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The oommon handsaw can be oonverted into a bowed musical instrument capable of 
producing exquisitely susruned notes wben its blade is appropriately bent. Aooustic 
modes locali7.edat an inflection pointare lmown to underlie tbe saw's sonorous quality, 
yet tbe origin of localuation bas remained mysterious. Here we uncover a topological 
basis for tbe existence of locali7.ed modes tbat relies on and is protected by spatial air­ 
vature. By combining experimental demonstrations, theory, and oomputation, we sbow 
bowspatial variations in blade airvature oontrol tbe localii.ation of tbese trapped states, 
allowing tbesaw to function as a geometrically tunablehigh-quality oscillator. Our work 
establishesan unexpected oonnection between tbe dynamics of tbinsbe!Js and topologi 
cal insulatorsand offersa robust principle to design high-quality resonators acrossscales, 
&om macroscopic instruments to nanoscale devices, simply tbrougb geometry. 

mUSicalacoU:Stics I topological insulators I thin elastic shells 

 
Musical instruments, even those made from everyday objects such as sticks, saws, pans, 
and bowls (I}, must have the ability to cteate sustained notes for them to be effective. 
While this ability is often built into the design of the instruments, the musical saw, used 
to make music across the world for over a century and a half (2), is unusual in that it is 
just a carpenter's saw but held in an unconventional manner to allow it to sing. When 
a saw (Fig. IA) is either bowed or struck by a mallet, it produces a sustained sound that 
mimics a•soprano's lyric trUI" (3). Importantly, for such a note to be produced, the blade 
cannot be flator bent intoaJshape (Fig. IB) but must be bent intoan S shape (Fig. IC). 
This geometric transformation allows the saw to sing and is we.U known to musicians 
who describe the presence of a•sweet spot," i.e., the inflection curve in the S-shaped 
blade; bowing near it produces the clearest notes, while bowing far ftom it causes the 
saw to fall silent (3). Early works (4, 5}, including notably Scott and Woodhouse (6), 
attempted to understand this peculiar feature byanalyzing the lineariud vibrational modes 
of a thin elastic shell (7, 8}. Through a simplified asymptotic analysis, they showed that 
a localized vibrational eigenmode emerges at an inflection point in a shell with spatially 
varying curvature and is responsible for the musicality of the saw. Recent works have 
reproduced this result using numerical simulations (9, 10), but a deeper understanding of 
the origin of localii.acion has remained elusive. 

Asimple demonstration of playing the saw quickly reveals the robustness of its musical 
quality to imperfections in the saw, irregularities in its shape, and the precise details of 
how the blade is flexed. Fig. ID shows a time trace and spectrogram of the sawclamped in 
either a Jshape or an S shape (Fig. I Band C) when struck or bowed near the sweetspot. 
The dull and short-lived sound (Audio I) associated with the J shape might be contrasted 
with the nearly pure tone (,s,595 Hz) lasting several seoonds {Audio 2} when the saw is 
bowed whileshaped like an S. While the pitch can be varied by changing the curvature of 
the saw, the sustained quality of the note is largely indifferent to the manner of excitation 
and the specific nature of the clamps, as long as the inflection point is present. 

The lack of sensitivity to thesedetailssuggestsa topological origin for the localiud mode 
responsible for the saw's strikingsonority. That topology can have implications for band 
structuresand the presence of edge oonductingstates even when the bulk is insulating was 
originally explored in electronic aspects of condensed matter to explain the quantization 
of the Hall oonduaance (11) and led to the prediction of topological insulators (12, 
13}. More recently, similar ideas have been used to understand the topological properties 
of mechanical excitations, e.g.. acoustic and floppy modes in discrete periodic lattices 
(14-17}, in continuum elasticity (18-21}, in fluid dynamics in geophysical and active 
mattersystems(22-25). etc.In manyof the aforementionedsystems, the breaking of time 
reversal symmetry leads to the appearance of topologically protected modes. Alternately, 
in the absence of driven or active elements, spatial symmetries of a unit cell can also be 
used to achieve topological modes via acoustic analogs of the quantum spin or valley 
Hall effect (I7. 26-29), although these examples rely on carefully engineered periodic 
lartices. Here we expand the use of topological ideas to continuum shells and show that 

