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Abstract. Lipschitz light maps, defined by Cheeger and Kleiner, are a class of non-injective
“foldings” between metric spaces that preserve some geometric information. We prove that if
a metric space (X, d) has Nagata dimension n, then its “snowflakes” (X, dε) admit Lipschitz
light maps to R

n for all 0 < ε < 1. This can be seen as an analog of a well-known theorem of
Assouad. We also provide an application to a new variant of conformal dimension.

1. Introduction

A basic line of research in metric geometry is the following: Given an abstract metric space,
when can one embed, fold, or otherwise map it into a Euclidean space without too much distor-
tion of the geometry? One well-known instance of this question is the bi-Lipschitz embedding
problem: Given a metric space, when is there an embedding into some Euclidean space RN that
preserves all distances up to a constant factor?

There appear to be no simple necessary and sufficient conditions here. A rather obvious
necessary condition is that X must have finite Assouad dimension dimA. (See Section 2 for a
definition.) An important theorem of Assouad says that this condition is sufficient, if one is
willing to first raise the metric to a power less than one:

Theorem 1.1 (Assouad, Proposition 2.6 of [1]). Let (X, d) be a metric space of finite Assouad
dimension and ε ∈ (0, 1). Then there is a Euclidean space R

N and a bi-Lipschitz embedding of
the metric space (X, dε) into R

N . The dimension N and the distortion of the embedding can be
chosen to depend only on ε and the constants in the Assouad dimension of X.

The metric spaces (X, dε), for ε ∈ (0, 1), are called “snowflakes”. This snowflaking is necessary
in Assouad’s theorem: there are metric spaces with finite Assouad dimension that have no bi-
Lipschitz embedding into any Euclidean space, the most famous being the Heisenberg group [18,
Theorem 7.1]. For more recent improvements on Assouad’s theorem, see [3, 17].
In this paper, we are concerned with a more general class of metric spaces than those in

Assouad’s theorem. These will be defined via a different notion of dimension, the so-called
Nagata dimension. The Nagata dimension dimN(X) of a metric space can be viewed as a
quantification of the purely topological Lebesgue covering dimension dimT (X), the minimal
n ∈ N ∪ {0} such that every finite open cover of X admits a refinement of multiplicity at
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most n + 1. To define the Nagata dimension, we first declare that a collection of subsets of a
metric space X is D-bounded if each set in the collection has diameter at most D. For s > 0,
the s-multiplicity of a collection of subsets is the minimal n such that every subset of X with
diameter at most s intersects at most n members of the collection.

Definition 1.2. The Nagata dimension of a metric space X, denoted dimN(X), is the minimal
integer n with the following property: there exists c > 0 such that, for all s > 0, X has a
cs-bounded covering with s-multiplicity at most n+ 1.

The Nagata dimension has turned out to be a very useful quantity to consider for many prob-
lems in Lipschitz and quasisymmetric geometry, and a thorough introduction to its properties
can be found in [12].

In general, [13, Theorem 1.1] we have the inequality

(1.1) dimN(X) ≤ dimA(X) for all metric spaces X,

This inequality is often strict. For example, by [12, Theorem 3.2], all non-trivial metric trees
have Nagata dimension 1, but a general infinitely branching tree may have large or even infinite
Assouad dimension.

Assouad’s theorem thus no longer generally applies to spaces of finite Nagata dimension, so
we may go back to the question at the start of the introduction and ask whether these spaces
admit maps to Euclidean space that preserve some geometric information. Our approach is to
toss out the injectivity requirement on our mappings, and try to find a way of quantitatively
“folding”, rather than embedding, such spaces into Euclidean space. A class of folding maps
that are not necessarily injective but preserve some geometric information at all scales are the
so-called “Lipschitz light” maps defined by Cheeger and Kleiner in [2]. To define them, we first
need to discuss “r-paths” and related notions:

Definition 1.3. Given r > 0, a finite sequence (x1, . . . , xk) in a metric space is an r-path if
d(xi, xi+1) ≤ r for each i ∈ {1, . . . , k − 1}.

We say that two points x, y in a metric space X are in the same r-component of X if there
is an r-path in X joining them, i.e., an r-path (x1, . . . , xk) in X with x = x1 and y = xk. For
each r > 0, the notion of r-components defines an equivalence relation on X.

Lastly, we say that a set is r-connected if it consists of a single r-component, i.e., if every pair
of points in it can be joined by an r-path.

Definition 1.4 (Cheeger–Kleiner [2]). A map f : X → Y between metric spaces is Lipschitz
light if there is a constant C > 0 such that

• f is Lipschitz with constant C, and
• for every r > 0 and every subset W ⊆ Y with diam(W ) ≤ r, the r-components of
f−1(W ) have diameter at most Cr.

Lipschitz light mappings are (topologically) light, so they cannot collapse any non-trivial
continua (compact, connected sets) to points. In fact, Lipschitz light maps preserve more
quantitative information. A straightforward rephrasing of Definition 1.4 is that f is Lipschitz
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light if and only if there is a constant c > 0 such that, for all r > 0,

c−1 diam(K)− r ≤ diam(f(K)) ≤ c diam(K) for all r-connected sets K ⊆ X.

