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The oommon handsaw can be oonverted into a bowed musical instrument capable of

producing exquisitely susruned notes wben its blade is appropriately bent. Aooustic
modes locali7.edat an inflection pointare Imown to underlie tbe saw's sonorous quality,
yet tbe origin of localuation bas remained mysterious. Here we uncover a topological
basis for tbe existence of locali7.ed modes tbat relies on and is protected by spatial air-
vature. By combining experimental demonstrations, theory, and oomputation, we sbow
bowspatial variations in blade airvature oontrol tbe localii.ation of tbese trapped states,
allowing tbesaw to function as a geometrically tunablehigh-quality oscillator. Our work
establishesan unexpected oonnection between tbe dynamics of tbinsbe!Jsand topologi-
cal insulatorsand offersa robust principle to design high-quality resonators acrossscales,
&om macroscopic instruments to nanoscale devices, simply tbrougb geometry.

mUSicalacoU:Stics | topological insulators | thin elastic shells

Musical instruments, even those made from everyday objects such as sticks, saws, pans,
and bowls (I}, must have the ability to cteate sustained notes for them to be effective.
While this ability is often built into the design of the instruments, the musical saw, used
to make music across the world for over a century and a half (2), is unusual in that it is
just a carpenter's saw but held in an unconventional manner to allow it to sing. When
a saw (Fig. IA) is either bowed or struck by a mallet, it produces a sustained sound that
mimics assoprano's lyric trUI" (3). Importantly, forsucha note to be produced, the blade
cannot be flator bent intoaJshape (Fig. 1B) but must be bent intoan S shape (Fig. IC).
This geometric transformation allows the saw to sing and is we.U known to musicians
who describe the presence of assweet spot," i.e., the inflection curve in the S-shaped
blade; bowing near it produces the clearest notes, while bowing far ftom it causes the
saw to fall silent (3). Early works (4, 5}, including notably Scott and Woodhouse (6),
attempted to understand this peculiar feature byanalyzing the lineariud vibrational modes
of a thin elastic shell (7, 8}. Through a simplified asymptotic analysis, they showed that
a localized vibrational eigenmode emerges at an inflection point in a shell with spatially
varying curvature and is responsible for the musicality of the saw. Recent works have
reproduced this result using numerical simulations (9, 10), but a deeper understanding of
the origin of localii.acion has remained elusive.

Asimple demonstration of playing the saw quickly reveals the robustness of its musical
quality to imperfections in the saw, irregularities in its shape, and the precise details of
how the blade is flexed. Fig. ID shows a time trace and spectrogram of the sawclamped in
either a Jshape or an S shape (Fig. I Band C) when struck or bowed near the sweetspot.
The dull and short-lived sound (Audio I) associated with the J shape might be contrasted
with the nearly pure tone (,5,595 Hz) lasting several seoonds {Audio 2} when the saw is
bowed whileshaped like an S. While the pitch can be varied by changing the curvature of
the saw, the sustained quality of the note is largely indifferent to the manner of excitation
and the specific nature of the clamps, aslongas the inflection point is present.

The lack of sensitivity to thesedetailssuggestsa topological origin for the localiud mode
responsible for the saw's strikingsonority. That topology can have implications for band
structuresand the presence of edge oonductingstates even when the bulk is insulating was
originally explored in electronic aspects of condensed matter to explain the quantization
of the Hall oonduaance (11) and led to the prediction of topological insulators (12,
13}. More recently, similar ideas have been used to understand the topological properties
of mechanical excitations, e.g.. acoustic and floppy modes in discrete periodic lattices
(14-17}, in continuum elasticity (18-21}, in fluid dynamics in geophysical and active
mattersystems(22-25). etc.In manyof the aforementionedsystems, the breaking of time-
reversal symmetry leads to the appearance of topologically protected modes. Alternately,
in the absence of driven or active elements, spatial symmetries of a unit cell can also be
used to achieve topological modes via acoustic analogs of the quantum spin or valley
Hall effect (I7. 26-29), although these examples rely on carefully engineered periodic
lartices. Here we expand the use of topological ideas to continuum shells and show that
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Significance