Significance 
The ability to sustain notes or 
vibrations underlies the design of 
most acoustic devices, ranging 
from musical instruments to 
nanomechanlcal resonators. 
Inspired by the singing saw that 
acquires ks musical quality from 
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underlying the time-reversible Newtonian dynamicsof thesinging 
saw is a topological invariant that characteri?.eS the propagation 
of waves in thin shells, arising from the breaking of up-down 
inversion symmetry by curvature. 

 
Results 
Continuum Model of ThinShell Dynamics. Thesawis modeled as 
a very thin rectangular elastic shell (thicknessh /4: W < L, where 
W, Lare the width and length of the strip) made of a material 
with Young's modulus Y, Poisson ratio v, and density p (Fig. IE). 
Its geometry is characterized by a spatially varying curvature 
tensor (second fundamental form) b(x), where x = (x, y) is the spatial coordinate in the plane. As the saw is bent only along the 

that the localized mode excited upon bowing the S-shaped saw 
(Fig. IC) lieswithin the frequencygap. The}-shaped saw(Fig. IBJ 
alsovibratesat lowfi-equencies(compared to thegap)whenstruck, 
presumably through the 'iv = 0 branch of delocalized flexural 
modes, although higher frequencies above the band gap can be 
excited by careful bowing (Sf Appendix, Fig. SI A and BJ. 
Curvature-Induced Z2 Topological Invariant. To unveil the topo 
logical structure of the vibration spectrum of the saw, we cast 
thesecond-order dynamical equations (Eqs. I and 2) in terms of 
first-order equations by raking the square root of the dynamical 
matrix (14,34). Focusingon the flexural modes alone, we obtain 
a Schrodinger-like equation for the transverse deflections of a 
shallow shell (Sf Append;x, section 3), (o 

{long) x axis, b..,(x) =b(x) is the sole nonvanishing curvature. 
To describe its dynamical response, we take advantage of its 

'Ii= vt) 
V O ' 

 
(3) 

slenderness and treat the sawas a thin elasticshell thatcan be bent, 
stretched, sheared, and twisted. Before movingto a computational 
model that accounts for these modes ofdeformation as well as real 
boundary conditions, to gain some insight into the problem and 
expose the topological nature of elastic waves, it is instructive to 
instead consider a simplified description valid for shallow shells 
with slowly varying curvature. 

In a thin shallow shell (hlb,11/4: 1), as bending is energetically 
cheaper than stretching (30), shear becomes negligible (Q""0; 
Fig. IE),and in-plane deformations propagate much more rapidly 
(at the speed of sound c = ,J'Vlµ) so that the depth-averaged 
stresses can be assumed to equilibrated, i.e., B1u,1 = 0 (6, 31). In 
th.is limit, usingthesolution of these equations in terms of the Ai 
stress function x (u,1 = 'P,/J2x, where 'Pt:1 = 6'1 - B,01f'v 
is a projection operator; SI Append;x, section 3), the in-plane 
geometric compatibility relation and the linearized dynamical 
equations for transverse motions can be written as (7. 32) 

where1¥ = (cV1f, iO,/)andV = iJi</ Yh"i/2 + bt:1'Pt:1 and t 
represents the conjugate transpose. Theeigenvalues of the effective 
Hamiltonian 1i are given by the previously derived (w±(q)}, 
and its complex eigenvectorsW±(q) encode the topology of 
the band structure. The singularities in the arbitrary phase of 
the eigenvectors signals nontrivial band topology. To understand 
the phase of eigenvectors along the saw's long direction, we can 
consider fixing the transverse wave vector 'iv ,f 0, leading to an 
effective one-dimensional (ID) system along the x axis.Then the 
obstruction to continuously define the phase of the eigenvectors 
at every qx in Fourier space while respecting all the symmetries of 
the problem is quantified by the ID Berry connection A(q.) = 
i En=± '¥n(q,)10q, 'Vn(q.) (the qy dependence is suppressed) 
(35, 36). However, what are the symmetriesof our elastodynamic 
system? 

