") < ||z — 2'||g + Coeside(R) < §'|z — 2’| + Coeside(R) < tside(R).

Thus,

f(P,NR) C Nigae(r)(f(P' N CyR)) C the union of <., ¢~V balls of radius 2tside(R).

Hence

H™ (f(P,NR)) Spm t~ "V (2tside(R))" = 2"tside(R),

which proves (7.4). O

We will need the following basic fact: For each n € N, there is a constant \,, > 0 such that, if R is
a cube in R"™, then

(7.5) H(R) = \,side(R)".

Indeed, up to scaling, all such cubes are isometric, so it suffices to understand that the unit cube in R"
has positive, finite Hausdorff n-content, which is standard.

We now decompose P, as

P, = U @np)u U (RN P,),

ReSH1 RAP,#0 R/¢Si+1 RAP, 0

where R’ are a collection of almost-disjoint dyadic cubes chosen to cover P, \ Ugcgi+1 (RN P,).
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Therefore, using Claims[7.6|and [7.7], and (7.5)), we obtain:
(0 = 2Coe)" < HL(f(Fy))
< X HLU@BNR)+ Y HLF(RNER)

ReS™1, RNP,#0 R'¢S+1 RNPy#0
SCom(@+€¢) Y side(R)"+ A, Y side(R)"

ReS*1, RNPy#0 R'¢ S+l RNP,#0

=Com(d'+€) Y side(R)"+ A, [1— ) side(R)"

RESi+1 RNP,#0 RES+1 ROP,#0
= A= (A= Com(@+6) > side(R)"
RS+ ROP,#0
Rearranging the above inequality yields

n < .
D side(R)" < r — Con( 1 ©)
ReS* RNP,#0 ’

Since ¢’ and € are chosen depending on §, n, m, we may force the fraction on the right hand side to be
bounded strictly away from 1, i.e., so that

(7.6) > side(R)" <1 — 1,
ReS*1, RNP,#0

forn =n(n,m, s, € > 0.

We now apply Fubini’s theorem to estimate the (n +m)-dimensional volume of the set Urcgi pcgR
by integrating (7.6) over y € [0, 1]™. (Note that the set of dyadic points y that we excluded in proving
is a set of H™-measure zero.) Writing | - | for Lebesgue measure in R"*"™, we obtain

|Ugesit regR| < / Y side(R)"<1-n=(1-7)Ql
VelO™ pegitt RAP,#0

Therefore
H" ™ (Upesi,rcgR) < (1—n)H"™™(Q),
as desired. L]

We now complete the proof of Lemma|/.4

Proof of Lemma By Lemma we have

H™ (Ugesn Q) < (1 —nH™™ (UgesiQ)
for each ¢ > 0, where 7 > 0 is the constant from Lemma[7.5]
It follows that, choosing K large enough so that (1 — )% < o/, we obtain

Hn—i—m (UQESKQ) < CJé,Hn+m(QO).
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The choice of K depends therefore on o’ and 1(n, m, d,d’, €). This completes the proof. O

7.4. Splitting and definition of the sets. We continue to work with a fixed Q° € A, N Qgood as in
section[7.2] where k& comes from Lemma(7.3

In section we defined collections of cubes SV, S1, 5%, -+ C Qgoa € A. Each collection S
consists of pairwise disjoint dyadic cubes contained in Q°, and each cube of S*™! is contained a cube
of S°.

In this subsection, we split each S? into a controlled number of disjoint sub-collections Sji-, using
Lemma We will then use the S; to define the sets required by Proposition @

For the first step, fix an odd integer A > 3, which will depend on ¢’, n, and m, and let " =
which depends on « and the constant K = K (n,m, d,0’, ) from Lemma([7.4]

Apply Lemmato each collection S?, with the parameter 7 set as o/ and expansion constant A.

This partitions each S? into a controlled number of families S;- (1 <j <k <ko(a",n,m)) that
are A-disjoint, and a garbage set G C S® whose total H""™-measure is less than o”.

Consider the collection of “words” w taken from the set

K 7
(7.7) w=J]J{1.2 . k)

(=0 i=1
In other words, a word w € W is of the form (jo, j1, ja,--.,J¢), where 0 < ¢ < K and 1 < j; < k;
for each i € {1,...,¢}. (The number of words in W is controlled based only on K and kg, hence
independently of Q°.)

Fix a word w = (Jo, 1, j2, - - - , je) € W. This yields collections of cubes:

(7.8) Ty =1{Q"}

(7.9) T, ={Q €S :Q C Rforsome Rin T, '}.
These collections have the following properties for i < ¢:

Each T, is a sub-collection of S} C S°.

IfQ,Q €T!,then AQNAQ = 0.

Ifi < ¢and Q € T, then Q is contained in a cube of 77 .

IfQ € S*\ G, then Q € T for some w € W.

