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ABSTRACT. It has long been conjectured that for nonlinear wave equations that satisfy
a nonlinear form of the null condition, the low regularity well-posedness theory can be
significantly improved compared to the sharp results of Smith-Tataru for the generic case.
The aim of this article is to prove the first result in this direction, namely for the time-
like minimal surface equation in the Minkowski space-time. Further, our improvement is
substantial, namely by 3/8 derivatives in two space dimensions and by 1/4 derivatives in
higher dimensions.
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1. INTRODUCTION

The question of local well-posedness for nonlinear wave equations with rough initial data
is a fundamental question in the the study of nonlinear waves, and which has received a lot
of attention over the years. The result of Smith and Tataru %ﬂ, proved almost 20 years
ago, provides the sharp regylarity threshold for generic nonlinear wave equations i vigyW of
Lindblad’s counterexample]PMLOn the other hand, it has also been conjectured t
for nonlinear wave equations that satisfy a suitable nonlinear null condition, the resm
can be improved, and the well-posedness threshold can be lowered. In this paper we provide

the first result that proves the validity of this conjecture, for a representative equation in
this class, namely the hyperbolic minimal surface equation. Further, our improvement turns
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out to be substantial; precisely, we gain 3/8 derivatives in two space dimensions and 1/4
derivatives in higher dimension. At this regularity level the Lorentzian metric g in our

1 1
problem is no better that C’f:r NL2C:", (C3, h ezt =+ in 2d) far below anything studied
before.
Most of the ideas introduced in this paper will likely extend to other nonlinear wave
models, and open the way toward further progress in the study of low regularity solutions.

1.1. The Minimal Surface Equation in Minkowski Space. Let n > 2, and 9"*2 be
the n 4+ 2 dimensional Minkowski space-time. A codimension one time-like submanifold
¥ C M2 is called a minimal surface if it is locally a critical point for the area functional

Ez/dA,
>

where the area element is measured relative to the Minkowski metric. A standard way to
think of this equation is by representing 3 as a graph over 9",

= {.Tn+1 = u<t7$17 e 7'7:71)})
where u is a real valued function
w:DCIMT SR,

which satisfies the constraint

(1) 2 <1+ [Vl

expressing the condition that its graph is a time-like surface in 991" "2,
Then the surface area functional takes the form

(1.2) L(u) = / \/1 —uf + |Vyul? do.

Interpreting this as a Lagrangian, the minimal surface equation can be thought of as the
associated Euler-Lagrange equation, which takes the form

0 Uy Uz
£ 1.3 =0
surface eq| (1.3) <\/1—ut+\v uP) Za%(\/l—utﬂv “‘2>

Under the condition @e’_ﬁ% above equation is a quasilinear wave equation.

The left hand side of the last equation can be also interpreted as the mean curvature of
the hypersurface ¥, and as such the minimal surface equation is alternatively described as
the zero mean curvature flow.

In addition to the above geometric interpretation, the minimal surface equation for time-
like surfaces in th}? Minkowski space is also known as the Born- Infeld model in onhnear
electromagnetis as well as a model for evolution of branes in string theory 50

On the mathematlcal side, the question of global eﬁstenc%for spall, Sr%oothﬁmd 10%‘%&%@30736
initial data was considered in work of Lindblad [[3 lj Brendle [8], Stetanov [40] gy
The stability of a nonflat steady solution, called the catenoid, was studied in 'mo%b ],Gggome
blow-up scenarios due to failure of immersivity were investigated by Wong rzfg inimal
surfaces have also been studied as singular limits of certain semilinear wave equations by

Jerrard [[22]. The local well-posedness question fits into the similar theory for the broader
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class of quasilinear wave guations, but there is also one result that is specific to minimal
surfaces, due to Ettinger F‘l‘l’]l;_this is discussed later in the paper.
In our study of the minimal surface equation, the above way of representing it is less useful,
and instead if is better to think of it in cometric terms. In particular the fact that the above
; . .lm.'l.gima surface eq . . ;
Lagrangian (I.2) and the equation (I.3]] are formulated relative to a background Minkowski
metric is absolutely non-essential; one may instead use any flat Lorentzian metric. This is
no surprise since any two such metrics are equivalent via a linear transformation. Perhaps
less obvious is the fact that the equations may be ;)Fc_ttﬁl]ir written in ag.identical fashion,
) ) all-Porentz |s:eéquations
independent of the background metric; see Remark [3.I[in Secfion 3] . .
. K . :equations
For full details on the structure of the equation we refer the reader to Section [3] of The
paper, but here we review the most important facts.
The main geometric object is the metric g that is the trace of the Minkowski metric in
"2 on ¥, and which, expressed in the (¢ = xg, 1, -+ ,,) coordinates, has the form

metric-g| (1.4) GaB = Mg + Oqulsu,

where m,3 denotes the Minkowski metric with signature (—1,1,...,1) in 9""!. Since ¥ is
time-like, this is also a Lorentzian metric. This has determinant

def-g| (1.5) g = |det(g*®)| = 1 +m*?0,udgu,
and the dual metric is
YmB9 1 0,
tric-intro| (1.6) g°% = m*P — m_ T oyudst
1 +mmo,ud,u

Here, and later in the paper, we carefully avoid raising indices with respect to the Minkowski
metric. Instead, all raised indices in this paper. will be with respect to the metric g.
. . . ) mal surface eg )
Relative to this metric, the equation (.3 can be expressed in the form

msf| (1.7) Ueu = 0,

where [, is the covariant d’Alembertian, and which in this problem will be shown to have
the simple expression

(1.8) O, = 970,05

An important role will also be played by the associated linearized equation, which, as it
turns out, may be easily expressed in divergence form as

(1.9) 0ag*P0gv = 0, §*P = g_%gaﬁ.

Our objective in this paper will be to study the local well-posedness of the associated
Cauchy problem with initial data at t = 0,

Ugu = 0,
(110 (=0 =
u(t = 0) = uy,

where the initial data (ug, u;) is taken in classical Sobolev spaces,

(1.11) ul0] == (ug,uy) € H* := H* x H*™ !,

and is subject to the constraint

~like-data| (1.12) uj — |Vauo|® < 1.
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minimal surface eq

Here we use the following notation for the Cauchy data in (I.3]] at time 7,

u[t] = (U(t, ')7 ut<t7 ))
We aim to investigate the range of exponents s for which local well-posedness holds, and
significantly improve the lower bound for this range.

. . . .. ) minimal surface eq
1.2. Nonlinear wave equations. The hyperbolic minimal surface equation (I3 can be

seen as a special case of more general quasilinear wave equations, which have the form

(1.13) 9°?(0u)040pu = N (u, Ou),

where, again, ¢*” is assumed to be Lorentzian, but without any further structural properties.
The simplest case is when u is a scalar, real valued function. But one may equally allow u to
be a vector-valued function, in which case we think of the left hand side of the equation as
being in diagonal form, with the coupling occurring only via g and N. This generic equation
will serve as a reference. s

As a starting point, we note that the equation (.3 T 13))
scaling law

u(t,x) — X tu(\t, Ax).
This allows us to identify the critical Sobolev exponent as
n+ 2
=

Heuristically, s. serves as a universal threshold for local well-posedness, i.e. we have to have
s > s.. Taking a naive view, one might think of trying to reach the scaling exponent s..
However, this is a quasilinear wave equation, and getting to s. has so far proved impossible
in any problem of this type.

As a good threshold from above, might start with the classical well-posedness result,
due to Hughes, Kato, and Marsden [[I8]|, and which asse Ehgé local well-posedness holds
for s > s. 4+ 1. This applies to all equations of the form , and can be proved solely by
using energy estimates. These have the form

(1.14) ult][l2s S elo 19°eLeds |y 0] 5y,

Sc

They may also be restated in terms of quasilinear energy functionals F* that have the
following two properties:

(a) Coercivity,
2

E2(ult]) = [[ult][|3-

(b) Energy growth,

lasic-diff| (1.15) %Es(u) < |0%u]| oo - E5(u).
To close the energy estimates, it then suffices to use Sobolev embeddings, which allow one
to bound the above L* norm, which we will refer to as a control parameter, in terms of the
H? Sobolev norm provided that s > & + 2, which is one derivative above scaling.
The reason a derivative is lost in the above analysis is that one would only need to bound
|0%u| 11 1, whereas the norm that is actually controlled is ||0?u|| zr; this exactly accounts

for the one derivative difference in scaling. It also suggests that the natural way to improve
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the classical result is to control the LPL* norm directly. This is indeed possible in the
context of the Strichartz estimates, which in dimension three and higher give the bound

10%ull2ze0 < [lulO]l, 55,

with another e derivatives loss in three space dimensions. When true, such a bound yields
well-posedness for s > ”*3 , which is 1/2 derivatives above scaling. The numerology changes
slightly in two space dlmensions, where the best possible Strichartz estimate has the form

10%ul| e S ||U[0]||Hg+{(= where n = 2,

which is 3/4 derivatives above scaling.

The difficulty in usin §t§16 artz estimates is that, while these are We% n in the
constant coeflicient case%f 24 and even for smooth variable coefficients 2311@3%% that is
not as simple in the case of rough co maents Indeef Jt turned out, the full Strichartz
estimates are true for C* metrics, see 35 (n = %Sé_) . ]é,[nlbu yut not, in general, for C7
metrics when o < 2, see the counterexamples of 36, d( This dlrnculty was resolved in two
stages:

(i) Semiclassical time scales and Strichartz estimates with loss of derivatives. The idea
here, which applies even for C'” metrics with o < 2, is that, associated to each dyadic
frequency scale 2F, there is a corresponding “ semiclassical ” time scale T}, = 27,
with o dependent on o, so that full Strichartz estimates hold at frequency 2* on the
scale Tj. Strichartz estimates with loss of derivatives are then obtained by summing
up the short time estimates with respect to the timg interyals, separately at each
fregupncy. T@dea was independently introduced 121%] and [[43], and further refined
in %Zg“and %4’6 .

(ii) Wave packet coherence and parametrices. oL he observation here is that in the study
of nonlinear wave equations such as (%,‘m addition to Sobolev-type regularity for
the metric, we have an additional piece of information, namely that the metric itself
can be seen as a solution t nonhnear wave equation. This idea wag.first introduced
and partially exploited in 2'6 but was brought to full fruition in [38], wherg i _was
shown that almost loss-less Strlchartz estimates hold for the solutions to (%Et
exactly the correct regularity level.

The result in E'SB] represents the starting point of the present work, and is concisely stated
as followdl:

T —
t:ST-intro| Theorem 1.1 (Smith-Tataru %8]) &{ﬁ% locally well-posed in H® provided that

3
(1.16) s>sc—|—1, n=2,
respectively
1
(1.17) S>Sc—|—§, n=3,4,5.

I i ary result in FB%] is for the case when g = g(u), but it directly carries over to equations of the
form - The result as stated below applies equally to both cases, but if g = g(u) then s. is one unit
lower.
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As part of this result, almost loss-less Strichartz estimates were obtained both directly for
the solution u, and more gengrally for the associated linearized evolution. We will return to
these estimates in Section or a more detailed statement and an in-depth discussion.

e optimality of this result, at least in dimension t e, fol%ows from work of Lindblad
H#B'U see also the more recent two dimensional result in ]_H_ever this counterexample
should only apply to “generic” models, and the local well-posedness threshold might possibly
be improved in problems with additio gfructure, i.e. some form of null condition.

Moving forward, we recall that in T]ﬁ‘a null condition was formulated for quasilinear
equations of the form (%

: ICM =gen
Definition 1.2 (HFZ[SI}%’ The nonlinear wave equation (%g?atisﬁes the nonlinear null con-

dition f

dg?
(1.18) g a]()u 7 )é*a&géw =0 in g™ (u,p)&Es = 0.

—gen

In this definition the vector p is a placeholder for the du variable in (&Sﬁ;_for added
generality, we also allow for the dependence of g on the undifferentiated w.

Here we use the terminology “nonlinear null condition” in order to distinguish it from the
classical null condition, which is relative to the Minkowski metric, and was heayily. used in
the study of global well-posedness for problems with small locahzed data, see HIQB as well
as the books F‘S{g 17 In geometric terms, this null condition may be seen as a cancellatio equations
condition for the self interactions of wave packets traveling along null geodesics. In Section %_qi
we verify that the minimal surface e gtion indeed satisfies the nonlinear.null condition.

Further, it was conjectured ine’g’? hat, for problemps satisfying , the local well-
posedness threshold can be lowered below the one in %FS] Tk}h% conj ture has remained
fully open until now, though one should mention two results in [27] and T[}_for the Einstei Do
equation, respectively the minimal surface equation, where the endpoint in Theorem [I.1]1S
reached but not crossed.

The present work provides the first positive result in this direction, specifically for the
minimal surface equatio Intdeed not only are we able to lower the local well-posedness
threshold in Theorem%lm effect we obtain a substantial improvement, namely by 3/8
derivatives in two space dimensions and by 1/4 derivatives in higher dimension.

1.3. The main result. Our main result, stated in a succinct form, is as follows:

=msf
Theorem 1.3. The Cauchy problem for the minimal surfach@_ equgtion dQﬁiS locally well-
posed for initial data u[0] in H* that satisfy the constraint (L.IZJ], where

3
(1.19) s>setg n=2

respectively

1
(1.20) $>SC+Z’ n=3,4,5.

. ST-intro
Remark 1.4. The constraint n < 5 in this result js inherited from Theorem ﬁmre
precisely its full formulation provided in Theorem | which also includes the Strichartz
estimates. This result is used as a black box in the present paper, so knowledge of Theo-
rem in higher dimensions would directly imply that the above result also holds in higher
dimensions.
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The result is valid regardless of the H?® size of the initial data. Here we interpret local
well-posedness in a strong Hadamard sense, including:

o cxistence of solutions in the class u[-] € C([0,T]; H*), with T" depending only on the
H? size of the initial data.

e uniqueness of solutions, in the sense that they are the unique limits of smooth solu-
tions.

e higher regularity, i.e. if in addition the initial data u[0] € H™ with m > s, then the
solution satisfies u[-] € C([0,T]; H™), with a bound depending only on the H™ size
of the data,

ol Meoren < lul0]laen.
e continuous dependence in H?®, i.e. continuity of the the data to solution map
H* > u[0] = ul-] € C([0,T]; H?).
e weak Lipschitz dependence, i.e. for two H?® solutions u and v we have the difference
bound
=l < —
-1 = ol ety < 10] = {015
where the exponent % is replaced by g in two space dimensions.

We remark on the weak Lipschitz dependence, which in more classical results is proved for a
much larger range of Sobolev exponents. Here the need for balanced estimates, together with
a loss of symmetry in the linearized equation, have the effect of limiting this range, namely
to a smaller neighbourhood of the exponent % For the present results a single exponent
suffices.

In addition to the above components of the local well-posedness result, a key intermediate
role in the proof of the above theorem is played by the Strichartz estimates, not only for the
solution u, but also, more importantly, for the linearized problem

009?050 = 0,
{vm = (vo, ).
as well as its paradifferential counterpart

O0aT 508050 = 0
{U[O] = (vo, v1).

Here the paraproducts are defined using the Weyl quantization, see Section ﬁéf%ar more
details. For later reference, we state the Strichartz estimates in a separate theorem:

(1.21)

(1.22)

Theorem 1.5. The fol owing properties hold for every solution u to the minimal surface
equation as in Theorem wn the corresponding ti te
a) There exists some 0y > 0, depending on s in (%L%?o that the solution u satisfies
the Strichartz estimates
(D)2 %0u| pagee S 1, n=2,
(D)2 %0u| 20 <1,  n=3,4,5.

b) Both the linearized equation @S_nand its paradifferential version @%T@ well-posed

in Hs for n = 2 respectively H3 forn = 3,4,5, and the following Strichartz estimates hold
7
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for eaclf| § > 0:

n

s 4+ (D2 217000 e S 0[0]],: =2,

ong2-intro| (1.24) HU[']HLng !
respectively
ong3-intro| (1.25) Hv[-]HLmHj + ||[(D >7771768UHL2L°° < ”U[O]HH%v n=3,4,5.

We note that the Strichartz estimates in both parts (a) and (b) have derivative losses,
namely 1/8 derivatives in the L*L* bound in two dimensions, respectively 1/4 derivatives
in higher dimensions. These estimates only represent the tip of the iceberg. One may
also consider the inhomogeneous problem, allow source terms in dual Strichartz s ages..ete.
These and other variations that play a role in this paper are discussed in Sectlonﬁi

To understand the new ideas in thegproof of our main theorem, we recall the two key . ...
elements of the proof of the result in 38 ], namely (i) the classical energy estimates ([[.I5])
and (ii) the nearly lossless Strichartz estlmates, at the time, the chief difficulty was to prove
the Strichartz estimates.

In this paper we completely turn the tables, taking part (ii) above for granted, and instead

working to improve the energy estimates. Let us begin with a simple observation, which is

tga:c Eggirg_igllig}al surface equation ([T.7)) has a cubic nonlinearity, which allows one to replace
1Il.lb) with
d

asic-cubic| (1.26) aES(u) < 0| oo ||0Pu| oo - EX (u).

This is what one calls a cubic energy estimate, which is useful in the study of long time
solutions but does not yet help with the low regularity well-posedness question. The key to
progress lies in developing a much stronger form of this bound, which roughly has the formlﬂ

c-balanced| (1.27) %ES( ) < ||8UH2 - E%(u),
oo 2
where the two fé)snltcrpgu%%ms on the right are now balanced, and only require 1/2 derivative
less than (T.26]). This is what we call a balanced energy estimate, which may only hold for a
very §ar'efully 'ChOSGIl energy functlgnal E”. 212019dimensional
This is an idea that originates in our recent work on 2D water waves (see [I]], where
balanced energy estimates are also used in order to substantially lower the low regularity
well-posedness threshold. Going baCkﬂBQJrﬂﬁkﬁE{ this has its roots in earlier work of the last
two authors and their collaborators [20 , in the context of trying to apply normal
form methods in order to obtain long time well-posedness results in quasilinear problems.
There we have introduced what we called the modified energy method, which in a nutshell
asserts that in quasilinear problems it is far better to modify the energies in a normal f
fashion, rather than to trans 8{gal‘lcn}égsegualt1on It was the cubic energy estimates of %[Hl
that were later refined in lJ fo balanced energy estimates. the way, we have also
borrowed and adapted another idea from Alazard and Delort @#2 ., which is to prepare the
problem with a partial normal form transformation, and is a part of their broader concept
of paradiagonalization; that same idea is also used here.

20f course w _an implicit constant that may depend on §.
3See SectlonE for our Besov norm notations.
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. . . . . lee-clasic-balanced
There are several major difficulties in the way of proving energy estimates such as (I.27):

e The normal form structure is somewhat weaker in the case of the minimal surface
equation, compared to water waves. As a consequence, we have to carefully under-
stand which components of the equation can be improved with a normal form analysis
and which cannot, and thus have to be estimated directly.

e Not only are the energy functionals £° not explicit, they have to be constructed in a
very delicate way, following a pr ggi}%]%& &hat is reminiscent of Tao’s :nogmalization
idea in the context of Wave—mapsjfﬂ]ﬁwell as the subsequent work I?w}Lof the third
author on the same problem.

e Keeping track of symbol regularities in our energy functionals and in the proof of
the energy estimates is also a difficult task. To succeed, here we adapt and refine a
suitable notion of paracontrolled distributio an idea that has already been used
successfully in the realm of stochastic pde’s %, 14

e The balanced energy estimates need to be proved not only for the full equation,
but also for the associated linear paradifferential equation, as a key intermediate
step, as well as for the full linearized flow. In particular, when linearizing, some of
the favourable normal form structure (or null structure, to use the nonlinear wave
equations language) is lost, and the proofs become considerably more complex.

T
Finally, the Strichartz estimates of [[38] cannot be used directly here. Instead, we are
able to reformulate them in a paradifferential fashion, and to apply them on appropriate
semiclassical time scales. After interval summation, this leads to Strichartz estimates on the
upit 'time scale but with derivative losseg. Erqc&:' g:égbi%ﬁlalgcrg@ip Strichar‘tz estimates', Whose
aim is to bound the control parameters in (I.27]], we end up losing essentially 1/8 derivatives
in two space dimensions, and 1/4 derivatives in higher dimension. These losses eventually
. . . . . aln
determine the regularity thresholds in our main result in Theorem ﬁ_
One consequence of these energy estimates is the following continuation result for the
solutions:

:main
ntinuation| Theorem 1.6. The H® solution u given by Theorem ﬁﬁn be continued for as long as the
following integral remains finite:

T
(1.28) / a2, dt < oo
0 Bo2c>,2

1.4. An outline of the paper.

Paraproducts and paradifferential calculus. The bulk of the paper is written in the language of
paradifferential calculus. The not t:il%gts and some of the basic product and paracommutator
bounds are introduced in Section %._Iﬁportantly, we use the Weyl quantization throughout;
this plays a substantial role as differences between quantizations are not always perturbative
in our analysis. Also of note, we emphasize the difference between balanced and unbalanced
bounds, so some of our YDO product or commutator expansions have the form

commutator = principal part + unbalanced lower order + balanced error.

The geometric form of the minimal surface eguatlz'ncl)gzl Wl}i&(getgg flat d’Alembertian may

sur
naively appear to play a role in the expansion (I.3]] of tThe minimal surface equation, this is

not at all useful, and instead we need to adopt a geometric viewpoint. As a starting point, in
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to its geometric form in . This is based on the metric g associated to the solution u
by (Ii %i, whose dual we also compute. Two other conformally equivalent metrics will also
play a role. In the same section we derive the linearized equation, and also introduce the
associated linear paradifferential flow.

:equations
Section t% we consider several gquwalent formulations of the minimal surface equation, leading

Strichartz estimates. As explained earlier, Strichartz estimates play a major role in our
analysis. These are applied to several equations, namely the full evolution, the linear parad-
ifferential evolution and finally the linearized equation; in the present paper, we view the
bounds for the paradifferential equation as the core ones, and the other bounds as derived
bounds, though not necessarily in a directly perturbative fashion. The Strichartz estimates
admit a number of formulations: in direct form for the homoge g:é)%lrsigﬁ)gxrft Jn dual form for
the inhomogeneous one, or in the full form. The aim of Section EMuce all of these
forms of the Strichartz estimates, as well as to describe the relations between them, in the
context of this paper. A new idea here is to allow source terms that are time derivatives of
distributions in appropriate spaces; this is achieved by reinterpreting the wave equation as
a system.

:control
Control parameters in energy estimates. We begin Section @'ming the control param-
eters A, A* and B, which will play a fundamental role in our energy estimate. Here A and
AP are scale invariant norms, at the level of ||Oul|ge, which will remain small uniformly in
time. B, on the other hand, is time dependent and at the level of ||| D,|2dul|ze, and will
control the energy growth. Typically, our balanced cubic energy estimates will have the form

oE

E ~ Al BQE

To propagate energy bounds we will need to know that B € L?. Also in the same section we
prove a number of core bounds for our solutions in terms of the control parameters.

The multiplier method and paracontrolled distributions. Both the construction of our energies
and the proof of the energy estimates are based on a paradifferential implementation of the
multiplier method, which leads to space-time identities of the form

T T
// Oyu - Xudrdt = Ex(u)|) + // R(u) dzdt
0 n 0 n

in a paradifferential format, where the vector field X is our multiplier and Ey is its associated
energy, while R(u) is the energy flux term which will have to be estimated perturbatively. A
fundamental difficulty is that the multiplier X, which should heuristically be at the regularity
level of Qu, cannot be chosen algebraically, and instead has to be constructed in an inductive
manner relative 0 tgga%l&&l\tdriglfrequency scales. In order to accurately quantify the regularity
of X, in SectionE we use and refine the notion of paracontrolled distributions; in a nutshell,
while X may not be chosen to be a function of Ju, it will still have to be paracontrolled by

Ou, which we denote by X < Ou.
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Energy estimates for the :agclz_gg]zgrential equation. The construction of the energy functionals
is carried out in Section ﬁi'%_rlﬁrﬂy at the level of the linear paradifferential equation, first in
H! and then in H*. In both cases there are two steps: first the construction of the symbol of
the multiplier X, as a paracontrolled distribution, and then the proof of the energy estimates.
The difference between the two cases is that X is a vector field in the first case, but a full
pseudodifferential operator in the second case; because of this, we prefer to present the two
arguments separately.

Energy estimates for the full equation. The aim of Section @gguﬁ%h% balanced cubic
energy estimates hold for the full equation in all H?® spaces with s > 1. We do this by
thinking about the full equation in a paradifferential form, i.e. as a linear paradifferential
equation with a nonlinear source term, and then by applying a normal form transformation
to the unbalanced part of the source term.

. . . :linearized

Well-posedness for the linearized equation. The goal of Section @mish both energy
and Strichartz estimates for 22 solutions (7—[% in dimension two) to the linearized equation.
This is achieved under the assumption that both energy and Strichartz estimates for He
solutions (’Hg in dimension two) for the linear paradifferential equation hold. We remark
that, while the energy estimates for the linear paradifferential equation have already been
established by this point in the paper, the corresponding Strichartz estimates have yet to be
proved.

Short time Siggchartz estimates for the full equation. The local well-posedness result of Smith
and Tataru [38] yields well-posedness and nearly sharp Strichartz estimates on the unit
time scale ﬁor initial data that is small in the appropriate Sobolev space. Our objective in
Section [IU[is to recast this result as a short time result for a corresponding large data problem.
This is a somewhat standard argument combining scaling and finite speed of propagation,
though with an interesting twist due to the need to use homogeneous Sobolev norms.

Small vs. large H® data. In our main well-posedness proof, in order to avoid more cumber-
some notations and estimates, it is convenient to work with initial data that is small in H°.
This is not a major problem, as this is a nonlinear wave equation which exhibits finite speed
of propagation. This allows us to reduce the large data problem to the small data propl n o
by appropriate localizations. This argument is carried out at the beginning of Section ﬁ&

comes together in Section ere we finally obtain our rough solutions u as a limit of
smooth solutions v with initial data frequency localized below frequency 2". The bulk of
the proof is organized as a bootstrap argument, where the bootstrap quantities are uni-

Rough solutions as limits (f i@a@?th solutions. Our sequence of modules discussed so far

form energy type bounds for both u”" and for their increments v = %uh, which solve the
corresponding linearized equation. The main steps are as follows:

T
e we use the short time Strichartz estimates derived from %’8] for u" and v" in order to
obtain long time Strichartz estimates for v, which in turn implies energy estimates
for both the full equation and the paradifferential equation, and closes one half of

the bootstrap.
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e we combine the short time Strichartz estimates and the long time energy estimates
for the paradifferential equation in H> (7—[3 if n = 2) to obtain long time Strichartz
estimates for the same paradifferential equation.

e we use the energy and Strichartz estimates for the paradifferential equation to obtain
similar bounds for the linearized equation. This in turn implies long time energy
estimates for v", closing the second half of the bootstrap loop.

The well-posedness argument. Once we have a complete collection of energy estimates and
Strichartz estimates for both the full equation and the linearized equation, we are able to
use frequency envelopes in order to prove the remaining part of the well-posedness results,
namely the strong convergence of the smooth solutions, the continuous dependence, and
the associated uniqueness hF]ro erty. In this we follow the strategy outlined in the last two

authors’ expository paper [[21].
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2. NOTATIONS, PARAPRODUCTS AND SOME COMMUTATOR TYPE BOUNDS
We begin with some standard notations and conventions:

e The greek indices «, 3,7, 0 etc. in expressions range from 0 to n, where 0 stands for
time. Roman indices 7, ; are limited to the range from 1 to n, and are associated
only to spatial coordinates.

e The differentiation operators with respect to all coordinates are d,, a = 0,...,n. By
0 without any index we denote the full space-time gradient. To separate only spatial
derivatives we use the notation 0,.

o We consistently use the Einstein summation convention, where repeated indices are
summed over, unless explicitly stated otherwise.

e The inequality sign x < y means x < Cy with a universal implicit constant C'. If
instead the implicit constant C' depends on some parameter A then we write z <4 v.

2.1. Littlewood-Paley decompositions and Sobolev spaces. We denote the Fourier
variables by &, with o = 0,...,n. To separate the spatial Fourier variables we use the

notation &'.
12



2.1.1. Littlewood-Paley decompositions. For distributions in R"™ we will use the standard
inhomogeneous Littlewood-Paley decomposition

oo
U= g PLu,
k=0

where P, = Py(D,) are multipliers with smooth symbols py(¢’), localized in the dyadic
frequency region {|¢] ~ 2%} (unless k = 0, where we capture the entire unit ball). We
emphasize that no such decompositions are used in the paper with respect to the time
variable. We will also use the notations P.j, P-; with the standard meaning. Often we will
use shorthand for the Littlewood-Paley pieces of u, such as uy := Pyu or uy := P-gu. On
occasion we will need multipliers with slightly larger support, e.g. Pj, will denote a multiplier
with similar dyadic frequency localization as Py, but so that PP, = P,.

2.1.2. Function spaces. For our main evolution we will use inhomogeneous Sobolev space
H*, often combined as product spaces H* = H® x H*~! for the position/velocity components
of our evolution. In the next to last section of the paper only we will have an auxiliary use
for the corresponding homogeneous spaces H*®, in connection with scaling analysis.

For our estimates we will use L* based control norms. In addition to the standard L*°
norms, in many estimates we will use the standard inhomogeneous BM O norm, as well as
its close relatives BM O*, with norm defined as

| fllBaros = [[{Dz)* flBro-

We will also need several related L” based Besov norms B, , defined as

llls;, 22‘”“ | Prul| 7o

with the obvious changes if ¢ = co. In partlcular we will be often using these norms with

p = 0o or p = 2n, which correspond to the spaces B° B;n , and B these will be used

for our control norms A, A" and B.

00,17 0027

2.1.3. Frequency envelopes. Throughout the paper we will use the notion of frequency en-
velopes, introduced by Tao (see for example [42 H-P J, which is a very useful device that tracks
the evolution of the energy of solutions between dyadic energy shells.

Definition 2.1. We say that {cx}x>0 € (* is a frequency envelope for a function u in H® if
we have the following two properties:
a) Energy bound:

(2.1) | Prullgs < cx,
b) Slowly varying
(2.2) % < olik ik eN.
Cj

Here ¢ is a positive constant, which is taken small enough in order to account for energy
leakage between nearby frequencies.
One can also limit from above the size of a frequency envelope, by requiring that

lullZre =) c.
13



Such frequency envelopes always exist, for instance one can define

Cp = sup 270 H| Piuu| gz
J

The same notion can be applied to any Besov norms. In particular we will use it jointly for

the Besov norms that define our control parameters A, A* and B.

2.2. Paraproducts and paradifferential operators. For multilinear %11}91 sisp e will
consistently use paradifferential calculus, for which we refer the reader to 6',_32%5.7

We begin with the simplest bilinear expressions, namely products, for which we will use
the Littlewood-Paley trichotomy

fr9="Trg+1(f,9) + Ty f,

where the three terms capture the lowx high frequency interactions, the highx high frequency
interactions and the lowx high frequency interactions. The paraproduct T'g might be heuris-
tically thought of as the dyadic sum

ng = Z f<k—ngk>
k

where the frequency gap « can be simply chosen as a universal parameter, say x = 4, or on
occasion may be increased and used as a smallness parameter in a large data context. To
avoid bulky notations, in this paper we will make a harmless abuse of notation and neglect
altogether. In other words, our notation P.j stands in effect for P.;_, with a fixed universal
constant k.

However, in our context a definition such as the above one is too imprecise, and the differ-
ence between usually equivalent choices may have nonperturbative effects when considering
adjoints in our proof of balanced energy estimates later on.

In particular, the symmetry properties of T} as an operator in L? are critical in our energy
estimates. For this reason, we choose to work with the Weyl quantization, and we define

; nl .
Fr)© = [ o () )
§n=C (€ +3m)
Here y is a smooth function supported in a small ball and that equals 1 near the origin.
With this convention, if f is real then T is an L? self-adjoint operator.
For paraproducts we have a number of standard bounds which we list below, and we will
refer to as Coifman-Meyer estimates:

(2.3) ITrglle S (1f 1< llgllze,
(2.4) 1Trglle S [fllze llgll aro,
(2.5) I e < Nl 2o llgll Baso-

These hold for 1 < p < oo, but there are also endpoint results available roughly corresponding
top=1and p = o0.
14
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Paraproducts may also be thought of as belonging to the larger class of translation invari-
ant bilinear operators. Such operators

f.9 = B(f.9)
may be described by their symbols b(n, £) in the Fourier space, by

~

FB(f,9)(C) = / b, €) ()3 (€) de.