One important symmetry is that imposed by classical time 
reversal invariance in a passive. reciprocal material {C : x x, 

1 4 2 
Yh"i1 x=-'P,1"il (b,11), 

phB'fj = -1'"i14f + b,1'Pt:1"i12x. 

[I) 

(2) 

t -t, '¥  w• ; Sf Appmdix, section 3), which maps forward 
moving waves into backward moving ones and guarantees that 
eigenmodes appear in complex-conjugate pairs (34). A second 
symmetryspecial to the saw is an emergent spatial reflection sym 

Here f is the out-of-plane deflection of the shell (Fig. IE) and 
the bending rigidicy"- = Yh3/(12(1 - v2)). Crucially, in-plane 
and flexural (out-of-plane} modes remain geometrically coupled 
in the presence of curvature even in the linearized setting (Eqs. I 
and 2). For a shell bent with constant curvature along the x axis, 
i.e., a section of a uniform cylinder, b(x) = bo is a constant. In 
the bulk of the system, disregarding boundaries, we can Fourier 
transform Eqs. I and 2 using the solution ansatz/ = f,e-<w<+<•·• 
to obl:tin the dispersion relation for flexural waves to bew±(q) = 
±J(1'/ph)q4 +c2b6(qy/q)4 (Fig. 2A}, where q = lql. When 
<Jv = 0, i.e.. the sheet is undeformed in the transverse direction, 
it remains developable (with generators that run parallel to the 
y direction), and ,he bending waves are gapless, i.e., w   0 as 
q  0. Howeve.r, when qy ,f 0, a finite frequency gap ~ clbol 
(in addition to finite qy corrections) controlled by the speed of 
sound and the curvature of the shell emerges as q 0 (Fig. 2A). 
Intuitively, this arises due to the geometric coupling berween 
bending and stretching deformations in acurvedshell which leads 
to an effective stiffening that forbids wave propagation below 
a frequency threshold. Similar spectral gaps appear in curved 
filaments and doubly curved shells as well (31, 33). 

For the $-shaped saw, curvature scales of b~0.4 to 0.8 m-1 

are easily achievable (as in Fig. I B and C), while the typical 
sound speed in steel is c ~5 to 6 x 103mis so that the frequency 
gap is of order 2 to 5 kHz.. Comparing these estimates to the 
spectrogram in Fig. ID (further quantified in Fig. 3) suggests 

metry in the local tangent plane (11: x  -x, t  t, '¥  '¥ ; 
Sf Appendix, section 3), which originates from the uniaxial nature 
of the prescribed curvature along the x axisand the insensitivity of 
bending to the orientation of the local tangent plane, a symmetry 
that is inherited from 3D rotational invariance. The latter is easily 
seen by noting that the bending energy only involves an even 
number of gradients via "i/2 f. Upon simulraneously enforcing 
both dynamical and spatial symmetries, a new topological ob 
struction posed by curvature emerges and is quantified by a 'Li. 
index (Sf Appendix, section 3). 

(-1)" =exp[i1"d"q,A(q,)l: : )' (4) 

simUar to topological insulators with crystalline symmetries 
(37-39). Pf(W) denotes the Pf.,ffian of the antisymmetric overlap 
matrix W<:1(qz) = w,(q,)ICITw1(q.) (i,j =±).We note that 
unlike the mechanical Su-Schrieffer-Heeger chain (14) that 
exhibits a topological polariution in ID. the emergent tangent 
plane spatial reflection symmetry in our problem forces this 
polariiation to vanish (Sf Appendix, section 3). 