The ability to sustain notes or
vibrations underlies the design of
most acoustic devices, ranging
from musical instruments to
nanomechanlcal resonators.
Inspired by the singing saw that
acquires ks musical quality from
Its blade being unusually bent, we
ask howgeometry canbe usedto
trap andinsulate acoustic modes

from dissipative decay In a
continuum elastic medium.By

using experiments and theoretical

and numerical analysis,we

demonstrate that spatially varying

curvature in a thinshell can
localize topologically protected
modes atInflection lines, akin to
exotic edge states in topological
insulators. A key feature is the
ability to geometrically control
bothspatial localization and the
dynamics of oscillations In thin
shells. Our work uncovers an

unusual mechanism for designing

robust, yef reconfigurable,
high-quality resonators across
scales.
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underlying the time-reversible Newtonian dynamicsof thesinging
saw is a topological invariant that characteri?.eS the propagation
of waves in thin shells, arising from the breaking of up-down
inversion symmetry by curvature.

Results

Continuum Model of ThinShell Dynamics. Thesawis modeled as
avery thin rectangular elastic shell (thickness/ /4: W< L, where
W, Lare the width and length of the strip) made of a material
with Young's modulus Y, Poisson ratio v, and density p (Fig. /E).
Its geometry is characterized by a spatially varying curvature
(oA SRR e B AR RO AEL X Guftaldt he
{long) X axis, b..,(x) = b(x) is the sole nonvanishing curvature.
To describe its dynamical response, we take advantage of its
slenderness and treat the sawas a thin elasticshell thatcan be bent,
stretched, sheared, and twisted. Before movingto a computational
model that accounts for these modes ofdeformation as well as real
boundary conditions, to gain some insight into the problem and
expose the topological nature of elastic waves, it is instructive to
instead consider a simplified description valid for shallow shells
with slowly varying curvature.

In a thin shallow shell (lb,11/4: 1), as bending is energetically
cheaper than stretching (30), shear becomes negligible (Q"'0;
Fig. IE),and in-plane deformations propagate much more rapidly
(at the speed of sound ¢ = ,J'VIQL) so that the depth-averaged
stresses can be assumed to equilibrated, i.e., Bju, ;= 0(6,31). In
th.is limit, usingthesolution of these equations in terms of the Ai
stress function X (U, 1= 'P,/J2X, where 'Pt:1= 6'1 - B,01f v
is a projection operator; S/ Append;x, section 3), the in-plane
geometric compatibility relation and the linearized dynamical
equations for transverse motions can be written as (7. 32)

1 )
ﬁ"i1 X="P, 1 "iI (b, 1])y [I)
phBf = -1"11% + b 1PE17i1x )

Here f is the out-of-plane deflection of the shell (Fig. IE) and
the bending rigidicy"- = Yh3/(12(1 - V2)). Crucially, in-plane
and flexural (out-of-plane} modes remain geometrically coupled
in the presence of curvature even in the linearized setting (Egs. I
and 2). For a shell bent with constant curvature along the x axis,

i.e., a section of a uniform cylinder, b(x) = DO is a constant. In
the bulk of the system, disregarding boundaries, we can Fourier
transform Eqgs. I and 2 using the solution ansatz/ = fe-<w<+<e-
to obl:tin the dispersion relation for flexural waves to bew+(q) =
(1 Yph)g% +c2b6(gv/a)% (Fig. 2A}, where g = Iql. When
<Jv = 0, i.e.. the sheet is undeformed in the transverse direction,
it remains developable (with generators that run parallel to the
y direction), and ,he bending waves are gapless, i.e., w 0 as
g 0. Howeve.r, when gy ,f 0, a finite frequency gap =~ clbol
(in addition to finite gy corrections) controlled by the speed of
sound and the curvature of the shell emerges as ¢ 0 (Fig. 2A).
Intuitively, this arises due to the geometric coupling berween
bending and stretching deformations in acurvedshell which leads
to an effective stiffening that forbids wave propagation below
a frequency threshold. Similar spectral gaps appear in curved
filaments and doubly curved shells as well (31, 33).