Independently of the above constructions, we may now also apply Lemma [5.1| with parameter 1 =
o/. This yields a decomposition

(710) Q():AlUAQU"'UAMmdUGmd,
where A; have the property described in Lemma the number M4 depends on o/, €, and n + m,

and HZ " (Gma) < .
We are now ready to define the sets appearing in Proposition D]

Definition 7.8 (Definition of the sets in Proposition @ Let £ be as in Lemma and let Q° €
Qgood N Ag. Let Mg be as in Lemma [5.1)and let p € {1,..., Mg} Letw = (jo,...,je) € W as
defined in (7.7)).

o
K’
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We define a set F'(Q°, p, w) C Q° as follows:

l

FQpuwy =40l Uel\| U eu U 6@

=1 QGT&, QGS[J'_l Qe anmpressed
Here T refer to the cube collections defined in and (7.9).

Note that F(Q°, p, w) C Q°, and its dependence on Q° is implicit in our construction of the sets S*
and T .

To clarify Definition apoint z € Q% is in F(Q°, p, w) if and only if the following conditions
hold:

(i) The point z is in the set A, from our use of Lemma5.1]in (7.10).
(i1) For each 0 < i < /, x is contained in a cube of the collection Tj}, where TB = {Qo}.
(iii) The point  is not contained in any cube of S**!. (Hence, z is contained in exactly ¢ + 1 cubes
of S, those in (ii).)
(iv) The point x is not contained in the triple of any cube of Qcompressed-

These sets F(Q°, p,w), for each choice of “top cube” Q° provided by Lemma each p €
{1,..., M4}, and each w € W, will comprise the sets (called F;) in Proposition @ The follow-
ing lemma reflects the fact that there are a controlled number of such sets, and that property (ii) of
Proposition D] holds.

Lemma 7.9. Let k be as in Lemma As Q° ranges over all cubes in Q00 N Ay, p ranges from
1 t0 Mg, and w € W the number of sets F(Q°, p,w) is controlled by a constant depending only on
n, m, o, and our previously defined constants 0,0, ¢, K, K, k.

Furthermore, we have

Mina
(7.11) He [ feN U U U F@pw | <a

QoeggaodmAk p:l wew

Proof. The number of choices of Q° € Qguq N Ay, is controlled by |A,| = 2(mtmk < olntmK:
where K is the constant from Lemma The number of choices forp € {1, ..., M4} is controlled
by Mg, which depends only on € and n + m. Lastly, the number of choices for w € W is bounded
by a constant depending on the constants A from Lemma|/.4{and the constant % arising from Lemma
with parameters depending on o/, §, n, m.

It follows that the number of sets F/(Q°, p, w) is controlled as desired.

We now focus on bounding the mapping content of the remaining points that are not in any set
F(Q°, p,w). This is just a matter of assembling some prior results.

If aset x € Qy is not in UQO couna, Ur, co Fw, then there are a few options:

(1) = may not be in any of the sets Ay, ... Ay, given by Lemma5.1| with parameter = o/
(2) x may be in a cube @ of Ay, \ Qgood,

(3) = may be in one of the garbage sets G*, fori € {1... K},

(4) = may be in a cube of SX*!, where K is the constant from Lemma
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(5) x may be in a triple of a cube of Qcompressed-

The set of points satisfying (T)) has total H"™ less than o/, by Lemma

The set of points satisfying (2)) has total H2"™(f,-) less than o/, by Lemma

The set of points satisfying (3]) has total "1™ -measure less than K« = «/, since there are at most
K sets G' and each has "*™-measure less than o by our use of Lemma/5.2]

The set of points satisfying (@) has total H""™-measure less than o/, by Lemma([7.4]

Lastly, the set of points satisfying (5) has total %™ (f, -) less than C'(e + J), by Lemma6.1] where
C' depends on n and m.

Thus by ensuring that § and € are small depending only on «, n, and m, recalling the definition of
o from (7.1)), and using Lemmas [3.2and [3.4] we obtain (7.11).

0

7.5. Construction of the bi-Lipschitz mappings. For the remainder of this section, we fix k£ as in
Lemma Q" € Quooa N A, p € {1,..., Mpa}, and w = (jo, ..., j¢) € W asin (7.7).

We then obtain a set /' = F(Q°, p,w) as in Definition which will be fixed for the remainder
of the section. We will define a bi-Lipschitz mapping ¢ : F' — ¢(F) C (o. The collection of such

mappings ¢ for all choices of F' will comprise the mappings called ¢; in Proposition D}
Recall the cube collections 7" defined in (7.8) and (7.9). By definition of F', we have

F C Mz (Yoer, @) -
As noted below (7.9)), the collections 70, ... T satisfy:
e Each T is a sub-collection of S]’Z C S,
e IfQ, Q' €T, then A\QNAQ = 0.
o If Q € T\, then Q is contained in a cube of T .
Recall that each cube () in any T]jj is also, by definition, an element of Qgu,q. Thus, there is a
seminorm || - || satisfying

sup |d(f(2), f(y)) = [lz = yllq| < md(CoQ)side(Co@) < Coeside(Q).