As we work in the continuum, only di.ffe.rences in the topo 
logical invariant are well defined indepe.ndent of microscopic 
details. Across an interface at which curvature changes sign. i.e .. 
a curvature domain wall, the jump in the topological invariant is 
given by 

(-lf'"=sgn(b<b>), (5) 
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Fig. 1. Themusical sawand its mathematic.al model.(A) Aviolin bow andmallet placedalongside the saw. Weclamp the saw in two configurations:(B}aJ 
shapeand(Qan Sshape. whichis required to pl.l)tmusic. The primarydistinct:ion between thehw is d\atC hasan inflection point(thesweet spot) in its profile. 
while 8 hascurvature ofconstant sign. (Scale bar, S cm.) (D)(left) nme series of the rormalizedaudio signalwhen the saw in Bisst.rude{green)andwhen the 
s.1w in C is bcwed (black).(Middleand Rigtt) The corresponding spectrograms for both th! J shape(8) and the S shape (Q. The signal decays rapidly for the 
J Shape with a wider spread in frequency, while for the S shape, a singledominant note with w 595 Hz survives the ringdown of the blade lasting several 
seconds. (E)A sc.hematic of a blade o( length L. widthW, and thickness h is sketched with a uniaxial auvature profile bxit(x) = b(x) th.atchanges signalorg 
the x axis as in 8. The saw can be modeled as an elastic shell whose def'ormations include an in-plane displacement u.a midsu.rface deflection/ ncrmal to 
the shell and a rotation 80( the local normal" asdegreesof freedom [ x =(x.y} is the sp,1tial coordinate). Elastic tensors A ' and f:i/ enter theconstitutive 
equations (Subscriptsdenotes symmetrization} for the in-plane stress(o}. bending moment (M). and transverse sh-ear(Q) (SIAppendix. section2). Der'ivcltives 
are interpreted as <OVariant. and index manipulations emplOJthe reference metrico( the shell (SIAppendix. section2). The Kirchhoff limit for a sn.tllcw shell 
simplifies thedynamics to V  • a =0. phtif'f = VV: M +tr(b • u).alongwith 8 = -Vf - b• u(S/Appendix. sections2 and 3}. 

 

where b< and b> are the curvature on either side of the interface 
(SJAppmdix,section 3). This expression directly demonstrates 
that the two oppositely rurved sections of the saw be.have as 
topologically nontrivial bulk systems, with a t:i.v = 1, that meet 
at the inflection line that functions as an inte,mal edge. As a 
result, nontrivial band topology underlies the emergence of the 
localized midgap mode, endowing it with robustness against 
details of the rurvature profile and weakly nonlinear deformations 
(SJAppendix,section 3). 

 
Numeric.al Mode Structure and Localization. We test these pre 
dictions by numerically computing the eigenmodes of a finite 
elastic strip of length L= 1 m, width W = 0.25 m, and thick 
ness h = 10-3 m. For our shell model, we move away from 
the K;rchhoff model for shells and account for the ldnemat 
ia associated with shear in addition to those associated with 
bending and stretching, as they effectively reduce the numerical 