For the $-shaped saw, curvature scales of b~0.4 to 0.8 m-"
are easily achievable (as in Fig. I Band C), while the typical
sound speed in steel is ¢ ~5 to 6 X 103mis so that the frequency
gap is of order 2 to 5 kHz.. Comparing these estimates to the
spectrogram in Fig. ID (further quantified in Fig. 3) suggests

https://doi.org/10.1073/pnas.2117241119

that the localized mode excited upon bowing the S-shaped saw
(Fig. IC) lieswithin the frequencygap. The}-shaped saw(Fig. IBJ
alsovibratesat lowfi-equencies(compared to thegap)whenstruck,
presumably through the /v = 0 branch of delocalized flexural
modes, although higher frequencies above the band gap can be
excited by careful bowing (Sf Appendix, Fig.SI Aand BJ.

Curvature-Induced Z2 Topological Invariant. To unveil the topo-
logical structure of the vibration spectrum of the saw, we cast
thesecond-order dynamical equations (Egs. I and 2) in terms of
first-order equations by raking the square root of the dynamical
matrix (14,34). Focusingon the flexural modes alone, weobtain

a Schrodinger-like equation for the trapsverse deflections of a
shallow shell (Sf Append.x, section 3(,6

iow—nw, Ti= VD )
n

wherel¥ = (cV1j,' i0,/)andV = iJi</ Yh /2 + bt:1'Pt:1 and t
represents the conjugate transpose. Theeigenvalues of the effective
Hamiltonian /i are given by the previously derived (W£(q)},
and its complex eigenvectorsW=(q) encode the topology of
the band structure. The singularities in the arbitrary phase of
the eigenvectors signals nontrivial band topology. To understand
the phase of eigenvectors along the saw's long direction, we can
consider fixing the transverse wave vector iv ,f 0, leading to an
effective one-dimensional (ID) system along the x axis.Then the
obstruction to continuously define the phase of the eigenvectors
at every gX in Fourier space while respecting all the symmetries of
the problem is quantified by the ID Berry connection A(g.) =

i En=+¥n(g,)1 0g,'Vn(q.) (the gy dependence is suppressed)
(35, 36). However, whatare the symmetriesof our elastodynamic
system?

One important symmetry is that imposed by classical time-
reversal invariance in a passive. reciprocal material {C : x X,
t -t ¥ we; Sf Appmdix, section 3), which maps forward
moving waves into backward moving ones and guarantees that
eigenmodes appear in complex-conjugate pairs (34). A second
symmetryspecial to the saw is an emergent spatial reflection sym-
metry in the local tangent plane (11: x -x, ¢ ¥ ¥;
Sf Appendiix, section 3), which originates from the uniaxial nature
of the prescribed curvature along the x axisand the insensitivity of
bending to the orientation of the local tangent plane, a symmetry
that is inherited from 3D rotational invariance. The latter is easily
seen by noting that the bending energy only involves an even
number of gradients via "i/2 £ Upon simulraneously enforcing
both dynamical and spatial symmetries, a new topological ob-
struction posed by curvature emerges and is quantified by a 'Li.
index (Sf Appendix, section 3).

A nn

(G :eXP[l dq,A(qg.)l=_:)' 4)

simUar to topological insulators with crystalline symmetries
(37-39). Pf(W) denotes the Pf.,ffian of the antisymmetric overlap
matrix W<:1(qz) = w,(q,)ICITw,(q.) (ij =%).We note that
unlike the mechanical Su-Schrieffer-Heeger chain (14) that
exhibits a topological polariution in ID. the emergent tangent-
plane spatial reflection symmetry in our problem forces this
polariiation to vanish (Sf Appendix, section 3).