Thus, Lipschitz light maps roughly preserve the diameter of coarsely connected sets. (This is a
bit similar to the way quasi-isometries roughly preserve distances in coarse geometry, although
quasi-isometries are not required to be Lipschitz.) In particular, Lipschitz light maps preserve
the diameter of continua up to a constant multiplicative factor:

(1.2) diam(f(K)) ≈ diam(K) for all continua K ⊆ X.

We therefore consider a Lipschitz light mapping as a way of “folding” a metric space that
preserves some geometric information.

Our main theorem is then an analog of Assouad’s theorem (Theorem 1.1) in which Assouad
dimension is replaced by Nagata dimension and bi-Lipschitz embeddings are replaced by Lip-
schitz light maps. Thus, we construct a weaker class of mappings than the embeddings in
Assouad’s theorem, but for a wider class of spaces. As an important difference, however, we
also obtain the sharp dimension of the receiving Euclidean space, and so our result is of interest
even for spaces of finite Assouad dimension.

Theorem 1.5. Let (X, d) be a metric space of finite Nagata dimension n ∈ N ∪ {0}, and let
ε ∈ (0, 1). Then there is a Lipschitz light map from (X, dε) into R

n. The Lipschitz light constant
of this mapping can be chosen to depend only on n, ε, and the constant c in Definition 1.2.

Moreover, the number n = dimN(X) is the minimal integer for which such a map exists.

By observation (1.2) above, the Lipschitz light mapping constructed in Theorem 1.5 has in
particular the property that

(1.3) diamRn(f(K)) ≈ diam(X,d)(K)ε for all continua K ⊆ (X, d).

Assouad’s Theorem 1.1 does not hold for ε = 1, as noted above. Similarly, one cannot take
ε = 1 in Theorem 1.5. Indeed, [4, Theorem 6.8] shows that the Heisenberg group, for example,
does not admit a Lipschitz light map into any Euclidean space, while it has Nagata dimension
3 by [13, Theorem 4.2]. Theorem 1.5 implies that one can “snowflake and fold” the Heisenberg
group into R

3. This is rather counter-intuitive: this map from the Heisenberg group to R
3

reduces the overall Hausdorff and Assouad dimensions (from 4 to 3) while greatly expanding the
diameter of all small continua by (1.3)

The parallel between Theorem 1.5 and Theorem 1.1 extends to the proofs. As in Assouad’s
proof, we construct our map by summing certain localized “bump functions” over all locations
and scales. Differences arise when we consider the way in which these localized functions interact
to prove the Lipschitz lightness (in Lemma 3.6). This forces us to work at a sufficiently “well-
separated” sequence of scales {rj}j∈Z (see (3.2)) whereas in Assouad’s argument this is not
required. We refer to [10, Chapter 12] for a presentation of Assouad’s argument that influenced
our presentation below.

We now describe a few corollaries of Theorem 1.5, some immediate and some requiring more
work.
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1.1. Mappings of low-dimensional spaces. There are a few direct consequences of Theorem
1.5 that can be obtained by combining it with recent results on Nagata dimension and bi-
Lipschitz embeddings.

For one, Cheeger and Kleiner [2] show that spaces admitting Lipschitz light maps to R can
can be represented as certain inverse limits and admit bi-Lipschitz embeddings into the Banach
space L1. Thus, we have:

Corollary 1.6. If (X, d) has Nagata dimension at most 1, then each of its snowflakes admits
a bi-Lipschitz embedding into the Banach space L1(Z, µ) for some measure space (Z, µ).

For another, recent work of Jørgensen–Lang [11], building on Fujiwara–Papasoglu [8], shows
that every geodesic, topologically planar metric space has Nagata dimension at most 2. Thus:

Corollary 1.7. If (X, d) is geodesic and topologically planar, then each of its snowflakes admits
a Lipschitz light map to R

2.

In particular, these maps satisfy (1.3).

1.2. Dimension-theoretic considerations. A classical result about the topological dimen-
sion dimT is that (for compact metric spaces), it can also be viewed through (topologically)
light maps to Euclidean space. Recall that a continuous map is called light if f−1(p) is totally
disconnected for each p in the image of f . If X is a compact metric space, then

(1.4) dimT (X) = min{n ≥ 0 : ∃f : X → R
n light}.

(See [16, Theorems III.6 and III.10].)
This motivated Cheeger and Kleiner to propose the following new dimension for metric spaces:

Definition 1.8 (Cheeger–Kleiner [2]). A metric space X has Lipschitz dimension ≤ n if there
is a Lipschitz light map f : X → R

n.
We let the Lipschitz dimension of X be the minimal n ∈ N ∪ {0} such that X has Lipschitz

dimension ≤ n, and denote this by dimL(X). If X admits no Lipschitz light map into any
Euclidean space, we write dimL(X) = ∞.