ill-conditioning commonly seen in high-order continuum the 
ories for slender plates and shells while allowing for numerical 
methods that require less smoothness and are easier to implement 
(SJAppend;x); together, these allow for better computational ac 
ruracy.This framework fonns the basis for the Naghdishell model 
(40) (see SJ Append;x,section 2, for details) and accounts for an 
in-plane displacement vector alongthe midsurface u(x, t), an out 
of-plane deffection /(x,t) nornul to the shell, and an additional 
roration O(x, t) of the local normal itself (Fig. IE). These modes 
of deformations lead to depth-averaged stress resultants associated 
with stretching (u), bending (M), and shear (Q) as shown in 
Fig. IE. The resulting covariant nonlinear shell theory along with 
inertial Newtonian dynamics provides an accurate and computa 
tionally tractable description of the elastodynamics of thin shells 
(Fig. IE and SJ Appen,i;x,section 2). To highlight the topological 
robustness of our results, in our calrularions we vary both the 
boundary conditions and curvature profiles imposed on the saw. 
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Fig. 2. Eigenmodes, bandstru<t.u.re, andtopological loc.alization.(A)Analytical dispersioo relation mmputed for an infinitely long strip with constant QJNature 
alorg the x axis(hlbol =5 x 10-s. v =1/3). The blue ru.rvescorrespond to theqy =0 gapless modes, ard the red ru.rves withqy ¢ 0 havea finite frequency 
gap.(8) Numerically computed integrated density ofstates for a finiterurvedstrip (boL =05, t/L =0.1, L =1 m)with clamped-cfamped bourdarycondtions. 
Developable eigenmodes(blue; labeledby discrete mode numbers m =O.1, akin to  =0 in thecontinuum)are gapless for bothconstant curvatu.re(dashed) 
and the Sigmoid profile (solid). Higher m<Xles (red; m  2) exhibit a finite gap ~2 kHz for constant cu.rvature {dashed). while the sigmoid profile features 
a localized mode (w ~1 kHz) at the inflection point witt.n the bulk band gap. (Q Numer'ic.al eigenmodes for the sigmoid profile with the local normalized 
deflec.tion/ plotted (dashed linesare 10% isoc.ortou.rs}. Low-frequency delocalized states with m =O(Top). m =1 (Middle,) and the first localized mode with 
m =2 (£bttom). (D) Frequen<yof the localized modes (Inset sh<Ml"s normalized deflectionat y =W/2 along x) and <«responding spectral gap for inc:reasirg 
transverse mode nt.m.ber m  2.(E) Inverse participaticr,;ratio of the first localized mode for a piecewise linear curvature profile.plcttedagainst the a.uvature 
gradient b' and the length scale of curvatll'e variation t. 

In Fig. 2B, the distribution of eigenmodes as a function of 
frequency is shown in the integrated demiryofstatesfor a constant 
curvature shell, b(:z:) = bo (dashed lines), and an S-shaped shell 
with a smooth curvarure profile b(:z:) = bo tmh(:z:/t) (solid lines) 
that varies over a width t near the inflection point at x = 0 (i.e., 
a curvature domain wall). In both cases, the ends of the strip 
are kept clamped, and the spectra are calculated using an open 
source code based on the finite element method (41, 42). As the 
curvature of the S shape approaches a constant ±bofar from the 
origin, the bulk spectral gap and delocaliud modes match that 
of the constant curvature case.. FJexuraJ modes that vary at most 
linearly in they direction· (labeled by discrete mode numbers 
m = 0, 1 due to the lack of translational invarianc,,) correspond 
to linearized isometries; they delocalize over the entire ribbon 
{Fig. 2 C, Top and Middle) and populate states all the way to 
zero frequency, i.e., with a gaplessspectrum. This is true for both 
constant curvature (dashed blue line, Fig. 2B) and the S-shaped 
shell (solid blue line, Fig. 2B) as these bulk modes are unaffected 
by curvature. In contrast, all other modes that bend in both 
directions (m ;:: 2) are generically gapped fora constant curvature 
profile (dashed red line, Fig. 2/J) as expected. However., for the S 
shape, in addition to the gapped bulk modes, a new modeappears 

 
"EigetYnodesina trite sawnudtovaiy a least<JJ,adtatk.aly y ,-e.,m 1) in«dl'J" to 

bendil'lg.w'ldue: defOffll.dons t-.the 5t'l8l 

within the spectral gap (solid red line, Fig. 2B). This midgap 
state (shown here for m = 2) is a localized mode that is trapped 
in the neighborhood of the inflection line {Fig. 2 C, Bom,m). 
For increasing mode number m ;:: 2, simUar topological modes 
appear within the bulk bandgap, withgrowing localii.ation lengths 
(Fig. 2 D, lnret) and higher frequencies (Fig. 2D), as predicted 
analytically (SI Append;x, section 3). Qualitative.ly, the presence 
of an inflection line in the S-shaped saw makes it geometrically 
soft there; the generators of cylindrical modes are now along the 
length of the saw, and the curved regions on either side that are 
geometrically stiffserve to insulate the soft internal edge from the 
real damped edges. 