As we work in the continuum, only di.ffe.rences in the topo-
logical invariant are well defined indepe.ndent of microscopic
details. Across an interface at which curvature changes sign. i.e ..
a curvature domain wall, the jump in the topological invariant is
given by

(-1f"=sgn(b<b>), 3
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Fig. 1. Themusical sawand its mathematic.al model.(A) Aviolin bow andmallet placedalongside the saw. Weclamp the saw in two configurations:(B}aJ
shapeand(Qan Sshape. whichis required to pl.l)tmusic. The primarydistinct:ion between thehw is d\atC hasan inflection point(thesweet spot) in its profile.
while 8 hascurvature ofconstant sign. (Scale bar, S cm.) (D)(left) nme series of the rormalizedaudio signalwhen the saw in Bisst.rude{green)andwhen the
sawin C is bewed (black).(Middleand Rigtt) The corresponding spectrograms for both th! J shape(8) and the S shape (Q. The signal decays rapidly for the
J Shapewith a wider spread in frequency, while for the S shape, a singledominant note withw 595Hz survives the ringdown of the blade lasting several
seconds. (E)A sc.hematic of a blade o( length L. widthW, and thickness / is sketched with a uniaxial auvature profile bxit(x) = b(x) th.atchanges signalorg
the x axis as in 8. The saw can be modeled as an elastic shell whose def'ormations include an in-plane displacement U.a midsu.rface deflection/ ncrmal to

the shell and a rotation 80( the local normal” asdegreesof freedom [ x =(x.y} is the sp,1tial coordinate). Elastic tensors 4 ' and f:i/ enter theconstitutive
equations (Subscriptsdenotes symmetrization} for the in-plane stress(o}. bending moment (M). and transverse sh-ear(Q) (SIAppendix. section2). Der'ivcltives
are interpreted as <OVariant. and index manipulations emplOJthe reference metrico( the shell (SL4ppendix. section2). The Kirchhoff limit fora sn.tlicw shell

simplifies thedynamicsto. a =0. phtif'f=. M +tr(b cu).alongwith 8= _. = BSHppendix. sections2 and 3}.

where b< and b> are the curvature on either side of the interface  ill-conditioning commonly seen in high-order continuum the-
(SJAppmdix,section 3). This expression directly demonstrates ories for slender plates and shells while allowing for numerical
that the two oppositely rurved sections of the saw be.have as  methods that require less smoothness and are easier to implement
topologically nontrivial bulk systems, with a £:i.v = 1, that meet  (SJ4Append;x), together, these allow for better computational ac-
at the inflection line that functions as an inte,mal edge. As a  ruracy.This framework fonns the basis for the Naghdishell model
result, nontrivial band topology underlies the emergence of the (40) (see SJ Append;x,section 2, for details) and accounts for an
localized midgap mode, endowing it with robustness against in-plane displacement vector alongthe midsurface u(x, t), an out-
details of the rurvature profile and weakly nonlinear deformations  of-plane deffection /(X,t) nornul to the shell, and an additional
(SJAppendix,section 3). roration O(X, t) of the local normal itself (Fig. IE). These modes
of deformations lead to depth-averaged stress resultants associated
Numeric.al Mode Structure and Localization. We test these pre- ~ With stretching (u), bending (M), and shear (Q) as shown in
dictions by numerically computing the eigenmodes of a finite  Fig. [E. The resulting covariant nonlinear shell theory along with
elasticstrip of length L= 1 m, width W = 0.25 m,and thick- inertial Newtonian dynamics provides an accurate and computa-
ness h =10-3 m. For our shell model, we move away from tionally tractable description of the elastodynamics of thin shells
the K;rchhoff model for shells and account for the ldnemat- (Fig. IE and SJ Appen,i;x,section 2). To highlight the topological
ia associated with shear in addition to those associated with  robustness of our results, in our calrularions we vary both the
bending and stretching, as they effectively reduce the numerical ~ boundary conditions and curvature profiles imposed on the saw.
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Fig. 2. Eigenmodes, bandstru<t.u.re, andtopological loc.alization.(A)Analytical dispersioo relation mmputed for an infinitely long strip with constant QJNature
alorg the x axis(hlbol =5 x 10-s. v =1/3). The blue ru.rvescorrespond to theqy =0 gapless modes, ard the red ru.rves withqy ¢ 0 havea finite frequency
gap.(8) Numerically computed integrated density ofstates for a finiterurvedstrip (boL =05, ¢/ =0.1, L =1 m)with clamped-cfamped bourdarycondtions.
Developable eigenmodes(blue; labeledby discrete mode numbers m —0.1, akinto =0 in thecontinuum)are gapless for bothconstant curvatu.re(dashed)