Further properties of Lipschitz dimension are explored in [4–7].
It is already perhaps surprising, in view of (1.4) in the topological realm, that the Lipschitz

and Nagata dimensions differ. (For the Heisenberg group H, dimN(H) = 3 and dimL(H) = ∞,
as noted above.) However, we do always have the inequalities

(1.5) dimT (X) ≤ dimN(X) ≤ dimL(X)

by [12, Theorem 2.2] and [4, Corollary 3.5].
In view of the results of [2] and the general interest in bi-Lipschitz invariants of metric spaces,

it is worth understanding further the metric spaces of finite Lipschitz dimension. A rephrasing
of our main theorem says the following:

Corollary 1.9. Suppose that a metric space (X, d) has Nagata dimension n ∈ N ∪ {0,∞}.
Then for each ε ∈ (0, 1), the metric space (X, dε) has Lipschitz dimension n.
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It follows from this corollary and [2, Theorem 1.7] that each snowflake of a metric space of
Nagata dimension 1 admits a bi-Lipschitz embedding to L1(Z, µ) for some measure space (Z, µ).

As another direct corollary of Theorem 1.9, we answer [4, Question 8.5]:

Corollary 1.10. Snowflaking cannot increase the Lipschitz dimension of a metric space. In
other words, dimL(X, d

ε) ≤ dimL(X, d) for every metric space (X, d) and every ε ∈ (0, 1).

Proof. Let X be a metric space and ε ∈ (0, 1). By Corollary 1.9 and (1.5), we have

dimL(X, d
ε) = dimN(X, d) ≤ dimL(X, d).

�

1.3. “Branched conformal” dimension. We now discuss an application of Theorem 1.5 to
a variation on the well-studied notion of conformal dimension.

1.3.1. Quasisymmetries and branched quasisymmetries. The snowflaking transformation (X, d) 7→
(X, dε) is a special case of a class of mappings called quasisymmetric mappings. These arose
in classical conformal mapping theory and now play a major role in analysis on metric spaces,
hyperbolic geometry, and geometric group theory.

Definition 1.11. An embedding f : X → Y between metric spaces is called quasisymmetric
(or a quasisymmetry) if there is a homeomorphism η : [0,∞) → [0,∞) such that

d(f(x), f(a)) ≤ η

(

d(x, a)

d(x, b)

)

d(f(x), f(b))

for all triples a, b, x of distinct points in X.
If the embedding is surjective, we say that X and Y are quasisymmetric.

In other words, quasisymmetric maps are homeomorphisms that distort ratios of distances
in a controlled manner. There is now a vast theory of quasisymmetric mappings in general
metric spaces; we refer the interested reader to [10] for background, but we will not really need
it here. The most salient facts for us are that Nagata dimension is a quasisymmetric invariant
(see [12, Theorem 1.2]), but Assouad and Lipschitz dimension are not. (See [15] for the former
and [4, Corollary 8.4] for the latter.)

More recently, there has been interest in analogs of quasisymmetric mappings that need
not be injective, somewhat like the relationship between holomorphic functions and conformal
mappings in classical complex analysis. To this end, Guo and Williams [9] defined and studied
“branched quasisymmetric” mappings. To define them, we first recall that a continuum in a
metric space is a compact, connected set. If the continuum has at least two points, we call it
non-trivial.

Definition 1.12. A continuous mapping f : X → Y is called branched quasisymmetric (or a
branched quasisymmetry) if there is a homeomorphism η : [0,∞) → [0,∞) such that

diam(f(E)) ≤ η

(

diam(E)

diam(E ′)

)

diam(f(E ′)),

for all pairs of intersecting non-trivial continua E and E ′ in X.
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Thus, branched quasisymmetries are continuous maps that distort ratios of diameters of
intersecting continua in a controlled manner, but they need not be injective. (We remark
that in [9], but not in [14], branched quasisymmetries are required also to be discrete open
mappings. We do not require this.) A simple argument shows that quasisymmetric embeddings
are automatically branched quasisymmetric.

The definition of branched quasisymmetry is rather vacuous if X has no continua. Thus, the
natural setting for studying branched quasisymmetries is not arbitrary metric spaces, but those
that are equipped with many continua: the so-called “spaces of bounded turning” (or “linearly
connected” spaces). A metric space is said to be of bounded turning if every pair of points can
be joined by a continuum whose diameter is comparable to the distance between the points.

1.3.2. Conformal and “branched conformal” dimension. Assouad dimension is not a quasisym-
metric invariant, but the conformal Assouad dimension is. This quantity for a metric space X
is defined as

(1.6) confdimA(X) = inf{dimA(Y ) : Y is quasisymmetric to X}.

Conformal Assouad dimension (along with its variations) has played a major role in geometric
group theory and hyperbolic geometry; we refer to [15] for an overview. Computing this quantity
even for well-known spaces like the Sierpiński carpet remains an open problem, and in many
cases the infimum is not actually achieved.

A natural question is then, what if we allow branched quasisymmetric images Y of X in
(1.6)? We would obtain another quasisymmetrically invariant quantity, potentially smaller
than conformal Assouad dimension. Is it computable? Is the infimum achieved?

In fact, we show that for compact spaces of bounded turning this construction exactly recovers
the Nagata dimension. In particular, in stark contrast to (non-branched) conformal dimension,
we obtain an integer-valued quantity in which the infimum is always achieved. This gives a new
characterization of the Nagata dimension.

Corollary 1.13. Let X be a compact metric space of bounded turning. Then

dimN(X) = inf{dimA(Y ) : there is a non-constant branched quasisymmetry of X onto Y }.