Of panirular note is that the localized modes, unlike the 
extended states, are vinually unaffected by the boundaries and the 
conditions there (see SI Appendix, Fig. S2A, for eigenmodes in a 
strip with asymmetric boundary conditions where the left edge is 
clamped and the right edge is free). Spatialgradients in curvature, 
however, do impact the extent of localii.ation. We demonstrate 
this using a piecewise continuous curvamre profile that has a 
constant linear gradient b' over a Jength t, aero the origin and 
adopts a constant curvature outside this region. By varying both 
the curvarure gradient b' and the length scale t, we can tune 
the localization of the lowest topological mode {same as Fig. 2 
C, Borum,), quantified b the inverse participation ratio IPR= 
Jclxl/(x)l4 /(Jclxl/(x)I )2 (Fig. 2£). Strong localization (high 
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Fig. 3. Dissipative dynamicsand high-quality oscillators. (A) Rescnance wrves for a shell with a linear curvature profile (Ins.et) periodically driven at the 
inflection point (x =O; red) and awa, from it (x =0.4L; blac:k) for varying frequen<y (w  740 Hz mrresponds to the first localized mode). (B) Numerically 
computed Q factor shewsdramatic enhancement at localized mode frequencies(red)O\erdelocalized modes(blue).(CandD} Experimental measuremert d 
Q factor {seeSI Appendix. section1 for detailS)for the musical sawina (QJ shape(Fig. 18)and(O)S shape(Fig. 1C} (Top) Note the normalizedFourier spectrum 
amplitude ison alog scale below0.1 and linear above., with the peak fre(Jlency marked as .(Boltom)The average signaldecay(blue a.uve) is fit to a single 
dec.ayil'€ exponential(black OJ.rve).The st\3dedregion is the SEin both C and0. 

 
IPR) is quickly achieved for sharp gradients in curvature (IPR oc 
JI/II/h; SI Appendix, section 3) as long as the length scale of 
curvature variation is not too small (£/ L;?: 0.1, Fig. 2£}, corre 
sponding to a diffuse domain wall. In the opposite limit oft-> 0 
forb'l = ho fixed, i.e., a sharp domain wall with a discontinuous 
curvature profile b(x) = bosgn(x), strong locali1.ation persists 
(SI Appendix, Fig. S3), consistent with our topological prediaion 
and demonstrating the ease of geometric control of localization. 

Geometrically Tunable High-Quality Osc.illatol'$. The boundary 
insensitivity of topologically localized modes has important dy 
namic consequences that can be harnessed to produce high 
quality resonators. The primary mode of di ipation in the saw, 
as in nanoelectromechanical devices (43), is through substrate or 
anchoring losses at the boundary. Internal dissipation mechanisms 
(from, e.g., plasticity, thermoelastic effects, and radiation losses), 
although present, are considerably weaker and neglected here. 
To model dissipative dynamics, we retain damped boundary 
conditions on the lefr end and augment the right boundary to 
include a restoring spring{k}and dissipative friction (-y) for both 