&+n=¢
A special class of such operators, which we denote by L;,, will play an important role later
in the paper:

Definition 2.2. By Ly, we denote translation invariant bilinear forms whose symbol {y,(n, )
is supported in {|n| < || + 1} and satisfies bounds of the form

|3f73g€m(777§)| S (&) bl
We remark that in particular the bilinear form B(f, g) = Tg is an operator of type Ly,

with symbol
Ul )
b = —_— .

Here the factor in the denominator £ + 7/2 is the average of the g input frequency and the
output frequency, and corresponds exactly to our use of the Weyl calculus. The L? bounds
and the commutator estimates for such bilinear form mirror exactly the similar bounds for
paraproducts.

2.3. Commutator and other paraproduct bounds. Here we collect a number of gen
paraproduct estimates, \ﬁg]&}b Jre relatively standard. See for instance Appendix B of [19]
and Sections 2 and 3 of [I] Tor proofs of the following estimates as well as further references.

We begin with the following standard commutator estimate:

Lemma 2.3 (P, commutators). We have

(2.6) 11T, Pelll ey ire S 27 110 F oo
A similar bound holds also in LP for 1 < p < oo.

The following Commutator—ty%% Ss§tgpates are exact reproductions of statements from Lem-

mas 2.4 and 2.6 in Section 2 of [I], Tespectively:

Lemma 2.4 (Para-commutators). Assume that v1,ve < 1. Then we have
(2-7) ||TfT9 - Tng|

aosistnn S D flleaoll DI gl syo,

(2.8) 1Ty Ty = TyThl ps, s srssntre S NP Fll2 1D gl aso-

a—-com . .
A bound similar to @st in the Besov scale of spaces, namely from Bj  to Byt
for real s and 1 < p,q < oo.

Lemma 2.5 (Para-associativity). For s+ > 0,5+ v +72 > 0, and v, < 1 we have
(2.9) | TPIL(v, u) — (v, Tu)|

et S D flBasoll| DIl saollull gs-
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‘ai%/fng%%%n}éavea% Leibniz-type rule with paraproducts, which closely follows Lemma 3.6 of

ilon

[I]- Here, our setting is slightly cleaner as we have only % {?@1&&%%%% of Or + Ty0a, and the
dependence on f is captured by the control norm A 1 in [

ra-leibniz| Lemma 2.6 (Para-Leibniz rule). For the balanced Leibniz rule error
E7(u,v) = Tr0,11(u,v) — I[(T0,u, v) — I(u, T0v)

we have the bound

@10)  1ERw ol S Wi lull, oy, o ER, 520,
. . [pi2019dimensional . .
The next paraproduct estimate, see Lemma 2.5 in [[1], directly relafes multiplication and
paramultiplication:
:para-prod| Lemma 2.7 (Para-products). Assume that 1,72 < 1, 71 + 2 > 0. Then
(2.11) IT5Ty = Trgll gro s srstnsne S NP fllBasoll| DI gl Brro-

A similar bound holds in the Besov scale of spaces, namely from B;,q to B;an for real s
and 1 < p,q < oo.

We will also need the following variant, which applies for a different range of indices:
para-prod2| Lemma 2.8 (Low-high para-products). Assume that v1 >0, v + 72 < 0. Then
(2.12) | T¥T, — Tng|

fospsinin S 1D fllsmoll| D)™ gl Bros T +72 # 0,

a-prod2-e2| (2.13) ITyTy = Trygll prros—rssnse S D fllsasollID2gl| 2.

The proof of this Lemma only requires a straightforward Littlewood-Paley decomposition
for both f and g, where the difference T;T, — Tr,, selects the range where the f frequency
is at least comparable to the g frequency. The details are left for the reader.

These are stated here in the more elegant homogeneous setting, but there are also obvious
modifications that apply in the inhomogeneous case. We end with the following Moser-type
result:

Lemma 2.9. Let F' be smooth with F(0) =0, and w € H*. Set
R(w) = F(w) — Tpr(wyw.
Then we have the estimate
1
(2.14) [R(w) ey S CllJwllzee)[[D2w] saso||w]
This should be a classical result, though we were not able to find a sufficiently accurate
eference. ggg%glogg Iglioviding a proof here, we refer to similar Mgser estimates in Lemm S control
and .7}, which are more relevant to the current paper and which we prove in chtb%q " :
. . T . lay imensional
For further reference, the reader may also view this as a variation of Lemma 2.3 in [[I].
16
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2.4. Paradifferential operators. As a generalization of paraproducts, we will also work
with paradifferential operators. Precisely, given a symbol a(z, ) in R", we define its parad-
ifferential Weyl quantization T, as the operator

F(T.9)(0 - [ x(%) a0, £)3(€) d,

grn=c - \(+3M)
where
d(naé) = -an(x75>
The simplest class of symbols one can work with is L*°S™, which contains symbols a for
which
(2.15) |08 a(z,€)| < cale)™ 1

for all multi-indices . For such symbols, the Calderén-Vaillancourt theorem ensures appro-
priate boundedness in Sobolev spaces,

T,: H — H*™.
We remark that this class of symbols in the paradi ggzrill;%al quantization is contained in the
class denoted by BST, see for instance Hormander [[T0] but also the earlier work of Bony [7
for further properties.

More generally, given a translation invariant space of distributions X, we can define an
associated symbol class X .S™ of symbols with the property that

(2.16) 10ga(z, &)llx < caf€)™
for each € € R™. Later in the paper, we will use several choices of symbols of this type, using

function spaces that we will associate to our problem.

3. A COMPLETE SET OF EQUATIONS

Here we aim to further describe the minimal surface equation and the underlying geometry;,
and, in particular, its null structure. We also derive the linearized equation, and introduce
the paralinearization of both the main equation and its linearization.

3.1. The Lorentzija geometry of the minimal surface. Starting from the expression
of the metric ¢ in (T3], the dual metric is easily computed to be

[e% Bé
(3.1) - merm &Yu@(gu'
1 +mmo,ud,u
Also associated to the metric ¢ is its determinant
g = det(gag) = det(g*”) ",

and the associated volume form

dV = \/gdz.

This can be easily computed (e.g. using Sylvester’s determinant theorem) as
g=1+m"0,ud,u.
In the sequel, we will always raise indices with respect to the metric g, never with respect
to Minkowski. In particular we will use the standard notation

(3.2) 0* = g™ 0p.
17
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first-dg

msf-short

short-plus

iy

second-dg

dg-dp

We remark that, when applied to the function u, this operator has nearly the same effect as
the corresponding Minkowski operator,

1
(3.3) 0%y = Emaﬂﬁgu.

3.2. The minimal surface equation. Here we rewrite the minimal surface equﬁjﬁ_iﬁ)lll}lalp

surface eg

covariant form. Using the g notation above and the Minkowski metric, we rewrite (L.3] as
maﬁﬁa(g_%ﬁﬁu) =0,
or equivalently
m* (0,05u — % hg0su) = 0.
Expanding the g derivative, we have
(3.4) Ong = 2m'" 0, u 0,0, u.

Then in the previous equation we recognize the expression for the dual metric, and the
minimal surface equation becomes

(3.5) 9°?0,05u = 0.
Using the notation @E, this is written in an even shorter form,
(3.6) 0%0qu = 0.
=V S ifirst-d
Similarly, using also @S,_%he relation E%%SS becomes
1
(3.7) 2 g = 0"u 0,0, u.

3.3. The covariant d’Alembertian. The covariant d’Alembertian associated to the metric
g has the form
1
Oy = —=0a/99"" s,
g \/g \/_ B
which we can rewrite as

1
|:lg = aagaﬁaﬁ + %(aag)gaﬁaﬁ

1
= gaﬁaaaﬁ + (aagaﬁ) 65 + %(8049)906/88/3'
eed to compute the two coefficients in round brackets. The second one is given by

P
@._Fﬁrg the first one, for later use, we perform a slightly more general computation where
we differentiate ¢**(0,u) as a function of its arguments p., := 9. u,

0g*?
3.8 = 0% ¢*" — 0Pug.
(39 i
. . . .. Jdual-metric —ys-m
This formula follows by directly differentiating (B.IjJ and from (3.3,
agaﬁ avy qf By o le &)
= —m*0°u — m”79% + 2¢g0* ud”’u d"u.
Op~
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l-metric | =d
We use once again to get

Dg™P
5’9 = —[g™" + g0°ud"u]0%u — [¢°7 4+ g0 ud’u]0%u + 20°ud’ugdu,
D~
= —¢0%u — g7 0%u.
=d
From and chain rule, we arrive at
(3.9) 9,9"" = —0%u ¢"°0,05u — 0°u g*° 0,0, u.
. . .. . . -short .
Setting v = « and using the minimal surface equation in the (gg) formulation, we get
div-g| (3.10) D0g®? = —0%u ¢*0,05u.

: L @Ond-dg . .
Comparing this with , we see that the last two terms in the [, expression above cancel,
and we obtain the following simplified form for the covariant d’Alembertian:

box-g-cov| (3.11) Uy = 9°%0,05.
In particular, we get the covariant form of the minimal surface equation for w:
u-cov| (3.12) Lgu = 0.

For later use, we introduce the notation
1

def-A| (3.13) A% = —0pg*" = 2—80‘g = 0Pu g* 0p05u.
g

An interesting observation is that from here on, the Minkowski metric plays absolutely no
role:

D 5

11-Lorentz| Remark 3.1. In order to introduce the minimal surface gquations we have started from the
Minkowski metric m®®. However, the formulation @_orfﬂe equations together with the
relations (B.8]] provide a complete description of the equations without any reference to the
Minkowski @‘g};ligftand which is in effect valid for any other Lorentzian metric. Indeed, the
equation @_to_t_laer with the fact that the metric components ¢*? are smooth functions
of Ju satisfying %‘E are all that is used for the rest of the paper. Thus, our results apply
equally for any other Lorentzian metric in R"*2,

3.4. The linearized equations. Our objective now is to derive the li eatized minimal sur-
face equations. We will denote by v the linearized variable. Then, by 1%5), the linearization
of the dual metric g = ¢g*#(u) takes the form

§g*% = —0%u ¢® d,v — OPu g, v.
Then the linearized equation is directly computed, using the symmetry in o and [, as
9°%0,05v — 20%u g7 0,05u 0,v = 0.

Using the expression of A in @ , the linearized equations take the form

carizedeqn| (3.14) (9% 0005 — 2A70,)v = 0.
Alternatively this may also be written in a divergence form,
earizedeqn| (3.15) (0a9°"05 — A70,)v = 0.
or in covariant form,
(3.16) O,v = 24°0,v.

19



3.5. Null forms and the nonlinear null condition. The primary null form that plays
a role in this article is )y, defined by

def-Qo| (3.17) Qo(v,w) = gaﬁ('?av(%w = 0, v0%Ww.
=d
Now, we verify that the nonlinear null condition @) holds; for this we use @‘%0 compute
0g*?

a—Pvfafﬁﬁw = (=g 0% u — g70%u) £atsé,,

which vanishes on the null cone g*?¢,&5 = 0.

In addition we would like the contribution of A to the linearized equation to be a null
form. We get

APOgv = 0%u Qo(Ouu, v).

3.6. Two conformally equivalent metrics. While the metric g is the primary metric
used in this paper, for technical reasons we will also introduce two additional, conformally
equivalent metrics, as follows:

(i) The metric g is defined by

(3.18) 57 = () g™,
Then the minimal surface equation can be written as
(3.19) G*%0,08u =0
while the linearized equation, written in divergence form is
(3.20) (02G°%05 — A%0,)v = 0,
where, still raising indices only with respect to g,
(3.21) A% = (¢%)71 A% — §995(In g°°) = 0Pu §*°D05u + 20°u §%° 5P Dp0su.

The main feature of § is that ¢g°° = 1. Because of this, it will be useful in the study of the
linear paradifferential flow, in order to prevent a nontrivial paracoefficient in front of J3v in
the equations.

(ii) The metric g is defined by

def-hg| (3.22) G = g%,

Then the minimal surface equation can be written as
(3.23) §°%0,05u = 0,

which is not so useful. Instead, the advantage of using this metric is that, using @ , the
linearized equation can now be written in divergence form,

hg-lin| (3.24) 009?050 = 0.

This will be very useful when we study the linearized equation in H> (respectively HE in

two dimensions).
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3.7. Paralinearization and the linear paradifferential flow. A key element in our

study of the minimal surface equ%‘gigo& is the agsociated linear paradifferential flow, which is
) A . inearizedeqn o

derived from the linearized flow (B.15]]. In inhomogeneous form, this is

(3.25) (GaTgagGg - Tmaw)w = f

Similarly we can write the paradifferential equations associated to g, namely

(3.26) (0uTyos 9y — T, 0, ) = f

as well as ¢, which can be written in divergence form:

(3.27) OaThop 0w = f.

These are all equivalent up to perturbative errors. Accordingly, we introduce the notation
(3.28) Tp = 0,1 ;0803

for the paradifferential wave operator as well as its counterparts Tz and T’s with the metric
g replaced by g, respectively g.
%ﬁsl%ill]t first use the paradifferential equation in the study of the minimal surface problem

, which we rewrite in the form

(3.29) ((%Tgaa@g - TAv&,)u = N(u)

. . in-inhom . .
Here we carefully base our ng(r)rrr%ula on the linearized flow (ﬁg‘ég ;, rather on a direct paradif-
ferential expansion in @._Th‘ls is in order to insure that all nonlinear interactions in N (u)

are frequency balanced at leading order.

A key contention of our paper is that the nonlinearity N plays a perturbative role. How-
ever, this has to be interpreted in a more subtle way, in the sense that N becomes perturbative
only after a well chosen partial, variable coefficient normal form transformation.

Secondly, we will use it in the study of the linearized minimal surface equation, which we
can write in the form

(3.30) 0T 308050 = Ny (u)v.

Here the nonlinearity Ny, will also play a perturbative role, in the same fashion as above.
We caution the reader that this is not the linearization of V.

4. ENERGY AND STRICHARTZ ESTIMATES

Both energy and Strichartz estimates play an essential role in this paper, in various forms
and combinations. These are primarily applied first to the linear paradifferential flow, and
then to the linearized flow associated to solutions to our main equation . Our goal here
is to provide a brief overview of these estimates.

Importantly, in this section we do not prove any energy or Strichartz estimates. Instead, we
simply provide definitions and context for what will be proved later in the paper, and prove a
good number of equivalences between various well-posedness statements and estimates. We
do this under absolutely minimal assumptions (e.g. boundedness) on the metric g, in order
to be able to apply these properties easily later on. In particular there are no commutator
bounds needed or used in this section. The structure of the minimal surface equations also

plays no role here.
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4.1. The equations. For context, here we consider a pseudo-Riemannian metric g in I x R,
where I = [0, 7] is a time interval of unspecified length. We will make some minimal universal
assumptions on the metric g:

e both g and its inverse are uniformly bounded,
e the time slices are uniformly space-like.

Associated to this metric g, we will consider several equations:

The linear paradifferential flow in divergence form:

(4.1) 0T yes05v = f, v[0] = (vg,v1).
The linear paradifferential flow in non-divergence form:
(4.2) Ty00,08v = f, v[0] = (vo, v1).
The linear flow in divergence form:

(4.3) 0ug*P0sv = f, v[0] = (vg,v1).

The linear flow in non-divergence form:

(4.4) 9P 0,050 = f v[0] = (vo, v1).

Several comments are in order:

e As written, the above evolutions are inhomogeneous. If f = 0 then we will refer to
them as the homogeneous flows.

e In the context of tEiS DAREY, We are primarily interested in the etric g, in which
case the equation represents our main linearized flow, and &_rgepTesents our
main linear paradifferential low. The metric g and the nondivergence form of the
equations will be used in order to connect our results with the result of Smith-Tataru,
which will be used in our proofs.

e One may also add a gradient potential in the equations above; with the gradient

potential added there is no difference between the divergence and the non-divergence
form of the equations. We omit it in this section, as it plays no role.

We will consider these evolutions in the inhomogeneous Sobolev spaces H®. In order
to do this uniformly, we will assume that |I| < 1; else using homogeneous spaces would
be more appropriate. The exponent s will be an arbitrary real number in the case of the
paradifferential flows, but will have a restricted range otherwise.

4.2. Energy estimates and well-posedness for the homogeneous problem. Here we
review some relatively standard definitions and facts about local well-posedness.

Definition 4.1. For any of the above flows in the homogeneous form, we say that they are
(forward) well-posed in H® in the time interval I = [0,T] if for each initial data ul0] € H?
there exists a unique solution u with the property that

u[-] € C(I;H?).
This corresponds to a linear estimate of the form
(4.5) [0l lzoe ey S [0[0] |-

Sometimes one establishes additional bounds for the solution (e.g. Strichartz estimates) and

these are then added in to the class of solutions for which uniqueness is established. We will
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comment on this where needed. If no such assumption is used, we call this unconditional
UNIGUEness.

For completeness and reference, we now state without proof a classical well-posedness
result:

Theorem 4.2. Assume that Og € “__ Ll P oaiy

a) The paradiffererential flows (E.1) and 2] are wellposed in H* for all real s.
b) The divergence form vol_ut_z'ggzdi(jg.gi 15 well-posed in H® for s € [0,1], and the non-
(&%%) 15 wel

divergence form evolution -posed in H*® for s € [1,2].

We remark that the metrics g associated with the solutions of Smith-Tataru satisfy the
above hypothesis, but the ones associated to the solutions in our paper do not.

A slightly stronger form of well-posedness is to assert the existence of a suitable (time
dependent) energy functional E*® in H*:

Definition 4.3. An energy functional for either of the above problems in H® is a bounded
quadratic form in H® that has the following two properties:

a) Coercivity,

(4.6) E*(vlt]) ~ [[off][l5-
b) Bounded growth for solutions v to the homogeneous equation,
d
(4.7) B lt]) S BOo5

where B € L' depends only on g.

Later we will also interpret £® as a symmetric bilinear form in H°. Such an interpretation
is unique. casy_y
We remark that, in the context of Theorem Ei, where dg € L'L>, an energy functional
E! corresponding to s = 1 is classically obtained by multiplying the equation with a suitabl tivlier
smooth time-like vector field and integrating by parts; we refer the reader to Section
where this procedure is described in greater detail. Then for s # 1 one simply defines

E*(v]0]) = E'((Dx)*"0[0]),

and the corresponding control parameter B may be taken as

B(t) = [|0g(t)|| e
__s:Duhamel

4.3. The wave equation as a system and the inhomogeneous problem. Switching
now to the associated inhomogeneous flows, the classical set-up is to take a source term
f € L*H*, and then look for solutions v in C'(I;H?) as above. This is commonly done
using the Duhamel principle, which is most readily applied by rewriting the wave equation
as a system. We next describe this process.

A common choice is to write the system for the pair of variables (v, d;v). However, for us
it will be more convenient to make a slightly different linear transformation, and use instead
the pair

(49 vty = (o o) :=@(§fv), 2=y, o)



) -g-div -g-nodiv . . x-g-div
for (. _and 7)), w products replaced by paraproducts in the case of the equation (ﬁt i )
or (B2 %or afer use, we record the inverse of (); this is either

1 0
4.9 = :
Q-inverse ( ) Q (_<gOO)1gO]aj (goo)l) )

or its version with products replaced by paraproducts, as needed.
The system for v will have the form

d
(4.10) av(t) = Lv(t),
with the appropriate choice fggvthe matrix operator L. For instance in the case of the
homogeneous equation we have
Lg% 9, (%)~

calh] (4.11 L= . (9" )Z . I i )

(4.11) ( 8:g'10; + 8ig"°(g 00) Lg%, —0;(g*)"1g%
which has the antisymmetry property

* —1 0 1
(4.12) co=-sert =0 )

A similar property holds in the non-divergence case, but only for the principal part.

We will always work in settings where () is bounded and invertible in H*. This is nearly
automatic in the paradifferential case; there we only need to make sure that the operator
Tyoo is invertible. In the differential case we will have to ask that multiplication by g and
by (¢%°)~! are bounded in H*!. In such settings, H* well-posedness for our original wave
equation and for the associated system are equivalent. If a good energy functional E?® exists
for the wave equation, then we may define an associated energy functional for the system by
setting

bE| (4.13) E*(v(t) = E°(Q'v(t)).
Then the properties @%ﬁ @ﬁirecdy transfer to the homogeneous system (|

If our system is (forward) well-posed in H?, then solving it generates a (forward) evolutlon
operator S(t, s) which is bounded in H* and maps the data at time s to the solution at time
t,

—syst

S(t,s)v(s) = v(t).
For the system it is easy to consider the inhomogeneous version
d

syst—inhom| (4.14) %V@) = Lv(t) +£(t).
—syst-inhom
If f € L'H* then the solution to 1@ Ii; 1s given by Duhamel’s formula,
t
(4.15) v(t) = S(t,0)v(0) +/ S(t, s)f(s)ds,
0
and satisfies the bound

(4.16) [Vl peones S [[V(0)]
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If we have a good energy E* for the homogeneous system, then Duhamel’s formula easily
allows us to obtain the corresponding energy estimate for the inhomogeneous one, namely

(4.17) —E(v(t) SE(v(1), £(t)) + B(1)[[v(1)]

d 2
AR

dt

where the first term on the right arises due to the fact that the energy is quadratic in v(¢).

Now we are ready to return to our original set of equations, add the source term f and

reinterpret the above consequences of Duhamel’s formula there. As in the homogeneous case,
we define v(t) := Qu[t]. Then adding the source term f in the original equation is equivalent
to adding a source term f in the above system. Indeed, it is readily seen that for all our four
equations, f is given by

(4.18) £(t) — ( f‘()t)) .

To complete the correspondence, we note that for such f we have

Q' = (¢") ' (t).

Then we immediately arrive at the following result:

]

x-g-div
eorem 4.4. a) A.ssume that either of tﬁe hOmogeneous paradifferential flows @tii or
2] are well-posed in H®. Then the associated inhomogeneous flows are well-posed in H*

for f € LYH*™1, and the following estimate holds

(4.19) o ey S NolOlins + 1 lzre .
In addition, if an energy functional E° in H® exists, then
d S S —
(4.20) ZEl)) S B (olt], (Tyo) (1)) + B0 [H] 13-

b) The same holds for the flows

tiplication by g and (g°°)~! is bounded in H*™', with the paraproduct replaced by the corre-
sponding product.

For our purposes in this paper, we will also need to allow for a larger class of source terms

of the form
(4.21) f =01+ fo
Eo ynggg%%%g why this is natural, it is instructive to start from the inhomogeneous system

and argue backward.
Above, we have used the inhomogeneous system in the case where the first component of f

was zero. Now we will allow for both terms in f to be nonzero, and deriye the corresponding

computed the corresponding operator £ in ({.T1)); however, a similar computation will apply

wave equation. For clarity we do this in the C%Etext of the equation 1%{35, for which we have

in all four cases.

. . . T . —syst-inhom
Starting with a solution v = (v, vs)' to the inhomogeneous problem (ﬁs lis, we begin by

defining
(4.22) v(t) == vy(t)
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new—source

as our candidate for the wave equation solution. Then the first equation of the system reads
(4.23) O = —(9™) "' 9”00 + (¢") "'v2 + £,
or equivalently
§"*0,v = Vo + ¢f).
Differentiating this with respect to time we obtain
8ggﬁo‘0av = 8jgj°‘6av + 0,vo + 0,9"°f;
= (9jgjk8kv + 3jgj08tv + 0,vo + 0,91,

=vt
Finally we substitute ;v from (@_ and 0;vy from the second equation of the system. We
already know the right hand side should vanish if f = 0, so it suffices to track the f terms.
Then we easily obtain the desired equation for v:

(4.24) 859/3“(9&1) = 0,¢°°f, + .

Comparing this with @, we obtain the correspondence between the source terms for the
wave equation and the system:

(4.25) S = g™t fo = Okg™f1 + .
We also record here the correspondence between the solutions, in the form
(4.26) Vi =, vy = ¢"0,v — ¢%f;,

noting that this is no longer homogeneous, as in _ _

The last step in our analysis is to reinterpret the bounds @ and (@f‘ in terms of v
and f. To do this we make the ass ion that multiplication by g and (¢%°)~! is bounded
in both H* and H*~!. Then from we get

[0l zoeres S NVIllzoons + 1]l ooz

S vl + [[E][190s + (|1l oo s
S Mol0les + 11 il mrsmrse s + [ foll s
Similarly, from (ﬁ and @ we obtain the energy bound
d s _
(4.27) ZE(Q7v(1) S BAQTV(), Q7)) + BOIV(D) -

verse —vg-bv
Here we use an 0 compute
0

@ vt = ol - (§) = ol = (-1, ) = vl = o1

—ys—ff
respectively, using also :

f[t] = Qilf(t) = Qil <f2 _ éz;?o_(;{(l])lfl>

_ (gOO —1f1
(6°) 1 (fo — 9™ () f1 — g% (g™) 1 f1) )
h
Thus we obtain the following natural extension of Theorem H. 41§bggem =
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-wp-inhom+| Theorem 4.5. a) Assume that the homogeneous evolution
H?, and that multiplication by g and (¢°°)~1 is bounded in H® and in H*~*. Consider either
of the two evolutions with a source term f of the form

f=0fi+fo,  hel'HNCH™,  fyel'H

Then a unique solution v € C(I,H*) exists. J £n addition the homogeneous problem admits
an energy functional E* as in Definition en we have the energy estimate

(4.29) %Es(v[ﬂ —o[t]) S E*(o[t] — olt], f[t]) + B()|vft] - o[¢)]

=hom

2
Hs

with v and f defined above and B as in

’ x-g-div x-g-nodiv
b) The same result applies for the paradifferential equations Qﬁti ), Tespectively (ﬁ%?i, where

all instances of g above are replaced by the corresponding paraproducts Tj.

We emphasize here the somewhat unusual function space for f;, in an intersection of two
spaces. This reflects the fact that f; has a dual role, both as a source term and as a velocity
correction.

We remark that in the situations where we apply this result, the mapping properties for g
and (¢%)~! will be fairly straightforward to verify. In the paradifferential case, for instance,
the continuity of g will suffice.

4.4. A duality argument. Duality plays an important role in many estimates for evolution
equations. We will also use duality considerations in this paper for several arguments. We
restrict the discussion below to the problems written in divergence form, as this is what we
will use later in the paper. However, similar versions may be formulated in the nondivergence
case.

At heart, this is based on the following identity, which in the context of the operator
0ag™Pdp is written as follows:

T
(4.30) // 009?050 - w — v - Dpg*POpw dadt = /goo‘ﬁav cw — v - 0w dx
O n

This holds for any test functions v and w. The integral on the right can be viewed as a
duality relation between u[t] and v[t],

T

0

B(v[t],w[t]) = /goo‘ﬁav cw — v - ¢"* 0w du.

Precisely, assuming that ¢ : H*™! — H*®! as a multiplication operator, and that ¢% is
invertible, this expression has the following two properties

(1) Boundedness,

B:H xH' ™ =R
(2) Coercivity,
245 -

sup  B(u,v) ~ ||ul

lolly—s<1

A standard consequence of this relation is the following property:

-g-div x-g-div
Proposition 4.6. The evolutions @:‘%5, respectively ﬁtfi are forward well-posed in H* iff

they are backward well-posed in H 5.
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We remark that in the context of this paper forward and backward well-posedness are
almost identical, so for us this property says that well-posedness in H* and H!'~* are equiv-
alent.

The above pro osition may be equivalently reformulated as the corresponding result for
the system - It will be more convenient to view it in this cqntext., To do this, we
reinterpret the above duality, in terms of the associated system @%In_wew of the
symmetry property , we have the relation

T
ual-system| (4.31) // (O —L)yv-Jw—Jv- (0, — L)ywdzdt = /V - Jwdz
0 n

where the corresponding duality relation is

T

)
0

(4.32) B(u,v) = /V - Jwdz,

-syst
which provides the duality between H® and H!'~*. Incidentally, a consequence of @_slss&
the duality relation

S(t,s) = S(s,t)",

where the duality between H* and H!'~* is the one given by the bilinear form B above. This
can be used to construct the backward evolution in H!~* given the forward evolution in H?*,
and vice-versa. The full equivalence argument is standard, and is omitted.

4.5. Strichartz estimates. Here we discuss several versions of Strichartz estimates, as well
as the connection between them.

4.5.1. Estimates for homogeneous equations. In the context of this paper, these have the
form

(1.33) lollse + lawlss S ol0]a-,

where for the Strichartz space S we will consider two different choices:

T
i) Almost lossless estimates, akin to those established in Smith-Tataru f‘é’éﬂ] The corre-
sponding Strichartz norms, denoted by S = Sg7 are defined as

_3_
HUHSQT = HUHLOOHT + H<D€E>T * 6UHL4L°°> n = 27
[vllsg, = llvllzeormr + [[{D2)"™

Here the loss of derivatives is measured by 6 > 0, which is an arbitrarily small
parameter.

ii) Estimates with derivative losses, precisely the type that will be established in this
paper. The corresponding Strichartz norms, denoted by S = S4;7 are defined as

(4.34)

n—

"2 || 2pee, 1> 3.

(4.35) lellssip = lollzer + 1D 45 0 page, n=2,
' —n-1_1_
Pollsng = Wl + (D)% 74 0o, n >3,

Here 6 > 0 is again an arbitrarily small parameter, but we allow for an additional
loss of derivatives in the endpoint (Pecher) estimate, namely 1/8 derivatives in two

space dimensions and 1/4 in higher dimensions.
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p:Str-allr

There are also appropriate counterparts for the corresponding system which have the
form

(4.36) [villse + [Ivallsr— S 1V[O]llaer, S € {Ssr, Sarr}-

Under very mild assumptions on g, these are equivalent to the ones for the corresponding
wave equation:

These estimates can be applied to any of the four equations dlseiEsse _El this section.

. =~ om .
We also remark on a very mild extension of the estimate @L’c—o the inhomogeneous
case. Precisely, if olds then we also have the inhomogeneous bound

(4.37) [ollsr + 10wl S N0lO]llaer + [[f [ rr—1

This folgqglslhzia%eix straightforward manner by the Duhamel formula, see the discussion in
Section

We conclude the discussion of the Strichartz estimates for the homogeneous equation with
a simple but important case, which will be useful for us in the sequel, and applies in particular
to the solutions in EPS]

Proposition 4.8. Assume _that ¢ Og € L'L>™ and that the Strichartz estimates for the ho-
mogeneous equation E%%i Totd in H'. Then the Strichartz estzrﬂqesgfod“ z‘ﬂqhomo{ggneous
equation hold in H" for all r € R for both paradifferential flows 1)) and

We remark that the implicit constant in these Strichartz estimates depends on the implicit
constant in the Strichartz estimate in the hypothesis and on the bound for ||0g||;11~. Later
when we apply this result we will have uniform control over both, so we obtain uniform
control over the H" Strichartz norm.

. . . . |Str=hom-ext .
Proof. It will be easier to work with the inhomogeneous bound %?/ %, as 1t 1s more stable with
respect to perturbations. We divide the proof into several steps, all of which are relatively
standard.

Step 1: We start v th the 2 Sase =1 with the additional ssumption g"° = —1. Then the
second equation in (. can be seen as a perturbation of 1%1%% x—E;E_—no% L'L? source term.

Hence the bound (@3 Jor 1. 1mp ies the same bound for

Step 2: Next, assuming still that ¢°° = —1, we extend the bound (E37)) 1
real Sobolev exponents r by conjugating by (DI)" with ¢ = r — 1, where we can estimate
perturbatively the commutator

(4.38) I[Tge5, (D)?10a0p (D) 0| 2122 S 10g]|1 £o0 [|00]] Lo L2

This is valid for all real o and, since it involves para roducts, can be thought of as a frequency
localized bound, which is but a version of Lemma E§

Step 3: Usmg a multiplication by Ty, we reEuce the cpcifoblem with nonconstant g% to

the case when g% = —1. Here we apply Lemma 71 + 72 = 1 for the composition of
paraproducts, and then interpol M this )ﬁgpli&gn%g%ﬂly for all real s. At the conclusion
of this step, we have the bound (@.37]) for (1.2 for all 7.