Z‘7yECOQ
Moreover, as noted in (7.2)), there is a coordinate n-plane Py € P such that

|v|lg > o for all unit vectors v € P.

Foreach1 <i < /,let ¢' : (UQGT& Q) — (o be a map defined as follows: On each cube @) € Tfu,
the restriction ¢*|q of ¢' to Q is an affine map Agx + bg such that Ag is linear and orthogonal,

¢'lo(@) =Q
and
Aq(Pq) = Fo,
where ' is the unique cube of T'! containing Q. Note that Py and Py are coordinate n-planes (i.e.,

elements of P), so such affine mappings exist.
Similarly, we define ¢° : Q° — Qq to be an affine map Az + b, with A orthogonal, such that

¢°(Q") = Q"
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and
A(Pg) = F.
Recall that P, denotes the span of the first n standard basis vectors in R™*™,

Thus, each ¢ “rotates in place” the cubes @ € T . The fact that A > 3 and AQ N AQ’ = () for each
Q, Q' € T! implies that ¢ is well-defined and bi-Lipschitz on the set Uger: @ 2 F', with an absolute
bi-Lipschitz constant. Moreover, ¢'(Uger: Q) = Uger:i @, since ¢ fixes each cube of T}, setwise.

Therefore we can define ¢ : F' — )y by

(7.12) ¢p=¢"oglog?o-- og.

Since each ¢’ is bi-Lipschitz on F' with absolute constant, the map ¢ is bi-Lipschitz on F' with
constant depending only on K, hence only on a, n, m, 0, ¢’ €.

Informally, ¢ acts on F' as a sort of “clockwork mechanism”. It rotates small scale cubes, then

larger scale cubes, etc. with the goal of “lining up” the planes I to match F,. We will see this in the
next section.

7.6. Conclusion of the proof of Proposition D, We continue to fix the set ' = F(Q°, p, w) and the

map ¢ defined in (7.12)).
To complete the proof of Proposition D] we will show that the map

h=(fod™ ", mps)

is (quantitatively) bi-Lipschitz on ¢(F). Since all the component functions are separately Lipschitz,
with bounds depending only on our chosen constants, it is immediate that h is itself Lipschitz, with
constant depending only on «, n, m (and our previously chosen constants, which ultimately will only
depend on these). The remaining work will be to show the lower bound.

Let = and y be distinct points of F', so ¢(z), #(y) € ¢(F'). Let (Q be a cube of minimal side length
such that 3() contains both z and y. Since x,y € F C Q°, we may take Q C Q°. Observe that

diam(3Q) < diam(CpQ)
lz—yl = lr—yl

where (7, , . is a dimensional constant depending only on n and m.
Note also that by definition of /', we must have that

Q € ngod'

Indeed, no points of F' can be in a triple of a cube in Qcompressed> and the fact that z,y € I C A,

guarantees that Q ¢ Qug by Lemmal5.1] Thus, Q € Qgooa-
Let iy € {0,1,...,¢} be the largest index such that Q C Q;, for some Q;, € T.
We begin with the following:

(7.13) < C;L,m

Lemma 7.10. With x, y, 19, and Q);, as above, we have

20,
71 (0(2)) = g (G| = gy (@) =y ()] = = = .

Here C), ,, is the dimensional constant defined in (7.13).
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Proof. Note that the map
h=¢"0plog?o. -0g",
is simply an affine map of full rank when restricted to Q);,.
By definition of ¢°, ¢!, ¢?, etc., we have

(¥

@i, ) (Pg,, ) is parallel to Py

and therefore
(v

By standard linear algebra, there is therefore an isometry ¢: Pé . Py such that

Qi) (Péio) is parallel to P;-.

Tp- © (v Qi) = LoTmpg. -

0

We now consider two cases: ig = £ or iy < /.
If ig = ¢, then ¢ = ¢ and it follows that

[T (6(2)) = 7 (G| = |0 (@) —vomny (v)
= ’WP@O (z) — WP@-O )l

which proves the lemma in this case.
If ig < ¢, then let ¢/ = ¢t o ... 0 ¢ sothat ¢ = 1) o). Then

(7.14) [mrs ($(2)) = mps (9] = leo ey 0 '(@) —vompy ov'(y)l

%0

(7.15) = ‘Wpcji © ¢/<x) TPy © w’(y)l

0 0

Now, = and y are in different cubes Q7 and QY | of T0*! (by maximality of 45). Since ¥’ only
rotates cubes at levels 7y + 1, 79 + 2, etc., we see that

V'(x) € Qf 4y and ¥’ (y) € QF 41

Moreover, Q7 |, and Q7 |, are contained in 3Q), and AQ¥ | and AQ)}, ., are disjoint. Therefore,

!