and the Sigmoid profile (solid). Higher m<Xles (red; m  2) exhibit a finite gap ~2 kHz for constant cu.rvature {dashed). while the sigmoid profile features

a localized mode (w ~1 kHz) at the inflection point witt.n the bulk band gap. (Q Numer'ic.al eigenmodes for the sigmoid profile with the local normalized
deflec.tion/ plotted (dashed linesare 10% isoc.ortou.rs}. Low-frequency delocalized states with m =O(Top). m =1 (Middle,) and the first localized mode with

m =2 (£bttom). (D) Frequen<yof the localized modes (Inset sh<Ml"s normalized deflectionat y —=W/2 along x) and <«respondin?
2.(E) Inverse participaticr,;ratio of the first localized mode for a piecewise linear curvature profile.plcttedagainst the a.uvature

transverse mode nt.m.berm
gradient 5’ and the length scale of curvatll'e variation t.

In Fig. 2B, the distribution of eigenmodes as a function of
frequency is shown in the integrated demiryofstatesfor a constant
curvature shell, b(:z:) = bo (dashed lines), and an S-shaped shell
with a smooth curvarure profile b(:z:) = bo tmh(:z:/t) (solid lines)
that varies overa width 7 near the inflection pointat x =0 (i.e.,
a curvature domain wall). In both cases, the ends of the strip
are kept clamped, and the spectra are calculated using an open-
source code based on the finite element method (41, 42). As the

curvature of the S shape approaches a constant =bofar from the
origin, the bulk spectral gap and delocaliud modes match that
of the constant curvature case.. FJexura] modes that vary at most
linearly in they direction- (labeled by discrete mode numbers

m = 0, 1 due to the lack of translational invarianc,,) correspond
to linearized isometries; they delocalize over the entire ribbon

{Fig. 2 C, Top and Middle) and populate states all the way to
zero frequency, i.e., with a gaplessspectrum. This is true for both
constant curvature (dashed blue line, Fig. 2B) and the S-shaped
shell (solid blue line, Fig. 2B) as these bulk modes are unaffected
by curvature. In contrast, all other modes that bend in both
directions (m ;:: 2) are generically gapped fora constant curvature
profile (dashed red line, Fig. 2/J) as expected. However., for the S
shape, in addition to the gapped bulk modes, a new modeappears

"EigetYnodesina /rite sawnudtovaiy a least<JJ,adtatk.aly 3/ ,-€.,m
bendil'lg.w'ldue: defOffll.dons t-.the 5t'18I

1) in«dl'J"to

40f 7 https://doi.org/10.1073/pnas.2117241119

spectral gap for inc:reasirg

within the spectral gap (solid red line, Fig. 2B). This midgap
state (shown here for m = 2) is a localized mode that is trapped
in the neighborhood of the inflection line {Fig. 2 C, Bom,m).
For increasing mode number m ;:: 2, simUar topological modes
appear within the bulk bandgap, withgrowing localii.ation lengths
(Fig. 2 D, Inret) and higher frequencies (Fig. 2D), as predicted
analytically (ST Append,x, section 3). Qualitative.ly, the presence
of an inflection line in the S-shaped saw makes it geometrically
soft there; the generators of cylindrical modes are now along the
length of the saw, and the curved regions on either side that are
geometrically stiffserve to insulate the soft internal edge from the
real damped edges.