Step 4: W grcohmmu te the ggg{‘z}coeﬂﬁmen‘w T,ep inside 0, perturbatively, in order to obtain

the bound (.37 for (&.1)) for all r. O
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4.5.2. Dual Strichartz estimates. Here one considers the corresponding inhomogeneous prob-
lems, with source terms in dual Strichartz spaces. The estimates have the form

Str-dual (439) ||'U[']”LooHr S HU[O]”HT + Hf”(sl—r)/, S € {SSTa SAIT}-

Classically, these are obtained by duality from the homogeneous estimates, as follows:

=hom
p:dual| Proposition 4.9. If the homogeneous esta'%ag%a@ﬁold in H" for the forward (back-

ward) evolution then the dual estimates old in H'™" for the backward (forward)

evolution.
Hoxyever one can n&ilgmbetter. than this oiS%gi;I%%%lead through the system form of the
equations (@.Lmal estimates for ave the form
“dual-syst] (4.40) [Vlizeser S VOl + WEillsoy + [Eallisroys S € {Ssr. Sarr.
. . . — St
dThelg(z are directly obtained from the homogeneous estimates for the system @L\na the
uality 1&? IE

Proposition_ 4.10. If the homogeneous estimates hold in H" for the forward (backward)
@vo_lutis(gc@im%hen the dual estimates hold in H'™" for the backward (forward) evolution

e can now further return to the orjginal inhomogepeous equation with a source term as
in ({21)), and use the correspondence @Txnd g?%i, in order tQ tre usa%r the dual bounds
back. These dual estimates, which represent a generalization of (%h’ave the form
str-dual+| (4.41)  [[v[]llzeenr S [[0[0]llaer + [[f1llzoer-rngs—ry + [ f2llsr-ry, S € {Ssr, Sarr}

: . . L. :dual
We obtain the following strengthening of Proposition @_

=nom
p:dual+| Proposition 4.11. If the homogeneous esﬁ%gé%%l(]iigi hold in H" for the forward (back-

ward) evolution then the dual estimates old in H'™" for the backward (forward)
evolution.

4.5.3. Full (retarded) Strichartz estimates. Here we combine the homogeneous and dual
Strichartz estimates in a single bound for the inhomogeneous problem. The classical form is

Str-full (442) ”UHS’“ + Hathsr_l S H’U[O]HHT + Hf”(sl—r)/, S e {SST7 SAIT}-

However, here we need to take the extra step where we allow source terms of the form
f = 0:f1 + f2, and then the estimates have the form

str-full+| (4.43) [[v|sr + [|Owls—1 S J0[0]][3e + ([ fillsr—1nes—ry + | follsi-ry, S € {Ssr, Sarr}

As we will see, this is %]to_sieéﬁmrnelated to the corresponding bound for the associated inhomo-
geneous system (E Iis

—full-syst| (4.44)  |[villsr + [[Vallsr— S IV(O) |3 + [|fill sy + [[f2][(s—r+1), S e {Ssr, Sarr}

Our main result here is as follows:

L E L

ove-around| Theorem 4.12. Consider either the equation e homogeneous problem
18 well-posag gqrg%f{d in H" and backward in H'™" and satisfies the homogeneous Strichartz
estimates wmn both cases, then the solutions to the assQcic ueﬁ Jforward inhomogeneous
problem with source term f = 0, f1 + fo satisfy the bounds
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Proof. The proof consists of four steps:
Step 1: If the homogeneo oblem i Lis well-posed forward in H" and satisfies the homoge-
neous Strichartz estimates (%ﬂ?eyﬁo does the corresponding system, see Proposition
Step 2: If the homogeneous problem is well-posed backward in H!'™" and satisfies the
homogeneous Strichartz estimates, then so does the corresponding system. By duality, the
ighomogeneous system is well-posed forward in A" and satisfies the dual Strichartz bounds

Step 3: We represent the forward H" solution by the Duhamel formula

v(t) = S(t,0)v(0) —{—/0 S(t, s)f(s) ds.

T%e_&gr%t_ Lerm represents the solution to the homogeneous equation, and is estimated by
A or

e second term we have two bounds at our disposal: the dual bound where we
fix t and estimate the output in H* in terms of the input in the dual Strichartz space, and
the homogeneous bound where we fix s, set f(s) € H" and estimate the output as a function
of t in the Strichartz space. Concatenating the two, we get the restricted bound

(445)  [lvills o + [vallsr—y S Mfills—ry o + Ifalls—reym, 5 € {Ssr, Sarr},

where the source f is supported in an interval I and the output v is measured in an intexyal J
so that I precedes J. In two dimensions we can now apply the Christ-Kiselev lemmajﬁ,
the UP-V'P spaces, see [28]) to get the full estimate. In three and higher dimensions we have
a slight problem which is that neither method applies for bounds from L? to L?. However in
our case this is not an issue, because our estimates allow for at least a loss of § derivatives.
Then we can afford to interpolate between the two endpoints and use the Christ-Kiselev
lemma for bounds from L?~ to L?* and then return to the endpoint setting by Bernstein’s
inequality in space and Holder’s inequality in time, all at the expense of an arbitrarily small
increase in the size ¢ of the loss. o, __ full-s
yst

i_Ste_[%é ._W@btvransfer the estimate, (.4 |i back to the original system via the correspondence

,1n order to obtain ({.43]). O

. : -move-around .
We conclude with a corollary of Theorem which will be used later in the paper and
follows by combining this result with Proposition

Corollary 4.13. dssume glat g € L'L> and that the Strichartz estzggrt_efsufgg the homo-
geneous equation m H. The%ejulé Sﬁ_rt hartz Jgstimates (.43 hold in ‘H" for

allr € R for both pamdzﬁer@ntml flows (1)) and (@2

(=)

s

5. CONTROL PARAMETERS AND RELATED BOUNDS

5.1. Control parameters. Here we introduce our main control parameters associated to a
solution u to the minimal surface equation, which serve to bound the growth of energy for
both solutions to the minimal surface flow and for its linearization. We will use three such
primary quantities, A, A* and B, which are defined as Besov norms of th’jgﬁ%&%@% . Qur
notations here mirror similar notations in our earlier water wave paper \[ J

We begin with A, which is L> based,
(5.1) A= sup Z | Peou] os

t€[0,T]
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—classical

We next define the slightly stronger variant A* > A, still at the same scaling but L?" based,
(5.2) A = sup > 25| Podul| pan.

t€[0,T] &
Here the choice of the exponent 2n is in no way essential, though it does provide some minor
simplifications in one or two places.
Finally we define the time dependent B control parameter which is again L> based:

(5.3) B(t) = (Z 2k||Pkau||%°°>

In a nutshell, the energy functionals we construct later in the paper will be shown to
satisfy cubic balanced bounds of the form

dE

5.4 — <. B’E
( ) dt ~ Al ;

2

which guarantee that energy bounds can be propagated for as long as A* remains finite and
B remains in L?. One should compare these bounds with the classical energy estimates,
which have the form

dE
(5.5) — SallPull <,

and which require an extra half derivative in the control parameter.

We continue with a few comments concerning our choice of control parameters:

e Here A and A" are critical norms for u, which may be described using the Besov
notation as capturing the uniform norms in time
— f_
A= “auHL?OBgoyla At = ||au||LtOOBQ%n’1
In a first approximation, the reader should think of A as simply capturing the L
norm of Ou; the slightly stronger Besov norm above is needed for minor technical
reasons, and allows us to work with scale invariant bounds. Often we will simply rely

on the simpler L*°-bound, since
(5.6) Pulli~ S A S AL
e The control norm B, taken at fixed time, is 1/2 derivative above scaling, and may
also be described using the Besov notation as
B(t) = [[ou®)] 3 -
00,2
Again, in a first approximation one should simply think of it as ||0uHBMO 1, which in
effect suffices for most of the analysis. Indeed, we have

(57) 19l 04 S B

e Given the choice of thege SOg}{Cgfl parameters, it is not difficult to see that our energy
estimates of the form (% invariant with respect to scaling. Thi byc ]i_gsseéllfcglges
not mean much; even the classical energy estimates, of the form (%Tesoale
invariant, but much less useful for low regularity well-posedness. What is important

here is that our energy estimates are cubic and balanced.
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e The fact that our control norms are based on uniform, rather than L?-bounds, par-
ticularly at the level of B, is also critical. This is what allows us to use Strichartz
estimates to further improve the low regularity well-posedness threshold in our re-
sults.

e Concerning the dependence of constants in our estimates on A, A* and B, we adopt
a two track system:

— The dependence on B is either linear or quadratic, and will always be explicitly
stated in all estimates.

— The dependence on A and A* is often nonlinear, in which case we use the nota- ara-ce
tions <4, S4¢. This dependence is less important, as beginning with Sectionaﬁ"pi
we will assume that A* < 1, and drop it altogether except where the smallness
is essential. But for clarity and also for later use, we do track this dependence
in this and the next section.

e In terms of using A versus A*, we first note that ideally we would like to avoid
A? altogether, and just use the weaker control norm A. But this appears not to be
possible, which is why A* was introduced. To streamline the analysis, in what follows
we will simply think of the implicit dependence as being on A%, which suffices for our
final result. One may even take the more radical step of dropping A altogether; we
decided against that, both for historical reasons and for easy reference.

For bookkeeping reasons we will use a joint frequency envelope {c} for the dyadic com-
ponents of each of A, A%, and B, so that
(i) {cx}r is normalized in % and slowly varying,

(ii) We have control of dyadic Littlewood-Paley pieces as follows for du:
fe-control| (5.8) |Pedul| e < A2, 28| Ppdul|pe < A2, 22| Pudul|re < By

A-priori, these frequency envelopes depend on time. However, at the conclusion of the
paper, we will see that for our rough solutions they can be taken to be independent of time,
essentially equal to appropriate L2-type frequency envelopes for the initial data.

. L. —control
5.2. Related bounds. We will frequently need to use bounds that are similar to (Egi n
nonlinear expressions, so it is convenient to have a notation for the corresponding space:

d:CC| Definition 5.1. The space & is the Banach space of all distributions v that satisfy the
bounds

“control-C| (5.9) ol < C, 28| Pyol|pen < CARE, 22| Py < CBey,
with the norm given by the best constant C' in the above inequalities.
For this space we have the following algebra and Moser-type result:

r-control0| Lemma 5.2. a) The space € is closed with respect to multiplication and para-multiplication.
In particular €y s an algebra.
b) Let F' be a smooth function with F(0) =0, and v € €. Then F(v) € €. In particular
if |v]le, S1 then F(v) satisfies

~

control-v0| (5.10) 1 (0)[leo St [[V]les-
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In particular the above result applies to the metrics g, g and g, all of which are smooth
functions of du, and thus belong to €, modulo constants (which are simply the Minkowski
metric).

Proof. a) We first estimate the €, norm for the paraproduct Tyg for f,g € Co. o Lhis_js
straightforward, using the L*° bound for f, for all but the uniform bound in . For the
uniform bound, we change the summation order in the Littlewood-Paley expansion to obtain

1Trgllz= S D N PeS Nl Porglie S I flleollgllze-
k

It now remains to estimate II(f, g) in €;. The uniform bound is almost identical to the
one above. For the A* norm we use Bernstein’s inequality

kE _ 2
22| PII(f, 9l oe S 2850 f55llen D)2 251 fill e lgslleon S 2573 AR | flleo 9o,
Jzk >k >k

and now the j summation is straightforward.
For the B norm, on the other hand, we estimate

1P, 9l S D 5950l S D il llgslie S D272 A8 flleo l9lleo
i>k Jj>k Jj=k
and again the 7 summation is straightforward.

b) To prove the Moser inequality we use a continuous Littlewood-Paley decomposition,
which leads to the expansion

F(v) = F(u) + /000 F'(vej)v; dj.

To estimate P, F'(v) we consider several cases:

i) j = k+ O(1). Then ¢; = ¢, F'(v<;) is directly bounded in L* and our bounds are
straightforward.

ii) j < k — 4. Then we can insert an additional localization,
Py(F'(v<;)v;) = Pu(BeF (v )v;),
where we gain from the frequency difference
(5.11) 1PeF" ()| g S 279,
which more than compensates for the difference (ratio) between ¢; and ¢.

ili) j > k + 4. In this case we reexpand F'(v.;) and write

F'(vej)v; = F'(vo)v; + F"(vep)vw; dl.
0

We further separate into two cases:

(iii.1) I = j + O(1). Then we simply bound F”(v.;) in L, and estimate first for the .A*
bound using Bernstein’s inequality

k _ 2
22 || Po(F" (vc)vrv) |2 S 28 lvwwgllen S 25 (|urllan o]l pan S 2577 €3 A7,
34



where the j and [ integrations are trivial. Next we estimate for the B-bound
i
1P (F" (var)orwo) e S vz [lojlle S 272 A Bey,
again with easy j and [ integrations.
(iii.2) [ < j — 4. Then we can insert another frequency localization,

Py(F" (va)ow) = Pe(PF" (va)uiwy),

] ime—inf

and repeat the computation in (b.ii) but using (. %o account for the difference between
[ and j.

O

In order to avoid tampering with causality, the Littlewood-Paley projections we use in this
paper are purely spatial. This is more of a ¢hoice between different evils than a necessity; see
for instance the alternate choice made in gé] A substantial but worthwhile price to pay is
that on occasion we will need to separately estimate double time derivatives, in a somewhat
imperfect but sufficient fashion.

A good starting point in this direction is to think of bounds for second derivatives of our
solution u. If at least one of the derivatives is spatial, then this is straightforward:

(5.12) || Peyn0p0ul| 1o < 22 Bey,.
However, matters become more complex if insteaa \7&75_81&())115t at the second time derivative of

u. The natural idea is to use the main equation 0 estimate 9?u, by writing in terms
of spatial derivatives,

Ofu=— Y §P0u0su.
(2,8)#(0,0)
If one takes this view, the main difficulties we face are with the high-high interactions in
this expression. But these high-high interactions have the redeeming feature that they are
balanced, so they will often play a perturbative role. This leads us to define a corrected
expression as follows:

Definition 5.3 (“Good” second order derivatives). We denote by Bodou or shortly d2u the
ETPTeESSIoNn

(5.13) Ofu=0fu+ > TG, 0.0pu).
(a,8)#(0,0)
On the other hand if (o, B) # (0,0) then we define
@u = 0,03u.
With this notation, we have

-short
Lemma 5.4. Assume that u solves the equation @._Th_en for its second time derivative
we have the decomposition

(5.14) OPu = 2u + mo(u),
where the two components satisfy the uniform bounds
A~ k A~
(515) Hp<kat2u‘|[/oo S QEBC]C, HP<kat2'U/HLoo S Qk.ACi,
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e-dt2u-err

ave decomp

wve docom]

dt2u-defCC

respectively
2
(5.16) Ima(u)llpee Sae B2, [Ima(u) ]| Sae A

One should compare this with the easier direct bound @ for spatial derivatives; the
good part &2u satisfies a similar bound, but the error my(u) does not. Later, when such
expressions are involved, we will systematically peel off perturbatively the error, and always
avoid differentiating it further.

Proof. The main in egl'gg& here is the Littlewood-Paley decomposition._, pr expository
simplicity we prove % fixed frequency k. Using the notation in (5.I3]] we can rewrite
equation as

(5.17) Fut+ Y Tyes0udsu+ T,o,u5"" = 0.
(a,8)#(0.0)

To finish the proof we consider the expression above localized at frequency 2, and evaluated
in the L*>-norm

sy Bdfullie < 37 [1Pa(a*) Pel@adsu) | + | Pax(0adou) Pi(G*”) |-
(2,8)#(0,0)
We bound each of the terms separately. F_ocroglggoﬁecond we use the fact that g is bounded in

L, together with the third bound in 15%5, in order to get
1P (0a05u) Pi(5°) | L < 2% Be, (o, 8) # (0,0).

For the first term we rely on the samg progedure, and hence finish the proof of the first
bound in E g). ['he second bound in as as a starting point the same decomposition
in ]@Bonly that this time we, want to-bound the RHS terms using the control norm A.
Here we use the first bound in @m_ﬂﬂe algebra property of L* to obtain

1P<1(0a051) Pi(3°")| e < || Pk(0a0st) 1| (g™ )l < 2%Ack,  (a, B) # (0,0).

=dt2u-err
The last bound to prove is , where because of the balanced frequencies we can
easily even out the derivatives balﬂggsglp_dc Ssfimate each of the factors using the B norm.

Explicitly, g*? is in €, by Lemma .2 and hence, we get that for («, 3) # (0,0):
TG, 0apu) e <D 1 Pe(§*) Pr(Oadtt) | 1o
k

k k ~a & -5
< D2 82 P 128 275 Pi(Gudu) =
k

Sa B2,
—dt2u-err =dt2u-err
which is the first bound in @._T’h? second bound in % !gi is similar, but replacing the
L*> norms with L?" norms. 0

The above lemma motivates narrowing the space €y, in order to also include information
about Oyv. For later use, we also define two additional closely related spaces.

L. ) o ) ) —control-C
Definition 5.5. a) The space € is the space of distributions v that satisfy and, n
addition, Oyv admits a decomposition O;v = wy + wy So that
(5.19) |Pywn ||z < C22Bey, ||z~ < CB,
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. . . =control-C
endowed with the norm defined as the best possible constant C' in 1E§ and wn the above

inequality relative to all such possible decompositions.
b) The space D& consists of all functions f that admit a decomposition f = fi+ fa so that

DC-decomp| (5.20) 1Pl < C22Bey, || follze < CB2,

endowed with the norm defined as the best possible constant C' in the above inequality relative
to all such possible decompositions.
¢) The space 0,D€ consists of functions f that admit a decomposition f = f1 + fo so that

dxdc-norm] (5.21) IPufille < C27 Bey,  ||Pfolli~ < C2°B2,
endowed also with the corresponding norm.
We remark that, by definition, we have the simple inclusions
inclus| (5.22) ¢ Cy, 0:¢— D¢, 0y : D€ — 0,9¢C.
Based on what we have so far, we begin by identifying some elements of these spaces:

:du-in-dcc| Lemma 5.6. We have

1

fe-utt| (5.23) |0ulle <1, 10%u)|0e < 1.
. —utt .. .. . .. . .
Proof. The bounds in @_are trivial unless bot decrt_}vatlves are time derivatives, in which
case it follows directly from the previous Lemma 5.4] 0

. 1 :Moser-controlO . . .
The Moser estimates of Lemma .2 may be extended to this setting to include all smooth

functions of Ou:

H

er-control| Lemma 5.7. a) We have the bilinear multiplicative relations
c-DC| (5.24) ¢ - DC = DC, Te, - OC = DC, Toe€o — A'DC,
as well as

(5.25) ToeCo — BL™, (D¢, &) — B>L™.

b) The space € is closed under multiplication and para-multiplication; in particular it is
an algebra.

¢) Let F' be a smooth function, and v € €. Then F(v) € €. In particular if ||v|le S 1 and
F(0) =0 then F(v) satisfies

-control-v| (5.26) |E()|le Sat llv]le-

d) In addition we also have the paralinearization error bounds

Fv-paralin| (5.27) 1PLR@)|e Sas 27°EA7, ORO)|1e S B,
where R is as in Lemma @ namely R(v) = F(v) — Tpr(y)v.

i

Here part (a) is the main part after which parts (b) and (c) become immediate improve-

ments of Lemma [p.2]” But the new interesting bound is the one in part (d), where, notably,

we also bound the time derivative of R(v).
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Proof. a) Let z € € and w € D€ with the decomposition w = w; + wy as in
S he, first bound in , as it is a consequence of the rest of the estimates in
;and first consider the paraproduct T,w. We will bound the contributions of w; and

wy in the same norms as wy, respectively ws. Precisely, we have

~ k
| PrTowi ]| zoe S || 2||pee (| Prwrl[ 2 S 12 ]le022 Berl|w||oe,

respectively
I Tewallpee S Nzellioe | Poswsllioe S A¥l| 2]l lwa oe-
k
Next we consider T},z, where we have two choices. The first, choice is to use only the A
component of the €y norm of z, and prove the last bound in . Precisely, we have
~ k
1P T 2l poe S llwn,<kllzoo | Pazllzo S 22 Begllwlloe - A¥|z]le,

respectively

ITunzlliee S Y Mlwzcrllim | ozl S llwallee - A¥ll2]|eo-
k
Alternatively, we can use the B component of the €3 norm of z in the bound for the w,

component,

k _k
1Tzl S wranllzollzalloe S22 Begllwlloe - 272 Ber|2lle, S B2 llwlloell2lle,
k k

and the A* component for the ws, term,

ITun2lle S Y Nwscillz=lzelle S B2 Y AGlizllen Sus Billwloell2lleo

k k
-CC
which leads to the first bound in _cc
It remains to consider the second bound in . where we have

k _k
T(wy, 2) |2 S lwisllzllzelle S22 Begllwlloe - 272 Bexl 2lle, S B2llwllocl|zlle,
k k

respectively

T(wa, 2) |z S wakllellzrllie S lwallr - Al 2lle, S B lwlloe - A2,
k

. H-Moser-control0
b) Compared with part (a) of Lemma M, 1t remains to estimate the time derivative of

products and paraproducts. Using Leibniz’s rule, this reduces directly to the multiplicative
bounds in (a).

. A -Moser-controlQ .
c¢) Compared with part (b) of Lemma [5.2[1f remains to estimate

OoF(v) = F'(v)0pv

. —dt2u-defCC 1 :Moser- controlO
as in Ws the same as placing it in ©¢. By Lemmafg we have F'(v) € €y, while
Opv € DC. Then we can bound the product in ©€ by part (a) of this Lemma.

d) Subtracting the harmless linear part of F'; without any loss of generality we can assume
that 7(0) = 0. We have

OR = (F'(v) — Tpr()) v — Topr(wyv = I(F'(v), 00) + Tp, F' (v) — Topruyv.
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= 1- —CC
By (E%?éoi e can place F'(v) € €. Then the B? bound follows directly from %._For the

A bound we can reﬁ)lﬁﬁ)% Qar _bC\énQ%allBove, and use only €, bounds. Then we can repeat the
argument in Lemma [p.2[(a). U

Applying the above lemma shows that for smooth functions F with F'(0) = 0 we have
F(0u) € €, and in particular all components of the metrics g, § and § are in € modulo
constants. We also have [ (Ou)0*u € DE, which in particular shows that the gradient
potentials A and A belong to D¢€. —parali
We will use part (d) when w = du and F' = g, in which case @ﬂ}aﬂzﬁl’s
for-du-inf]| (5.28) [OR(Ou)|| e Sar B®, R = g + Tpaygsn Oyt + Thpygar Oyu.

We remark that a similar H® type bound for the same R is provided by ﬁ , namely
t-R-for-du] (5.20) IR@)],,.y Sa Bloulmes.
The next lemma provides us with the primary example of elements of the space 0,9¢:
3u-in-d2cc| Lemma 5.8. We have
(5.30) 10050yl .06 S 1.

. — ttt . . . . . .
Proo A tThe bound in @ﬁ trivial if at least two derivatives are spatial, and follows from
unless all indices are zero. lt remains to consider the case « = = v = 0. Here we

H*™

rely on the earlier decomposition o which we further apply a 0;:
(531)  Qfu=— > (Tpzs0a0pu+ Tjr0:0a0su + 0,0, + To,o,u05"") -
(2,8)#(0,0)
We now investigate each term separately, for fixed (o, 8) # (0,40 ._We begin with the first
term, which needs to be bounded in the 0,9¢€ norm given in (H-Z21]J.” We have

|1 Pi T 500 000t oo S || Per(8:G*) || o | Pi (OnBp) || oe -
The term that contains theﬂ_t;_iﬁgseeg_egci’}{%l’gio\ie falling onto the metric will be bounded using

the Moser esti%@_&e Lemma b7l Explicitly, we know that §*? is in ¢ modulo constant d
o0ser-con N . . . —decom
due to Lemma p.7] part c), we get 0,g*? € ®¢ which allows us to decompose it as in (%,_E

0,57 = §7” + g5 where
~ ~Q ~C £
1P<k0igP|lzoe S NG5 Nl + [ Petds” || o Sae OB + C22 Bey,.
%e_ng)&rgim to the last bound which we can estimate in two ways using the last part of

3
SJ 2§BCk,

Eia_k
1P (0a0u) L < 22272 P(9a0pu) || Lo
. —control
respectively the first part of
1 Pi(8a0pu) || oo S 2°127" Pr(8a0pu) || oo S 2" Ac.
Putting together the bounds we have leads to
| P Ty, 508 0nOp]| e S A C2F AB*c] + C2FB%c;.
We now bound the second term in @ as follows:

Hkagaﬁataaa/[juHLoo 5 “ga’BHLooHpkataaaguHLoo
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Here we know that (a, 8) # (0,0) hence there are two cases to consider: (i) we have either
a =0 or B = 0, but not both zero, which overalls means we need to bound 9?0, u, or (ii) we
have both «, 8 # 0, in which case we need a pointwise bound for 9;0%u. However, both cases
can be handled in the same way if we observe that 0, (0,01, and 0. (0?u) are elements in

0,9¢: 1lllsls is a direct consequence of 9%u € D€ as shown in , followed by the inclusion
2. . . dd .

Fina 1&& the third and fourth terms in @_can be treated in the same way the first term
in was shown to be bounded. [l

We continue with another, slightly more subtle balanced bound:
Lemma 5.9. For g,h € € define
r = (T, T, — Ty)0*u.
Then we have the balanced bound
(532) Irlle S Blglelle.
Proof. For 8?u we use the D€ decomposition as in @efﬂg
u= fi+ fo.

We begin with the contribution r; of f;, which we expand as

r = Z(TgTh — Tgh)fl,k;‘
k

This vanishes unless the frequencies ki, ko of g and h are either

(l) kl, kg S k and max{k:l,kg} =k + O(l), or

Then we use the A* component of the ¢, norm for the lower frequency and and the B
component for the higher frequency to estimate

e | gmllee D Ml

k1<k+0(1) ko=k+0O(1)

Irillee S 7 i
k

+ Y gmllze Do Ml + D gk oo ks [l

ki=k+0(1) ko <k+O(1) k1 =ko>k+0(1)

< lgllellhlle Y 23 Bey (AP 272 By, + 272 Bey - A+ A 277 Bey)
k

N AﬁBzHQHﬁHhH@

as needed.
For the contribution ro of f; we use a similar expansion, and the first two lines of the
estimate above are largely unchanged, except for the use of Bernstein’s inequality in case

(ii). But now we only use the A* component of the €, norm for both k; and ky frequency.
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l:tp-u

This leads to

Irallze SO Mokl | D Mol D Nhsllee
k

ky <k+O(1) ko=k+O(1)
+ > Mgrlee Yo Mulee+ D 2¥lgi e [Von, [l 2
k1:k+0(1) k2<k+O(1) klszZk—l—O(l)
2 2 ki
< Bgllelhfle Y | A (Ci +y AR jC?)

2
S A B?||gllellPlle,
which again suffices. OJ

As already discussed in the introduction, the paradifferential wave operator
(5.33) Tp = 0,1 40508,

as well as its counterparts 75 and T with the metric g replaced by g, respectively g, play
an important role in our context.

Throughout the paper, we will interpret various objects related to u as approximate solu-
tions for the T equation. We provide several results of this type, where we use our control
parameters A, B in order to estimate the source term in the paradifferential equation for
both u and for its derivatives.

Lemma 5.10. We have
(5.34) I Tpull L~ Sax B,

as well as the similar bounds for Ts and T'p.

Proof. We first prove the bound @, and for this we begin with the paradifferential equa-
tion associated to the minimal surface equation

T o000t + T, 0,u9”" + T(g™", 0a0pu) = 0,
and further isolate the part we are interested in estimating
T gop Ot — Ty, gas ot + Taaaﬁugo‘ﬁ + H(go‘ﬁ, 0n0pu) = 0.
The estimate we want relies on getting bounds for the following terms

| Tpull e = [105TgosOattll oo S [ ToygonOatilloe + [ Toaosug™ e + [IT(g*”, OaOpu)| 1=,

However, the bounds for all of these terms rely on the use of the fatct {hat ¢*% is in ¢ modulo
oser—-contro .
constants, Qg“ﬁ, O0n0pu € OC (conse g%é)f Lemmaﬁ), as well as on the bound given by
Lemma |p.4] Precisely the estimate %Tnphes that
1T, g0 Oaull e + 1 Tpa05u9 | £ + [TL(97, 0aOpu)[| o S B2
Similar bo %wﬂl be obtained for 75 and T using the same results mentioned in the proof

of bound (b- above.

U
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We next consider similar bounds for derivatives of u. Here we will differentiate between
space and time derivatives. We begin with spatial derivatives:

Lemma 5.11. We have
(5.35) | PerTpOpul| oo < ax 2882,
as well as the similar bounds for Ts and T'p.

tp-u cutt
Proof. For this proof we rely on the previous Lemma @Eﬂd on Lemma @._This becomes
obvious after we commute the 0, across the Tp operator

PkTp&;u = prkﬁaTgaﬁﬁgu — PkaaTazgaﬁagu.
The first term on the RHS of the identity above is bounded using @) as follows:
||8sz8aTga58Bu||Loo 5 2k||80Tga585u||Loo SJA*‘ 2k82.

Here we took advantage of the operator 0, accompanied by the frequency projector P,. A
similar advantage will not present itself for the last term, where we need to distribute the «
derivative

PkaaTaxgaﬁagu = PkTaaawgaﬁaﬁu + PkTaxgaﬁaaaﬁu = e1 + eo.

. A=Moser-control . . . .
We bound e; using Lemma p.7} by placing 9,0¢*° € 9,D€ which means it will admit a

decomposition as follows

0,09 = f1 + fa,
where
|Pefillie Sas 2% Bew,  ||Pefallim Sue 2°B”.
Thus, we get

lesllze S (1P<tfillie + | Pesfollie) | Plsullie S (287 +2% Bey ) | Pedsul i,

which leads to the desired bound once we estimate the last term accordingly. The bounds
can be one of the following

|Bdgull e S 272|127 Pudsul| e S272¢:B or  ||0sull i~ S GA.

For the first term in the bracket we use the control norm A, and for the second term we use
the B norm bound. it

For e; we use the decomposition in Lemma @T@r 0,0pu and for g we use the fact that
g is in €5 modulo constants, where we can use either the A bound or the B bound. The
computations are similar to the case of e;.

The bounds for T and Tz follow from the exact argument as the one used above in the
Tp case.

U
Lemma 5.12. a) We have
(5.36) Tpou € O(B*L>),
1.e. there exists a representation
(5.37) TpOu = O, f*, \f| Sue B2
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expresion

b) We also have
(5.38) | PeOaT o8 0501t oo + || Pedy Tyos D0t oo e 27 B2
Similar results hold with g replaced by g or g.

Proof. a) We write
06T 4o 030U = 0061 yos gt — 0T yes0u.

—CC
Here for the first term we use Lemma @_whﬂe for the second, by (%er have
1 Tog0ull o Sax B

b) The first step here is to reduce to the case of the metric g. Each of the other two
metrics may be written in the form hg, with h = h(0u). Then we can write

(5.39)  OaThzos 0501 = TnOaTyesD30y1 — Top Toes D301 + Do (Thger — Ty Tyas) D0y,

The first term corresponds to our reduction, and the remaining terms need to be estimated
perturbatively. This is straightforward unless a = 0, so we focus now on this case. Discarding

constants, we can assume here that h(0) = 0.
fe-control-v A :Moser-control
For the middle term in SWe can use the bound (B 20]) In Lemma p.7]To place i in €.

Then Oyh is in D€. Using a DC decomposmon for it, yh = hi + hs, we can match the two
terms with the two pointwise bounds for 8587% namely

1POs0yull e S 2" Act, || Pidp0yullr= < 2

which follow from @%& g gt) ['his yields

| PeTon TyosD30yul| e S ||hall oo - | Pedsdhyual|oe + [|ho,ck]| o - || Pdpdyu oo

~Y

< B2 2P A + 22 Bey, - 22 By,

k
2

BCk,

which suffices. .
esion
For the last expression in @W distribute 0y,
80(Thg05 — Tthog)aﬁavu = (Thgozs - ThT§03)805’587u + (T80h§05 - TaOthoa)ﬁgayu
—+ (Thaogoﬁ — ThTaogoﬂ>aoa/3ayu.
For the first term we can combine the bound GML with the para-composition bound in
Lemma exac y as in the proof of Lemma b.Y. For the second term we use the same D¢
decomposition as above for dyh. For the h; contribution e ahr%\i% 2 direct bound without
using any cancellations, while for hy we use again Lemma %._"T’h?fhird term is similar to

the second, with the roles of h and §°° interchanged. This concludes our reduction to the
case of the metric g.