This includes the statement that if one of these numbers is ∞, then the other is as well.
Moreover, the infimum above is always achieved if dimN(X) <∞.

1.4. Organization of the paper. Section 2 contains basic definitions and notation, section 3
contains the proof of Theorem 1.5, and section 4 contains additional background and the proof
of Corollary 1.13.

1.5. Acknowledgments. The author would like to thank Damaris Meier, for pointing out
some minor errors in an earlier version of the manuscript, and the two referees, for their careful
reading and suggestions.
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2. Preliminaries

2.1. Basics. We write (X, d) for a metric space, but often just X with the metric d understood
from context. In such a case, we often below write Xε for the metric space (X, dε) (which is in
fact a metric space if ε ∈ (0, 1)).

An open ball in X centered at x ∈ X of radius r is denoted B(x, r), and the associated closed
ball by B(x, r).

The distance between a point x ∈ X and a set E ⊆ X is

dist(x,E) = inf{d(x, y) : y ∈ E}

and the diameter of the set E is

diam(E) = sup{d(x, y) : x, y ∈ E}.

In cases where we want to clarify which metric space we are discussing, we may include it as a
subscript, e.g., writing dX(a, b) or diamX(E). Similarly, we write diamε(E) for the diameter of
E in the metric space (X, dε), which of course is simply (diam(E))ε.
We use the notation A . B to indicate that A ≤ cB for some constant c that may change

from line to line. If we wish to denote what quantities α, β, . . . the constant c depends on, we
write A .α,β,... B. We write A ≈ B to mean A . B and B . A.

2.2. Summary of dimensions. Three notions of dimension for a metric space X are used
in this paper: The Nagata dimension dimN(X) (see Definition 1.2), the Lipschitz dimension
dimL(X) (see Definition 1.8), and the Assouad dimension dimA(X).

Although we do not use the definition of Assouad dimension below, we include the definition
for context: The Assouad dimension of X is the infimum of all numbers β > 0 such that, for
some constant C > 0 and all d > 0, every set of diameter d in X can be covered by at most
Cε−β sets of diameter at most εd. See [10, Chapter 10] for more discussion. Unlike the Nagata
and Lipschitz dimensions, the Assouad dimension may not be an integer.

3. Proof of Theorem 1.5

In this section, we prove the main result of the paper, Theorem 1.5.
We first quickly show the “moreover...” statement of the theorem. Suppose X is a metric

space of Nagata dimension n ∈ N∪ {0}; we will prove that Xε does not admit a Lipschitz light
map to Rk for any k < n. If there were such a map, then we would have dimL(X

ε) ≤ k. However,
by [4, Corollary 3.5] and the quasisymmetric invariance of Nagata dimension, we would then
have

(3.1) k ≥ dimL(X
ε) ≥ dimN(X

ε) = dimN(X) = n,

a contradiction.
In the rest of this section, we focus on proving the first part of Theorem 1.5 by constructing

a Lipschitz light map from Xε to R
n.

The following proposition of Lang and Schlichenmaier provides a useful collection of coverings
of X; we state only the conclusions of their result that we will need later on.
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Proposition 3.1 (Proposition 4.1 of [12]). Let X a metric space of Nagata dimension n ∈
N∪{0}, with associated Nagata dimension constant C. There are constants ĉ and r̂0 (depending

only on n and C) such that for each r ≥ r̂0, there is a sequence of coverings B̂j of X (j ∈ Z)
such that:

(i) For each j ∈ Z, B̂j = ∪n
k=0B̂

j
k, where each B̂j

k is a ĉrj-bounded family of rj-multiplicity at
most 1.

(ii) For each j ∈ Z and x ∈ X, there is a B̂ ∈ B̂j that contains the closed ball B(x, rj).

For our purposes, it is more convenient to work with open sets (and to have a constant ≥ 1),
so we make a minor adjustment to Proposition 3.1.

Lemma 3.2. Let X a metric space of Nagata dimension n ∈ N ∪ {0}, with associated Nagata
dimension constant C. There are constants c ≥ 1 and r0 (depending only on n and C) such
that for each r ≥ r0, there is a sequence of coverings Bj of X (j ∈ Z) such that:

(i) For each j ∈ Z, Bj = ∪n
k=0B

j
k, where each Bj

k is a crj-bounded family of 1
2
rj-multiplicity at

most 1.
(ii) For each j ∈ Z and x ∈ X, there is a B ∈ Bj that contains the closed ball B(x, rj).
(iii) For each j ∈ Z and B ∈ Bj, the set B is open.

Proof. Apply Proposition 3.1. For each j ∈ Z, let Bj be the collection of open 1
4
rj-neighborhoods

of elements of B̂j. The properties in the lemma then follow easily, with r0 = r̂0 and c = ĉ + 1
2
.

If necessary, we may replace c by max{c, 1} without changing the conclusion of the lemma, in
order to ensure that c ≥ 1. �

For the remainder of the section, we fix a metric space X of Nagata dimension n ∈ N ∪ {0}
and associated Nagata dimension constant C. We also fix ε ∈ (0, 1).