Of panirular note is that the localized modes, unlike the
extended states, are vinually unaffected by the boundaries and the
conditions there (see ST Appendix, Fig. S2A, for eigenmodes in a
strip with asymmetric boundary conditions where the left edge is
clamped and the right edge is free). Spatialgradients in curvature,
however, do impact the extent of localii.ation. We demonstrate
this using a piecewise continuous curvamre profile that has a
constant linear gradient b’ over a Jength t, acro the origin and
adopts a constant curvature outside this region. By varying both
the curvarure gradient b’ and the length scale f, we can tune
the localization of the lowest topological mode {same as Fig. 2
C, Borum,), quantified b the inverse participation ratio IPR=
Jelxl/(x)I* /(Jelxl/(x)l )2 (Fig. 2£). Strong localization (high

pnas.org
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Fig. 3. Dissipative dynamicsand high-quality oscillators. (A) Rescnhance wrves for a shell witha linear curvature profile(Ins.et) periodically driven at the

inflection point (x =0; red) and awa, from it (x =0.4L; blac:k) for varying frequen<y (w 740 Hz mrresponds to the first localized mode). (B) Numerically
computed Q factor shewsdramaticenhancementat localized mode frequencies(red)O\erdelocalized modes(blue).(CandD} Experimental measuremert d
Q factor {seeSI Appendix. section1 for detailS)for the musical sawina (QJ shape(Fig. 18)and(O)S shape(Fig. 1C} (Top) Note the normalizedFourier spectrum
amplitude isonalog scale below0.1 andlinear above., with the peak fre(Jlency marked as .(Boltom)The average signaldecay(blue a.uve) isfit to a single

dec.ayil'€ exponential(black OJ.rve).The st\3dedregion is the SEin both C ando.

IPR) is quickly achieved for sharp gradients in curvature (IPR oc
JI/I1/h; ST Appendix, section 3) as long as the length scale of
curvature variation is not too small (£/ L;?: 0.1, Fig. 2£}, corre-
sponding to a diffuse domain wall. In the opposite limit oft-> 0
forb'l = ho fixed, i.e., a sharp domain wall with a discontinuous
curvature profile b(x) = bosgn(x), strong localil.ation persists
(SI Appendix, Fig. S3), consistent with our topological prediaion
and demonstrating the ease of geometric control of localization.

Geometrically Tunable High-Quality Osc.illatol'$. The boundary
insensitivity of topologically localized modes has important dy-
namic consequences that can be harnessed to produce high-

quality resonators. The primary mode of di ipation in the saw,
as in nanoelectromechanical devices (43), is through substrate or
anchoring losses at the boundary. Internal dissipation mechanisms
(from, e.g., plasticity, thermoelastic effects, and radiation losses),
although present, are considerably weaker and neglected here.
To model dissipative dynamics, we retain damped boundary
conditions on the lefr end and augment the right boundary to
include a restoring spring {k}and dissipative friction (-y) for both