We continue with the secondﬂ reduction, which is to svmtch1 2@ and 0, in the expression

0.1 aﬂaﬁa w; this allows us to replace the first term in with the second. For fixed o
and v, we write
(5.40) 00 Tyos Dp0stt = O Tyop Dgoi + f,

4Note that these two reductions are interchangeable.
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where we claim [ satisfies

(541 1Pasd i e 287

This is trivial if « =y = 0. If both are nonzero, or if one of them is zero but 8 # 0, then
there is no hat correction and this is a straightforward commutator bound. It remains to
discuss the case when = 0 and exactly one of o and 7 are zero, say v = 0. Then we need
to consider the difference

f = 0aT5000000u — 8o T500000a
= 0nTjo0ll(w, 0,0u) + Ty, 5000000t — T,500000a 1,

—f =dt2
which can be estimated as in @_ using the fact that a # 0 as %e_llo%% rtche_ vbound (@_u

for the second ti ne derivative of u, respectively the similar bound ird estimate) for
0Jog. Hence @_Eollows.

Finally, it remains to examine the expression
Gy = 04T 508030, u,

where, unlike above, we take advantage of the summation with respect to a and 3. Then,
using the u equation, we have

g’Y = a’YTaaaﬂugaB'
The term where both o and 3 are zero vanishes since g% is constant:; tlais W%@% a motivation

for the first redu tjon b_o%%trgﬁ?_;c’his can be estimated directly as in if v # 0, and
using either (%%r @_(Tm estimate) for dyg, otherwise.
O

6. PARACONTROLLED DISTRIBUTIONS
aracontrol

To motivate this section, we start from the classical energy estimates for the wave equation,
which are obtained using the multiplier method. Precisely, one multiplies the equation
Oyu = f by Xu and simply integrates by parts. Here X is any regular time-like yect, in-inhom
field. In the next section, we prove energy estimates for the paradifferential equation @.{7
by emulating this strategy at the paradifferential level. The challenge is then to uncover
a suitable vector field X. Unlike the classical case, here not every time-like vector field X
will suffice. Instead X must be carefully chosen, and in particular it will inherently have a
limited regularity.

Since the metric g is a function of Ju, scaling considerations indicate that the vector
field X should be at the same regularity level. Naively, one might hope to have an explicit
expression X = X (Ju) for our vector field. Unfortunately, seeking such an X eventually
leads to an overdetermined system. At the other extreme, one might enlarge the class of X

to all distributions that satisfy i%e same M and Besov norms as Ou, which is essentially the
—CONtrol-v

class of functions that satisfy . ile this class will turn out to contain the correct
choice for X, it is nevertheless too large to allow for a clean implementation of the multiplier
method.

Instead, there is a more subtle alternative, namely to have the vector X to be paracontr
by du. This terminology was originally introduced by Gubinelli, Imkeller and Perkowski J13]
in connection to Bony’s calculus, in order to study stochastic pde problems, see also [[14].

However, similar constructions have been carried out earlier in the renormalization arguments
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e.g. for wave maps, in work of Tao HFZIZ],_Tgtaru E‘Zf?wj%nd Sterbenz-Tataru fﬂzf]“zﬂ%he last
reference used the name renormalizable for the corresponding class of distributions.

In the standard usage, this is more of a principle than an exact notion, which needs to be
properly adapted to one’s purposes. For our own objective here, we provide a very precise
definition of this notion, which is exactly tailored to the problem at hand.

6.1. Definitions and key properties.

aracontrol | Definition 6.1. We say that a function z is paracontrolled by Ou in a time interval I if
it admits a representatiorﬂ of the form

parac-rep| (6.1) z=T,0u+r,

where the vector field a and the error r have the following properties:
(i) bounded para-coefficients a:

parac-1| (6.2) lalle < C.

(i) balanced error r:

1 b

parac-2| (6.3) |Per||n < C27FEAT, ||0r|| 1 < CB

It is convenient to think of the space of distributions z paracontrolled by du as a Banach
space, which we denote by P(Ju), or sim lcy_ 1‘13 Thgcl_lgrm in this Banach space is defined
to be the aﬁr&ecsjri%lplicit constant in and @,_minimized over all representations of
the form (G.I)). T [[z||p Sa: 1 then we will simply write

z < Ou.

While for the most part this definition can be applied separately at each time ¢, in our
context we will think of both v and z as functions of time, and think of these bounds as
uniform in ¢. Precisely, above we think of A* as a global, time independent parameter,
whereas B is allowed to be a possibly unbounded function of ¢.

To better understand the space ¥ of paracontrolled distributions, it is useful to relate it
to the objects we have already discussed in the previous section:

Lemma 6.2. a) We have the inclusion B C €.
b) If F is a smooth function with F(0) =0, then F(0u) € P.

Proof. awggglzbéogyrgl B. Then the first term in @%Ebe placed in € by part (b) of
Lemma p.7[ The error term r also belongs to €y by Bernstein’s inequali agg_ylterpolation.
This is upgraded to € using the dyr bound in the second ineqﬂi}étsxé ripC@T

b) This is a direct consequence of parts (c), (d) of Lemma |p.7] O

Thus one may think of the class 33 of paracontrolled distributions as an intermediate stage
between the class of smooth functions of du, which is too narrow for our purposes, and the
larger class €, which does not carry sufficient structure.

Next we consider nonlinear properties:

5Such a representation might not be unique in general, though later in the paper we often identify specific
choices for the paracoefficients.
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Lemma 6.3. a) [Algebra property] The space B(0u) is an algebra. Further, if z1, 29 € P

have paracoefficients ay, respectively as, then the paracoefficients of z1zo can be taken to be
Z1Q9 + z9a .

b) [Moser inequality] If F is a smooth function with F(0) = 0 and z < Qu, then F(z) < du
and F(z) satisfies

(6.4) IF(2) Ml Sas iz 12]lp-
Further, if z € P has paracoefficients a, then the paracoefficients of F(z) can be taken to be
F'(2)a.

Proof. a) We consider the algebra property. Let
21 =Ty, 0u+ 1y, 29 = To,0u+ 1y

and expand zy2s.
We first observe that we can place I1(z, 22) into thearror.ferm. For this it suffices to use
the € norm for z1, z5 and apply the second bound in ({
We next consider T, zo where for z; we again use only the ¢ norm. We begin with 7}, 7o,
which we also estimate as an error term. Here we estimate again the more difficult time

derivative. If it ?i%_%&éhe first term then we can bound the output exactly as the balanced

case above, see Ise, it suffices to use the uniform bound on z;.
Finally, we consider the expression

Tlea;ayu = TZlagayu + (Tlea; — Zla )8 Uu,

where the first term has a € coefficient by the € algebra property, and the second may be
estimated perturbatively. Here if the time derivative goes on the first factor then we are back
to the previous gase and no cancellation is tl%eeded. Else for 0,0,u w usgrgherglgcomposition
in Definition %g) (or simply Lemma %Tcombined with Lemmaﬁ._p;

. . . . . A:Moser-control
b) To prove the Moser inequality, our starting point is Lemma p.7[(d], which allows us to

reduce the problem to estimating T’ ()2, using only the € norm of z. But here we can bound
F'(z) in € using the Moser bound in €, which allows us to conclude as in part (a). O

In addition to the above lemmas, functions in 33 essentially solve a paradifferential [ ra-
equation,, This will be used later to estimate lower order terms in the proof of Theorem
and for (l?i EU%S

unds-extra| Lemma 6.4. Let h € B. Then there exist functions f* so that we have the representation
OaTyopOgh = 0o f°,
which satisfy the following bounds:

f-a| (6.5) 172 Sae B[Rl
respectively
£-b| (6.6) 1P<i(Tyoodoh — )|z Sas 25|l

The same result holds for the metrics g, §.
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. ac-re . ..
Proof. We use the representation @_ﬂfﬁ. The property in the lemma holds trivially for
the r component of h, with

fOL — Tgaﬁ 857“
— _2 —
Precisely, the bound @ holds due to the second part of @a,c_hig% _er the bound @,
the dyr component cancels and then we can use the first part of :
It remains to consider h of the form h = T;v0,u. We write
OaT50505h := 0,h",

noting that the expression on the left hand side of (@) is exactly h’ — f°. We begin by
refining the expression for _h%®, noting that corrections of size B? may be directly included
into f* without harming . For this we write

ha = a’yTa"/Tgaﬁaﬁu + TgaBTaBa'yafyu -+ [Tgaﬁ, Ta'y]afyaﬂu — Ta'yTa,ygaBaﬁu — aaTawanga,BaﬂU,
where the first term on the right is the leading term, while the remaining terms can be

estimated by B2 as follows:

-1
e The second, fourth and fifth terms are estimated directly using @aﬁfﬁ dga’, D,g°"
respectively 0,a”. para-com
e The thi berm is estimated using the commutator bound in Lemma &i, as well as
Lemma if both  and ~ are zero.

We have reduced the problem to the case when
hOé — aryTa"/Tgaﬁaﬁu.
At this point we rewrite
8ah0‘ = a,yh')’, hY = aaTa'yTga,BalgU,
noting that B
| Pa(h® = F)1 < 2,

which allows us to switch & and & also in . Then we are allowed to correct b7, by writing

hY = Taaangaﬁaﬁu + Ta'yaaTgaﬁaﬁu.
Now both terms on the right can be estimated by B? as follows:

ac—
e The first term is estimated directly using or, O,a”.

e The second term is estimated using Lemma !
Hence the proof of the lemma is concluded.
O

In addition to the class of paracontrolled distributions ¥ we also define a secondary class
of distributions, which roughly speaking corresponds to derivatives of 8 functions.

Definition 6.5. The space D of distributions consists of functions y that admit a repre-
sentation

(6.7) Y= 0u2% 4+,
where
(6.8) [2%[lp < C, 7] e < CB?,

with the natural associated norm.
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:switch-dt

Due to the inclusion B C €, we can directly relate it to the class ®€ introduced earlier.
Lemma 6.6. We have D C DC.

Next we verify that D is stable under multiplication by B functions.
Lemma 6.7. We have the bilinear bound
(6.9) T x DB — OP.

As a corollary of this lemma, it follows that our gradient potentials A” and A" are in Dp.

Proof. For h, z € 3 we consider the expansion
q = ho,z
= 0, Thz — Ty nz + 7T(h, (%z) + 715, .h.

- sSer
The first term is in ©P by Lemma Ihe three remaining terms can be perturbatively
estimated by B2, using the bounds in (p-Z5]). O

‘utt
Finally, we consider decompositions for ®9 functions which are akin to Lemma @._We
will do this in two different ways, one which is shorter but loses some structure, and another
which is more involved but retains full structure.

Lemma 6.8. Let w € DB. Then w admits a representation of the form
w = Oywy + 1,
where
(6.10) lwrllss Sz lwllom, 7l Sax B wllss.
Pmo? It suffices to consider w of the form w = Jyz where z € P, with a representation as

in
z:Tawa u+r

&L The bound a ows us to discard the contribution of r to
( It remains to produce an appropriate modification 0,z;, with z; € 9,3, for the
expression

q = a[)Ta’y (‘%u. 1
ac—
We successively peel off perturbative O(B?) layers from q. First we use 0 write
q = T4y 000yu + T2 O0yu = TorOpOyu + O(B?).

At this point we have two cases to consider:
(i) v # 0. Then we write
q = 0,T,»0ou + O(B?),
and the remaining expression is in 9,°3.
(ii) v = 0. Here we use the equation for u to write

6fu = — Z Tgaaﬁoﬁﬁu —+ H(ga,87 8a(‘95u) + Taaaﬂugaﬁ
(a,8)#(0,0)
Here the first term on the right involves at least one spatial derivative and is treated as
before, in the case v # 0, while the contributions of the last two terms are perturbative, and
can be bounded by B2.

U
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Our second representation provides a more explicit recipe to obtain the corrected version
not only of ® functions, but also of P x DP functions:

Lemma 6.9. Let w = 2{'0429, where z1, 25 € P, and zy has the P representation
2o = T Oyu + 1.

Define -
W = TLoq10,0yu.

Then we have

(6.11) lw — [ Sas B,
while
(6.12) || Pyt || e < ge 2% Bey.

Proof. The _ré@ution of r is directly perturbative so we discard it. Furthermore, the
bounds in allow us to replace perturbatively w by

w = T.a0u2 + o(B?) = 1o Tor 00 Oyu + o(B?).
utt .
Using also Lemma @Tve obtain
w = Tzimeﬁu -+ 0(82)
:para-prod
Finally, we use Lemma & ? af%a col;(r)lbine the two paraproducts, arriving at
w =1 + O(B?),

) ing-bd utt
as needed. Finally, the bound 1S also a consequence of Lemma @_
O

The last lemma helps us uncover a more subtle, hidden [y structure which appears if we
compute the double divergence of the metric g.

Lemma 6.10. We have
(6.13) | P<k0a0pG% || 1o Sz 2°B2.
. . . =gab .
Proof. For fixed 8 we expand d5g*” using the relation @_to obtain
8@@"‘5 = —Gﬂu ga‘s@g&;u — 0% g‘”@ga@u + 280u go‘sgaﬂﬁﬁégu.
For this expression we define a corresponding ring correction
8/550{5 = —Taﬁu Tga& (Ijg-ggu - Taau Tgﬂé @(Su + 2T30u TgO'yTga,B 8/7\8510,

which is also chosen to vanish if («, 5) = (0,0). We claim that the difference is perturbative
for fixed a and S,

| P00 (055 — 955°)| < 4 2'B.
-clrcle—a
Indeed, if a # 0 then this follows directly from Lemma%ié. On the other hand if & = 0 then

B # 0 in which case the hat correction can be discarded and we mayu_(jﬁ%tsrgppctgngp& time
derivative, using the fact that Ju, g € € modulo constants, see Lemma .7}

It remains to estimate the expression 8a(85§a6 ), where we return to the standard sum-
mation convention and take the sum with respect to all (a, 3). Here we separate the thre

Joser-control

terms in dg?, in particular forfeiting the cancellation when (a, 8) = (0,0). By Lemma b7
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all paracoefficients are in €, which allows us to perturbatively commute 9, with them as
needed. Then it suffices to estimate the expression

—T56,, On Taéa/ﬂgéu Ty O T@saga(;u + 2750, Towﬁ Tazaa 8516

For all terms here we may directly use Lemma@(’b_% directly. Hence the proof of the lemma
is concluded.
O

6.2. Symbol classes and the ‘PDO calculus. In a similar fashion to the L>S™ classes
of symbols, our analysis will involve paradifferential operators with symbols that on the
physical side are at either the ¥ or the ® level. Precisely, we will work with both the
symbol classes PS™ and with the classes DBS™.

For comparison purposes, we recall that for just paraproducts with 8 functions f, g < Ju
we have the uniform in time product bounds

2
(6.14) 1Ty Ty — Trgllromrs S AP )

as well as the time dependent bounds

(6.15) \TyT, — Trgllms s S B2,

and the corresponding commutator estimates. We also have, for h € D3,
(6.16) | T¥Th, — Trynll gssms S B

Our objective in what follows is to expand these kinds of bounds to the ¥YDO setting.
We will see that things become more complex there. Fortunately, in the present paper we
will only need such results primarily when one of the operators is a paraproduct, so we only
prove our results in this case and merely make some comments aboua %%g %glferal case.

We begin with the uniform in time bounds, i.e. the counterpart of , where not much
changes:
Lemma 6.11. Let f € BS7, g € BS*. Then
2
(6.17) HTng o ng||Hs—>Hsfj*k S AP

Proof. By definition we have f = f; + f, where f; is an S7 multiplier and f, € A*L>S7, and
similarly for g. Since Ty, = f1(D) and T, = ¢1(D), the leading parts cancel and we are left

only with O(A*) terms, which can be estimated directly without using any cancellation.
O

—ref3
Our next result is concerned with the counterpart of @,_where again the result is
similar:

Lemma 6.12. For g € B and h € DPS™ we have
||TgTh - TTthHS%HS*m S 82.

Here, by a slight abuse of notation, by T,h we mean the symbol paraproduct, where the

Fourier variable is viewed as a parameter.
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Proof. All operators in the lemma preserve dyadic frequency localization, so it suffices to fix
a dyadic frequency size k and then show that we have

(TyTh — Tryn) Prull 2 S 27 B ||ul| 2.

Here we can include the 2 factor in h and reduce the problem to the case when m = 0.
In the first term we can also harmlessly replace g by g, and T by multiplication by gy,
as

k
(6.18) 1(Ty — 9<k) Prullz212 S 2728,
while hoy € 25 BL>®S° therefore
k
1 T0Prll 22 S 228
Similarly, in the second term we can replace T,h by g.;h, as

(6.19) |Per(Tyh — g<rh)|| g0 S B,

- ppxDPP
akin to Lemma % %lﬁ

Thus it remains to bound in L? the simpler operator
R = (9<xTh — Ty_n) P

Our last simplification here is to separate variables in h, and reduce to the case where h has
a product form at frequency 2%, namely

h(z,€) = f(z)a(§), ¢ = 2",
where f € D and a € S°. This can be done for instance by thinking of h as a function of ¢
in a dyadic frequency cube, smooth on the corresponding scale, and by taking a Fourier series
in &, with coefficients depending on x. The coefficients will inherit the spatial regularity from
h, and will be rapidly decreasing since we are taking the Fourier series of a smooth function
of €.
After this simplification we may represent the operator 7}, in the form

Ty Peu = Lip(f, Peu),

where the symbol of the bilinear form L, depends linearly (and explicitly) on a. In this case
we may rewrite the operator R in the form

Ru = g Lun(f, Prw) — Lin(g<i f, Pru),
At this point we can apply one last time the method of separation of variables to the

symbol of L;, to reduce the problem to the case when the bilinear form L, is of product

type,
Llh(f’ Pku) = b<k<D)fC(D)PkU7

where the symbols for both symbols b.; and cP; are bounded and smooth on the 2* scale.
After this final reduction the operator R has a commutator structure,

Ru = [gey, bey(D)] fe(D) Pyu.
Here |Po.f| < 255, while the commutator can be bounded by
llg<bar(DNlczosse £ 2 M |Orgesli S 270,

Hence we obtain
IR 252 S B2,
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and the proof of the lemma is concluded.
O

In very limited circumstances, we will also need a more precise commutator expansion,
which arises in the context where we commute one paradifferential operator with symbol
h € PS™ with a function g € B. This will be applied when g = §*?, but the result holds
more generally. The novelty in the commutator expansion below is that we do not simply
expand

commutator = principal part 4 error

but instead we seek to better understand the structure of the error,
commutator = principal part + unbalanced subprincipal part 4+ balanced error

The principal part corresponds exactly with the Lie bracket of the two symbols, interpreted
paradifferentially. For possible use later, we define this more generally for two symbols:

Definition 6.13. The para-Lie bracket of two symbols f € BS7, g € PS* is defined as

(6.20) {f:9}p = Tocy0rg — TocgOrf-
This belongs to DPSITF-1,

We remark that if f is merely a function, then the first term on the right drops.

While the principal part of the commutator can be described using a paradifferential
operator with an appropriate symbol, the unbalanced subprincipal part has a more complex
structure which would be described best using a variable coefficient bilinear form. In order
to be able to describe tlglz firucture, we need a slight expansion of the class L;;, of bilinear
operators in Definition

Definition 6.14. By BS™ Ly, we denote any bilinear operator which is a linear combination
of operators of the form
ThLlh> h € msm,

which 1s either finite, or infinite but rapidly convergent.
With this notation, we have the following commutator result:

Proposition 6.15. For g € P and h € ‘PS™ we have the commutator expansion

(6.21) [Ty, Th] = —iT(gny, + OPPS™ 2Ly, (029, ) + R,
where
(6 22) ||RHH.54)H5 m—+1 < 82

B-para-pdo-BDB
Proof. As in the proof of Lemma [6. IZ|, we first localize in frequency to a dyadic scale 2% for

the input/output, and reduce to the case s = 0 and m = 2.
We consider first the special case when h is a multiplier, h(z, &) = h(£). Then

{h g}p higx
In this case we claim that we have an exact formula,
(6.23) [Ty, Th)u = =Tty py,u+ C, Cu = Ly, (0%g,u).

A-priori the last term on the right, C', is a [h type translation invariant bilinear form in

g,u; all we need to do is to compute its symbol R(n,£), and verify that it has symbol type
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regularity and vanishes of second order when 7 = 0. The symbol for Tyu as a bilinear form
in g and u is

{0 6) = x( )

Then the symbol for the commutator is

Ll B
x( e+ 5 )(h(§) = h(§ +m))-

We expand the last difference as a Taylor series around the middle as

H(E) — H(E -+ ) = ~nVAE + 30) + rPr(E.m)

with 7 a smooth symbol in both 1 and £ on the 2F scale for |n| < |€] ~ 2%. The middle term
gives the symbol of the Weyl quantization for the Lie bracket {h, g},. The last term yields
the error term C, which has the n? factor corresponding to the two derivatives of g.

Next we turn our attention to the general case, which we seek to reduce to the special case
above. This is achieved by separating variables in the symbol A, which allows us to assume
without any restriction in generality that the symbol h has the form

h(x,€) = a(x)b(§).

Then we have a corresponding decomposition at the operator level,

(6.24) Twu =T,B(D)u + Cou, Cou = Lip(az, u).
Here we can estimate the commutator with 7} as an error term,
[Co, Ty] = R.

This is most readily seen using another separation of variables, which allows us to reduce
the problem to the case when

Cou = Cy(D)a,C¢(D)u,

-para—-com
after which we may apply Lemma @_'T’he_same lemma also shows that the commutator
[T,,T,] yields an error term, so we arrive at

1,1, = 1,[B(D),T,] + R.

t-com,

For the commutator on the right we apply the formula @,_wﬁlch yields
[Ty, Thlu = —iTo(Toeg, + Lin(Gaa, -))-
It remains to refine the first product,
TiTheg, = TTabggI +R

. : a-pdo-BDB
for which we use Lemma % ifﬁ U
Our final result here is a product forE_ula where e also need an expansion akin to W

One should contrast this with Lemma . where such expansion was not necessary.
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p:prod-pdo| Proposition 6.16. For g € PS™ and h € DP we have the commutator expansion
multi-prod (625) TgTh = TTgh + OPiBSmilLlh<arh, ) —+ R,
where

multi-pR| (6.26) Rl s prs—m < B2

Proof. The proof follows the same outline as the proof of the previous proposition, so we
only outline the main points.

We localize first in frequency to a dyadic frequency region at scale 2%, gnrc(l) échen separating
variables in the first factor. If g is simply a multiplier then then is an exact identity

akin to @_a%ve. If instead
g=a(x)b(§), aeP,

t ickl

then we expand 7T, as in @%d then replace T, by multiplication by a, using @{,—
. After these simplifications, we are left with estimating the difference
Ro = (9<iTon, — Ty_on) Prv = g Lin(b, Pow) — Lipn(g<ib, Pru).

i-pR
This difference is easily turned into another commutator and estimated as in @%%ﬁis s
achieved by separating again variables in the symbol of L;, as in the analysis after @_
OJ

7. ENERGY ESTIMATES FOR THE PARADIFFERENTIAL EQUATION
S:para-ee
Our objective in this section is to prove that the linear paradifferential flow

n-inhom-re| (7.1) (0aTyos0g — TarOy)v = f

is locally well-posed in a range of Sobolev spaces. Precisely, we will show that

|0

. .. . -short .
t:para-wp| Theorem 7.1. Let u be a smooth solution for the minimal surface equation lﬁfgi m a time
interval I = [0,T), with associated control parameters A* and B so that

(7.2) At<1, Bel?
alin-inhom-re

Let s € R. Then the linear paradifferential flow 1|{.H 15 locally well-posed in H* in the time
interval I. Furthermore, there exists an energy functional E*(v) = E*(v[t]), depending on
u, which is smooth in H¥T, with the following two properties:

a) Energy equivalence:
(7.3) E*(u[t]) ~ [[o[t][[3:-

b) Energy estimate:

(7.4) g uft]) < BPE*(olt) + £

dt
) ) ) ) ) in-inhom-tg in-inhom-hg
The same result is also valid for the paradifferential equations ¢ﬁ§.2b:, respectively (3.27

associated to the metrics g and g.

o1 B (u]t])2.

We remark on the modular structure of our arguments. Precisely, from this section it is
only the conclusion of this theorem which is used later in the paper. We also remark on the

smallness condition for A*:
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Remark 7.2. The condition that A* < 1 in the theorem is a t chneiglz%ét(i%%venience rather
than a necessity. It is only used in the reduction in Pt positioneﬁm to ensure that
the operator Tyeo is invertible, and then in Lemma% in order to insure that our vector
field X is forward time-like. Since |g"°| > 1 this may be alternatively guaranteed by a more
careful choice of the quantization, respectively construction of X. Another minor advantage
is that with this assumption we no longer need to track the dependence on A* of implicit
constants in all the estimates.

It will be easier to prove the result for the paradifferential flow associated to the metric g.
Because of this, our first step will be to reduce the problem to this case. Then we will prove
the result for g in two steps. First, we show that the desired result holds for s = 0. Then,
we use a paraconjugation argument to show that the same result holds for all real s.

7.1. Equivalent metrics. The idea her s that we can replace the metric g with the
conformally equivalent metric g given by %‘%n order to simplify the subsequent analysis.
A similar equivalence holds for the metric g; the argument is completely identical.

Then we have the following equivalence:

L. paralin-inhom-re . .
:reduction| Proposition 7.3. Assume that v solves (T.1)). Then it also satisfies an equation of the form

ireduction]
hom-renorm| (7.5) (0aTyas0p — T5,0,)v = Ef + Ru,
where E 1s invertible and elliptic,
(7.6) IEfll s = [ £l =,
and R is balanced,
(7.7) 1Rol|zs < B2(|Ov]| s

Proof. We first observe that, since g°° is a small, O(A) perturbation of a nonzero constant, it
f%_loixis that T{40)-1 is invertible elliptic, with elliptic inverse E = (T{4o0y-1) "', which satisfies

0| Tor all real s. o
alin—-inhom-renorm
Then v solves (I/.b) with K of the form

R = E0,(Tyas — Tigooy-1Tyes)s — E(Tgo0y-1Tar — T — Ty (g00y-1 Tyer ) Oy

Here we have the algebraic relations

57 = ()N, () A = A4 0u(6")
. . ~ . . Moser-control f=+para-prod
This allows us to estimate R in a balanced fashion using Lemma p.7[and Lemma [Z.7] as

desired. 0

. . . .para—-w
As a consequence of this rﬁiunl; e g@gethat it suffices now to prove the result in Theoremﬁf I
but with the equation ([7-I]] replaced by

-inhom-new| (7.8) (0aT 50805 — 2T'3,0,)v = f.

7.2. The H' x L? bound. For expository purposes, we first review the multiplier method
for proving energy estimates for the wave equation in a simplified setting. Guided by this,
we construct a suitable vector field, to be used as our multiplier. Iiip%lxlgi- we reinterpret the

energy estimates at the paradifferential level, and prove Theorem [7.1[with s = 1.
55




multiplier

IBP-nobdr

IBP

7.2.1. Energy estimates via the multiplier method. Suppose that we have a function v that
solves a divergence form wave equation,

(7.9) Pv=f — P=0,9"05 — A%0,.

Given a vector field X = X®9,, the standard strategy is to multiply the equation by Xv
and integrate by parts. For expository purposes we will follow this path here, noting that
another alternative would be to interpret the vector field in the Weyl calculus, and work
instead with the skew-adjoint operator

1
X" =X, + §6QX“.

At this point we only seek to identify the principal part of the energy estimates, which will
lead us to the choice of the vector field X, so we do not follow this second path. However,
later on, once X is chosen and we have switched to the paradifferential setting, we will need
to also carefully track the lower order terms, and we will add lower order corrections to our
vector field.

To further place the following computations into context, we remark that vector field
energy identities for the wave equation are often employed in their covariant form, which
is derived by contracting the divergence free relation for the energy momentum tensor with
the vector field Xu, and integrating with respect to the measure associated with the metric
g. Such a strategy would work but would be counterproductive in our setting, where we will
reinterpret all these identities in a paradifferential fashion.

Assuming at first that the function v is compactly supported, integrating by parts several
times, in order to essentially commute the second order part of P with X, one arrives at the
identity

(7.10) 2 // Puv- Xvdrdt = // ex(v,v) dadt,

where cy is a quadratic expression in dv of the form

(7.11) ex(v,0) = P90 dpv

with coefficients given by the relation

(7.12) ex(w,6) = 6als = {p, X7 (2, &) — 0,X7p(x,€) + 247¢, X5,

where we recall that p(z,&) = g*’¢,&s. Removing the compact support assumption on v
and introducing boundaries at times ¢t = 0 and ¢ = T, the identity above with the integral
taken over [0,7] x R™ still holds but with added Contrlbutlons at these times,

(7.13) // Pv- Xvdzdt = // (v,v dxdt+/ ex (v, v)dx

where the contributions at the initial and final time can be thought of as energies. Here the
energy density ey is a bilinear expression of the form

b

(7.14) ex(v,v) = e3P0, - Dsv.
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This can be written in terms of the energy momentum tensor associated to the [, operator,
1
(7.15) Top[v] = Oqv - Ogv — égaggw&gv - Oyv.
Then we have
(7.16) P00 - Ogv = ¢* T XP = T(9,, X).

Thus we can define the energy functional associated to the vector field X as

(7.17) Exv] = /n ex(v,v)dz.

The key property of the energy density ey is that it is classically known to be positive definite
in a pointwise sense,

(7.18) ex(v,v) =T(d, X) 2 |9v],

provided that the vector fields 0, and X are uniformly forward time-like. Then we obtain
the energy coercivity property

Ex[v(t)] = [|0v(t)]|7:-
With these notations, we can rewrite the integral identity as a differential identity

(7.19) L () = 2/n P Xvds — / ex (v, 0) dz.

dt

In a nutshell, this computation, interpreted paradifferentially, is at the heart of our proof
of the energy estimates. In this context, the choice of the vector field X should naively be
governed by the requirement that the energy flux form cy is balanced. We note that one
cannot ask for cx to be zero, as this would produce an overdetermined system for X, which
in particular implies the condition that X is a conformal Killing field for the metric g. Even
the requirement that cx is balanced turns out to be a bit too much, which is why we will
need a second step to the above computation.

Precisely, the second step is based on another interesting observation, namely that the
contribution of terms in ¢}’ of the form

T
I:// q9*"0gv - Ogv dxdt
0 n

has a favourable structure and can be eliminated using a suitable Lagrangian type energy
correction.

Indeed, for compactly supported v, this contribution can be rewritten, integrating by
parts, as

1
I = —//q@ag“fjaﬁvmdl‘dt—l—5//8ag°‘585qv2dxdt
1
= —//Pv-qv dxdt—i—é//(Pq—I—q@WA”) v2dxdt+//A787qv2dxdt.

—nobdr
The first term can be interpreted as a correction to X in @l._lﬁtroducing the notation

(7.20) M= 2X + ¢,
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it now takes the form

(7.21) // Pv - Mv dadt = // cx(v,v) — qg*P04v - Ogv + dv? dadl,

where the coefficient d of the additional zero order term is
1
(7.22) d= §(Pq +q0,A7) + A704q.

Finally, adding in boundaries at t = 0,7 we obtain the integral relation

T T
(7.23) // Puv - Mv dxdt = // cxq(v,0) + dv? dzdt + / ex,q(v,v)dz
0JRrn 0JRrn n

where the leading flux density is now

T

)
0

cxq(v,0) = ex(v,v) — qg*P0,v - dav,

while the new energy density ex , has the form
1
exq(v,v) = ex(v,v) + qgoﬁﬁgv cv— é(goﬁagq — qA" 2

-diff
We can also convert this into a differential relation akin to 1‘7@), namely

d

(7.24) %Equ(v) = / Pv - Mo de — / cx.q(v,v) + dv? dz.

The identity %risﬁcaﬂy provide the intuition for the proof of the desired energy
estimate. However, to make this rigorous we will have to re-implement the above computa-
tion at the paradifferential level. There, the treatment of the lower order terms will differ
slightly, in part in order to avoid a need for direct bounds on higher order time derivatives
of u.