We next fix r sufficiently large so that Lemma 3.2 holds and in addition so that

(3.2)
2

rε − 1
+

4c

r1−ε − 1
< 1−

1

2ε
,

where c is the constant from Lemma 3.2. We apply Lemma 3.2 and obtain coverings {Bj}j∈Z
of X that will be fixed for the remainder of the proof.

Given j ∈ Z and B ∈ Bj, define ψB : X → R by

ψB(x) = min
{

1, r−jdist(x,Bc)
}

.

We have the following basic properties of ψB.

Lemma 3.3. The functions ψB have the following properties:

(i) 0 ≤ ψB(x) ≤ 1 for all B ∈ B, x ∈ X.
(ii) ψB(x) > 0 if and only if x ∈ B.
(iii) If B ∈ Bj, then ψB is Lipschitz with constant at most r−j.
(iv) If x ∈ X and j ∈ Z, then there is a k ∈ {0, . . . , n} and a B ∈ Bj

k such that ψB(x) = 1.
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Proof. Item (i) is immediate. For item (ii), if ψB(X) > 0, then x /∈ Bc, so x ∈ B. If x ∈ B, then
since B is open, ψB(x) > 0. For item (iii), distance functions are 1-Lipschitz by the triangle
inequality, and the minimum of two L-Lipschitz functions is L-Lipschitz. Item (iv) follows
immediately from the definition of ψB and property (ii) of Lemma 3.2. �

Let e0 = 0 ∈ R
n and let {e1, . . . , en} be an orthonormal basis of Rn. For each j ∈ Z, set

φj(x) =
n

∑

k=0





∑

B∈B
j

k

ψB(x)



 ek.

Lemma 3.4. The functions φj have the following properties, for each j ∈ Z:

(i) |φj(x)| ≤ n+ 1 for all x ∈ X.
(ii) As a function from X to R

n, φj is Lipschitz with constant 2(n+ 1)r−j.

Proof. By Lemma 3.2(i), a given point can be in B for at most n + 1 different sets B ∈ Bj. It
follows from this and Lemma 3.3(ii) that at most (n + 1) summands in the rightmost sum of
the chain

|φj(x)| ≤
n

∑

k=0

∑

B∈B
j

k

|ψB(x)| =
∑

B∈Bj

|ψB(x)|

are non-zero. By Lemma 3.3(i), each summand is bounded by 1, so |φj(x)| ≤ n+1, proving (i).
Similarly, given x, y ∈ X, at most 2(n + 1) of the summands in the rightmost sum of the

chain

|φj(x)− φj(y)| ≤
n

∑

k=0

∣

∣

∣

∣

∣

∣

∑

B∈B
j

k

ψB(x)− ψB(y)

∣

∣

∣

∣

∣

∣

≤
∑

B∈Bj

|ψB(x)− ψB(y)|

are non-zero. By Lemma 3.3(iii), each summand is bounded above by r−jd(x, y). Therefore

|φj(x)− φj(y)| ≤ 2(n+ 1)r−jd(x, y),

proving (ii).
�

Fix x0 ∈ X. Define f : X → R
n by

(3.3) f(x) =
∑

j∈Z

rjε(φj(x)− φj(x0)).

In the remainder of the section, we prove that f is Lipschitz light when viewed as a map from
Xε to R

n. First, we show that it is Lipschitz.

Lemma 3.5. The sum in (3.3) converges absolutely for each x ∈ X and defines a Lipschitz
map f : Xε → R

n. The Lipschitz constant of f can be bounded above depending only on C, ε,
and n.



10 GUY C. DAVID

Proof. Assuming the convergence statement for a moment, let us prove that f is Lipschitz.
Let x, y ∈ X. Choose j0 ∈ Z such that rj0 ≤ d(x, y) < rj0+1. Then, using both parts of

Lemma 3.4, we have

|f(x)− f(y)| ≤
∑

j∈Z

rjε|φj(x)− φj(y)|

≤ 2(n+ 1)
∑

j≤j0

rjε + 2(n+ 1)
∑

j>j0

rjεr−jd(x, y)

.r,n r
j0ε + rj0(ε−1)d(x, y)

.r,n r
j0ε + rj0ε

.r,n d(x, y)
ε.

The choice of r was made above depending only on ε and c, which itself depends only on C and
n.

The proof that the sum in (3.3) converges absolutely is essentially identical, just with y
replaced by x0. �

We now work to prove that f is Lipschitz light. The following is the main technical lemma.

Lemma 3.6. Suppose that x, y ∈ X, s > 0, j0 ∈ Z, and k ∈ {1, . . . , n} have the following
properties:

(i) |f(x)− f(y)| ≤ s,
(ii) d(x, y) ≤ 2crj0,
(iii) rj0ε > 2εs, and
(iv)

∑

B∈B
j0
k

ψB(x) = 1.

Then

y ∈
⋃

B∈B
j0
k

B.

Remark 3.7. The purpose of this lemma is as follows: Given a scale j0 and two points x, y,
the lemma provides sufficient conditions to conclude that x and y lie in sets from Bj0 that are
in the same family Bj0

k for some k.
The reader may wonder about the variable s, which appears in the hypotheses but not the

conclusions. This is merely to make the application of this lemma more transparent in the proof
of Theorem 1.5 below.