PNAS 2022 Vol.119 No.17 2117241119

the in-plane forces and bending moments (Fig. 3 A, Inset, and
S1I Appendix,section 2). Informed by F',g. 2£, we choose a linear
rurvature profile spanning the entire length of the shell to obtain
a strongly localized mode. Upon driving the shell into steady
oscillations, with a periodic point force applied at the inffection
point (x = 0 ; Fig. 3A, red curve}, we see an extremely sharp
resonance peak right at the frequency of the first localized mode
(Fig. 3A). In contrast, when the shell is driven closer to the
boundary(x = 0.4L; Fig.3A, black curve}, the response is ac least
sixordersof magnitude weaker as the localized mode is not excited

and only the delocalized modes contribute. Localil.acion hence
protects the mode from dissipative decay, unlike extended states

that dampen rapidly through the boundaries. We further quantify
this using a Q factor computed from unclriven relaxation of the
shell initialized in a given eigenmode (SI Appendix,section 2).
Ultrahigh values of Q"' 10° to 106 are easily attained when a
localized mode is excited (Fig. 3B, red}, well over the Q factor
of all other modes (Fig. 3B, blue}. Similar results are obouned

for other curvature profiles as well., such as a sigmoid curve

(SI Appendix, Fig. S2B).

https://doi.org/10.1073/pnas.2117241119  Sof 7
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To compare these computational results with experiments.

we perform ringdown measurements on a musicaf saw {see
SI Appendix,section I, for details) damped in both the J shape
{Fig. IB) and the S shape{Fig. IC). As indicated by Eq. 5. the
keydistinguishing feature of theS-shaped saw {compared to the
J shape) is the presence of an inflection line (curvarure domain
wall) that engenders a well-localired domain walJl mode capableof
sustaining long-lived oscUlations. The normali:r.edFourier spectra
and exponential decay {-r) of the signal envelope are shown in
Fig. 3C U shape) and Fig. 3D (S shape) with the dominant
frequency (wo) marked. We find a factor ~15 enhancement in
the Q factor(Q = wo-r /2) forthe S-shaped saw (Q""150; Fig.3
D, Left)over theJshape (Q"" 10; Fig. 3 C, Left). Weemphasil.e
that thissignificant quality factor improvement, although not as
dramatic as the numericallycomputed Q factors (Fig. 3B). is still
striking given the initial impulse {mallet strike for J shape and
bow for S shape; see SI Appendix, Fig. SI. for other cases) excites
an uncontrolled range of frequencies and othersources of energy
lossincluding internal damping are presumably also present

Discussion and Conclusion

Our combination of analysis, finite element simulations and ex-
periments has demonstrated that a sawsings because its curvature
generates a frequency gap in the acoustic spectrum which closes
atan inflection point (line) that actsasan interior edge allowing
a locali:r.ed mode to emerge within the band gap. Unlike mech-
anisms of weak localization (44, 45) or well-known whispering
gallerymodes {30,46) that relysensitivelyon details of thedomain
geometry, our topological argument explains the existence of
locali:r.edsound modes and their robustness against petrurbations
in the musical saw, providing a framework to explore not just
topologicalmechanics but also dynamics in thin platesand shells.
The ability to control spatial geometry to trap modes
at inte.rfaces in the interior of the system offers a unique
opporwnity to design high-quality oscillators. As our results
are material independent, they apply equally well to nanoscale
electromechanical <esonators (47, 48) and provide a geometric
approach to design high-quality resonators without relying
on intrinsic nonlinearities (49). Just as in the musical saw,
in nanomechanical devices, dissipation can be dominated by
radiation through the clamped boundary (43). Current on-chip
topological nanoelectromechanical metamaterials use carefully
patterned periodic arrays of nanomembranes to control localized
modes in robust acoustic waveguides (50, 51).0ur worksuggests
an alternate strategy inspired by the singing saw, which relies
solely on the scale separation intrinsic to any curved thin sheet
by manipulating curvawre spatially, topological modes localized
in the interior hence remain vibrationally isolated and decay
extremely slowly, allowing ultrahigh-quality oscillations, perhaps
even in the ultimare limit ofatomically thin graphene (52).

Materials and Methods

Extended datlontheexperimentsandthedetlilsofthe numerirmhodelingand
theoretiralralculationsare providedinS/ Appendix.