Based on the relation @g}ﬁ%m field X will have to be chosen so that the symbol for
the bilinear form cx , is balanced, or equivalently so that cx is balanced modulo a Lagrangian
contribution. In turn, the Lagrangian correction weight ¢ will have to be chosen carefully,
so that it satisfies multiple requirements:

(1) Comparing the form of cx , with the earlier expression for cx, a natural choice would
seem to be

(7.25) q=0,X".

(2) Examining the lower order coefficient d above, we will need to have good control over
the function Pgq. Here it is the second order part of P that matters, as the effect of
the magnetic term will turn out to be directly perturbative.

Reconciling these two requirements will play an important role later on in this section.

To complete our discussion here, we need to carry out an additional step, namely to
investigate what happens if we replace g, A by g, A. Observing that

Pv = goopv

it becomes natural to replace the vector field X, the Lagrangian weight ¢ and the multiplier

by
X=¢"X, G=4¢" M=2X+g
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Then the relation 553; remains essentially unchanged,
T

T T
(7.26) // Pv - Mo dedt = // cxq(v,0) + dv* dxdt + / ex,q(v,v)dx
0 n 0 n Rn 0

-diff-t
and the same applies to the differential form dﬁ%‘hﬂame relation. Here the principal
flux symbol can be equivalently expressed in the form

teX| (7.27) cxq(7,€) = ¢ &als = (B, X @, &) — (0, X7 + )p(x, ) + 247, X°¢s.

Our task is now twofold:

e To identify a suitable time-like vector field X so that the energy flux above satisfies
a balanced energy estimate, and

e To recast the above computation in the paradifferential setting without losing the
energy balance; this will also require a careful choice for ¢.

7.2.2. The construction of the vector field X. Our objective here is to construct a foryard .
. . . ) . chogse-g-first
time-like vector field X so that the flux coefficients in cx, are balanced for ¢ as in (/=25
In essence, at this stage we disregard any paradifferential frequency localizations, and work
as if v has infinite frequency. We also do not distinguish between g and g, as this does not
play a role in the choice of X. Our main result governing the choice of the vector field X is
where our notion of paracontrolled distributions is first needed, and reads as follows:

Lemma 7.4. There exists a forward time-like vector field X that is paracontrolled by Ou,
and so that we have the balanced bound

(7.28) 1652 + 0, X7g%| 1o < B2,

We remark that the fact that such a vector field exists is closely connected to the fact
that our equation satisfies the nonlinear null condition in a strong sense. One should think
of our vector field X as the next best thing to a Killing or conformal Killing vector field.
Perhaps a good terminology would a para-Killing vector field, i.e. whose deformation tensor
is balanced, rather than equal to zero or a multiple of the metric.

Proof. Starting from , we compute the expression in as follows:
(2 4+ 8, X7 g0 = 266097005 X" — XVE,E450,9° + 2A%6, X 7€,
= 2,£,9"P05 X% + 2X70%ul g™ 050 ubn + 20°u0a0gug™ s XE,
= 26,£,9"705 X + 26,6, XP 0T ug™ 0505u + 26,£,0°uds05ug”* X
= 26 6,97 (05X + X°0“u0505u + X*O°udsOpu).

Here one could freely symmetrize the coefficients relative to the pair of indices (o, ). We
have chosen to neglect the symmetrization, but, instead, we made favourable choices. The
above expression would cancel for instance if

determined| (7.29) 0 X* = —X‘S@auagagu — 85uXa8585u.
This is an overdetermined system, so we cannot hope for an exact cancellation. Even if we
symmetrize (raising the § index first) and equate the symmetric part of the two sides, it still

remains overdetermined.
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But we do not need exact cancellation, we only need the difference of the two sides to
be balanced. Assume for the moment that X is at the same regularity level as du. Then,
examining the right hand side, the expressions there are unbalanced only in the paraproduct
case, where the 0%u term is the high frequency, i.e. for the terms Tj, vy)0*u. Hence we
heuristically arrive at the equivalent requirement

bal
agXa é —TX(saauag&;u — TaauXa&;@ﬂu,

sions is balanced, i.e. can be estimated as in (f . Then, at leading order we may cancel
the (8 derivative to obtain a single paradifferential relation at one regularity level higher,
namely

bal
where we introduce the notation ” 2" to indica e.that the difference between the two expres-
1@'

a bal

X ~ _TXéaauaé'u - TaéuXaaau

Modulo balanced terms we may break the paraproducts above in two. This allows us to
devise an inductive scheme to construct X as a dyadic sum of frequency localized pieces, by
setting

(7.30) X = X, + Z X,
k=1

starting with the forward time-like initialization
XO = ata

and where the functions X}, localized at frequency 2%, are defined inductively by

(7.31) X = —(TxsTpay + TxaTys,)Osug.

It remains to show that, as defined above, the vector field X has all the properties in the

Lemma. We will achieve this in three stages:
. Hfe-controlfe-dt2u
e We show that X satisfies the same bounds as Ou, (see (.8 and (b.19))],

(7.32) [ X = Xolle S 1.

Since A* < 1, this in particular guarantees that X is forward time-like.

e We show that X — X is paracontrolled by Qu.
e Finally, we establish the balanced bound ([7-28))

To simplify the notations, we will write schematically that
X, k = TXThéuk,
with coefficients h of the form h = F'(Ou), which belong to € modulo constants.
I. Dyadic bounds for X. These are proved at each dyadic frequency k by induction on k.

We do this in two steps, where we first estimate the €, norm of X — X. Precisely, the first
set of statements to be proved by induction for k£ > 0 is as follows:

inductioni] (7.33) 1 X5 p2n < C272 A2,
induction2]| (7.34) 1 X5l < C272 Bey,

60



induction4

aracontrol

with a fixed large universal constant C'. This implies that ||X — Xo|le, < 1. The induction
hypothesis combined with Bernstein’s inequality yields the bound

| X<k — Xollzw S CA.

Then we write

X = TxoThur + T'x_,—xo Thti,
which yields

| Xl S (14 CA275 A5,
respectively

Xkl S (1+ CA)272 Bey.
Thus the induction argument closes if C' is a large constant and A* < 1.

The second step is to prove that
[ X = Xolle S 1.
To achieve this we will prove by induction that
(7.35) 10: X <kl|oe < C,
i.e. that 0, X<, admits a decomposition 0, X< = fr1 + fi2, Where
|frcillie S OB, |1 fosllis < C22Bc;.

Here again C'is a fixed large constant, unrelated to the earlier C'.
For this we write

8tX§k = 8t(TXTh8u§k) = (TathhaUSk + TxTath8u§k) -+ TXTh(?t&ugk.

Here the X coefficients involve only frequencies below 2%, so we may use the induction
hypothesis in the first term. For the second and third terms it suffices to use the €, bound
for X, which we already have from the first induction. Hence, repeatedly applying the
bounds in % we obtain

10: X <hlloe S A¥0: X <k [loellhll e [|Oulle, + AF(| X lleo 102 ]l0el|Oulle + [ X [leo |1 lle, 0:0ull0e
SCA + 1,
which closes the inductive proof of @c&%%é > 1and A* < 1.
II. X is paracontrolled by Ou. To prove this, we will establish the representation
(7.36) X = —(Txsgay + Txagsy)Osu + 1

. . ac-re [1:Moser-control
This will play the role of @_Tﬁge Moser estimates in Lemma M show thaf the paraco-
efficients above satisfy the bounds required of a in @)ﬁ it remains to establish that the

errors r, satisfy the bounds @_F’ or this, we write
Ta - ZXk TX&da + Tonaé )85uk

= Z _[(TX‘SBau - TX5TBau> + (TXaaéu - TXaTaéu)]aguk
k

= E Ty
k
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:para-prod
Now we apply Lemma I%f to estimate
_ 2 _
(7.37) rplloe S 27 g A, 73 e S 27 i B2
as needed. It remains to bound the time derivative of r® in L*°. For this we distribute the

t% %gi&givative. If it falls on an r%f- the para-coefficients then we can directly use the bound

. Else, we use Lemma p.9,
II. The bound for ciﬁ + 0, X7g*#. Here we recall that
¢+ 05X g™ =29"7(05X* + X°0"ud;0pu + X “0°udsOpu).

. . . . . . = acontrol . =
To estimate this, our starting point is the relation @T‘@t‘ﬁer with the bounds @

for r*. Denoting
h* = X°0%u + X*0°u
we write
¢+ 05 XP g™ = g (95X + h*505u)
= Tyus0sr" + (Tyvspas — TyraThos )0a05u
+ Toyxa g™ + Toz0,ulg"?h] + TL(05X 7, g7%) + T1(9505u, g"°h*?).
For the r* term we use (@é , for the next term we use the earlier bound @_—%d the

terms on t _sécline are estimated directly using the algebra property for €, and the bilinear
estimate U

7.2.3. Paradifferential energy estimates associated to X. Now we use our vector field X to
prove the balanced energy egtjmates for v._To flg Ahis, we repeat the computations leading
to the key energy relations and (@%marad;ﬁerelntigl evel.
. . araliln-innom—-new
To fix the notations, we denote by T's the operator in ([7.3]],

Tp = 0aTyes05 — Ti 0.

By a slight abuse of notation, this is not exactly the same as the Weyl quantized operator
with the corresponding symbol, though the difference between the two can be seen to be
balanced and thu§ peljturl‘)atlve in our analysis. ‘ P ‘ .

For our multiplier, inspired by the energy relation (%&_vm will use the paradifferential
operator

(7.38) Tir = 2T 5000 + Tj.
Here ideally we would like to have
q= _g()OaaXa.

However, such a choice causes some technical difficulties due to the lack of sufficient time
regularity of ¢. To avoid this, we will forego the above explicit expression for ¢, and instead
ask for ¢ to satisfy the following two properties:

e it is close to the ideal setting,

(7.39) 17— 9" 0uX"| < B

e it has the form ¢ = 0,q;, where ¢; € B.
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We remark that the obvious choice §y := —¢%°9, X for the first criteria does not satisfy
the second criteria, as it contains expressions involving d?u. However, by defi i_ti%nt we J%ave
Go € ©P, therefore, a good approximation ¢ for gy as above exists by Lemma %_Nﬁte_ﬂnat
for this it suffices to use the fa%tc (’)crl&%tof( @ € P separately for each «, rather than the more
precise representation in

Now we implement the multiplier method to prove energy estimates in the paradifferential
setting. We recall our objective, which is to establish an integral energy identity of the form

T
(7.40) [ o Tawdsde = )} + [ OB e
0
for a suitable positive definite energy functional Ex in H,

(7.41) Ex(0(®) ~ oft] .
[en0-dizf]|

This may also be interpreted as a differential energy identity,
d

(7.42) GEx(0) = [ oo Tywde + OB Jo(t) .

Notation for errors: There are two types of error/correction terms that appear in our
computations:

e Corrections in the energy functional. Here we will denote by Err(A*) any fixed time
expressions that have size O(A)||v[t]||3,.. A typical example here is a lower order
term of the form

ov - Ty dz, q € 0%,
Rn
where

| Pergl e S 28 A

e Coprections in the ene px term. These are like the last term on the right in
respectlvely (%;For brevity we will denote the admissible errors in the
two 1dent1tles by Err(B?).

int . . .
To establish @Ww consider the contributions of the two terms in Ti;.

L. The contribution of T'y.0,. Integrating by parts and commuting, this is given by

T
Ix = // Tp,v - Tx,Oyvdzdt
0 n

T

= // (aaTgaﬁag’U — TAaaaU) . ijawv dxdt
0 n
T

= / 00T '3+ T5050pv - 00 — Ty 5, 1508050 - 040 — T 3000 - T3, Oyv ddt
0Jre

T
= / 0y T, T508050 - Oqv — Ty 52 T508050 - 040 — T 3000 - T3, Oyv ddt
0JRn

T

+ /TXWTogagv 040 — T'50T 50080V - Oqv dx

63

0



so we obtain

T
1
]X = A/n 5(8’YT)~(WT§D<[3 _TgaﬁTf('yary)aﬁ’U . 8av_T8a)~(wT§&ﬁaﬁ/U . a’yv_TAaaoﬂ) i TXwa’y'U drdt
T

1
+ /TX”/T_@OBaﬁU . (971) — TXnga/ﬁaﬁ'y . aav —|— 5 X’OTgaﬁaﬁU . 8an dﬁC

0

For the double integral we peel off some perturbative contributions. The first term has a
commutator structure, and we distinguish several cases. If (a, ) = (0,0), then we simply
write

a,-yTXnyT§OO - Tgooij@V = gZ]OOTaWXW.

If (o, ) = (0, 7) then we commute the derivative first,

aWTX«,Tgw - TgojTjﬁa7 = Ta’eryTng + TX«,T&@OJ' + [Tf(w Tgoj-](%,

. . . . . ipara-com
where the contribution of the commutator term is estimated using Lemma &i,
I[T'%+, T5:]05|| 212 S B2

If (o, B) = (j,0) then we commute the paraproducts first,

87TXWT§]-0 - ngoTjﬁay = Tl%goj'jﬂ_;(W + ngoTc%_;(AY + &Y [Tf(w ngo],

where the contribution of the commutator is again perturbative once we integrate by parts
with respect to 7. If v = 0 then this integration by parts contributes to the energy with
the expression

/[TXO, Ti0]00v - Ojv dz,

:para-prod
which also plays a perturbative role. For the double paraproducts we use Lemma &? to
compound them, as in

| Ty Ton — Tyonll 212 S B2

We arrive at the relation

(7.43) Iy = //TpAU T, 00 dadt = //Tcigaav - Qv dxdt + Ex(v)|s + Err(B?),

where we recall that cg‘f is given by the relation @D, and the energy functional Fx is
given by

1
Ex(v) = /waTgOBaﬁ?f 0y0 = T'50T 50503V - Oqv + QTXOTgaaﬁgv 0¥ + [T'g0, Tyi0]0pv - Ojv dx.

Here we may compound all double paraproducts and discard the commutator term, at the
expense of Err(A*) errors. We arrive at

(7.44) Ex(v) = / T,s D000 do + Brr(A),
with eg‘f given by , and which therefore belongs to 8 modulo constants. Since X =
0, +O(A?) is uniformly time-like o1t follows that this matrix is positive definite, which implies
the positivity property in .
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II. The contribution of T;,. Here we need to consider the integral

I, = //(8aTgaﬁ85 + T'3,04)v - Thv dzdt,
where we recall that § = 8,¢; with ¢; € 8. The contribution of A is directly perturb oRS
Ae P C DC; then one can use the DC decorr%Sﬂtlon A=A,+A,asin Deﬁmtlon%'(s

Y

pairing each of the two associated bounds in (| the B, respectively the A* bound

in the €5 norm of ¢:

|Tx Tl oie S B N TgTallmore S AB2.

Integrating by parts and using Lemmas 7], 7.8 we compute
T

+ Err(B?)
0

I, = — // T505050 - (1500 + To,q)v dedt + /Tgosalgv -Thudx

T
+ ETT(BQ).
0

= — // T506508v - Oqv dxdt — / Osv - T, 50040 dodt + /Tgoaagv -Tyvdx

Here the first term on the right is the one we want and the last term on the right yields
an energy correction which is perturbative, i.e. of size Err(A*). It remains to show that
the second term, which we shall denote by I 3, also yields only perturbative contributions.
Heuristically, this should be relatively simple, in that we can integrate once more by parts,
to obtain

1 1
[3 = —/ v - Tr, 5004V drdt = 5 // v Toyr, s 00qV dzdt — 3 /v Tt 00,40 d
Here we could estimate both integrals perturbatively and conclude directly if we knew that
1PeksT 500 Ouilloe S 2B ||PerOadlle S 22FA.

Both of these bounds would be true if ¢ contained no time derivatives of u in its expression.
However, this is too much to hope for, so a more careful argument is needed. The first step
in this argument has already been carried out earlier, where we saw that we may take ¢ of
the form ¢ = 0,q; with ¢; € . This removes one of the two potential time derivatives in ¢,
but not the second. We can use this property to write

Iq2 = // v - T&chagaan dxdt — / Ogv - TTamgaﬁaaqlv dxdt,

where the uniform bound

T

0

||P<kTazgaﬁao¢CI1||L°° S 2" 3°

shows that we can treat the second term perturbatively, to get
[3 = / Jgv - Tangagaaqu dzdt + Err(B?).

At this point, we can use the fact that ¢; € P implies that ¢; solves an approxi te | unds-extra

paradifferential wave equation. The precise statement we use is the one in Lemma [6.4]
which yields the representation

OaTyos D5y = O f°
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with

(7.45) £ S B2 [1P<i(Boar — )l S AP
We use this representation to refine the outcome of the naive integration by parts above,
T

+ Err(B?)
0

T
—|—E7"7“(Bz).

0

1 1
I;=— 3 //U 19,057 00s ¥ dwdt + 3 /U 19,7000 ¥ AT
1 1 4 )
=5 (v T9,8, fov dadt + 5 | v T, 100000V d| + Err(B°)
0
1 T
= //&w Ty, pav drdt + 3 /v Ty, (r 1000aq1— 1) vdz| + Err(B?).
0
By the pointwise boupd on f* in @éthe first term is perturbative, i.e. Err(B?). By
the second bound in , the second term can be seen as a perturbative Err(A*) energy
correction. We conclude that for I, we have
1
(7.46) I, = //Tga,@qagv-aavdf[dt—i-/T~0,8(95U Tyv + 3V T,(Tya0 00 —f0)V AT
I11. Conclusion. inish the roof of and thus of Theorem ? l for s = 0, we
combine the relatlons and @Eﬁo obtain
T
(7.47) 2 // Tpv - T drdt = // Tc§ﬁ+gaﬁqaav -Ogvdadt + Ex(v(t))|y + Err(B?),
where Ex is redefined as the sumgef the two contributions in :E.Z_ﬁe} and (ﬁ%be',g which still
has the leading order term as in plus an Err(A*) correction.
It remains to examine the paracoefficient in the integral on the right, and show that it has
size O(B?), At this point, we simply invoke the choice of our para-Killing vector field g
Lemma, for the first term (which we have not used s _flagé, and the choice of ¢ in

for the second term, thereby completing the proof of

7.3. _hgre{-_[;“ X H?® bound for the linear paradifferential flow. Here we prove Theo-
rem Igl the general case, where s # 1. The argument will be a more complex variation
of the argument in the case s = 1, where paraproduct based multipliers have to be replaced
by paradifferential multipliers.

7.3.1. The conjugated equation. For simplicity in notations we will consider the linear parad-
ifferential equation in H™ with s # 0. We begin by setting w = (D,)%v, which solves a
perturbed linear paradifferential equation of the form

lin-inhom+| (7.48) (0aTges05 — T3,0,)w = (D,)* f + Buw,
where the conjugation error B in the new source term is given by
(7.49) B = (D,)'[0aTyes03 — Ty, (D))

in-inhom+
Then we need to construct an H! x L? balanced energy for the solution w to ll?iig ;
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in-inhom++

We note that B is a paradifferential operator, whose principal symbol bo is homogeneous
of order one and a first degree polynomial in the time variable &;, and is given by

60<x7£) = _i‘flls{gaﬁfafﬁv |£/|78}'

—gab

Using the expression or the derivatives of the metric g, this can be further written in
the form
bo(x,€) = 2is(0°ug™d;0,u — 0°ug®™d;0,ug*?)EnEsE; 1€ |72
(7.50) -
= 2isby .,
where
(7.51) by = (0%u g™ — "ug®™ §%)9;0,u £p&;1€' 2.

Here the unbalanced part of the coefficients corresponds to the case when the factor 0%u is
higher frequency compared to the 0°u and §* factors. The important feature is that, at
the operator level, TBg 0,w presents a null form structure of the type Qo(0u, w), with added
more regular paradifferential coefficients in 3.

We switch the leading term 23Ti)g 0, to the left hand side of the equation; there it will play

a role similar to the gradient term fl”&,. The remainder B — QSng 0, will play a secondary
role; one should think of it as renormalizable, though we will achieve this at the level of the

energy, via an elleroy correction, rather than through an actual normal form transformation.
Our equation ([7.48]] becomes

(7.52) (OaTges 05 — T, 0y — 25T 0w = (Dy)* f + (B — 25T, Jw,

where the leading operator is denoted by
(7.53) TpB = aaTg(w@g — Tma,, - 23T,~,g(97.

As in the previous case of the H! x L? bounds, our strategy will be to construct a suit-
able vector field, or multiplier, denoted X, which depends only on the principal symbol bo
above, and which formally generates a balanced energy estimate at the leading order. Then,
reinterpreting all the analysis at the paradifferential level, we will rigorously prove that the
generated energy satisfies favourable, balanced bounds.

7.3.2. The multiplier X,. In the previous section, the multiplier X € 98 was a well-chosen
vector field which belongs to our space B3 of paracontrolled distributions. Here, this can no
longer work due to the the presence of the operator Tj , which is a pseudodifferential rather
than a differential operator. For this reason we will instead use a pseudodifferential “vector
field” i X,, where X, has a real, odd symbol of the form

Xs(x7§) - Xsl(x7€/) + X80<x7§/)§07 XSJ € ;BSJ7
which will be homogeneous away from frequency zero. We carefully note that we want the
symbol X to be a first order polynomial in &p; this is important so that we can still do
integration by parts in time and have a well defined fixed time energy. The symbol X, may
be interpreted as a pseudodifferential operator using the Weyl paradifferential quantization,

| 1
(7.54) Tig, = iTx,, + Tx,00 + 515 5.
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However, as in the s = 0 case, we will allow a more general choice for the zero order
component, and work instead with the modified multiplier

. 1
(7.55) T, = 1T%,, + Tx,000 + 517,
where the real, even zero order symbol 3750 € 9, B5° will be carefully chosen later on in order
to provide an appropriate Lagrangian correction in our energy estimates.
Repeating the heuristic computation in the previous subsection, in the absence of time
boundaries we have an identity of the form

(7.56) 2 //TPA L (T, + Tk, Oo)vdrdt = //CXS,B(U,U) dxdt,
where ¢, p(v,v) is a bilinear form whose principal symbol cg_p is of order two,

(757) C)?S,B(xa g) = {ﬁy Xs}(xv 5) + 2X5<£L', 5)(1217 + 28[38(%’, 5))57 - 80)275015(‘%’7 f)

The objective would now be to choose the symbols ij € PS5’ so that we cancel the
unbalanced part of the symbol c¢g p. However, it is immediately clear that this may be a

bit too much to ask, as it conflicts with the requirement that X, is a first degree polynomial
in &. Hence, as a substitute, we will seek to achieve this cancellation on the characteristic
set p(z,£) = 0. Then, instead of asking for
bal
CXS,B =~ 07

we will settle for the slightly weaker property

cx 5(1,6) B Yao(x,€) - (x, €),

where Y € DPSY is a purely spatial zero homogeneous symbol, with the spatial dependence
at the level of 9?u. This term will be harmless, as we will also be able to remove it in our
energy energy estimates with a Lagrangian correction, by making a good choice for Y.

An additional requirement on our paradifferential “vector field” X, will be that, in the
energy estimate generated by X, the associated energy functional F ¢, should be positive
definite at the level of it principal part. Earlier, in the case when X was a vector field, this
requirement was identified, via the energy momentum tensor, with the property that X is
forward time-like. Here we will generalize this notion to symbols:

Definition 7.5. We say that the (real) symbol X = & Xy + X, € C°S? is forward time-like
iof the following two properties hold:

a) Xo(z,&) > 0.

b) X(2,85,8) X (,82,¢) <0, where £ (z,&') < &(x,¢&') are the two real zeros of p(x, &)
as a polynomial of &.

We remark that, using X as a multiplier, relative to the metric g, we will obtain an energy
functional which at leading order can be described via the symbol

ex(z,8) = g*P€.X0 — 29"E0 (X1 + Xo&o)

= ex(2,£)& + ex(2,§)& + ex (2, ),
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which should be compared with the expression defined earlier in terms of the energy
momentum tensor in the case when X is a vector field. Correspondingly, we define the
energy functional

(7.59) Exw] = /—Tegfﬁtw COw + Tig w - dpw + T2 w - wdx.

The main property of forward time-like symbols is as follows:
Lemma 7.6. The symbol ex is positive definite iff X is forward time-like.
Proof. Assuming X, is nonzero, we represent X in the form
X = Xo(a1(& — &) + az(é0 — &),
where a; + a3 = 1. Then ey has the form
ex = g%(& — &) (& — &) Xo — 9™ (260 — & — &) Xo(a1 (& — &) + aa(éo — &)
= — 9" Xola1(& — &) + a2(é0 — £)7].

Here ¢ = —1 and at least one of a; and ay are positive. Then ex is positive definite
iff Xo > 0 and ay,ay > 0. This is easily seen to be equivalent with the forward time-like

condition in the above definition.
O

7.3.3. The construction of X*. Here we return to the matter of choosing X, whose properties
almost exactly mirror those of the vector field X in the previous subsection:

Proposition 7.7. There exists a real, odd homogeneous symbol of order one X, € & +PBSH,
which is a first degree polynomial in &y, so that:
i) Xs is forward time-like.

i1) The principal symbol cx,p of the X, energy flux admits a representation of the form
(7.60) g, p(2,8) = @(x,8) + qolx, §)p(, ),
where ¢y 1s balanced,
(7.61) 1G]l oes2 < B2,
and qo has B type reqularity,
(7.62) 1Gollopso < AP
ii1) The symbol X, admits the BST representation
(7.63) Xo =&+ TonOyu+rg,
where the para-coefficients a”(x,&) = aj (x,£') + ag(x,&') with a] € PS? have the form
(7.64) 0" = —&0°ude, Xy — OuX, — 2X°0%ug® — s&50¢, log |€'|20°uX + pqg

with q) € BS°, independent of &.
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From the perspective of energy estimates, it might seem that parts (i) and (ii) are the
important ones. However, part (ii) will be seen as an immediate consequence of the rep-
resentation in part (iii), which thus can be thought of as the more fundamental property.
Also, in the proof of the energy estimates it will on occasion be more convenient to directly
use @ETH the sequel we will refer to a” as the para-coefficients of X;. We note that the
choice of ¢J is uniquely determined by the requirement that a? are first degree polynomials

in &).
Proof. 1t will be somewhat easier to construct the corresponding symbol X as associated to

p, rather than to p; this avoids the slight symmetry breaking in the transition from p to p.
Precisely, we will choose X of the form

X, = "X,
and then express ¢y p in terms of X as follows:
Cx.p = 10 X} +2X(AY + 2sb5)&, + qoop
where qq is given by
qoo0 = {Xa1,10g g} + &{ X0, 10g g%} — D X0 — 25X,0%u §V0;0,u&;|€'| 72,

and b} has the form

(7.65) b = 0"u g™ 0;0,u §s;l¢| 7.

Here we have separated the two terms in b]; the first has contributed to by, while the second
has contributed the last term in the Lagrangian coefficient ¢q.

For clarity, we note that the exact expression of ¢qp is not important, we will only use the
fact that ggo € DPS. On the other hand, for b] we will need the fact that it has a null
structure.

Now we restate the proposition in terms of the new symbol X;. Our goal will be to find
X, in the same class as XS, so that the reduced symbol

(7.66) Kl = {p, X} + 2X,(A" + 2sB))¢,
can be represented in the form

(767) CTXesdB - CD(‘ra g) + Q[)(l', E)p(x, 5)

Here there is a small twist in the argument. While cx, p is a second degree polynomial
in &, this i% n%_lr%nger the case for cgfi 5, which contains the term £3{¢%, X4 }. For this

reason, in we apriori have to allow for symbols ¢, respectively gy which are third,
respectively first degree polynomials in &. However, we can eliminate the & ter ing with
a {y correction in gy. Then, returning to cx, g, we obtain the representation %ﬁ_ﬁith Go
of second degree and ¢y of first degree. But cx, p is a second degree polynomial in &, so we
finally conclude that ¢y must be independent of &.

We now proceed to construct the symbol X,. As a first step in the proof, we seek to
obtain a variant X? of the symbol X, where we drop the requirement that X? is a first order
polynomial in &, but we ask for the stronger property that the associated symbol cTXe(‘f p 18
fully balanced, which corresponds to gy = 0. Then, at the end, we choose X; to be the
first degree polynomial in & that matches X? at the two roots of p(z,£) = 0 viewed as a
polynomial in &.
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The relation we seek for X? to satisfy on the characteristic set of p is
(7.68) cgfél g~ 0,
where, using the expressions @A' @%Pfo_r A" and b,
6 5 = {977€ats, XJ} + 20°u€s9™ 0a05u - X + 45 X]0%ug™ 0;0,u €ap&;1E | 2.
Here we recall the expression for the derivatives of g, see @i_b
(7.69) 0,97 ¢abs = —20°ug™® 050, u Epa.

Substituting this in the previous expression for c}}%j 5> we need the following relation to hold
modulo balanced terms:

26,0705 X0 B — 20°u€s0e. X0 - £,0°%Dp0,u — 2X 0 - £,9°°0, Dgu
— 45 X20°u&s&;1€ |72 - €097 0,050
We can rewrite this using the following operator
L = &g 05
in the form

(7.70)  LXO% —g0%ud X° - Lou — 0uX? - Lo,u — s0°uX 650, log |€']? - Lju.

By Lemma [7-4] we already have a solution X for s = 0. Thinking of this multiplicatively,
it is then natural to look for X? of the form
X! =Z,X,

where Z, < du should be zero homogeneous in £ and must satisfy

(7.71) LZ, % —&0°u(0e, Z,LOyu + sZ.0¢, log |€|?Lo;u).

We will also assume that Z; is a positive symbol; this will help later with the time-like
condition. Then we can rewrite the above relation as a condition for log Z,, namely

(7.72) Llog Z, % —&0°u w(9, (log Z,) LOyu + 50k, log |€'|* Loju).

Here the inhomogeneous term is linear in s, so we will also look for a solution log Z, which
is linear in s. _

There is one last algebraic simplification, which is to replace Z; by Z; = Z; |€'[**, which is
2s-homogeneous, even, and inherits the property that log Z, is linear in s. Then log Z, must
solve

(7.73) Llog Z, % —&0"udk, log Z, Lo, u.
Dispensing with the log, we replace this by

(7.74) L7, % —&0°ude, Z,Lo,u.

Now we interpret the last relation paradifferentially, formally cancelling the L’s. This
suggests the following scheme to construct the dyadic parts of Z; inductively by setting

~sO = ‘€|2S

sk — £6T65 35 87'U/k, k 2 1.
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A-priori these dyadic parts have a nontrivial dependence on &, which would have to be
tracked when considering the convergence in the k summation. However, since log Z, is
linear in s, it suffices to solve this for some nonzero s. The advantage here is that, if s is a
positive integer (say s = 1) then all our iterates are polynomials of degree 2s in £. Hence the
convergence issue disappears, due to P}érvsy%allness condition for u, A* < 1; this is exactly as
in the construction of X in Section [7.2.2[ This defines Z; as a positive definite polynomial
in ¢ of degree 2, sg that Z; = €2(1 + O(A")). Further, by the same argument as in the
proof of Lemma% it follows that the coefficients « eZI — Zy are paracontrolled by Ou; in
other words, Z; — ¢* € PS*. In addltlgn? by g%t also follows that (a choice for) the

para-coefficients of Z;, as in Definition 1s given by

(7.76) 2y =& + Typug 2,00+

Remark 7.8. We remark on the symbol Z;, which is quadratic in ¢ and para-commutes
with p, in the sense that their Lie bracket is balanced and thus bounded by B2. This symbol
plays a role that is similar to that of the first order symbol X constructed earlier.

Now that we have Z;, for all real s we may define
Zy=(Z1),  X{=X(Z/IEP).
By Lemma @ in the previous subsection we have X — £, < du. Combining this with the
similar property of Z, by the algebra and Moser properties of the space B of paracontrolled
distributions it follows that X, — & < Ju. Elnal cgm}nmg the representations of X and

—“27‘

of Z, as paracontrolled distributions, ag in s {6)) alid (I7.70]), we obtain the corresponding ‘B
representation for X? as in Definition [6.1] (see the relation

(777) Xg = fo — £5T35uagvxgafyu - Tawuxgafyu — ngagj lOg ‘5/’2Taéquaju + 7.

This in turn yields the desired conclusion that cgg(‘f 5 is balanced,
(7.78) 158 pllLoes> S B2
Indeed, the %iyﬁent form W can be obtained by directly applying the operator L in

the relation ; this is because the terms where the paracoefficients get differentiated are
balanced, so we are left with the terms where L is applied to the main factors du.