Proof of Lemma 3.6. Note that the kth coordinate of f(x)− f(y) can be written as

∑

j∈Z

rjε
∑

B∈B
j

k

(ψB(x)− ψB(y)).
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Suppose that conditions (i) through (iv) hold but that y /∈ ∪
B∈B

j0
k

B. By Lemma 3.3, it follows

that ψB(y) = 0 for each B ∈ Bj0
k . Then,

s ≥ |f(x)− f(y)|

≥

∣

∣

∣

∣

∣

∣

∑

j∈Z

rjε
∑

B∈B
j

k

(ψB(x)− ψB(y))

∣

∣

∣

∣

∣

∣

≥ rj0ε −

∣

∣

∣

∣

∣

∣

∑

j<j0

rjε
∑

B∈B
j

k

(ψB(x)− ψB(y))

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∑

j>j0

rjε
∑

B∈B
j

k

(ψB(x)− ψB(y))

∣

∣

∣

∣

∣

∣

≥ rj0ε −
∑

j<j0

rjε
∑

B∈B
j

k

|ψB(x)− ψB(y)| −
∑

j>j0

rjε
∑

B∈B
j

k

|ψB(x)− ψB(y)|(3.4)

For each j < j0 in the sum in the middle of (3.4), there are at most two choices of B ∈ Bj
k for

which the difference |ψB(x)−ψB(y)| is non-zero. (This is because each of x, y can be contained
in at most one B ∈ Bj

k, and Lemma 3.3(ii).) For those B ∈ Bj
k where this difference is non-zero,

it is at most 1 by Lemma 3.3(i).
Similarly, for each j > j0 in the final sum of (3.4), there are at most two choices of B ∈ Bj

k

for which the difference |ψB(x)− ψB(y)| is non-zero. For those B ∈ Bj
k where this difference is

non-zero, it is at most r−jd(x, y) by Lemma 3.3(iii).
Thus, we have:

s ≥ rj0ε − 2
∑

j<j0

rjε − 2
∑

j>j0

rjεr−jd(x, y)

= rj0ε −
2rj0ε

rε − 1
−

2rj0(ε−1)

r1−ε − 1
d(x, y)

≥ rj0ε −
2rj0ε

rε − 1
−

4crj0ε

r1−ε − 1

= rj0ε
(

1−
2

rε − 1
−

4c

r1−ε − 1

)

By our choice of r in (3.2), the quantity in parentheses above is at least 1
2ε
. It follows that

rj0ε ≤ 2εs, contradicting assumption (iii) of this lemma.
�

We now complete the proof of Theorem 1.5 by showing that the map f : Xε → R
n constructed

in (3.3) is Lipschitz light, with constants depending only on ε, n, and C.

Proof of Theorem 1.5. The map f is already Lipschitz by Lemma 3.5. To prove that f is
Lipschitz light, it is enough to show that any s-path P in Xε with diam(f(P )) ≤ s must have
diamε(P ) .ε,n,C s. Thus, let s > 0 and let P be an s-path in Xε with diam(f(P )) ≤ s. We will
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show that

(3.5) diam(P ) ≤ 8crs
1

ε ,

which of course implies that
diamε(P ) ≤ (8cr)εs.

As r and c depend only on ε, n, and C, this will prove the theorem.
Choose j0 ∈ Z so that

(3.6) 2s
1

ε < rj0 ≤ 2rs
1

ε .

One possibility is that P is completely contained in ∪
B∈B

j0
0

B. By Lemma 3.2(i), distinct sets

in Bj0
0 are separated by dε-distance at least 1

2ε
rj0ε > s, so if the s-path P were contained in this

union, then it would have to be contained in a single set B ∈ Bj0
0 . In that case, the d-diameter

of P would be bounded by diam(B) ≤ crj0 ≤ 2crs
1

ε , verifying (3.5).
Therefore, we may proceed with the rest of the proof under the assumption that there is a

point x ∈ P that is not contained in ∪
B∈B

j0
0

B. By Lemma 3.3(iv), there is a k ∈ {1, . . . , n} and

a B ∈ Bj0
k with ψB(x) = 1. Since x can be in at most one element of Bj0

k , we have

(3.7)
∑

B∈B
j0
k

ψB(x) = 1.

Let z ∈ P be arbitrary. We will show that

(3.8) d(z, x) ≤ 2crj0 ,

which will easily yield (3.5) after considering all possible z ∈ P .
Suppose that (3.8) did not hold. By truncating P (and reversing the order if necessary), we

can find an s-path Q = (x1, x2, . . . , xm) (in the dε-distance) with x1 = x, xm = z, and each xi
contained in P . Let xb denote the first point in Q such that d(xb, x) > 2crj0 .
Let R be the sub-path (x1, x2, . . . , xb−1). This is an s-path in the dε-distance with the property

that

(3.9) d(xi, x) ≤ 2crj0 for each xi ∈ R.

Fix an arbitrary i ∈ {1, 2, . . . , b− 1}. We now apply Lemma 3.6 with x, j0, k, s as above and
y = xi ∈ R. Assumption (i) of that lemma is satisfied because xi, x ∈ P and diam(f(P )) ≤ s.
Assumptions (ii) through (iv) are verified in (3.9), (3.6), and (3.7), respectively. Therefore, each
xi ∈ R is contained in ∪

B∈B
j0
k

B. The sets in Bj0
k are 1

2ε
rj0ε-separated in the dε-distance, and

R is an s-path in the dε-distance with s < 1
2ε
rj0ε by (3.6). Therefore, R must be completely

contained in a single set B ∈ Bj0
k . Therefore

diam(R) ≤ diam(B) ≤ crj0 .