the in-plane forces and bending moments (Fig. 3 A, Inset, and 
SI Appendix,section 2). Informed by F',g. 2£, we choose a linear 
rurvature profile spanning the entire length of the shell to obtain 
a strongly localized mode. Upon driving the shell into steady 
oscillations, with a periodic point force applied at the inffection 
point (x = 0 ; Fig. 3A, red curve}, we see an extremely sharp 
resonance peak right at the frequency of the first localized mode 
(Fig. 3A). In contrast, when the shell is driven closer to the 
boundary(x = 0.4L; Fig.3A, black curve}, the response is ac least 
sixordersof magnitude weaker as the localized mode is not excited 
and only the delocalized modes contribute. Locali1.acion hence 
protects the mode from dissipative decay, unlike extended states 
that dampen rapidly through the boundaries. We further quantify 
this using a Q factor computed from unclriven relaxation of the 
shell initialized in a given eigenmode (SI Appendix,section 2). 
Ultrahigh values of Q"' 105 to 106 are easily attained when a 
localized mode is excited (Fig. 3B, red}, well over the Q factor 
of all other modes (Fig. 3B, blue}. Similar results are obouned 
for other curvature profiles as well., such as a sigmoid curve 
(SI Appendix, Fig. S2B). 
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To compare these computational results with experiments. 
we perform ringdown measurements on a musicaf saw {see 

SI Appendix,section I, for details) damped in both the J shape 
{Fig. IB) and the S shape{Fig. IC). As indicated by Eq. 5. the 
keydistinguishing feature of theS-shaped saw {compared to the 
J shape) is the presence of an inflection line (curvarure domain 
wall) that engenders a well-localired domain waJI mode capableof 
sustaining long-lived oscUlations. The normali:r.edFourier spectra 
and exponential decay {-r) of the signal envelope are shown in 
Fig. 3C U shape) and Fig. 3D (S shape) with the dominant 
frequency (wo) marked. We find a factor ~15 enhancement in 
the Q factor(Q = wo-r /2) forthe S-shaped saw (Q""150; Fig.3 
D, Left)over theJshape (Q""' 10; Fig. 3 C, Left). We emphasi1.e 
that thissignificant quality factor improvement, although not as 
dramatic as the numericallycomputed Q factors (Fig. 3B). is still 
striking given the initial impulse {mallet strike for J shape and 
bow for S shape; see SI Appendix, Fig. SI. for other cases) excites 
an uncontrolled range of frequencies and othersources of energy 
loss including internal damping are presumably also present 

Discussion and Conclusion 
Our combination of analysis, finite element simulations and ex 
periments has demonstrated that a sawsings because its curvature 
generates a frequency gap in the acoustic spectrum which closes 
at an inflection point (line) that acts asan interior edge allowing 
a locali:r.ed mode to emerge within the band gap. Unlike mech 
anisms of weak localization (44, 45) or well-known whispering 
gallerymodes{30,46) that relysensitivelyon details of thedomain 
geometry, our topological argument explains the existence of 
locali:r.edsound modes and their robustness against petrurbations 
in the musical saw, providing a framework to explore not just 
topologicalmechanics but also dynamics in thin platesand shells. 
The ability to control spatial geometry to trap modes 

at inte.rfaces in the interior of the system offers a unique 
opporwnity to design high-quality oscillators. As our results 
are material independent, they apply equally well to nanoscale 
electromechanical <esonators (47, 48) and provide a geometric 
approach to design high-quality resonators without relying 
on intrinsic nonlinearities (49). Just as in the musical saw, 
in nanomechanical devices, dissipation can be dominated by 
radiation through the clamped boundary (43). Current on-chip 
topological nanoelectromechanical metamaterials use carefully 
patterned periodic arrays of nanomembranes to control localized 
modes in robust acoustic waveguides (50, 51).Our worksuggests 
an alternate strategy inspired by the singing saw, which relies 
solely on the scale separation intrinsic to any curved thin sheet 
by manipulating curvawre spatially, topological modes localized 
in the interior hence remain vibrationally isolated and decay 
extremely slowly, allowing ultrahigh-quality oscillations, perhaps 
even in the ultimare limit ofatomically thin graphene (52). 