Now we carry out the last step of the proof, and define the symbol X, as the unique first
degree polynomial in & with the property that

Xo(2,6) = X)(2,6)  on {g™€s = 0}.

We now show that this choice for X, has the desired properties.
Recall that &J(z,¢) < &2(x,&') are the two real zeros of p(x,£) as a polynomial of &,
which are 1-homogeneous and smooth in £ and are also smooth functions of du. Thus,

&, & € PS".
The coefficients X and X, in X, are obtained by solving a linear system,

X(.8.6) ~ X2, 6.6) 5 _ X2, § )& — X),6,8)&
&—¢ ’ " &—¢ '
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By the algebra and Moser properties of the space B of paracontrolled distributions, it imme-
diately follows that we have the symbol regularity properties X5 € BS° and X, —1 € PS!.
By construction we also have a smooth division,

(7.79) X, = X2 +dp,
where we easily see that the quotient d has regularity d € 8S~! by computing directly

Xy(x, &) — Xz,
_ 1 (Xg(x7§>_X£<x7£é7£,) _Xg<x7£)_Xg(x7£§7§/))
9" (& — &) o — & o — &5 .

One may also interpret this as a form of the Malgrange preparation theorem in an easier
case where the roots,are separated.
i red : red .
We can now use :/]?91) to relate ¢7 p with g 5

CTXBZB = ngéi,B +p({p, d} +d(A” + sb)§,),

which is exactly the desired represeptagion WQ

We can also use the relation %&part (iii) of the proposition. For this we first
transition from X? to X,. Using and peeling off balanced terms, this gives the B
representation

Xo = & — &Tosune, x, 001 — Torux,0yu — 5650¢; 10g [€'[* Ty, Oju
=T, (§5T85u85,yd8"/u + TovuaOy + 5650¢, 108 €' ["Tpsua0yu + d)

+ <po + €5T85ud6§,ypa'yu> + 7.

) ) . . lest—R-for-dy-inf ) )
In view of the paradifferential expansion (.28 for g™, in the last bracket there is a leading

order cancellation,

Tap + €5T85ud8gwpayu =Ts.
This implies that X, admits a 3S* representation of the form

S
(7.80) X = &0 — &Thsun,, x,0u — Torux, 0yu — 55585]. log |&'*Tysx.0ju + Tpz + 7.

where z € PBS~1. At this stage we only know that z and r, are smooth as functions of &.
On the other hand, the remaining terms are at most second degree polynomials in &. We
claim that, without any restriction in generality, we may take z independent of &, and then
rs has to be at most second degree polynomial in &.

Subtracting a multiple of p from all the paracoefficients above and discarding balanced
contributions, we may reduce to the case of a first degree polynomial, i.e. to a relation of
the form

Tpz(2,&) +r5(x,8) = Zi(2, &) + Zo(x, €)%,
where z € PSS~ and Z; € PS?, while dry = O(B?), with full symbol regularity in £. We will
show that in this case we must have 9Z; = O(B?), again with full symbol regularity. This

would imply that we may include 7,z into r,, and thus take z = 0 in the last relation.
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We begin by differentiating this relation in = and ¢, noting that Tj,2 may be placed in
ory:
Tpaz<$7 5) + 87”5(33, g) = aZl<$7 5,) + 8Z0<$, 5/)60'

We may also perturbatively replace 7, with p, arriving at
(7.81) pOz(z, &) +1i(x, &) = 02, (2, &) + 0Zy(x, )&,
where r! has size B? and symbol regularity,

07| < Be' .

For fixed z, we examine this relation on the characteristic cone C' = {p(z,£) = 0}. There
we have
0Z:1(, &) + 0Zo (2, )| < B¢,
so we may directly conclude that 07 (xz,¢"),0Z(x, &) = O(B?). Next we need a similar
bound for their derivatives 05071 (x,§'), 050Zy(x, &) with respect to §'. We fix z and argue
by induction in |a|. Then it suffices to use derivatives which are tangent to the cone at
that x, which on one hand kill p but on the other hand give a full range of & derivatives
for Z;. Hence, we may indeed assume that z is independent of &, and 7, is a second degree
polynomial in &;.
Lastly we switch from X, to X,. Again peeling off r, type contributions, we have

Xs = QOOXS

=& + Ty Xs + T, g% + 1

=& — §6Taéuah)~(sawu — Tz, 0yt — 5€50¢, 10g [€'[*Tiys, 5, Oju + Tk log g™ + TpTyoz + 7.

.g-para
It remains to expand the fourth term, using Lemma %ﬁ

TXS IOg gOO = _2TX-980u§0a aozu + 7.
. . . = -re . . = a
This finally yields the representation Wi the paracoefficients in (ﬁfbereby con-
cluding the proof of part (111) of Proposition |

The final property of X, to be verified is that X, is time-like. This property is easily
seen to depend only on the sign of the symbol X, on the characteristic set {p = 0}. But
by construction, X, has the.s e sign as X, there, which in turn has the same sign as the
vector field X in Sectiont@a_Then the time-like property for X, follows from the similar
property of X. O

g
While it is more streamlined to state Proposition ﬁ_and its proof directly in terms of
the symbol ¢y, in order to prove energy estimates it is more efficient to peel off balanced
components of ¢y g, so that we are left with less debris to contend with.

. < 1 . . —re
To start with, let us assume that X, € BS* admits the representation @Sﬁch a’ eP
but without requiring that a” satisfy the relation (|7 é Fi% lSél_cah X, we peel off balanced

components of cg p following the two steps in Lemma [6.9 These steps are briefly reviewed
in the sequel. ‘

In a first stage, we note that all expressions in c;_p can be seen as linear combinations on
the form 3 - Qﬂ 5a where theoutput is balanced unless the second factor has higher frequency,

ser—con
see Lemma p.7[a). This aﬂows us to replace such products by paraproducts of the form
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TypdB. Further, using the definition of paracontrolled distributions for the second factor, we
can discard the error term as balanced and arrive at more precise paraproducts of the form
Tp0%u, namely

(7.82) Con & ThesDadpu,

where the coefficients a®® and a*? are explicitly computable as algebraic expressions in terms
of u, X and the paracoefficients a” of X,. Precisely,

bal - B - - -
CXS,BCC? f) ~ Tagwﬁ(%f)a’YXS - Ta&/j(sayp(x, 5) + QTXS (A’y + 28[)8[(:1:’, 5))5’7 + TpaOXSO

bal
~ 2T§a§aﬁa’yaﬁaryu + 2T§QEBB§W)~(985u§a585aWU + 2TXS(aﬂus’yg—ya_‘raou‘goﬁswg—ya)aaaﬁu

+ 2875 g, gro g0, (g ¢2) 005t — 28T goygoug, ganeso,  (1og|er)2)Or st
+ Tz;agaoﬁwu
so we obtain, in unsymmetrized form, the relation @ar_v%ith
o R = 0 - 5
a®’ = 2834 B(cﬂ + fg(‘)‘su@ngs + X,0"u + X,0°ug® + 5)(35’58%657 (log |€'1))
— p(25X,0"ug" 0 (log |¢€']*) — d5a]).

Finally, the last difficulty we face is that we do not have good enough estimates_f%gafu.

(7.83)

This is rectified by using instead the corrected expression éfu introduced in (5.13. This
yields a corresponding correction of ¢, namely
(784) 5;(573 = Taagé?aagu.

AS
With these notations, we can now state a more refined version of Proposition ﬁ_

~ I S
Proposition 7.9. 1@@ sXS be the symbol constructed in Proposition'?. ﬁ Then the conclu-
sion of Proposition 7.7 holds equally for ¢ g, with the corresponding expressions ¢a and do
satisfying a stronger version of 61)),

(7.85) lgolloese S B2 [[P<xBodollse S 2787,
and with gy having 0,8 type regularity,
(7.86) dollogso S A

= = a
Proof. A direct computation using m and ('?éi; shows that the coefficients a®® have the
form

aaﬁ — ﬁqaﬁ qaﬁ c gps(]
and thus -
éf(S,B = Tﬁqaﬁaaagu,
We need to express this in the form 7;0,8 plus a balanced component. For this we consider
two cases:

a) If (a, B) # (0,0) then the above component of ¢ has the form
T5,0:0u = T30, (T, 0u) — T;T5,,0u + (15, — T51,)0,0u.
Here the first term on the right is as needed, so we set
qo = =TT, q0u + (T — T51,) 0, 0u.
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The first term is balanced by Lem E %iai and the second is balanced b% Itecmma - We
% ser-control

still need to gstimate oGz as in ( which is immediate using Lemma emma a
and Lemma E§

b) If (a, ) = (0,0) then the above component has the form
Tﬁqétzu = Z Tﬁq(Tgw@aaﬁu + Taaaﬁugaﬂ).
(a,8)#(0,0)

The first term on the right is treated exactly as in case (a), by pullin Quf one spatial
derivative, while the i_ﬁond is directly placed in g2 using again Lemma %ﬁnd (a minor
variation of) Lemma . 7[a). O

7.3.4. Paradiffere; al energy estimates associated to X,. We now use the symbol X, given
by Proposition Hﬂn order to construct an H 1 x L? balanced energy functional for the

conjugated problem ([7.43]. This 1 turn, gives an H*+ x H* balanced energy functloga] gga_w

ln—-innom
the original linear paradifferential flow , thus completing the proof of Theorem

Broadly speaking, we will be following the analysis in the s = 0 case, but with more
care since we are replacing the vector field X with the pseudodifferential multiplier X,. In
particular, here, instead of paraproducts we we will have to commute paraproducts with
paradifferential operators. The difficulty is that we will no longer be able to estimate the
commutator contributions in a direct, perturbative fashion; instead, we will need to take
into account unbalanced subprincipal commutator terms, and devise an additional zero order
correction to X in order to deal with them.

We begin by considering the conjugation operator B, for which we provide a favourable

decomposition:
Lemma 7.10. The operator B given by @ admits a decomposition
(7.87) B = By + By + By,

where the three components are as follows:
(i) Bo = Ty 0, is the leading part, with symbol

(7.88) bo(, €) = il€|*{g*"€ats, €17}
(i1) By is unbalanced but with a favourable null structure,
(7.89) Biw = Th(puyTyes Lin(0a0u, 95| Dy |~ w)

with h depending smoothly on Ou.
(11i) By is balanced,

(7.90) | Bow|| 2 < B2||0w)| 2.

This result is a direct consequence of Proposition @?_v]\?é_“have stated it here separately
only for quick reference in this section.

At this point, we can repeat the mulfipljer computation in the previous section, using as
multiplier the operator Ti; defined in %ﬁ . Here X, will be the symbol constructed in the

previous subsection, so it remains to consider the choice of Yy, which will be chosen as

(7.91) A

Xs+
with ¢y as in Proposition @_
76



Using the Ti operator as a multiplier, we seek to derive an associated epergy identity.
Here, at leading order, we would like the energy functional 'z to be as in , described
by the symbol ey defined as in . On Ehgfother hand the energy flux is to be described
at leading order by the symbol ¢¢_ 5 in where we add the contribution of Y.

To have a modular argument, at first we simply assume that
o X, € PS?, with the representation @%‘ch a’ € PS!, but without assuming that
75 X ) b — s a )
a” are given by (i?ﬁ% i . o ‘ N o
o Y4 € 0,1, but without assuming that Y, is as in Proposition @_

Given such X, and Yi, we will describe the leading part of the energy flux using the
symbol

tc-s| (7.92) & =tg p+TYe.
This is a second degree polynomial in &, which we expand as
cXA2-exp| (7.93) Cs(w,€) = &)(,&)& + ¢,(x, £)&o + & (2, ).

To this expansion we associate the bilinear form

1
CXAB| (7.94) Cs(w,w) = /—Tég(?tw - Opw + §Tatggw ~Ow + Timw - Qyw + Tpw - wdz,

which, integrated also over time, would yield exactly the quadratic form generated by the
symbol ¢, in Weyl calculus.
Now we can state our main multiplier energy identity, which is as follows:

p:IBP-s| Prq ition 7.11. Let X, € BS and Yy € 0B be as above, and the multiplier T, be as
in ([(55)). Then there exists an energy function Eg g with the following properties:
i) Leading order expression:

pos:IBP-s| (7.95) Bz plw] = Ex [w] + Err(AY).
i1) Energy identity:
d ~
e:IBP-s| (7.96) %EX&B[UJ] = /Tlst T w dz + Cy(w, w) + Err(B?).

9

We recall again that here we assume neither that X, is the ”vector field” constructed
in the previous subsection nor that X, is forward time-like. Instead we will add these two
assumptions later on when we apply the Proposition, in order to guarantee that C, (w,w) is
controlled by Err(B?), respectively that F %, 1s positive definite.

Proof. As stated, the result in the Proposition is linear with respect to both X, and Y, and
also separately in A and by. This allows us to divide the proof into several cases, which turn
out to be easier to manage separately.

. The contribution of Xs with A =0 and by = 0. Our starting point here is the integral

T
Iy = 2// Trw - Tig wdzdt.
0 n
(s



The operator T;%  is purely spatial and antisymmetric, so we can integrate by parts three
times in [0, 7] x R" to rewrite % in the form

T T
Iy = 2// Ty Ty, %,,w - Jaw dxdt+// [Tj08, Tix,, 100w - Ogw dxdt
0JRrn 0JRrn
T
+ 2/T§aoTD~(slw - Oqw dx

0

Here the expression on the second line should be thought of as the energy and the expression
on the first line represents the energy flux. We remark that if there were no boundaries at
times ¢t = 0,7 then this would be akin to computing the commutator of T and T} .

The above expression needs some further processing to put it in the desired form. We begin

with the energy component, where we need to compound the paraproducts and separate the
cases a = 0 and « # 0. This is done using Lemma %l i,

/TgaoTixslw'aaw dv = /Tgoofcﬂw'aow dm+/T§jO)zslw'5jw dx + O(A¥)|[wlt][[3,

as needed.
We now successively consider the space-time integrals on the first line in I%. In the first

integral, the components where the §° fre uency is at least comparable to the X, frequency
are balanced, and we can use Lemma % lé ;EO compose the paraproducts as

T T
/0/ Ty Tip, 3,,w - Oow dxdt = /0/ TiTgaﬁaﬁXﬁw - Oqw dxdt + Err(B?),

where the integral on the right can be freely switched to the Weyl calculus if o« # 0, and
represents one of the desired components of our energy flux.

Fo ,the_s%%ond space-time integral in Iy we use the commutator expansion in Proposi-
tion %%Lget a principal part, an unbalanced subprincipal part and a balanced term,

T T
// [The8, T, 100w - Ogw dxdt = // Tigos %13, 00w - Opw dzdt + Ix oo + Err(B?),
0 n 0 n

where the unbalanced subprincipal part ])1(, has the form

sub

T
(797) I)I(,sub = // qus—nga’yLlh(afy&iU, (9aw) : agw dxdt.
0 n

We postpone the analysis of I)l(, for later, and focus now on the principal part, which has

symbol

sub
e, X10;5°.
5] sl Jg
. - ppxDPP . , .
As in Lemma [6.7, we may perturbatively (with O(B*L>°S) errors) replace this by
=Ty %,0;9"

This is almost in the desired form, except that we need to switch it to Weyl calculus. We

observe that we have no contribution if both a and [ are zero. We separate the remaining
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cases, where switching to the Weyl calculus yields errors as follows,

Err = // Ty, piow - Qow dxdt + — // Ty, pimw - Opw dxdt
// Ty, 05ne8W0 - wdmdt+/Ta piow - wdx

The last integral is an acceptable energy correction. For the first integral to be an accept-
able energy flux error, it suffices to show that

||P<kaaaﬁha'8||LooSO § 22k82.

0

It is easily seen that this is indeed the case if any of the derivatives apply to X1, by using the
time derivative component of the € bound for either X; or §* to bound time derivatives
(of which we can have at most one). So we are left with showing that

||P<kaaaﬂga6|’LooSO 5 2k62
But for this we use Lemma ﬁm__g

II. The contribution of X, with A = 0. Here we will follow the same road map as in
the case of X, but additional care will be needed in order to handle the additional time
derivatives. The integral we need to consider is

T
I% = 2// Trw - T Oow dxdt.
0 n
We can integrate by parts once in [0, 7] x R™ to rewrite I% in the form
T T
I%= -2 // TgenTy, 5,000 - Oqw dxdt — 2 // T508T%,, 000w - Oqw dxdt
0JRe 0JRe

T
+ 2 / Tya0 T, Oow - Opw dx

0

In the middle term we switch the operator T;asT'x 0o to the right, while integrating by parts
once in time, in order to put it in the more symmetric form

+ /QTgaOTXsoaow “Oaw — T Thas 0w - Jgw dx

0
For the energy term there is nothing new, we use as before paraproduct rules to rewrite it
as the desired leading part plus an acceptable error. We now consider the second space-time
integral, where more care is needed. The operator

O — aoTXsOTgaﬁ — Tga,BTXsoao

has a commutator structure, which is good. However we have to carefully decide on the
order in which we commute, because, depending on whether &« = 0 or § = 0, we might
carelessly end up with a double time derivative. The positive feature, arising from the fact

that we work with the metric g rather than g, is that if («, 8) = (0,0) then there is a single
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commutator which does not involve time derivatives. For clarity we consider the four cases
separately:

i) The case o # 0, 8 # 0. This is the simplest case, where, commuting and peeling off
operators of size O2(B?), we write

C = TSOX'SQT{J”‘B + TXSOTaogaB — [TgaB,TXSO]aO.

ii) The case a = 0, 8 # 0. Here we use the same order as before.
iii) The case a # 0, § = 0. Here we reverse the order, to write

C = TgaBTaOXSO + TaogaﬂTXso — (90 [Tgaﬁ, Tffso]’

where the middle term is integrated by parts once more to move dy together with d,,
at the expense of another negligible energy correction

T
— /[Tgao, Tk JOow - Oqw dx
0

iv) The case @ = 0, § = 0. Here we simply have
¢= TaoXso'

Now we put together the terms in the four cases.
a) In the 0y Xy term the multiplication order does not matter, and we can further replace
it by TTgaB 9%, Modulo Op2(B?) errors. Thus we retain the integral

T
// Ty a0 %, 08w - Qaw ddl.
0 " o s

b) In the 9y§*” term, however, the commutator is not negligible, so in addition to T Toyges
we also need the commutator [Ty,ge0, T ]. Hence we get two contributions,

T T
// TX—SOTaogaﬁaﬁu . aau d:tdt + // [Taoga(), TX.SO]aOu . aau dxdt
0 n 0 n

c¢) In the [Tjas, T'; ] term where, distinguishing between § = j # 0 and 8 = 0, we get

T T
// —[Ty05, T 100050 - Opw dxdt — // Oow - [Tgeo, Tk 1000w ddt.
O n Rn

0

In the first integral we move 9; and the commutator term to the right, also commuting them,
so the above expression is rewritten as

T T
// 80w- [Tf(so’ Tgaﬁ]agaaw d:vdt—l—// [T(‘)jgaj, szo]aow-aaw—f— [Tga]’, E)jT)gso](“)ow ﬁaw dxdt.
0JR" 0JR™

We retain the first term as it is, combine the second one with the second term in part (b)

and discard the last one as perturbative, Err(B?).
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Putting all terms together, we have rewritten 1%, modulo perturbative terms, as

T T
I% = —2 /0/ TT.a,gaﬁ)Zsoan - Opqw dzdt + /0/ TT.agaoXsoaﬁw - Oqw dxdt

g9 g

T T
+ // Tz Toyges Opu - Oqu ddt + // dow - [Tk, Tyes]Oow dxdt
0 n 0 n

T
- // dow - (05T, Tyer|Oaw dadt + Err(B?)
0 n
= I+ IR+ Y+ 1Y + 1Y + Err(B).
-para-com-pk
This can be simplified further by observing that, in view of Lemma E?,a the term I is also

perturbative. Thus we arrive at
Y =18 + IZ + 1% + I} + Err(B%).
We successively consider these terms:

Ila. The contribution of I%. This corresponds to the symbol
2TT§a58ﬁX50§O§OA7

=S
which is akin to one of the components of cx, p in ﬁ We can turn this into_thgrgor—
responding component of ¢ p. Precisely, given Xy as in the representation , that
component is

2TT§MGg a;gvufofa,

where we recall that the hat above is understood as nenexjstent unless B =~ =0, in which
case it is interpreted as the corrected expression . The difference b%wel%%ltehg two

coefficients is easily seen to have size B2, so it is perturbative, as in Lemma remains
to switch this modification of I to the Weyl calculus, which requires estimating the integral

T
T. — Opw - wdxdt.
/o/n 9aTyap 4y Op0yu"0

This follows from the bound
| PO Ty D30y e < 2782,
-tp-d
which in turn follows from Lemma @(’bﬁ after commuting a; out.

IIb. The contribution of I%. Exactly as above, this integral also corresponds to a term in
cx,.5- Again, after a perturbative Err(B?) correction we can turn this into the corresponding
term in ¢ g, which has the para-coefficient

Tgaﬁa'y aoﬁ.yu.

The associated integral is

T
/O/n TTgaﬁawaﬁuaﬁw : aaw dxdt.

We would like to switch this to Weyl calculus, but we need to be careful here because the

convention for the Weyl form differs depending on whether £ is zero or not.
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If 8 # 0 then the error corresponds to switching the operator on the left to Weyl calculus,
and has the form

1 /7
(7.98) 5 /o/n Tangagﬂaﬁuw - Oqw dxdt.

The same applies if « = f§ = 0. But if @« # 0 and § = 0 then we have to switch the
paraproduct to the right, and then the Weyl correction is

1 /7
2 /0 - dsw - TaaTgaﬁmBﬁuw dxdt.
—COIr
We can rectify this discrepancy and switch this correction to the form in y integrating

twice by parts, first in £z and then in z,. Since we are in the case S = 0, the first step yields
an energy correction, namely

1 T

1 /w . TBaTgaom@ﬁuw dz )
As a # 0, for this to be an acceptable Err(A*) error we need the bound
| P<iBodyul| g~ < 2 AP,

=dt2

.. . . t2u .
This is obvious if v # 0, and follows from @ﬂher €1 _cor

Thus we are left with considering the correction in summed over all o and 3, and
which we would like to estimate perturbatively.

Here there is no structure in the v summation, so we can fix 7. The easier case is when
v # 0. Then we can commute 0, out, as well as a?, and Js in, writing

aﬁTgaﬁa'\/a[)a,yu - Ta"/afyTgaﬁa/Baou + f,
where the error term f satisfies
(7.99) | Peiflle S 2882
We may also correct the second order time derivative, arriving at
03Ty 2 000yt = Tyr 0y Tas 03D + [

The remaining term is no longer directly perturbative, but its contribution may be instead
estimated integrating by parts,

T 1 T
T — W - Oywdxdt = — = T — w - wdxdt
/O‘/IR;" Ta'yayTgaﬂaﬁagu « 9 o Jgn 6aTaq8n,T§a58g80u

T

+ /TTavavfaogaﬁouw ~wdx
The last term is a bounded energy correction, as
| P T 0y Tyos DgOotu| oo < 225 AP,
It remains to show that the first term is also perturbative,
| P T 0y Tygos Dgoa| oo < 225 B2
Commuting J, inside and discarding a”0,, this reduces to

| P8 Tyos Dp00ul| 1 S 2812,
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dtg

—du
which is again a consequence of Lemma

It remains to consider the case v = 0, where we take advantage of the hat correction.
Precisely, using the u equation, we write

O/O\OOU =— Z T30 0,00 + Tp,0,u9"" .
(1,v)#(0,0)

. . . . . _cor . . . .
We substitute this into the paracoefficient in @,_peehng off perturbative contributions.
Fixing ;1 and v we may assume g # 0 and arrive at

05T gosar 0000t = = Torguw 0, TgepOpOyui + f,
p#0
. . Af=is-good . : .
with f as in . this point we can repeat the argument in the case v # 0.

Ilc. The contribution of I%. We recall that this is
T
1% = // T ToogenOpu - Opu dxdt.
0JRe

This term is easily seen to Ee %egp%@%@ unless the spatial frequency of Xy is smaller than

that of 9,5*°, see Lemma i us we can think of the principal symbol of the product
T Toyges as being TXsoﬁog".ﬁ . However some care is peeded herg yvit]ll _th% guor, which is
lower order but not necessarily balanced. Precisely, using Proposition E lé, we can expand
this product into a leading part, an unbalanced subprincipal part and a perturbative term,

(7.100) Tx,Tonges = Try_onges + OPRS 2Ly (02065, ) + O12(B?).

This yields a corresponding decomposition of 1% into

IR =12 o + I s + Err(B).

X,main

To better describe the first two terms we take a closer look at the coefficient 9y§*?, for
which we compute

(7.101) 0" = — (0°ug** 0s00u + 0°ug” s0pu) + 2§ °ug® dsdpu.

Here we have a double time derivative 92u when § = 0, which we replace as before by d2u with
perturbative errors. Once this is done, we may also replace all products by paraproducts,
arriving at the modified expression

800?]0"8 = - (Taﬁugaéa/ga)u + Taaugﬁéa/(sgou> + 2T30u§06§aﬁ8/5\80u
so that the difference is perturbative in the sense that
803°° = 00 + O(B?).

Finally we return to the operator setting, where we make the above substitution. In the
principal part can compound the outer paracoefficients at the expense of more negligible
errors, writing it in a paradifferential form

T
TTX OB — Tq"‘ﬁ + OL2 (82)7 ‘[9(3main = // Tqaﬁaaw . (7511} dzdt + ET‘T’([Dﬁ),
s0 ’ 0 n
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where the order zero symbols ¢*? are given by

¢’ =~ <TX508ﬁu§a58560u + TXsoaau§558580u> + 2T gougnsgos s

ug-rg

Here the symbol ¢*?¢,&s is a component of C°XS7 5, as desired. All we need now is to convert
the last expression for 1% to Weyl form. This conversion yields the additional error

X,main
1 T
—// Ty, gosw - Ogw dxdt,
2 JoJan

which we need to estimate. Here we separate the three terms in ¢®®. For the first term, after
one commutation it remains to show that

| PO Tyos DsOpul| o < 2882,

which we get from Lemma 'ﬁ.ﬂ%he second term is similar if we integrate by parts to switch
a and [, at the expense of a bounded energy correction. Finally, the third term is exactly
as in the case of ¥ _

Similarly, in the subprincipal term in Wﬁ we may peel off perturbative errors to write
it as a linear combination of expressions of the form

T‘ﬁS”TTgaaax@ou + Tos- 1TT 3050205 00u T Lps L o Os 500"

We postpone their analysis for later, for now we simply list the two types of contributions:

T
IXsub-031]| (7.102 7931 Tgs-1T 505 Ly, (0,050pu, O4w) - Ow ddt.
X, sub — B g
0J R

T
(7.103) 192, = / / Ty Tyos Lin (0,050, Do) - s devdt,
0JR"?

IId. The contribution of I%. We recall that this is
T
I% = / dow - 0a[T'g,, Tyos]Opw dadt.
0JRre

This has a similar treatment to I§°. For the commutator above we must have again a do
smaller frequency on X, else this yields a perturbative contribution. Using Proposition @LL
we expand the commutator into a leading part, an unbalanced subprincipal part and a
perturbative term,

(7.104) [T, Tyes] = TTagjﬁsoajgaﬁ + OPRS 2Ly (025°°,-) + R*?,
where the remainder R satisfies perturbative bounds of the form

IRz SB% NRlg-1502 SB% [[00Rrere S B

We d%onader the contribution of the leading part I 9(4

in

.goB i
main- For 0;g°” we use the expansion

with the subscript 0 replaced by 7 # 0, arriving at
8],@043 - Tan “I’ Raﬁ,
84
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IXsub-042

where the order zero symbols ¢*? are given by
qOé/B = — <T85‘7. Xsoaguga,;@g@ju -+ Tagj Xsoaaugﬁ,;@gaj?,t) + 2T6§j X 5080ugos G 858ju,

and the remainder R is as above. Then the leading part can be written as

T
[9(4,main = // T 0800w - Oyw dadt + Err(B?).
0 n

Now the symbol ¢*?£y£,&s is a component of ¢ %..5> as desired. It remains to convert the last
expression for 1% to Weyl form. The error in doing that is

X,main
1 T
—// Taaaﬁqaﬁw'aowdxdt.
4 JoJrn

Estimating this expression requires the bound
]\P<k8a85q°‘ﬁ\|mo S 2k82

Here ¢° = 0 so we avoid the case of two time derivatives. This allows us to commute 9,095
inside and take 0; outside modulo perturbative terms. Then ; yields the 2¥ factor, and we
have reduced the problem to proving that

1P (1

Re-labeling this becomes

5 5 o 5 2
 Sootuges + T, Saomgin = 2o, xaaomgnsges ) 0o0aDgullie S B,

||PkTangso(aéu_aougoa)gaﬁagaaagunLoo S BQ.

The ex.pression on the left vanishes if 0 = 0. This allows us to break the para-coefficient in
two using Lemma ﬁ? and replace this by

||PkTagjXso(aéu_aougoa)TgaﬁaéaaaﬁunLoo 5 82,

-tp-du
which is finally a consequence of Lemma @_
Next we consider the subprincipal term. Here we use again the expansion in (ﬁiﬁl} and
recombine paracoefficients to rewrite it as a linear combination of terms of the form

T
(7.105) I = // Oow + Ty0uTes Lip (9205, Ogw) dadt,
0 n
T
(7106) ]%gub = // 8010 . ThaaTgﬁaLlh<a§agu, agw) dxdt,
O n
respectively
T
(7.107) IS, = / Oow + T, 0o Tgas Li (0205u, Ogw) dadt,
0JRrr

where h € BS~2 roughly corresponds to 8525(50. Here we can freely separate variables and
reduce to the case when h is a function, including the multiplier part in L.

We remark that until now we were able to exclude the case when o = = 0. However, at
this point we need to separate the three types of contributions in order to take advantage of

their structures. Because of this, from here on we have to also allow for the case a = 3 =0,
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forfeiting the cancellation that would otherwise occur in this case between the different terms.
We postpone the estimate for the subprincipal terms for the end of the proof.

III. The contribution of Yy with A =0 and b = 0. Here we consider the integral

T
Iy:// Tpw - Ty wdzdt,
0 n

where we recall that 3750 € 0,B5°. We integrate once by parts to write

T T
IY = // Tgaﬁacxw-Tf/soaﬂw dl‘dt—// Tgaaﬁaw-Taﬁﬁow dl‘dt—’- /Tga(]aaw . Tf/sow dx
0 n 0 " i

The last integral is an admissible energy correction. In both s cestime. (i)gtegrals we move
Ty, to the left, and combine the two paraproducts as in Lemma E f, peeling off perturbative
contributions, to get

T T
_[Y = // TT~a5?soaaw . aﬁw dl’dt — // T35T~aﬁ}7506aw W dl‘dt + ETT‘(B2) + ET’T(Aﬁ)lg
0 n g9 0 n 3

The symbol of the bilinear form in the first integral is the desired component of ¢, but we
need to convert it to Weyl calculus. This yields an error which is half of the second integral,
which in turn needs to be estimated perturbatively. Commuting Jp inside, we are left with

T
// Tr  o.7.,W  Oow dxdt.
0 n gaﬁ BLs

Here }750 is of the form sto = 0,h, with h € PBS°. We can harmlessly commute 9, out, to
arrive at

T
7.108 J = Ty, 1 . 0500 - Oqw dxdt.
50808
0JRn

In the absence of boundaries at ¢ = 0,7 here we could integrate by parts once more to

rewrite this as
[J 0204 Taﬁaﬂhw (3 wdwdt
ﬂ_pcbound ra

and then use Lemma 6.4 The same argument applies if we add in the boundaries, by
carefully trackmé t%_%_l%oundary contributions. Precisely, we use the lemma to rewrite the

T

expression J in as follows:

T T
J = // Taz(Tﬂgagh*thfo)w : aaw dxdt + // Tazfo’w . 8011) dxdt
0JRn . 0JRn

1 (7 !
= - 5// Taz(aaTgaaaghaofo)w'U’dxdtJr// T, jow - Opw dadt
0JR" 0/R™

1 T

+2 /le(T 0p0sh— fO)w wdw

T

= ——// Ty,0,p1w - wda:dt—l—// Ty, pow - Oow dxdt + = /Taw(Tgoﬁth_fO)W-wdx '
n n 0

1 :pcbounds-extra
Now, in view of Lemma Q 4] both the energy and the flux terms are perturbative.
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IV. The contribution of the gradient potential A and of bo. We discuss the two together,
as their contributions are similar. This has the form

I} = //Tzﬁtsw (Txy + Ti)Oyw dadt,

which we need to shift to Weyl calculus after peeling off a perturbative contribution. For
instance the contribution of Yy is directly perturbative. On the other hand, A” contains
O2u terms which need to be corrected, while b) does not. In any case, the correction can

be freely added as its contribution has size Err(B?). Below we denote by A the corrected
version of A. 3

Next we consider the contribution of )Esji V\éhegg_‘é/&need to shift the operator product

Tk Tj, to the Weyl calculus via Lemma

TXMT;U =T I + TmSngleh(E?x@/a\(’)u, ) 4+ Ogi_g2 (62),

Tj(sl
and similarly for by, i.e. the desired term plus a null unbalanced lower order term plus a

perturbative contribution. We note here that the contribution of the null unbalanced lower
order term has the form

T
IY s = // Typs0Tger L, (0304, 0u, Oyw) - w dadt.
O n
Finally we consider the contribution of XSO,
T T
P = // Tk, 00w - (T + Tyy) Oy w dzdt = / dow - T (Tsr + Ty ) 0yw dudt.
0JRn 0JRn

We use again the product formula for paraproducts to write

TXSO (Tjw + Tbg) = TT)?SO(IX’Y'*‘I’&) + qugfngaleh(axaaau, ) + Oz (82),

which generates a leading term and a subprincipal term.
The leading term is

T
IS :/ Oow - T : 0w dxdt.
X,main o Jan 0 Ts (A’Y"'Tbg) Y

Its symbol is as needed, but we still have to switch it to Weyl calculus. This switch introduces

aln error
1 T
2 /0 / n T, e (A ) dow dxdt.