1 1 C
¢ (2) — 2| < diam(Qj, ) < Fdiam(AQF, ;) < diam(3Q) < —= |z —y],
A A A

with C} . as in (7.13)). The analogous statement holds for |¢)'(y) — y].
Therefore, using (7.15)),

T (9()) = g (D)) = Iy, 0 /(@) =7y 0 ¥/(y)

> [npy. (2) =7y, ()] = [0/(a) = al = () — ]
20,

> gy (2) = mry () =~ — yl.

0 0

This proves Lemma|/.10 0
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As ) € Qgood, it has a good approximating seminorm for f, namely || - ||o. By the stopping time
construction of the sets S?, we must have that

[vllg = do'|v]

forallv € Py, . (If this did not hold, then @ would have been added to Siotl violating the maximality
of Zo)

Write w = x — y = wy + ws, Where wy € PQiO and wq € Péio. Then, using Lemma [2.3

[wllq + [wa| = [lwillq — llwallq + |wa] = &'|wi| — Coeside(Q) > &'[wi| — Cf, elw]
and, trivially,
[wllg + wa| = |wsl,

from which it follows that
(7.16) [wllq + [wa| Znm d'lw| = C, pelwl,

with the implied constant depending only on n and m.

Using Lemma [7.10]and (7.16)), we obtain
d(h(6(x)), M(d(y)) Z d(f(x), f(y) + [mr, (6(2)) = TR, (6(9)))]

. 20 ..
2 |z = yllg — Coeside(Q) + [mpy (2) —7py (Y)] = — =l —y|
0 0
!
> [lwllq = CoChmelw] + |wa| = —F=[w]

2Cnm
2o Ol = (CoChne + 252 ) ul
2 |z =yl

= o) = o(y)|

The penultimate line follows by taking € > 0 sufficiently small and A > 3 sufficiently large, depending
on n,m,d’. The final line follows from the fact that ¢ is bi-Lipschitz.

This verifies property (i) of Proposition [D] and so along with Lemma completes the proof of
this proposition.

8. PROOF OF THEOREM [A]

We now combine Propositions [C] and [D|to prove Theorem

Proof of Theorem[A] Let f: Qo — X satisfy the assumptions of Theorem [A] Fix v > 0.
Without loss of generality, we may assume that
H"(f(Qo)) = HI(f(Qo)) >0,
otherwise the conclusion of the theorem is trivial by Lemma [3.1]

By Proposition D] we may decompose Q) as
Qo=FUF,U---UFyUG,
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where

(8.1) HEM(f.G) <v/2

and, for each i € {1,..., N}, there is a bi-Lipschitz map ¢;: F; — (o such that the map
(8.2) (fodit,mpt),

i.e., the map

(z,y) = (f(67 ' (2,9)).9).
is bi-Lipschitz on ¢;(F;).
Apply Corollary [2.5|to each map ¢; on F; with parameter = v/(10C,, ,, V), where C,, ,,, is the
implied constant from Lemma[3.4] This decomposes each set F; into a controlled number of sets

F,=F,U---UF, ), UG,
such that each map ¢;|r, , admits a globally bi-Lipschitz extension

(b’i,j : Rn+m — Rner

and
(8.3) W (f,Gi) < CoH"™(Gy) < M)LN foreachi € {1,..., N},
using Lemma

Note that the bi-Lipschitz constants of ¢; ; and the constants }; are controlled depending only on
v, n, and m. By passing to the closure, we may assume without loss of generality that the sets F; ; are
each compact.

Write f;; = fo ¢ }: ;1 ¢ij(Fij) — X. The fact that the map in (8.2) is bi-Lipschitz on ¢; ;(F; ;)

allows us to apply Proposition l to the map fi j on the set ¢; ;(F; ;). (Note that, while fw- is not
necessarily 1-Lipschitz, its Lipschitz constant is controlled depending on n,m, ~.)

We thus apply Proposition (C] to the map Jf; j on the set ¢; ;(F; ;) with parameter &« = a;; > 0
sufficiently small, depending on n, m, 7, and the bi-Lipschitz constant of ¢; ; (and thus ultimately
only on n, m, and 7).

This decomposes each set ¢; ;(F; ;) into

@j(pi.):E.l.UEzj ‘UE, ”UGU,

where each Ek is a Hard Sard set for f; ; and

(8.4) H M (Gy) < i
In particular,

n,m n+m 17/ L
(8.5) H" (03 (Gia)) < H™615(Gia)) < 1oamp

if we choose «;; sufficiently small, using Lemma and the fact that ¢, ; is quantitatively bi-
Lipschitz.
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Note that M/; ; and the Hard Sard constants C';, for E’c are controlled depending only on v, N,
and L, and hence only on 7. Let g¥ '; denote the globally CLZp-bl Lipschitz Hard Sard map for fi j on
the set Eff].