On the other hand,

diam(R) ≥ d(xb−1, x1) ≥ d(xb, x)− s
1

ε ≥ 2crj0 −
1

2
rj0 ≥ (2c−

1

2
)rj0 > crj0 ,
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recalling that c ≥ 1 in Lemma 3.2.
This is a contradiction, and so (3.8) holds. Since z was an arbitrary point of P , it follows

immediately that (3.5) holds:

diam(P ) ≤ 2max{d(z, x) : z ∈ P} ≤ 4crj0 ≤ 8crs1/ε.

Hence, f is Lipschitz light with quantitative control on the constants.
�

4. Branched quasisymmetries

In this section, we first present some basic facts about branched quasisymmetries due to
Guo–Williams [9], and then prove Corollary 1.13.

4.1. The pullback metric of Guo–Williams. In their study of branched quasisymmetries
in [9], Guo and Williams showed that these mappings factor in a useful way by using a device
called the pullback metric. As our assumptions and statements are slightly different than theirs,
and we do not need all the notation they present, we present all the facts and proofs we need
here. However, we emphasize that all the ideas in subsection 4.1 are due originally to Guo and
Williams, and we present it merely as necessary background.

Throughout subsection 4.1, we fix X as a compact metric space of bounded turning and
f : X → Y as a non-constant branched quasisymmetry. Define the pullback metric on X by

(4.1) df (x, y) = inf{diam(f(K)) : K a continuum containing x and y}.

We write diamf (E) for the diameter of a set E in the metric df .

Remark 4.1. Under these assumptions, the infimum in (4.1) is always achieved: Given x, y ∈
X, let Kn be a sequence of continua with

diam(f(Kn)) → df (x, y).

Since X is compact and f is continuous, a subsequence of these continua converges in the
Hausdorff sense to a continuum K satisfying

(4.2) diam(f(K)) = df (x, y).

Lemma 4.2. This df is a metric on X that is topologically equivalent to the original metric
dX .

Proof. First of all, note that f cannot collapse any non-trivial continuum to a point. Indeed, if
it did then the bounded turning assumption and Definition 1.11 would force f to collapse all of
X to a single point, but we assumed that f was non-constant.

It follows from this and Remark 4.1 that df is positive definite. The symmetry and triangle
inequality are immediate from the definition of df , and so df is a metric on X.

Now suppose that xn → x in dX . Since X is of bounded turning, there are continua Kn

containing both xn and x with

diam(Kn) . d(xn, x) → 0 as n→ ∞.
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Let K be any non-trivial fixed continuum containing x, and recall that by our first paragraph
f(K) is a non-trivial continuum as well. It follows from Definition 1.11 that

diam(f(Kn)) ≤ diam(f(K)) · η

(

diam(Kn)

diam(K)

)

→ 0 as n→ ∞.

Hence df (xn, x) → 0.
Conversely, suppose that xn → x in df . Then we have a sequence En of continua containing

xn and x, with diam(f(En)) → 0. Let K be a non-trivial continuum containing x, as above.
We then have

(4.3) 0 < diam(f(K)) ≤ diam(f(En)) · η

(

diam(K)

diam(En)

)

.

We know that diam(f(En)) → 0, so for the expression on the right-hand side of (4.3) to
be bounded away from zero, we must have η(diam(K)/ diam(En)) → ∞, or equivalently,
diam(En) → 0. It follows that

d(xn, x) ≤ diam(En) → 0.

�

Lemma 4.3. The map f : (X, df ) → Y is 1-Lipschitz and furthermore satisfies

(4.4) diam(f(J)) = diamf (J)

for all continua J in (X, df ).
Moreover, the space (X, df ) is of bounded turning with constant 1.

This is a slight modification of [9, Lemma 5.7].

Proof. Consider x, y ∈ X. Let K be as in (4.2), so that

df (x, y) = diam(f(K)).

In that case,
d(f(x), f(y)) ≤ diam(f(K)) = df (x, y),

and so f is 1-Lipschitz.
Continuing with x, y, and K as above, note that if p, q ∈ K, then

df (p, q) ≤ diam(f(K)) = df (x, y).

This proves that diamf (K) ≤ df (x, y), and so (X, df ) is of 1-bounded turning.
Now consider any continuum J ⊆ (X, df ). Since f is 1-Lipschitz on (X, df ), we have

diam(f(J)) ≤ diamf (J). On the other hand, if x and y are in J , then

df (x, y) ≤ diam(f(J)),

and so diamf (J) = diam(f(J)).
�

Lemma 4.4. The identity map is a quasisymmetric homeomorphism from (X, dX) to (X, df ).
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This is contained in [9, Propositions 6.47 and 6.48].