Materials and Methods 

toa sliding metal b ra ckemt ountedontoa vertiralguide rail.Corl:discs(around 
2anindiameterand0.5to1 aninthickness)wereusedtocushionandsoftly 
supporttheclampedendofthe blade.This helpeddampoutoscillations at the 
saw end and reducedany high-frequencyringingarising from d i r e cmt  etlk>n· 
metalcontlct.Thesaw bladewasbentintotwoconfigurations,aJshape(Fig.18) 
andan5shape(Fig.1C),anmd anuallyeitherstrucwk ithamalletor bowewd ith 
aviolinbowatthestraightedge,bothnearthecenteroftheblade.Thebladewas 
allowed tofreely ringdown postextitltion.The audiowas recordedusinga U5B 
microphone(Fifinetechnology,K669·K669B,samplingfrequencyf, = 44.1kHz) 

placednearthesawandanalyzedusingthesoftwareAudacity. 
Multiplemeasurementsofthe ringdownsignal,eachlasting 5 to6 s,were 

madewitha gapof a fewseconds between runs.Aseparate 10 to15s audio 
s a m p lwe  itha stationarysaw was usedasa templatetofilter any background 

noise usingthein-built noisereductionfunctionalityinAudacity.The denoised 
audiosampleswere thenanalyzed usinga customPythoncode.Bothleft and 

right (stereo) channels arestronglycorrelatedwith each other, sowe simply 
awragedthetwotogetthesignalforeachrun.Uponusinga Hannwindowand 

Fourier transformingeachsignal,we binnedthefrequencyaxiswitha binsize 
of t>w = 5 Hzandawraged the normalized(by t hme  aximumm) agnitudeof 
the Fouriertransformowrdifferent runs(N = 26:J shapem, allet N = 28: S 
shape, bow). 

The average spectrum(normalized) is plotted in Fig. 3 C and D, r o pw,  ith 
the shaded region correspondingto!he SE over the independent runs. The 

spectrograms in Fig. 1 D, Middle and Right, were computed for individual 
audiosignalsusingmatplotlib's specgramfunctiown ithoptions Nffl= 512 Hz 

(numberof fast Fourier transformdatl points per block), pad.lo = 8,192 Hz, 
and n rfap = 256 Hz.In order tocomputethe deraytimeof thesound, we 

normalizedeachtimeseriesbyitms aximum(inmagn ude)andlined them up 
sot= Oisatthme aximumof thesignal.Weaveraged theabsolutevalueofthe 

temporallyalignedsignalsoverindependent runsand performed anadditional 
moving average over a time step tJ.t = 0.025 s to smooth out all the high 
frequencyoscillations,leavingbehindonlylherequirede lope.lbissmoothed 

awragecuM!(onceagainnormalizedbyitsmaximum)isshown indarkbluein 
Fig.3 Cand D,Bottom.AsimilarralculationandsmoothingisalsodoneforlheSE 
computedoverindependent runsandisplottedastheshadedregionaboutthe 
awrage.Thesmoothed ave<age timeseriesisthenfittoan exponentialfunction 

witha constant offset usingSciPy's in-builtnonlinearcurve fittingfunction.The 
errors on ourestimatefor thedominantfrequency(Wo)and the decay time(r) 
arise primarilyfrom thechosenresolutionofoursmoothinwg indows(tJ.w, tJ.I) 

as othersourcesomf easurement errorare much smaller.We have nonetheless 
checked that ourchoiceof thwe indowsize(t>w,tJ.t}isoptimumaschangingit 

bysmallamountsdoes notaffect our results,but decreasingtJ.t byan orderof 
magnitudesignifirantlydegradestheexponentialfit 
 

Data '"'•UabUity. Codeand datl reproducing the resultsin this paper haw 
been deposited on Figshare, https://doi.org/10.6084/m9.figshare.19441385, 
andaredescribedintheartideandsupportinginformation. 
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Saw E>cperhnents. Thewooden handleof themusiral saw (Wentworth) was 
clampedontoanoptiral tlblew, hilethetlpeced end of thebladewasattached 
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