Recall that, because of condition (I.3) in Proposition l we know that g§j| B, is a “shear” that

preserves the y-coordinate. In particular, if (x,y) € Efj, then

k n
(8.6) 9i(z,y) = (2, y) for some 2" € R™.

Let Ef = &, ( ;). Note that the number of these sets was controlled in each step, depending
ultimately only on n, m, and .

We now claim that each pair (EF,, g o ¢; ;) is a Hard Sard pair for our original map f. Let us fix
indices 17, j, k as above and call this pair (F, g o ¢).

First of all, Condition (i) of Definition[I.3]holds, because g and ¢ were constructed above as globally
defined bi-Lipschitz mappings with quantitative constants on R"*"™,

We next verify that Condition (i) of Definition |1.3| holds for the pair (£, g o ¢). Fix (z,y) and
(2',y') in g o ¢(E). By construction (¢(E), g) is a Hard Sard pair for f o ¢~!. Therefore,

=" fod log i (ay)=fod T og (@) & folgod) (z,y) = folgod) ' (ay),

which exactly verifies Condition (ii) for the Hard Sard pair (E, g o ¢) for f.
Lastly, we verify that Condition ({iil) of Definition [1.3|holds for the pair (£, g o ¢). In other words,
we verify that the mapping

(z,y) = (fo(g0) ' (z,y),v)

is bi-Lipschitz on g(¢(FE)), with quantitative control on the bi-Lipschitz constant. We will again use
the fact that (¢(F), g) is a Hard Sard pair for f o ¢~!, as well as property (8.6) of g.
Consider two points (z1,y;) and (2, y2) in g(¢(E)). Using (8.6), we can write

g i, y) = (o), y;) fori = 1,2.
Then
d((fo(goqj)fl(ifl,yl),yl) ,(f0(9°¢)7 (72,92), ))

(( N, ), ) (fo¢ (xlgayz),yz))
(2, y ) (75, 2)]
|

(z1,91) — (22, 92)|-

Q

Q

The second line is because (¢(E), g) is a Hard Sard pair for f o ¢!, and the third is because g is
bi-Lipschitz. All implied constants depend only on n, m, and the Hard Sard constant associated to
(¢(E), g), which we controlled depending on n,m, and +. This verifies Condition of Definition
for (B, g0 ¢).

Thus, each pair (Ekj ,gr ;0 ¢; ;) defined above is a Hard Sard set for f. From our work above, all
Hard Sard constants C'r,, and the total number of these sets is controlled, depending only on 7, n, and
m.
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To prove Theorem it remains to control the size of the “garbage set” )y \ UE{f ;- This set can be
written as

R N N M;
G=culJGulJ e (G
i=1 i=1j=1
Thus, we have R
HY(f,G) <~
using equations (8.1)), (8.3), (8.5), and Lemma[3.2]

This completes the proof of Theorem [A]

9. PROOF OF THEOREM
In this section, we prove Theorem

Proof of Theorem|[B] Let Qo = [0,1]'*™ and let f: Qg — X be a 1-Lipschitz map into a metric space
X.

Suppose that H1™(f, Qo) < n for some n > 0. We will show that diam(f(Qy)) < 7/, for some
constant 77 depending only on 77 and m and tending to O as 7 tends to 0. This suffices to prove Theorem
B

The fact that H1™(f, Qo) < 1 means that there is a cover Q of )y by almost-disjoint dyadic cubes
satisfying

0> ) H(F(Q)side(Q)" & D diam(f(Q))side(Q)™.
QeQ QeQ
In the equality, we use the fact that for compact, connected sets (like f(Q)), one-dimensional Haus-
dorff content is comparable to diameter.
If m = 0, the result holds, since

diam(f(Qo)) S HA(F(Qo) < D HL(f(Q)) <.
QeQ

For the remainder of the proof, we therefore assume m > 1.
Fix o > 0, to be specified later, and let

Qs ={Q € Q: diamf(Q) < dside(Q)}.
Let A be the union of all cubes in Q \ Qs. Then

9.1) Hr Ay =nt | @ < D] 6 diam(f(Q))side(Q)" S

QeQ\Qs QeQ\Qs

SHOBS

Foreachi € {1,...,1+m}andy = (v1,...,ym) € [0, 1]™, consider the line segment

L? = {(yhyQa"‘7yi—1at7yi7"'7ym) 1te [07 1]} g QO'

In other words, L! is simply the line segment in coordinate direction ¢ emitting from point y in the
appropriate orthogonal m-plane.
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By (9.1) and Fubini’s theorem, for each i € {1,...,1+ m}, we have