Saw BE>cperhnents. Thewooden handleof themusiral saw (Wentworth) was
clampedontoanoptiral tibleyhilethetlpeced end of thebladewasattached
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toa sliding metal brackeh ountedontoa vertiralguide rail. Corl:discs(around
2anindiameterand0.5to1 aninthickness)wereusedtocushionandsoftly
supporttheclampedendofthe blade.This helpeddampoutoscillations at the
saw end and reducedany high-frequencyringingarising from direcrn etlk>n-
metalcontlct. Thesaw  bladewasbentintotwoconfigurations,aJshape(Fig.18)
andan5shape(Fig.1C),andh anuallyeitherstruok ithaalletor bowedr ith
aviolinbowatthestraightedge, bothnearthecenteroftheblade. Thebladewas
allowed tofreely ringdown postextitltion. The audiowas recordedusinga USB
microphone(Fifinetechnology,K669-K669B,samplingfrequencyf, = 44.1kHz)
placednearthesawandanalyzedusingthesoftwareAudacity.
Multiplemeasurementsofthe ringdownsignal,eachlasting 5 to6 s,were
madewitha gapofa fewseconds between runs.Aseparate 10tol5s audio
sampIw itha stationarysaw was usedasa templatetofilter any background
noise usingthein-built noisereductionfunctionalityinAudacity. The denoised
audiosampleswere thenanalyzed usinga customPythoncode.Bothleft and
right (stereo) channels arestronglycorrelatedwith each other, sowe simply
awragedthetwotogetthesignalforeachrun. Uponusinga Hannwindowand
Fourier transformingeachsignal,we binnedthefrequencyaxiswitha binsize
of t>w= 5 Hzandawraged the normalized(by t hm aximumhagnitudeof
the Fouriertransformowrdifferent runs(N= 26 :J shapanallet N= 28: S
shape, bow).
The average spectrum(normalized) is plotted in Fig. 3 C and D, o pw ith
the shaded region correspondingto'he SE over the independent runs. The
spectrograms in Fig. 1 D, Middle and Right, were computed for individual
audiosignalsusingmatplotlib's specgramfunctiowithoptions Nffl= 512 Hz
(numberof fast Fourier transformdatl points per block), pad.lo= 8,192 Hz,
and n rfap =256 Hz.In order tocomputethe deraytimeof thesound, we
normalizedeachtimeseries byitsm aximum(inmagn ude)andlined them up
sot= Oisatthmaximumof thesignal. Weaveraged theabsolutevalueofthe
temporallyalignedsignalsoverindependent runsand performed anadditional
moving average overa time step tJ.t= 0.025 s to smooth out all the high-
frequencyoscillations,leavingbehindonlylherequirede lope.Ibissmoothed
awragecuM!(onceagainnormalizedbyitsmaximum)isshown indarkbluein
Fig.3 Cand D,Bottom. AsimilarralculationandsmoothingisalsodoneforlheSE
computedoverindependent runsandisplottedastheshadedregionaboutthe
awrage. Thesmoothed ave<age timeseriesisthenfittoan exponentialfunction
witha constant offset usingSciPy's in-builtnonlinearcurve fittingfunction. The
errors on ourestimatefor thedominantfrequency(Wo)and the decay time(r)
arise primarilyfrom thechosenresolutionofoursmoothingindows(tJ. w, tl.I)
asothersourcesofh easurement errorare much smaller. We have nonetheless
checked that ourchoice of the indowsize(t>w,t).t} isoptimumaschangingit
bysmallamountsdoes notaffect our results,but decreasingtJ.t byan orderof
magnitudesignifirantlydegradestheexponentialfit

Data ""+UabUity. Codeand datl reproducing the resultsin this paper haw
been deposited on Figshare, https://doi.org/10.6084/m9.figshare.19441385,
andaredescribedintheartideandsupportinginformation.
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