Proof. We first observe that the identity map from (X, dX) to (X, df ) is a branched quasisym-
metry. Indeed, if E and E ′ are intersecting continua in X, then by the previous lemma and the
fact that f : (X, dX) → Y is a branched quasisymmetry, we have

diamf (E) = diam(f(E)) ≤ diam(f(E ′))η

(

diamX(E)

diamX(E ′)

)

= diamf (E
′)η

(

diamX(E)

diamX(E ′)

)

.

Next we argue as in Proposition 6.48 of [9] to show that the identity is in fact a quasisymmetric
homeomorphism. Let x, y, z ∈ X be distinct points. As (X, dX) is of C-bounded turning and
(X, df ) is of 1-bounded turning, we may choose continua E containing x and y and E ′ containing
x and z such that diamX(E) ≤ CdX(x, y) and diamf (E

′) = df (x, z).
Then

df (x, y)

df (x, z)
≤

diamf (E)

diamf (E ′)
≤ η

(

diamX(E)

diamX(E ′)

)

≤ η

(

C
d(x, y)

d(x, z)

)

.

Thus, the identity from (X, dX) to (X, df ) is η̃-quasisymmetric, where η̃(t) = η(Ct).
�

We summarize the lemmas above as follows: if X is compact and of bounded turning and
f : X → Y is branched quasisymmetric, then f factors as

(4.5) X → (X, df ) → Y,

where the first map is a quasisymmetric homeomorphism and the second map preserves the
diameter of all continua.

4.2. Relation to Lipschitz lightness and proof of Corollary 1.13. We now work towards
the proof of Corollary 1.13. First, we observe that, in the bounded turning setting, the property
of “preserving the diameters of continua” is equivalent to Lipschitz lightness.

Lemma 4.5. Let X be a metric space of bounded turning and Y another metric space. Let
f : X → Y . Then the following are equivalent:

(i) f is Lipschitz light.
(ii) diam(f(K)) ≈ diam(K) for every continuum K ⊆ X.

The constants in each item depend only on the constants in the other item and the bounded
turning constant of X.

As noted in the introduction, the implication (i)⇒(ii) in Lemma 4.5 holds without the
bounded turning assumption.

Proof. To prove that (i) implies (ii), suppose that f is Lipschitz light with constant L. Let K be
a continuum in X. Since f is L-Lipschitz, diam(f(K)) ≤ L diam(K). For the other inequality,
we observe that since K is connected, it is contained in a diam(f(K))-component of f−1(K).
It follows from the Lipschitz lightness of f that

diam(K) ≤ L diam(f(K)),



16 GUY C. DAVID

and so (ii) holds.
Now we prove that (ii) implies (i). Suppose that property (ii) holds for f . First of all, f

must be Lipschitz: If x, y ∈ X, then by the bounded turning property there is a continuum K
containing both points with diam(K) . d(x, y). Therefore

d(f(x), f(y)) ≤ diam(f(K)) . diam(K) . d(x, y),

and so f is Lipschitz.
Now let A ⊆ Y have diam(A) ≤ s for some s ≥ 0. Let P = (x0, x1, . . . , xm) be an s-path in

f−1(A). Join each pair of consecutive points (xi, xi+1) in P by a continuum Ki with

diam(Ki) . d(xi, xi+1) ≤ s.

Let K = ∪m−1
i=0 Ki, which is a continuum containing P . Moreover, K is contained in the closed

bs-neighborhood of P , where b is the bounded turning constant of X. Because of this, and the
facts that f is Lipschitz and f(P ) ⊆ A, we have

diam(f(K)) . diam(A) + s . s.

It follows that
diam(P ) ≤ diam(K) ≈ diam(f(K)) . s.

Therefore, f is Lipschitz light. �

Proof of Corollary 1.13. Let X be a compact metric space of bounded turning. Let

n = dimN(X)

and

a = inf{dimA(Y ) : there is a non-constant branched quasisymmetry of X onto Y }.

Either of these numbers may be infinite.
Assume first that n <∞. Theorem 1.5 provides a Lipschitz light map from Xε onto a subset

Y ⊆ R
n. By Lemma 4.5, this map satisfies

diam(f(K)) ≈ diam(K)ε for all continua K ⊆ X,

and therefore f is immediately seen to be a branched quasisymmetry. As dimA(Y ) ≤ dimA(R
n) =

n, this yields
a ≤ n.

As this inequality trivially holds also when n = ∞, we have shown that a ≤ n in general.
Now we aim for the reverse inequality: a ≥ n. We may assume that a < ∞, otherwise the

inequality is again trivial.
For any t > 0, the definition of a provides a space Y with dimA(Y ) < a + t and a branched

quasisymmetry f from X onto Y . Applying (4.5), we factor f as

X → (X, df ) → Y,

where the first map is a quasisymmetry and the second preserves the diameter of continua. It
follows by Lemmas 4.3 and 4.5 that the second map is Lipschitz light.
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Nagata dimension is a quasisymmetric invariant, so we have dimN(X, df ) = n. Lipschitz
light maps cannot decrease Nagata dimension ( [4, Lemma 4.1]) and Assouad dimension bounds
Nagata dimension from above (see (1.1)). So we have

n = dimN(X) = dimN(X, df ) ≤ dimN(Y ) ≤ dimA(Y ) < a+ t.

As t > 0 was arbitrary, this completes the proof.
�
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