S2lA= [ HA(EInA)dy
5 [0’1]777,
Fix s € (0, 1), also to be specified below. There is therefore a Borel set K; C [0, 1]™ and an absolute
constant ¢ such that
9.2) K| >1—cL
s
and
HY LY N A) < sforall y € K;.
Without affecting these bounds, we may also assume for technical convenience that no coordinate of
any y € K; is dyadic, i.e., that if y € K then y # a2~" for any integers a and b. This removes only a
set of measure zero from K.
With this assumption, we see that, foreach i € {1,...,14+m} and y € K;, the line L! contains no
non-trivial segment that lies on the boundary of a dyadic cube. Hence, if y € K,

1 = length(LY) = Z diam(Q)
QeQ,QNLY#)D
and
s > length(LY N A) = Z diam(Q).
QEQ\Qs,QNLY A0
Given y € K;, we can therefore write

9.3) diam(f(LY)) < Y diam(f(L{NQ))

QEQ,QNLY#D

9.4) = > diam(f(LYNQ)+ Y diam(f(LINQ))
QEQs,QNLYFAD QEQ\Q5,QNLYF#0

(9.5) < ) diam(Q) +s
Q€Qs5,QNLY#D

(9.6) <d+s

It follows from (9.2) that Kj is ¢ (%)1/ "_dense in [0, 1]™, for some (new) constant ¢ = c,, > 0.
Therefore, for each i, the set
K=J L

yeK;

isc (%)Um—dense in Q.
Consider any p, g € )g. There is a path v from p to g in )y described as follows:

55)1/m from p to a line LY C Ky,

(i) Travel along a segment in LY to a point p; with 71 (p1) = m1(q).

(1) Travel along a segment of length < ¢ (i

(iii) Travel along a segment of length < ¢ (%) Y™ from p1 toaline LY C K,
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(iv) Travel along a segment in L} to a point py with m3(pe) = ma(q) and |71 (p2) — m1(q)| < (%)Um.

(v) Repeat steps and (iv) fori = 3,4, ..., 1+ m, finally reaching a point p;,, with

1/m
|7 (P14m) — mi(@)] S (%) foreachi=1,...1+m

(vi) Lastly, travel along a segment of length < (3£) Y™ from prm 10 4.

The implied constants here depend only on m.
For each of the m + 1 segments ~; in ~y lying inside some L} with y € K, we have

diam f(7;) < diam(f(LY)) <5+ s,
using (9.6).

In total, therefore,

d(f(p), f(q)) < diamf(y)

S (%)Um + (0 + )

Since p and q were arbitrary points in (), we have

diam f(Qo) < (%)l/m +(6+s).

If we now set
we obtain
1 1
diam f(Qo) < nm+2 + nmz.
This proves Theorem B[ (with n ~ a™*2). O

10. A COUNTEREXAMPLE IF THE IMAGE SIZE IS NOT CONTROLLED

We show by an explicit construction that the condition 7" (f(Qo)) < 1 is necessary for Theorem [A]
to hold with quantitative bounds, as stated. Our example will show that even assuming H"(f(Qy)) <

oo 1s not sufficient. Our construction in this section will be in the case n = m = 1, so that below
Qo = [0, 1]* is the unit cube in R

Proposition 10.1. There is an absolute constant 6 > 0 with the following property:
For each k € N, there is a metric space X of finite H'-measure and a 1-Lipschitz map

J:1Qo— X
with
(10.1) ML (f, Qo) 26 >0,
and such that if E, . .., Ey are Hard Sard sets for f with constant C;,, and if

HU(f, Qo \UiE;) < 6/2
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then the number of Hard Sard sets M must satisfy

M >q, . 52k

Crip

We begin by describing the construction of f, then prove that it has the properties given in Proposi-
tion [I0.1] By rescaling, it suffices to construct a 4-Lipschitz map with the above properties, and that
1s what we will do.

Let k£ € N be fixed. We first define the metric space X that our example will map into. The space X
will be a one-dimensional simplicial tree of finite length. To be more precise, first let S denote a “star”
that consists of 25! copies of the interval [0, 27*] glued at the points 0. We call these the “spikes” of
S.

Now consider 2¥~1 copies of S: Sy, ... Sqx-1_1, each of which has its own central vertex v;. The
space X then consists of the union of Sy, . .., Sox_; along with a copy of [0, 1], such that v; is attached
to the point i/2*~! € [0,1]. We equip X with the intrinsic path metric, which makes X a geodesic
tree with

(10.2) HY(X) ~ 2F < 0.
See Figure 1| for a picture of X in the case k = 3.