To bound its contribution, we would like to have the symbol bound
2y
(7.109) |Pk0, T (A +0))| < 2°B°

Here we use the expressions for A7 and by, take out bounded paracoefficients, and we are
left with

| POy Ty DOl 1o < 28 B2
.tp-du

But this is in turn a consequence of Lemma [
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To conclude, we record the form of the subprincipal term,

T
(7.110) ., = / / Ty Tyor L (0,000, 0, w) - O drdlt.
O n

V. The unbalanced lower order terms. These are the expressions identified earlier, which
we recall here:

T
(7.111) T = / / Typs 1 Tyor Lin(0,0%u, Do) - Dgew dvdt.
O n

T
sub-031-re| (7.112) I = / / Typs—1Tsa5 Li (00500, Opw) - Ow dadt.
0 n
T —_—
sub-032-re (7113) [%Oﬁub = // Tﬁps—ngaﬁLlh(axagaou, (9aw) . 8ﬁw dxdt.
0 n
T
sub-041-re| (7.114) I = / Aow - Tps—200Tgas Lip (8205, Dgw) dadt.
0JR™
T
sub-042-re| (7.115) I, = / dow - Typg-200Tyes Ly, (0205u, Ogw) dadt.
0JR"™
T
sub-043-re| (7.116) IS, = / Oow - Typs—200Tgas Lu, (0205u, Ogw) dadt.
0JR™
T
Xsub-30-re (7117) I?((fsub = // Tms—ngaleh(@zaaaU, 87’11)) : 8011) dxdt.
0 n

All of these exhibit a null structure.
We directly compress four of these into the expression

T
IXsub-main| (7.118) Toup s = // Ttha/aLlh(@maaavu, Opw) - Osw dxdt, h € BSt,
0 n

where the analysis will be slightly different depending on whether v and ¢ are zero or not.
In I%'%,, the case a # 0 is included above. If instead o = 0 then we integrate by parts d,
to the left, so that, after a perturbative energy correction, we arrive at

T
// 8311) . Tq3572T§ﬁ5 Llh(agf&;u, aﬁw) dxdt.
O n

Now we use the paradifferential equation 75 equation for w, which after more perturbative

errors allows us to replace the leading 92 operator by 99,, with a P paracoefﬁcientlﬁ%% %egn ain

0, combines with Tyzg—2 to give Tipg-2, thereby reducing the problem to the case of
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Finally in I3}, we commute inside and distribute the 9, derivative, peeling off perturba-

tive errors. We arrive at

T
I¥ s = /0/ Oow - Tpg—2T505 Ly (020,05u, Opw) dadt

T
—|—// 80w-Tms_zTgasLlh((?g@gu,8a85w)dxdt.
0 n

The first term is estim _ted_(?]y commuting Tjas inside Ly, and onto the first argument, after

which we use Lemmaf 12 In the second term we pull ds out, reducing the problem either
to 1%'2,;,, which was discussed earlier, or to

T
/ Oow - Tigg—2Tas Ly, (920505, Oqw) dadt.
0Jrn

But here we can pull out one of the 0, operators to reduce to the case of @M

After this discussion we have reduced the problem to the estimate for I, 5. Here, from
easiest to hardest, we need to consider the case when neither of v or ¢ is zero, then when one
of them is zero, and finally when none of them is zero. We will first illustrate the principle in
the easiest case, and then describe the additional complications for the most difficult case.
We leave the intermediate case for the reader.

A. The case v,0 # 0. The argument in this case consists of three integrations by parts in
a circular manner. Here we have h € 8S~!. We may include 0; in h in which case h € .5°.
Separating variables, the problem can be further reduced to h € 3. In the computations
below we omit h altogether, as it does not play any role. Then it remains to bound the
integral

T
(7.119) Lo = // Tgangh(é)i@au, aﬁw) -w dxdt.
0 n

Similarly, derivatives applied to g yield perturbative contributions, of size O(B?), and will
not be explicitly written in order to avoid cluttering the formulas. In the absence of boundary
terms, we compute as follows, integrating by parts in order to convert the null form into
three T’z operators modulo admissible errors:

Top = /T/ w - TgaﬁLlh(aaagu, Opw) dxdt
0 Jrn
= — / Opw - Tyap Lin(0007u, w) dzdt — // W + Tyas Lip (050,070, Qyw) dxdt + Err(B?)
= / OnOpw - TgaBLlh(8£u7w) dxdt —|—/ Jdaw - Tgangh(E)gu,@aw) dxdt
— // W - Tyap Lipn(950,02u, w) dzdt + Err(B?)
= / 000w + Tyas Ly (02u, w) dadt — Loy, — // W + Tyas Lip (021, 0n05w) dxdt

_ // W - Tyap Lip (050,020, w) dadt + Err(B?).
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Boxp-v

We now distribute Tjas, noting that any commutator errors involve derivatives of g and thus
are perturbative. We arrive at

T T
2y = // T5080,05w - Lip(02u, w) dxdt — // w - Ly (02, T5050005w) dxdt
(7.120) 0B 0 R

T
— // W + Ly (Thes050007u, w) dzdt + Err(B?).
O n

It remains to add the boundary terms at times ¢ = 0,7 into the above computation. Such
boundary terms arise from the integration by parts with respect to xg. We obtain the

following enhanced version of ( I?(H
(7.121)

T T
2y = // T5050,05w - Lip (0w, w) dvdt — // w - Ly, (0%u, T50500,0pw) dxdt
0JRn 0JRrn

T
_ // w - Llh(TgQBaﬁaaaiww) dxdt + Err(Bz)
0 n

T
—|—/w + Tgo0 Lip (80 02u, w) — dgw - Tyos Ly (07w, w) + w - Thao Ly (021, aw) da
0

The boundary terms are easily seen as lower order energy corrections, so it remains to
estimate the interior contributions. For the first one we can use the w equation to get the
fixed time bounds

(7.122) [Ty 0apwl| 2 < [|Ppw]|ze + (B2 + 25 Bey)||0w]| 12,

which sufﬁcesﬂ by combining the two components of the last term with either the A or the
B bound for u in L;,. The other two interior contributions reduce to the bound

(7.123) | Pt T8 000502 1 S 227182,
. @‘dﬂ . . . .
\j%l_ch Jp & consequence of Lemma and which suffices to estimate the expressions in

B. The case v = 6 = 0. In this case we seek to estimate the integral

T
(7124) [sub,OO = // Tr‘pg—ngaﬁLlh(axaaaou, %w) . 80w dxdt.
0 n

Here the hat correction plays a perturbative role and could be omitted. However, in the
computations below we need to keep it in order to be able to estimate energy corrections.
Our computations emulate the simpler case considered above, but with some care in order
to avoid iterated time derivatives. Integrating by parts the § derivative we get

T
Toup,00 = —// Tips—1T 508 Lin(0:080.00u, w) - Ogw dxdt
0 n

T
— // Typs—1Tz08 Lin(8:0400u, w) - 8gdsw dx + Err(B?) + Err(A)|],
O n

SHere the Ppw term may be interpreted as arising from a lower order correction to our multiplier 91,.
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where the last term accounts for the boundary contributions obtained when g = 0. In the dxu
first integral we perturbatively move Tas on the first L;, argument and then use Lemma 3
this allows us to move the entire first integral into the error, leading us to

T
(7.125) Loupoo = — // Tps—1T 508 Lin(0:0a00u, Ogw) - 0p0pw dx + Err(B?) 4 Err(AH|L.
Rn

0

On the other hand we can perturbatively drop the hat and integrate by parts the « derivative.
This gives

T
Lsuboo = — // Tps—1Ty08 Lin (000w, 0,05w) - Ogw dxdt
0 n
T
- // Tps—1T 500 Lin(9:00u, w) - 0p0ew dx + Err(B?) + Err(AY)|[f.
O n

In the first integral we perturbatively move Tjas on the second Lj, argument; using the

paradifferential w equation where the A and b terms are perturbative, this yields a lower
order correction to our multiplier. Switching the o and /3 indices we obtain

T T
]sub,OO = — // ngngaaLlh(ax@ou, (%w) . 808510 dx + // pr . an’w dxdt
0JR"” 0 n
+ Err(B?) 4+ Err(AY|L,

(7.126)

where ||Q||z2— 2 < A . )
The next step is to add the relations (ﬁ_ and dﬁ Here we separate the cases
a =j # 0 and a = 0, where in the first case we can drop the hat and pull out the 0, in Ly,

T
2Lsup00 = — // Tips—1T5i60; Lin (000w, w) - OpO0pw dx
0 n
T
— // ng—ngoﬁ [Llh(awﬁoﬁou, w) + th(ﬁwaou, 80w)] . 808511} dl‘
0 n
T
- // Tpw - Qoow dxdt + Err(B*) + Err(AY)|L.
D n

In the first integral we integrate by parts to switch gy to the left and then 0; to the right.
Then we distribute the 0y on the left. This yields

T
2]5ub700 = — // ngfngjsaj[Llh@w@O@ou, w) + Llh(c?xaou, c%w)] .8j35w dx
0 n
T
— // qug—ngoﬁ [Llh(ﬁxaoaou, w) + th(axaou, 80w)] . 808510 dx
0 n

T
+ // Trw - QOyw dxdt + Err(B?) + Err(Aﬁ)|0T.
O n
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In the first integral we may perturbatively correct d3u; this allows us to put back together
the cases when « is zero and nonzero,

T
2Isub,00 = — // Tﬁs—ngaﬁaj [Llh(ﬁx&)@ou, 'LU) + Llh(é?x@gu, 80w)] . aaﬁﬁw dl"
0 n

T
+ // Tew - Qdyw dxdt + Err(B?) + Err(AY)|S.
0 n

Finally, we commute Tj.s to the right factor, and use the w equation to add another per-
turbative factor to our multiplier. This gives

T
2l ub00 = // Tpw - QOyw dadt + Err(B?) + Err(A%)|E,
0 n

with a modified @), as desired.

The proof of Proposition @PlTsnow concluded. 0
ara-w ) ~
We now conclude the progf of Theorem [7.T[usimg Proposition @}D_Wlth the vector field X,
chosen as in Proposition and Y dein d as in q%ﬁ_ﬁﬁ these we have at our disp_ sgl
not only the conclusion of Proposition [(.7, but also the refined version in Proposition [7.9]
This guiarantees that the symbol ¢, in % has size B2, in the sense that its coefficients in
;%gi saguisfy

FeBL>S, 27FP_0d € BPL™SY,
. . . . . < -S
These conditions, in turn, guarantee that the flux term Cy in our energy estimate @;

satisfies
Cy(w, w)| S B?|ow]|7,
-para-—w
and thus the conclusion of Theorem ollows.

8. ENERGY ESTIMATES FOR THE FULL EQUATION

e-full-eqn
Our objective here is to prove energy estimates for the solution w to the minimal surface
equation in H* = H* x H*"!, in terms of our control parameters A* and B.

t:ee| Theorem 8.1. For each s > 1 there exists an energy functional E3;; for the manimal surface
equationrh) in H® x H*~1 with the property that for all H* solutions u to %) with A* < 1
and B € L? we have:
a) coercivity,

(8.1) Epp (ult]) = Jult]|f3

Hs
b) energy bound,
d S S
(82) EENL(UW) S BB (ult]).
Because of the assumption A* < 1, in this section we no longer need to track the fluezpen—
dence of implicit constants on A*. The exception to this is in the proof of Lemma where

the smallness of A* is used in order to guarantee the invertibility of our partial normal form

transformation; even there, we only need to use linear and quadratic A factors.
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The rest of this section is devoted to the proof of the theorem. This has two main
ingredients:
(1) Reduction to the paradifferential equation, using normal form analysis.
(2) Energy estirgatg§ afpr the paradifferential equation, which have already been proved

in Theorem

Hence, our primary objective here will be to carry out the above reduction. We recall the
minimal surface equation,
9% 0,05u = 0.
In order to use the energy estimates obtained in the previous section, we write this in
paradifferential form:

(83) (Tga@&l@g - 2TA787)u = N(U),
where the source term N(u) is given by
(8.4) N(u) = —1(0.05u, §*°) — Tp,0,u9"" — 2Ta0;u.

Here we cannot treat N perturbatively; precisely, we do not have an estimate of the form
IN () ()| o1 < B [Jut] |

even though N(u) is cubic in u, and the above inequality is dimensionally correct. This is
because N contains some unbalanced contributions.

To address this issue, our strategy will be to correct u via a well chosen normal form
transformation, in order to eliminate the unbalanced part of N(u). But in order to do this,
we have to first identify the unbalanced part of N(u), and reveal its null structure. A first
step in this direction is to better describe the contributions of the metric coefficients g*? in
N; explicitly we want to extract the renormalizable terms (i.e. the terms to which we can
apply a normal form correction). For this we express ¢g®° paradifferentially as follows:

Lemma 8.2. The metric g*® can be expressed paradifferentially as follows

(8.5) 9*P(0u) = g™ (0) — Tyarp8,0yu — TyrngayOsu + R(u),
where R(u) satisfies the following balanced bounds for s > 1:
(8.6) IRl ;-1 S Blloul g,
as well as
(8.7) | R(w)||gs—1 < || Oul| grs—1-
Thett - —d :
Proof. representation in ([8.9]) 31;1&:; The bound (@ for R follow from (@‘%md Lemmaﬁ
To get one estimates each term in R separately, using no cancellations. U

This suggests that the nonlinear contribution N (u) should be seen as the sum of two terms
N(u) = Ni(u) + Na(u),
where N; has null structure and N, is balanced,
Ny (u) = —2I1(0,08u, Tjor 5, 0410),
Ny(u) = =2 (To,05uT yor o0yt — T, p3ugor95u0y1) + To,05uR (1) + I(0aOpu, R(u)).

We will first prove that Ny(u) is a perturbative term:
93



1:n2| Lemma 8.3. The expression given by No(u) satisfies the bound
(8.8) | Ny () || o1 < B2|| 0| s, s> 1.

Proof. We begin with the first difference o1 Do 2 and look separately at each «, 8 and ~. If
(e, B) # (0,0) then we apply Lemmagf? to O)BEaln

_1 1
1(TouosuTger00u = Thoosugerosu) Oyull e S [[1D]720a0sull Baro|l| DIZ (9% 07u) | Brrol|Qull -
< B2)|0ul|gre-1.

If (o, B) = (0,0) then we use the wave equation for u with the § metric @to write

(8.9) Pu = (T50,0u + To,009) + T1(G, D,0u) =: P2u + o (u),

exactly as in Lemma @_Then for the first term we have the estimate
(8.10) 105wl S B

BMOiN

) . ara-prod ) . . .
which suffices in order to apply Lemma &f as ai’?ove in order to estimate its contribution.. t

On the other hand, the bound for the contribution of 79 (u) is easier because by Lemma@f
we have the direct uniform bound

(8.11) I (u)]l 2 < B2

Now, we turn our attention to the second term in Ny(u), where we again discuss separately
the (a, 8) # (0,0) and («, 8) = (0,0) cases.
For the (a, 8) # (0,0) case we use the bound in to obtain

[ Togo5ult(w) | o-r S 0adpull ), 0-1 112(w)] < B2)|0ul
Next we consider the case (a, ) = (0,0), and observe that we again need to use the

decomposition fie contribution of J2u is estimated using (8.10) and the bound
for R, exactly as above

1 Tse, R lme—r S NP 205l prol R oy S B2 0]

For the mo(u) contribution we use the pointwise bound @ and the H*~! bound @ for
R,

H577 Hs—1.

| Tea R o1 S Ml (u) oo [ R(w) [ 252 S B2 (| Oul
Finally, a similar analysis leads to the bound for the balanced term I1(d,0su, R(u)).

Hs—1.

U

To account for the unbalanced part N;(u) of N we introduce a normal form correction
u-nft| (8.12) = u — I(0pu, Ths,u) := u — us.

Our goal will be to show that the normal form variable solves a linear inhomogeneous parad-
ifferential equation with a balanced source term.

Lemma 8.4. The normal form correction above has the following properties:
a) It is bounded from above and belouﬂ

[alt) I3 = [Jult]

A slight expansion of the argument shows that it is in effect invertible.
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b) It solves the an equation of the form

(8.13) (0aTyes0 — Tar0y)a = Na(u) + ;R (u) + Ra(u),

where

(8.14) [ R ()]

and
(8.15) 1Ry ()| o S AP |Juld]

We remark that here we expand the meaning of “balanced source terms” to include ex-
pressions of the form 0,R; with R; as above. This is required due to the fact that time
derivatives are ofteﬁzflore dif@gulg to estimate in our context, and are allowed in view of the

. 1n-wp-inhom
result in Theorem B.5[

me S Blult]] we-1 S BJult]]

HS ||R2(U)|

HS

HS.

Proof. a) In view of the smallness of A*, for the boundedness of the normal form it suffices
to show that we have the fixed time bound

2
(8.16) [zl s S AP [Jult]
as well as
2
(8.17) 1Ovuall o1 S A [[u[t] |35
For the first bound we directly have
2
(8.18) ITL(Opu, Toe,u)] w1 | Tosuul puor S A [|ult]]

We prove the second bound in a similar manner, but we first apply the time derivative and
analyze each term separately:

atH(agu, TaﬁuU/) = H(@tagu, Taﬂuu> + H(aﬁu, TaﬂuatU,) + H(aﬂu, Tata/iu’LL) =711+ 71 + r3.

There are multiple cases arising from the strategy we will implement for terms involving two
times derivatives, as well as from the particular structure of each of the terms.

We begin with 71, where we need to separate the g # 0 and 8 = 0 cases. The easiest case
is when 8 # 0, where we have

pil| (8.19) |1L(0:0pu, Ty, u)|

HS

e S |]85u| Hs -

— 2
ot S [ Tosul|se sup 2 |1 PO Ogul| e S AT |ult]]

HS®

Here we have used the energy control we have for 0;u, which in turn gives control of all sp i_ak N
derivatives of dyu. For the case § = 0 we use the degompasition for O?u as in Lemma [5.4]
For the first component we use the second bound in %,7

A _ A 2
100w, Toswt)llme—s S | Tosutll e sup 2™ || P ulle S A Jult]

HS®

—dt2u-err
For the second component we argue similarly but using the second bound in @_’@t‘her
with Bernstein’s inequality,

[TL(72(w), Tosyu)]

HS*

_ 2
e 5 [ Toruull e sup2 | Pama(u)z S A Jult]

We continue with the bound for ry, where we do not need to distinguish between the time
and space derivatives,

2
(g, ToeuOu) o1 S [ Tosu0hul e S A ult]

e [0l e S A0 ul| o [|Opul He-
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Lastly, we need to bound r3. Here we argue as in @D,

a5 Allul

I73llzs-1 S 10wl Lo (| Th 081 = SUp 2% Py 0,0%ul| oo,

so it remains to prove the following bound for 9,0°u,
pi3| (8.20) | Per0:0%u| oo < 2F AP,

Here we use the chain rule for the paracoefficient to write 9,0°u as a linear combination of
0?u and 0,0,u,
0,0°u := 0,h(0u) = h(Ou)0?u + h(Ou)0,0,u
L. . -short .
where h := h(du). For the 9? term we use the minimal surface equation (gfgi, arriving at
the representation )
9,0°u = h(0u)0,0u,

where I incorporates the corresponding metric coefficients. As before, we need to use a
Littlewood-Paley decomposition

h(0u)Da0u = Ty, 5, 0x0u + T, 0uh(Ou) + TL(h(Du), D,0u).
The first two terms are easy to estimate using only L* bounds for du and B(@u),
1Pk Ty ) OOttl| oo + || Pt T, 000 (00) || oo S 28A.
Finally for the third we use instead the .A* component of the ¢, norm for both du and h(du),
| P IL(R(O0), 8,0u) || oo < 2F||TL(R(O0), p0u)]| 1n < 2k A2,
Hence : follows. This finishes the proof of , and thus of the boundedness from
above and below of the normal form transformation in our desired Sobolev space H?*.
b) We begin with the supposedly easier contribution, meaning with the term 7’40, us. To
bound this term we would like to commute the 0, and place it in front of the product,
T'a~Oyug = 0, Tavugy — Th avus.

This would look good for the first term on the RHS. However the last term would be prob-
lematic, as it may contain three derivatives with respect to time. To avoid this issue we first
substitute AY, which by is given by

A7 = 0%ug®0,0pu,

with the more manageable leading part A given by

o

A’Y = TaauTgaﬂ/@[/.
.dt2
Here the hat correction is from the Definition %_%hen
TA’Y@»YUQ = (TA’y - TA’Y) &YUQ + TAVaWUQ
= (TA’Y — TA“/) 87’&2 + 67TA7U2 — T&YAVU,Q.
We will sugcessively place each of these terms in 1 or Ry. We place the first term in fi%.c le-a
To prove ‘% for this term, we use the bounds (8.16[) and ﬁ% for us, and Lemma %§ to
bound the coefficient

(5.21) A7~ A S B2
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We will place the second term in ;R if v = 0 and in Ry if v # 0.
In order to prove (8.14]) we measure u; in H5+3,

S [|ull [Towull s < [|Ou]

(223 e paok sarod 10l lullms < AB|lult]|[3:-

Then (% follows if we can bound the coefficient A by
| P A7|| e < 27,

:circle-mpmg—bd
t this is also a consequence of Lemma [6.9] see . On the other hand for the bound
we estimate uy in H*® as in (8-16)), and then it suffices to show that
1P A7 e S 28 A,

which is similar.

The last tE% i_sdglaced in Ry using again the bounds and @ for us on one hand

and Lemma on the other hand, to obtain
|| Pe8, AV || e < 2882,
Now we consider the main term 9,7 ,asguz, which can be expanded as
0T jos0pty = 00T yas0g [I1(0yu, Toryu))
= 0T s [T1(050,u, Toryu) + (04w, Ty,0nuu) + (04w, ToryOpu)] -
Depending on whether o = 0 or o # 0, we place the middle term into 0; Ry or Rs, respectively:
L0y, Tosorute) |+ < B2 lult]

HS

2
0y, Toporate)l| o1 < A ]l

Here we, use the property dz0"u € ®C to handle the case when 3 = 0 for the first bound,
and for the second.
The first term can be rewritten in the form

(8.22) 0o T o T(D30 0, Torvytt) = OaTU(T o050, Tory) + O Ry + R,
by using Lemma ﬁg,a as well as Lemma @Ef%r the case (8,7) = (0,0). Similarly the last

term can be rewritten in the analogous form
(823) QXTgasH((%u, TavuaBU) = QQH(QWU, Ta“/uTga,ﬁaﬂU) -+ @Rl + RQ.

1 3
Finally we dis’&ribute the « derivative in both @L and @L For the first term on the
right in we get

aaH(Tgaﬁag\(%u, Tovyu) = H(@aTgaaﬁ/g\@U, Toruu) + H(Tgaﬁag/au, Ty, 0vut)
+ H(Tgaaéﬁu, TovyOnt)
= 81 + So + S3.
We place s; in Ry using Lemma @ﬂ
oot S 50D 2| Pot0uT s oyl o]
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fimportant

The term s, is also estimated perturbative %pgérclgmthe fact that 0,0"u € ®€, which allows

us to decompose it as a sum f; + fy as in (H.20]) en we estimate

_k S _J
[s2llzrs-1 < S%PQ 2 || Py T yos DpO-yul| oo sup 272 | P fr| oo 8] 3¢
J
+sup 2| P Tyes Dp0yul oo | fal | Los ult] 14

< B?|lut]|

HS

using Lemma, .'4;5%1" 8/5\6%1; In s3 we can switch T, onto the other argument of II using
Lemma%ﬁove the hat correction, so that it becomes halE of Ny

The last remaining term to bound is the one on the RHS of . Here we distribute
again the a-derivative

aaﬂ(é?vu, Taqugaﬂagu) = H(@a&yu, TmuTgaﬁaﬁu) + H(@Vu, TaamuTgaﬁqu)
+ (0yu, Tova T, gor Op) + H(Oytt, T Tyos Op0a).
By inspection we observe that the first term in the equality above is the second half of V.

The remaining three terms can be estimated perturbatively using exactly the same approach
as in the case of ; O

n2 i tant
In view of Lemma @‘We can include Ny(u) into Ro(u) in @ﬁbﬁcaining the shorter

representation of the source term
(824) (&ngaﬁ@g - TAwafy)ﬁ = 8tR1 (U) —+ RQ(U),

where R; and R, satisfy the bounds ﬁ} and

For t‘hear}é(_){rnogeneous paradlfferentlal problem we have.l the H® energy Es given by The-
orem @dWEEWﬂl use this to construct our desired nonlinear energy E3;; in Theorem B.1I[
Because we have the source term 0,R;, the associated nonlinear energy will nthk{% sigx_lglﬁom .

given by E*(a[t]). Instead, the correct energy is the one provided by Theorem [.5 namely
(8.25) Exp(ult]) := E>(alt] — r[t]),

where the correction r[t] is given by

(8.26) rlt] = ((Tgoo)ol . (u)) |

—corect
Then by the estimate in @W obtain

(8.27) 4 By ult) < B @l ~rllr) + BB (ulf),

) ) —source
where 7[t] is as in :

, [t] ': (Tg()o)_lRl
LR (Tgoo)_l(Rg — akTgko (Tgoo)_lRl — Tgozcak(Tgoo)_lRl) '
Our nonlinear energy E¥;; is coercive because r|t] is small,
2
[l S A [Jut]]
due to the bound % !5 ). Finally, we control the time derivative of the energy, because

Iraftlllzes < B2 [lult]
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This is due to the bound in (%

9. ENERGY AND STRICHARTZ ESTIMATES FOR THE LINEARIZED EQUATION

linearized

Our objective here is to prove that the homogeneous linearized equation is well-posed in
the space H> (respectively H? in two di en g%ns) and satisfies Strichartz estimates with an
appropriate loss of derivatives, namely (.33 with S = S4;7, under the assumption that the
associated linear paradifferential equation has similar properties. The main result of this
section is as follows:

=ATT3 =ATT2
linearized| Theorem 9.1. Let s be as in @_(respectively @_m dimension n = 2). Let u be a

smooth solution for the minimal surface equation in a unit time interval, and which satisfies
the energy and Strichartz bounds

u-have-now| (9.1) [lu

Assume also that the associated linear paradifferential equation

-inhom-re+| (9.2) 0T 40808v = f
[Lin-inhon]

sk <L

s
SAIT

18 well-posed in Hoe (respectiv ﬂ%uﬁhdimensz'on n = 2) in a unit time interval, and satisfies
the full Strichartz estimates L with S = Sarr, in the same interval.
Then the homogeneous linearized equation

(9:3) 0a§*’ 00 =0

15 also well-posed in Ho (respectively ; %_igmdimension n = 2), and satisfies the homogeneous
form of the Strichartz estimates in (4. with S = Sarr.

We continue with several comments on the result in the theorem, in order to better place
it into context.

e Up to this point we only know that both the full equation and the associated linear
paradifferential equation satisfy good energy estimates, but we do not yet know
that they also satisfy the corresponding Strichartz estimates. Tf};ligeg% Pz%\é/ever not a
problem, as the main result of this section, namely Theorem above, will only be
used as a module within our main bootstrap argument in the last section of the paper,
by which time we will have already established the energy and Strichartz estimates
for both the full equation and for the linear paradifferential equation.

e The exponent s in _the .%bove result needs not be the same as the one in our main

1
result in Theoren 1 be taken to be smaller, as long as it still satisfies the
constraints in : ﬁl

e While we can no longer control the linearized evolution purely in terms of the control
parameters A, Af, and B, these still play role in the analysis. The hypothesis of the
theorem guarantees that

A <1, Bl <1

J =full
e The exponent ¢ in the bound (@. uWl+ S = Sarr should be thought of as (%&

su_%gj[%ntly small, compared with the distance between s and the threshold in
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e The smoothness assumption on u is not used in any quantitative way. Its role is only
to ensure that we already have solutions for the linearized problem, so we can skip
an existence argument. Thus, by a density argument, the result of the theorem may
be seen as an a-priori estimate for smooth solutions v to the linearized equation. As
our rough solutions will be obtained in the last section as limits of smooth solutions,
this assumption may be discarded a posteriori.

e The reason we only consider the homogeneous case in the linearized equation
is to shorten the proof, as this is all that is used later in the last section. However,
the result also extends to the inhomogeneous gasg. In particulay in dimension n > 3
this is an immediate consequence of Theorem %T_mnsion n = 2 an extra

argument would be needed.

in-inhom

One major simplification in this section, compared with the previous two sections, is that
we no longer have the earlier difficulties in estimating the second order time derivatives and
even some third order time derivatives of u. In particular, we have the following relatively
straightforward lemma:

—Nnave-now
Lemma 9.2. For solutions u to the minimal surface equation as in @I ) we have the bounds

2 ~

(9.4 JPull gy + 10955 < 1.
as well as

(9.5) (D)% 0y Tyas Og0ul| prre < 1,

where dg > 0 depends only on s and

1 1 2 1 1 2 1 1 2
-+ -=1, ;< -<:-+—7, oc=({n—5 |-~ r) =0 n=3.
P q n—1-q¢-2 n-—3 2)\¢ n—3

respectively

+
p q
_eas . . . . .
Proof. For lE%i we only need to consider the second order time derivatives, which we can
write using the minimal surface equation as
Otu = h(0u)d,0u.

By Moser inequalities we have ||h(0u)||gs-1 < 1. Since s — 1 > n/2, it is easily verified that
the space S%;7 is left unchanged by multiplication by h(du). The same argument applies to
derivatiyes of the metric ag.

For (9.5)) we can use again the minimal surface equation to obtain the representation

8aTga58g87u = Talagau + Tagﬁzu + H(é’g, 82u) + H(g, 83u),

where we can further write

O*u = 0,(§0%u) + 090 u.
Hence we need to multiply two functions in S%,%, which contains a range of mixed LP norms
at varying spatial Sobolev regularities. We can do this optimally if both mixed norms can
be chosen to have non-negative Sobolev index. In order to avoid using Sobolev embeddings
we further limit the range of exponents to the case when one of the Sobolev indices may be

taken to be zero. This gives the range of exponents in the lemma. 0]
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paralin

radiff-eqn

Next we discuss the st te%hof the proof. The first, potential strategy here would be to
. . om ; alin-inhom-re
try to view the equation 15%) as a perturbation of (9.2]]."Unfortunately such a strategy does
not seem to work in our context, because this would require a balanced estimate for the
difference between the two operators, whereas this difference contains some terms which are
clearly unbalanced.