FIGURE 1. The space X in the case k = 3. Each “spike” has length 1/4 = 2~ (=1,

S, S, s, S,
0 1/4 1/2 3/4

We now define a mapping f : ) — X as follows. First, let
Q C Ay

denote the collection of dyadic cubes in A, that are the “bottom left” cube in their parent of A;_;.
Thus, if ) € Q, then () is of the form

Qap = [(20)27%, (2a +1)27%] x [(20)27%, (2b + 1)27"]

where a,b € {0,...,2"1 — 1}. Let A be the interior of Ugeo@, an open set in Q.

Let 7 : R? — R be the projection to the z-coordinate. For Q = Q,; € Q, we define f|g = g o,
where 1) is an isometry that sends the interval 7(Q) = [(2a)27%, (2a + 1)27*] to the bth spike of star
Sa, with 1g((2a)27F) = v,.

It is not hard to see that f|4 is 4-Lipschitz. Therefore, f extends to a 4-Lipschitz mapping of Q)
into the tree X. (See |1, section 2.2.2].)
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Moreover, f|4 has the following “coarse injectivity” property: if p and p’ are points in the interiors
of distinct cubes of Q, then f(p) # f(p'). (They map to different spikes.)
We now argue that the restriction of f to A has mapping content bounded below, independent of k.

Lemma 10.2. There is a constant § > 0, independent of k, such that H1(f, A) > 4.

Proof. Consider any (closed) dyadic cube R € A that intersects A. If side(R) < 27%, then R is
contained in a cube ) € Q and so

H (f(R)) ~ diam(f(R)) = side(R).
If side(R) > 27*, then there are cubes Qap and Qq p in Q that intersect 12 and have
a2~ — ¢/2-k=D| > gide(R),
with an absolute implied constant. It follows that f(R) intersects the stars .S, and S,/, and so
H! (f(R)) = diam(f(R)) > dist(S,, Sar) = |a — a’|27 Y > side(R).
Thus, for all cubes R € A that intersect A, we have
Hoo(f(R)) 2 side(R).
Hence, if { R;} is an arbitrary collection of almost-disjoint dyadic cubes covering A, we have
SOHLUF(R)side(R) 2 Y side(R,)? > |A] = ¢
j j:RjNAFD

Therefore
HU(f,A) 2 1.

Next, we argue that no Hard Sard set £ can have large intersection with A.

Lemma 10.3. If E C Q is a Hard Sard set for f, then |E N A| < 27F. The implied constant depends
only on the Hard Sard constant C'r;, for E, and not on k.

Proof. As F is also a Hard Sard set for f, we may assume without loss of generality that & = F.
Let g be the C'p;,-bi-Lipschitz mapping associated to £ and let F' = f o g~ '.
We first observe that if (), ()" are interiors of cubes in O, then

(10.3) m(g(ENQ)) Nm(g(ENQ")) = 0.

Indeed, if x € 7(g(ENQ))N7(g(ENQ')), then the vertical line x x [0, 1] intersects both g(E)Ng(Q)
and g(F)Ng(Q'). By Condition (i) of Definition|[1.3] (z x [0, 1])Ng(E) is a fiber of F|y). It follows
that there are points p € @ and p’ € Q' with F(g(p)) = F(g(p')). i.e., f(p) = f(p'). However, by our
construction of f this is impossible: the map f sends ) and )’ either to different stars .S; or to two
different spikes of the same S;. This proves (10.3).
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We can therefore compute
[ENAlS [g(ENA)

< 3 9(ENQ)

Q the interior of a cube in Q

< Y 2 MRgENQ)

Q the interior of a cube in Q

2t Y n(ENQ)

Q the interior of a cube in Q

<27",
where in the last line we used (10.3)) to bound the sum of the lengths of the disjoint sets m(g(ENQ)) C
[0,1] by [0, 1]] = 1. O
We are now ready to complete the proof of Proposition [T0.]
Proof of Proposition We refer to the example f : () — X defined above. Note that
H' (f(Qo)) < HN(X) < o0,

as noted in (10.2) and that Lemma implies (10.1). The mapping f is 4-Lipschitz, not 1-Lipschitz,
but as noted above this suffices.

Let Fy, ..., Ey be Hard Sard sets for f with constant C'r;, that satisfy

HEL(f, Qo \ UiE:) < 6/2,

where § > 0 is as in Lemma
‘We then have

5§ <HU(f,A)

M
SHU(FA\NGE) + Y HY(f BN A)
=1

<§+CMT&

where C'is a constant depending only on C7,;, and not on k.
It follows that M > 62, as desired. O

11. TWO VERSIONS OF MAPPING CONTENT

In this section, we prove Corollary [E| As a reminder, this result concerns the relationship between
the notion of mapping content H2™, used throughout the paper, and an alternative version ?:[&m
defined in (1.5)) that uses arbitrary sets rather than dyadic cubes.

We will need the following lemma concerning the types of sets constructed in Proposition [D] As

usual, we write points of R"™™ as (z,y), where € R™ and y € R™.
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Lemma 11.1. Let f : Qo — X be a 1-Lipschitz map into a metric space. Let E C Qg and ¢: E2 — Qo
a bi-Lipschitz mapping such that the map F': ¢(E) — X x [0, 1] defined by

F(a,y) = (fo ¢~ (z,9),y)

is bi-Lipschitz on ¢(E).
Then
HL (], B) ~ M (S, E) = HI(B),
with constants depending only on n, m, and the bi-Lipschitz constants of ¢ and F'.
Proof. By equation and Lemma [3.4] we have
H (f B) Snn HE (£ E) S HAT(E)-

It therefore suffices to show that

HL(f B) Zom M ().

The proof of this is similar to the proof of Lemma Let F = fo¢ ' on ¢(F), so that F(x,y) =

(F(z,9),y)-
Fix € > 0 arbitrary.

Let {S;} be a cover of E by arbitrary sets such that
Z’H" ))diam(S;)™ < HE™(f, E) +

Note that, without loss of generality, we may assume that each S; C F, since replacing S; by S; N E
can only decrease the left-hand side of the previous equation.

Let {T;} C {S;} be an enumeration of those sets S; in the cover such that 12 (f(5;)) > 0. We
will need the following fact.

Claim 11.2. If S € {S;} \ {T}}, then H™+™(F(¢(S))) = 0.

Proof. We may assume that diam(S) > 0 without loss of generality.
The assumption on S implies that H (F(¢(S))) = HZ(f(S)) = 0. Let S’ = ¢(5) and fix
0 < n << diam(S). We can cover F'(S’) by balls By, such that

Z diam(Bg)" < 1.

Observe that
F(S) C F(S') x mrm(S).

For each k, we can cover By, X mgm(S) by < diam(By) ™™ balls of diameter diam(By,).
Therefore,

HE™(F(4(S))) < dem By) ™diam(By)" ™ Zdlam (Bp)" <,

and sending 7 to zero completes the proof of the claim. 0J
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Let A; = ¢(T;) for each i, so that F'(A;) = f(T;). Note that diam(A;) ~ diam(7}), since ¢ is
bi-Lipschitz on E. .
For each i, there is a collection of balls { B} } covering F'(4;) in X such that

> diam(B])" < 2HL (F(A)).
J
Here we are using the fact that H2 (F(A;)) = H2(f(T;)) > 0. As in Lemma we may also

assume without loss of generality that diam(B;) <, ,,, diam(F(4;)) < diam(A;) for each j, .
Therefore,

(11.1) HY™(f E) > ZH” £(S;))diam(S;)™ — €
(11.2) = Z H" (f(T;))diam(T})™ — e
(11.3) = Z’H” ;) diam(T;)™ — €

(11.4)

I\/

3 Z diam(B!)"diam(T;)™ — €

i3
By assumption, the map F' defined above is bi-Lipschitz. Thus,
HI(F($(E))) =~ HL™(E).
Now, for each fixed 7,

F(A) C U (B x mam(A;)) .

We can cover each B! x mgm (A;) by

balls of diameter equal to diam(Bg ).
Therefore,

diam(7;) \™
'H”+m . diam B] nm diam( B] "diam(T;
<57 (o) (B = 3 dn() i1



QUANTITATIVE DECOMPOSITIONS OF LIPSCHITZ MAPPINGS INTO METRIC SPACES 53

and so, using (11.4)),
A 1 :
n,m - . YAV H \mo_
HY"(f, E) > 5 E diam(B;})"diam(7;)™ — €

> e Y HEE(A)

> o HT™(F(P(E))) — € (using Claim[I1.2)
> CgHgo—"_m(E) — €.

The constants ¢y, ¢z, c3 > 0 depend only on n, m, and the bi-Lipschitz constants of ¢ and F. Sending
€ to zero completes the proof. U

Proof of Corollary[E} Fix 6 > 0.

Choosing a = 4,2 in Proposition [D] yields constants N = N(d,n,m) and L = L(d,n,m). The
constant /N controls the number of sets F; arising the decomposition of any 1-Lipschitz map f : Qy —
X in Proposition D] and the constant L controls the bi-Lipschitz constants of the mappings ¢; and

(z,y) = (fod; (z,9),y)
on F;.
Consider any f : Q9 — X and any set A C Qo with H2™(f, A) > §. We can then write

Qo=FUFRU---UFyUG,

where F; have the properties given in Proposition[D|and H2™(f, G) < §/2.
Let A; = AN F;. On each A;, Lemma([IT.T|implies that

HE™(f, As) = HE™(f, As) = HES™(A)),

with implied constants depending only on n, m, and L = L(n,m,J).
Thus, at least one A;, must have

H(f, Aw) Zonam H (S, Ag) 2 1 (P (], A) = HE(F,G)) 2

This proves the corollary.

0
N’
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