To address the above difficulty, the key observation is that the aforementioned difference

normal form analysis, in order to develop a better reduction of . Because of
this, the proof of the theorem will be done in two steps:

exhibits a null structure, at least in its unbalanced part. This opgns_’ggﬁogoogﬁg_% Jpartial
¢ 2

(1) The normal form analysis, where a suitable normal form transformation is con-
structed.
(2) Reduction to the paradifferential equation, using the above normal form.

9.1. Preliminary bounds for the linearized variable. The starting point {iol%cl)lme proof
of the theorem is to rewrite the dlvergnncelform of the linearized equation (Egi as an inho-
mogeneous paradifferential evolution (9.2 with a perturbatlve source f, as follows:

(9.6) Tpv = —0,T9,09*" — 0all(9pv, §°°) =: f.

While we cannot directly prove a balanced cubic estimate for f, a useful initial step is to
establish a quadratic estimate for it. The expression for f involves v and 0;v, which we
already control, but also 9?v, which we do not. So we estimate it first:

) in-inhom
Lemma 9.3. For solutions v to we have

1070 @3 S Mol =3,
107 v (@), < Nlolt]

(9.7) ||Hg h—o
gggf.io\ril%gcog:s%%%% ’t}‘;; (;isa(; ZV Et 3, and comment on the case n = 2 at the end. Using the
Otv = h(0u)0,0v + h(Ou)d*udv.

Here by Moser inequalities we have
1R(@0) e < 1.

. _eas . . .
Then, using also @_ﬁh—e}[ conclusion of the Lemma follows from the straightforward multi-
plicative estimates
H*™'-H*—H:  HVH2H:5H:

where it is important that s > 5 +1 and s > g This last condition is not valid in dimension
n = 2, where we only ask that s > 2 + %. This is why the Sobolev exponents in this case

need to be increased by %.
O

alin
We now return to the quadratic estimate for the source term in @_

1 ) in-inhom . .
Lemma 9.4. Let v € S}, satisfy @._Th_en v also solves the inhomogeneous paradiffer-
ential equation

(9.8) Tpv = f,
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with source term f satisfies the following bounds:
a) For n > 3 we have the uniform bound

9.9 1713 € 1ol et

and the space-time bound

ong-F-est3| (9.10) [ fllzrre < ||UH||LOOH%
with
I n 1 1 N I 1
¢ n—5 20 p q¢
b) For n = 2 we have the uniform bound
(9.11) 171+ < E
and the space-time bound
ong-F-est2| (9.12) [fllzare < ”U[']HLOOH%'

Proof. To avoid cluttering the notations, we prove the result in the case n > 3. The two
dimensional case is identical up to appropriate adjustments of LP exponents.
We write

—f = T5,0500"" + T5,0009"° + 11(0a05v, §°°) + I1(0gv, 0a§°7).
For the two terms where J, has fallen on g, we have
15,0009 + 11850, 8ad® ) za S 0I5 KD2)2 00|l umy Sa 0l 5 10ull 50my

1.

2
Finally, in the cases where the 0, has fallen on v, w, .eatstily obtain the same estimate due to
a good balance of derivatives. Here we use Lemma 0 bound second derivatives of v.

Il

O

. . . [1:pre-paradiff-eqn .
9.2. The normal form analysis. The estimate in Lemma [9.4]1s suboptimal as it does

not recognize the cubic structure of the source. This is due to components of the source in
which the linearized variable v is the second highest frequency, and which are not efficiently
balanced with respect to derivatives. In fact, these cubic terms may heuristically be viewed
as quadratic with a low frequency coefficient.

To better understand the source terms, we begin with a better description of the metric
coefficients. By applying Lemma @ to g_% g*” (see also @% and rearranging, we may
write the paradifferential expansion

g-paradiff | (9.13) §°%(0u) = §*?(0) — Ty0897ut-gor9u+f190u0u + R(Ou),
. . [1:Moser-control
where R satisfies favourable balanced bounds, as in Lemma p.7]

good-R| (9.14) IOR||n < AP, ||0R| 1~ < B
. . X alin . —paradiflparalin )
To obtain a cubic estimate for @,_we substitute (9.13)) 1 (9.6) and write

Pl

paralin2| (9.15) Tpv = Ny(u) + Na(u),
where

Nl (u) = aaTaﬁngaﬁa'\/uJ’_ga’yaBu_’_gﬁvaau8«/& + aa]._.[(aﬁv, Tgaﬁa’yu_;'_ga’y8Bu+gﬁ'y8auaryu>
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lin—-nf

radiff-eqn

bdd-nf

radiff-eqn

rong-F-est

xtra-F-est

v2-nf

g FHEEE @

dtv2-nf

consists of the essentially quadratic, nonperturbative components, while
NQ(U) = —aaTaﬁvR(au) — 8aH(8gv, R(@u))

consists of the balanced, directly perturbative components. We address the essentially qua-
dratic components in Nj(u) by passing to a renormalization ¥ of v,

(9.16) =0 —Try, 0,00 — Ty 00yt — H(Tovy,0yv, u) — I(Tovyv, Oyu) i= v + vy,

This renormalization eliminates the components of the source where the linearized variable
v is the second highest frequency. We thus replace Nj(u) with a source consisting of terms
with v only at the third highest frequency, and hence may be viewed as authentically cubic.

L. 1 . in-inhom . .
Proposition 9.5. Let v € S3,;; be a solution for 1@?5 T'hen the following two properties
hold in dimension n > 3:

(i) Equivalent norms:

(9.17) 1]1l,,5 = llvlt]

(ii) © solves a good linear paradifferential equation of the form
(9.18) Tpv = Opf1 + fo,
where the source terms are perturbative:
9.19 o < vl| o, ISR 1,
(9.19) ellg < Molly o il < Bl
as well as
(9.20) IAON -y S Aol

AIT

The same result holds in two space dimensions at the level of v € Hs.
. =nf .
Proof. (i) For the bound ﬁﬁ? it suffices to estimate v, as follows:

(9.21) l2 ()], 5 < Al0ltl],3

(9.22) 102 ()], -3 < AFllvlE]],,3-

The first term of vy can be directly estimated using scale invariant A bounds,

1T 0,00l 3 S N Torudholl -3 10ullzee S N0ullz<|050]l -y 10Ul S A2(|00]] -3 -
The third and the fourth terms are similar. However, for the second term we need to use
the A* control norm combined with Bernstein’s inequality:

1Tryy 00yl g S Tl 3 100l g e S I0ullioe o],y 190l g o0 S ALKy

: nf o . . .
We next consider @Where we distribute the time derivative, obtaining several types
of terms:

a) Terms with distributed derivatives, namely T, 5,0u and II(Th,0v, Ou). We estimate
the first by

Ty, 000ull -3 S | Toudvll 3 0ulle S A%00]] -y,
and the second, using Sobolev embeddings, by
T Tou0v, 0u)l ;-3 S ML (Tou0v, Q)| 20 S | T0udll, 3 0]y 00 S AA 0],y
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b) Terms with two derivatives on the high frequency u, namely Tr,,,0%u and I(Tp,v, 0%u).
In view of the bound (@_ﬂ% corresponding estimate is nearly identical to case (a) above.
c) Terms with 9;07u. Here we know that 9,07u € H*™2 so we arrive at estimates which
are also similar to case (a).
d) Terms with two derivatives on v. If one of them is spatial (i.e. 7 # 0) then this is similar
to or better than case (a). So we are left with the expressions Tr, g2,u and (Tp,0%v, u).

But there we can use the bound and complete the analysis again as in case (a).
Inf-paradiff-eq g
(ii) The proof of (9.I8] along with the estimates |ﬂj 1@“’
four steps.

in2
1) We first estimate the balanced source term component Ny(u) from @ﬁWe consider
below the paraproduct T term, but the II term is similar. We first consider the cases where
) va = 0; is a spatial derivative, which we will place in f;. We have by
Lemma [p.7] (see 1;«‘_@ above)
10:To,0 R(Ou) | 172 S [0/ 1OR(OW) || Lo S BE[[0[tll3172,
where the B? factor is integrable in time. We place the case where 9, = 9 in 0, f1, estimating

| Tos0 ROW sz S N0lt]lla/2 | OR@u) | 2o S B 0[] I3/,

and
[To5u B(Ou) [ =172 S N Togu ROW| | 2o S 0[] ll300/2 |OR(Ou)] | £n S AP [0t ll30/2,
as well as
_n_1
(D)2 1T, R(Ou) ||z S | TopuR(OU) |12 S 100[]]3-1/2 [OR(Ou)[ 20 S APBl[v[t][l31/2-
Herg we have a single B factor, which is L? in time, as needed for the L?L> Strichartz norm
in lﬁ%)i

2) Next, we apply product and commutator lemmas to exchange Nj(u) for an equivalent
expression up to perturbative errors, in preparation for comparison with the contribution
from the normal form corrections. Here, we discuss the first term of Nj(u),

(9.23) aajkmvjbaﬂawuayua

but the remaining terms, including the balanced II terms, are similar, using the analogous
product and commutator lemmas. We first consider the cases where the outer derivative

0, = 0; is a spatial derivative, and%agreaﬁglr J?%thlg%%tive errors n_f» By an application of
(EE%% with

product and commutator Lemmas and 2.4 we may replace

8a757u7}%vigaﬁ87u.
. :para-com . —prod2-e2 :para-prod2 .
Then applying Lemma an e estimate in Lemma [Z.8] 1t suffices to consider
aaTgaBTTmuaﬁva,yu.

n th_nggssg where 0, = 0y, we place all perturbative errors in 0,f;. The bound for f; in

S 1m_1¥@re to the one for el?—]ﬂ‘t— etsl%ere is a price to pay, namely that we also need to

prove (%?_Fo_rfunately for we may disregard all commutator structure and discard
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all the para-coefficients, as they are bounded and gain an A* factor, so we are left with
proving a bound of the form

Touull -, < 100

AIT

Lg%
Here for the uniform bound we simply write at fixed time
ITobull, ) < 100],_y 10ulli~ S Allow] .
and for the L2L*> bound we have
[Tou0ull2 < Bl0w] -3

using B for the square integrability in time and then applying Bernstein’s inequality in space
to convert the L? bound into L.
Applying the same analysis to the other terms of Nj(u), we have reduced the problem to

N{ (U) = 8a(Tga;aTTmu@ﬁU87u + TﬁmTTaﬂuaﬁv&,u + TngTa%aﬁv&yu)
+ 00 (1T 08, Tyas Oyu) 4+ (T9s,0pv, Thor Oytt) + I1(Tpar, Ogv, Tysr Oyur)).
3) We next establish the cancellation between the normal form correction and Nj(u). In

this step, we discuss only the low-high T" paraproduct cont ibqtif)ns, and return to the II
contributions in Step 4. Applying T's to the T" term of vy in ‘%. iﬁi, we have the contribution

iv-para-nf| (9.24) —00T 50803 (TTmuawu + 11, 0041).

a) We first would like to observe that the cases where the derivatives dg and 0, are split,
between v and the high frequency w, cancel with the first two terms of Nj(u). The main
task to verify before doing so is that the cases where the 0 falls on the lowest frequency
para-coefficient 0"7u are perturbative due to an efficient balance of derivatives, and may be
absorbed into fy or f;. To see this, we analyze separately cases involving spatial versus time
derivatives. In the case of spatial derivatives 0, = 0; and dz = 0;, we directly estimate

HaiTgiJ'TTajmu&yquHfl/Q < B [|w[t] |32

In the case where d3 = 0, we obtain the ame estimate in the same manner, except when
0, = 0p. In this case, we may use Lemma %’t’o estimate the lowest frequency d3u.
It remains to consider the case d, = 0y, which we place in 0, f;. We have

| T50: T, 0,0t r1v2 S B2 (0[] l0112

-F-est
as before. For f; however, we also require an estimate for the full Strichartz norm in (ﬁizt()a) =2
We separate Jg again into spatial and time derivatives. For the spatial case, we have by
Sobolev embeddings,

T30 Try o0t 172 S Ty grootil], o S (D) 2070l 2o [0 [t] 13017210l o
S AL [t]ll5/2

for the uniform bound, as well as

1 Tg0s Ty g0 0ullze S (D) 20 ull n 0[] ll302/2 | O < BAoft]l51,2

1
BMO?2

for the L2L> bound.
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Tsubstepl

For the case ds = 0y, the lowest frequency includes an instance of 93u, where we apply

Lemma [5.4] This contributes a spatial component éfu which is estimated as before, as well
as a balanced II interaction, namely mo(u). This case is estimated by

2
owotll, 2o S Ima(u) o[tz [0l S AAT 0]t |32

| Ty T

7r2(u)60'UU’HH71/2 SJ HTT‘ir

2 (u

for the energy norm respectively
[ T00 T, sadonttllze S e (@) ||z [0[t]lla/2]|0ul e S ALEBI[0[H] [l301/2

7o (u

for the L2L*> bound.
Having dismissed the perturbative cases via this analysis, we observe an exact cancellation

with ghe first two terms of Nj(u). Collecting the remaining paraproduct terms from Nj(u)
and , we are left with the expression

jaoottll 2 S T,

T

(9,25) 8aTgﬁ7TTa%aﬁv67u — 8aTgaﬁTTmuaﬁawu — 6aTga5TTmuv85&yu.

tepl
b) Before proceeding, we further process the first term in @i_wpﬁh the key step being
an integration by parts which reveals an instance of Tpv. Reindexing, we rewrite this term
as

a,yTgﬁaTTa,yua vﬁau.
. ‘para—-com . —-prod2-e2 1 -para-prod2 o
Then applying Lemma 2.4 and the estimate (2.13]] in Lemma E.?Slto commute Tgaﬁ, similar

to step 2), we replace this by

a’YTTmuTgﬁa aﬁvaau'

Simulating an integration by parts with respect to d,, we write this as
8a87TT87uTgﬁaaﬂvu - 87T3aTmnT§Baaﬁvu.

We will carry the first of these terms forward to 3c), while the latter term is perturbative.
To see this, we observe that 0, may commute through Tpv,, similar to the analysis in 3a).
Thus we arrive at the expression

8’YTTmuaaT§,ﬁaaﬁUu = 8’7TT87quUu‘
We consider separately via fy and 0, the_Fg(glslgributionﬁ_._cnorrer_eggr%laglggegﬁ) 0, = 0; and
87 = 0y respectively. For the bound , using Lemma (.4 and the Strichartz exponents
(1, q1) given by

1
(9.26) — = ., —4—==

we estimate, in both cases,
3
HTTmuTPUUH(S;z%T)/ S I(Dx) 2+6TTmquvu”LP’1LQ'1
< ATpollmsalull oo

. a-F-est = . . .
It remains to prove the bound @Tﬁﬂhm is again a simpler bound ere we have a
@\LZ_%) A El?} we

considerable gain. Indeed, using only H?® Sobolev bounds but including
obtain at fixed time
1Ty, rpvttll 2 S AllTpvll, -5 l[ull e,
which suffices for all the Strichartz bounds.
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¢) Returning to @%&1{ replacing the first term via the analysis in 3b), we are now left

with
Da (a'YTTB'YuTgBOé dpvlth — Tﬁo‘ﬂ TTmuaﬁaqu - Tﬁaﬁ TTmuvaﬁa’YU)'
We observe a cancellation between the first two terms. To see this, we apply the Leibniz
rule for the 0, derivative on the first term. Similar to 3a), cases where the derivative falls
on the lowest frequency 9 u or §° are perturbative. We also have a term which cancels the
second term, leaving us with
aa(TTéqugBaanavu - TQQBTTEM”@B@WU).

. :para-com -prod2-e2 [l:para-prod2
Applying also the commutator Lemma @a_nd_t"ﬁe bound (Z.I3) n Lemma 2.3 as n 2), we

rewrite this as

aaTBWuTTgﬁa aﬁva'y'u/ - aaTTaA/ungaB aﬁafyu

d) We apply the Leibniz rule with respect to 0,. Here we observe that cases where 0,
falls on lower frequency instances of u or g are perturbative. Note that in contrast to the
previous substeps, we no longer have the 0, divergence and so we must put all terms in f5.

We consider for instance the term

TTaa B’YuUTgaﬁ 813 a»yu.

Excluding the case of two time derivatives in 0,0"u, this is easily estimated due to a favorable
balance of derivatives. In the case of two time derivatives, we have 0,0"u € D€ so we can
use the decomposition in Definition %?Say 0,0"u = hy + ho. The first component can be
thought of as a spatial derivative and is again easily estimated. It remains to consider the
contribution of the second term hy € B2L>:

|1 T5,,,0 Tges Op0yull 12 S Allhall o< [0l 3 |07 o2
< B[vft] 2.
A similar analysis applies in the cases where 0* falls on a low frequency metric coefficient g.

e) We record the remaining terms afEer gﬂ%ying the Leibniz rule, and will observe instances

of T’s for which we use the equation , as well as a cancellation. We arrive at

Tawu(TaaTgﬁaaﬁvayu + TTgﬂaaﬁUaaayu) — TTmuaangw@g@Vu — TTmuvaaTgagaﬁ(%u.

. . . —-prod2-e2 1 :para-prod2
Reindexing the second term, and applying the bound (Z.T3) in Lemma [2:3[1n the second

and the third term, the above expression may be reduced to the form
(927) TaquTpva,yu + Taquga,@Taavagavu — Taquaangaza@gayu — TTawuvaaTgaBaﬁafyu.

Now in the two middle terms we have a commutator structure, which can be estimgted - .o
directly by Lemma [Z. remains to consider the first and the last term. We apply (El ifii
to the first term, and estimate in a dual Strichartz norm with (py,q;) as in ,

s (Da) 2 T Oy Al Tpv]| Lo ral|Oul]

1 / / < 1 .
2 LPiL%1 ~ L2WzHoee
AIT

Tl

For the !as_tdltlerm, on thg-oi}f% hand, we use a Strichartz bound for v and match it with the

bound (9.5 in Lemma [9.2]
{D2)" Ty, 100 Tgas Oa05ull gy S TP 01l 1 s (D)™ 0Ty Dp0-ull posran < 0]
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tvb

where
1 1 1 2 1 1 1 1 1

_— = —1’ _— = 1 —_ — _ —_ =, _ _— = ]_
ps n—s; Pa P3 ps g3 2 Pa Qs
Here the Strichartz exponents p; and g3 are chosen so that the first factor on the right is

controlled by ||v||S 1 and ¢ is arbitrarily small. On the other hand dy is a fixed positive

parameter which depends only on the distance between s and its lower bound.

4) It remains to consider the cancellation between the balanced II terms in the normal
form correction and in N{(u). Here the analysis is identical to the analysis for the low-high
T contributions in Step 3, due to the analogous structure for the 7" and II terms in both vy
and Nj(u). The main care that is needed is to observe that all negative Sobolev exponent
norms have been addressed in Step 3 by either using a divergence structure, or by Sobolev
embeddings, which apply equally well to the balanced II case.

O

9.3. Reduction to the paradifferential equation. Here we first use the well-posedness

result for the linear paradifferential e uation, in ord%t_ 10 olgl)lg%na%o gd bound for v. The
(El igi and Lh

source terms are perturbative by eorem .12 so the solufion v must satisfy the
bound

ol -y, e<l.

T AIT

(9.28) 19l 3+ 118l -y < NO[0]]],,3 + cllvl
AT

1
2
AIT SA

I
It remains to show that the Strichartz estimates carry over to v. For this, it suffices to show

that

(9.29) feall g+ 100l g < ol

. . . . =nf
If this is true, then combining the last two bounds %mh_i’%}ﬁ%mnorm equivalence (ﬁ we

obtain the desired bound for the linearized evolution , namely
(9.30) 1l g3+ 118l -y < [[0[0]]],
AIT AIT

:linearized
with a universal implicit constant. This concludes the proof of Theorem ﬁm&on
n > 3. The case n = 2 js virtually identical.

It remains t proye, The energy norm for vy has already been estimated in part (i)
of Proposition@ S0t remalns To consider the L2L*™ norm in three and higher dimensions.
This is a soft bound, where we only need to use the energy bound for v on the right, and
not the full Strichartz norm, as we would also have been allowed. There are eight norms to
estimate; most of them are similar, so we consider a representative sample, leaving the rest
for the reader.

For a streamlined unbalanced bound we consider the term

(D) 17°0u] e S Allo]|

H<D55>7%777 TTaqua uHL2L°° < HTa“fu'UH

LOOLn 1 LOOH%’

where we have used Bernstein’s inequality twice and the Strichartz bound for w. This pattern

is followed for all unbalanced terms.
108



ST-eqn

t:8T

reg-data

reg-s2

reg-s3

se?2

se3

For the worst balanced case, we apply the time derivative to v in the next to last term in
vo. Then we have to estimate

(D)~ 2 =4 T(Tru0%v, ) || 220 < |TL(Thrud?0,0)]|| . au

L2L2n71
< AJ[o%| D)2t i) g2 S Allol|

LooH—%||< LooH%’

‘ytt
where we have used Bernstein’s inequality twice, Lemma @Eﬂd the Strichartz bound for u.

10. SHORT TIME STRICHARTZ ESTIMATES

The aiy.of this section is to provide a more detailed overview of the local well-posedness
result in [38], and at the same time to provide a formulation of this result whic pl(ia%s in
a large data setting, but for a short time. Instead of working with the equation (Ii [ ié i, here
it is easier to work with the problem

(10.1) g*%(1)9,05u = h*?(u)0,u dzu

for a possibly vector-valued function u. This is exactly the set-up of %8], and has the
advantage that it is scale invariant. We recall that the scaling exponent for this problem is
5. = 5. In our problem, we will apply the results in this section 4o the function u = du.

We begin with a review of the local well-posedness result in E%], but where we describe
also the structure of the Strichartz estimates:

T —
Theorem 10.1 (Smith-Tataru %8]) Consider the problem @%ﬂth initial data satisfying

where
3
(10.3) s1> S+ 7 n=2,
respectively
1
(10.4) S1 > Se + 3 n=3,4,5.

Then the solution exists on the time interval [0,1], and satisfies the following Strichartz
estimates

(10.5) (D)% 0u|pap-~ <1, n=2,
respectively
(10.6) (D,)%0ul|2p <1,  n=3,4,5,

with a small 6o > 0.

T
In addition, another conclusion of the work in %8], which is used as an intermediate
step in the progf of the theorem above, is that the linearized problem around the solutions

in Theorem is well-posed in a range of Sobolev spaces, and almost lossless Strichartz

estimates hold for them. Precisely, we have the following:
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T —-
Theprem 10.2 (%8]) Let u be a solution for @%n the time interval [0, 1] as in Theo-

rem . Then the linear equation
v[0] = (vo, v1)

10.7)

15 well-posed in H" in the same time igter gnll for 1 < r < s;+1, and the solutions satisfy
the uniform and Strichartz estimates %“or the same range of r.

{ g°(u)d,85v = 0

We note that in %S] it is also assumed that g% = —1, akin to our metric g; but it is clear
that such an assumption is not needed in the above theorems, as one can simply divide the
equation by ¢%. —ogen

We also remark that the ation @%ﬁ%_not the same as the linearized equation. %,pe
reason 1IIW /) 1S preferred ineFBPB] is the extended upper bound for r. It is also noted in [[3§]
that for a range of r with a lower upper bound, the conclusion of the last theorem is also
valid for the full linearized equation; this is a straightforward per nrbative argument. From
below, the Sobolev exponent r» = 1 suffices in dimension n > 3 in %38], though it is als 1clear
that this is not optimal. Indeed, for dimension n = 2 the above result is extended in [3§8] to

e range % < r < s;+ 1, and the linearized equation is shown to be well-posed in 7—[%; see
38, Lemma A4[; the same method also works in higher dimension.

We also remark that if the li l%arized equation is in divergence form, (which can be arranged
in the present paper, see (E%Eﬁ;i, then, by duality, (forward/backward) well-posedness in H"
implies (backward/forward) well-posedness in H!'~", with the center point at r = % This
motivates why, in the context of the present paper, it is easiest to study the linearized
equation exactly in Ho. Unfortunately our argument runs into a technical obstruction in
dimension n = 2, which is why we make a slight adjustment there and work instead in HS.

To, symmarize, in the present paper we will not need directly the conclusion of Theo-
rem ut rather a minor variation of it where we also consider the divergence form
equation and its associated paradifferential flow, and we lower the range for r in order to
include the space 2 (’}-[% in dimension two).

In the proof of the main result of this paper, we will need to use this result for solutions
that are not small in H?®, so we cannot apply it directly. Instead, we will seek to rephrase it
and use it in a large data setting via a scaling argument.

The difficulty we face is that rescaling keeps homogeneous Sobolev norms unchanged,
rather than the inhomogeneous ones. A first step in this direction is to consider smooth
solutions, but which may be large at low frequency:

t:smooth| Theorem 10.3. Consider the problem (@qgwith initial data satisfying

g-dava-ton] (108) (O] e + [0} < 1.

Then the solution exists up to time 1, and satisfies the uniform bound
(10.9) lal| e < 1.

and the Sobolev bound
@I (10.10) ||u||Loo([o71];7{Nm-ZSc) S [af0]] x4 ggse -

In addition,

(10.11) Tl ]l o,y < [[af0]fl20
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whenever the right hand side is finite.

Proof. Locally, after subtracting a constant, the data is small in H" so the existence of
regular solutions is classical. It remains to establish energy estimates in homogeneous Sobolev
norms. The problem reduces to the case of the paradifferential flow, and, by conjugation
with a power of (D,), to bounds in H' that are straightforward. O

A second step is the following variation of Theorem ﬁ, where we consider a small H*!
perturbation of a small and smooth data:

Theorem 10.4. Consider the problem @@wéth initial data u[0] of the form
(10.12) u[0] = u’[0] + u"[0],
where the two components satisfy
(10.13) [u[0]][,v < 1, [u[0] |51 < € < 1.

Then the solution u exists on the time interval [0, 1], and satisfies the following Strichartz
estimates

(10.14) (D)™ = u)|pape Se,  n=2
respectively

(10.15) (D) 0 — ) oe Se n >,

with a small §g > 0.

We remark that the solutions in this second theorem are still covered by Theorem ﬁ
The only difference is that the constant in the Strichartz bound depends only on the u”[0]
bound.

:ST-1in

Proof. This follows by a direct application of the results in Theorem ﬁ and Theorem [

We write an equation for u” = u — u®,

g7 (W) 0a 050" = —(g°7(u) — g7 (u'))DaOpwy, = £,
where the source term f* can be estimated at fixed time by
£ o1 S 0™z

.. . . . . =L-1lin , .
and thus it is perturbative. Then we apply the Strichartz estimates in Theorem @'to_u}”,
and the desired conclusion follows.

U

Now we consider the large data problem, where we show local well-posedness by a scaling
argument. The price to pay will be that the time interval for which we have the solutions
will be shorter. Precisely, we will show that

=52 [reg=s3
t:ST-large| Theorem 10.5. For any s; as in @% Ii)?i there exists 0, > 0 so that the following
holds: For any M > 0 and any solution u to the problem with initial data satisfying
(10.16) [ul0]ller < M, [ul0] e < 1.
we have:
a) The solution ezists up to time Ty given by
(10.17) TS =M™, o =51 — S,
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Str-M2

str-M3

with uniform bounds

(10.18) lal-lleqo ey S M, Ialllcqomgee S 1
as well as
(10.19) al-lleqo, gy S af0]|ls,

whenever the right hand side is finite.
b) The solution u satisfies the following Strichartz estimates in [0, Th]:

_3
(10.20) Ty DYP0u| papee STyt n=2,
respectively

_1
(10.21) I(TarDY°0u||popee S Thf?, 1> 3.

. . — om .
¢) Furthermore, the homo ENEOUS Strichartz estimates @%ﬂso hold in H" for the as-

sociated linear equations %ﬁ,—%ﬁ the same time intervals for r € [1,s1].

Proof. As stated, the result is invariant with respect to scaling. Precisely M plays the role
of a scaling parameter, and by scaling we can set it to 1.

It remains to prove the result for M = 1 in which case Tj; = 1. In a nutshell, the idea of
the proof is to use the finite proof of propagagion to localize the problem and, by scaling, to
reduce it to the case when Theorems [I0.3II0.4 can be applied. To fix the notations, we will
consider the case n > 3 in what follows; the two dimensional case is identical after obvious
changes in notations.

On the Fourier side we split the initial data into two components,

u[0] = u”[0] 4+ u"[0], u'’[0] = P-qul0],

and we denote by u and u‘ the corresponding solutions.
On the other hand on the physical side we partition the initial time slice ¢ = 0 into cubes
@ of size 1, and consider a partition of unity associated to the covering by 8@,

1:ZXQ7

and define the localized initial data
ug [0] = (XQ(U-O - ﬁé)?Q)a XQul)v ﬁéo,Q = fQuéo dl‘,

which agrees with u[0] in 6¢Q) up to a constant. The speed of propagation for solutions u with
lu| < 1 is close to 1, therefore the corresponding solutions wg agree with u in 4¢Q) (again,
up to a constant) in [0, 1], assuming both exist up to this time.

Next we consider the existence and properties of the solutions ug in the time interval
0, Tv]. For ug[0] we have a low-high decomposition,

upl0] = (XT;}Q(uéO — ﬁé‘fQ), X7t Qul) + XTA}lQ(u’gi, Qu’fi) = ug[O] + ug [0]

Now we consider energy bounds for the initial data. For u’® we have

(10.22) (0] e < 1.
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Since s1 — 1 < n/2, after localization this also implies that the low frequency components
satisfy

(10.23) 5[0 o < 1,

.smooth : ST+
which is exactly as in Theorem @r_espectively Theorem @'
On the other hand, for the high frequency bounds we have the almost orthogonality

relation

(10.24) > llug[o]]
Q

By Theorem ﬁ, it follows that the solutions ug exist up to time 1, and satisfy the Strichartz

2 < 1

bounds
(10.25) 1{D,)*0ug] 2~ < 1.
:ST+
Theorem allows us to improve this to
(10.26) lug — ugllem + [{D2)*d(ug — ug)llrer= < [ [0]]l3e -

The solutions ug, respectively ué‘g’ agree with u, u'® in [0, 1] x 4Q). Then we can recombine
the ug bounds using a partition of unity on the unit spatial scale. We obtain a u bound,

namely
(10.27) lu = af e + [(De)™ (0 = 0) | p2pee S 0]l -
M oot

On the other hand for u;,, we have the bounds given by Theorem .

The energy bounds for u — u® and u' combined, yield the desired energy bound
in the theorem. In terms of the Strichartz bounds M, we already have them for u —u
so it remains to prove them for u'°. But there we trivially use Sobolev embeddings and
Holder’s inequality in time.

It remains to consider the Strichartz estimates for H! solutions to the linearized equation.
By the same finite speed of propagation argument as above, it suffices to prove | _qlirflor the

linearization around the localized solutions ug. But this follows by Theorem

lo

To conclude this section we reinterpret the above result in the context of the minimal
surface equation, exactly in the for it will be used in the last section. We keep the same
notations, with the only change that now s. = 5 + 1:

=s2 | =s3
T-large-ms | Theorem 10.6. For any s; as in @T if)?i there exysts 09 > 0 so that the following

:| holds: For any M > 0 and any solution u to the problem with initial data satisfying
(10.28) lul0ler <€ M, Jful0]fle < 1.
We have:
a) The solution exists up to time Ty given by
(10.29) TS, =M™, o =5 — 5,
with uniform bounds
(10.30) Il oo S M, Mallllogomge S 1
as well as
atalowns] (10.31) llWeomaey S 0]l
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whenever the right hand side is finite.
b) The solution u satisfies the following Strichartz estimates in [0, Tas):

_3
(10.32) Ty D)0 papee S Tyt n=2,
respectively

_1
(10.33) I(Ta D0 u|| pope S Thf?, 1> 3.

=nom
¢) Furthermore, the homogeneous Strichartz estimates @1_@150 hold in H" for the as-
sociated linear equati s_&%fgoﬁ the same time intervals for r € [1,s1]. Also the the full
Strichartz estimates @Wth S = Sgr hold for the linear paradifferential equation hold in
H" on the same time intervals for all real r.

The theorem is obtained by applying the previous theorem to u = du. For the Strichartz
estimates for the linear paradifferential equation we observe in addition that we have the
bound

HangLl(O,TM;LOO) 5 L.

. . . . — — en .
Then the r = g tclg_sglglg the Strichartz estimates for the linear equations ﬁ'ﬁ%@ether with

Proposition imply the desired conclusion.

11. CONCLUSION: PROOF OF THE MAIN RESULT

After using the finite speed of propagation to reduce to the small data problem, here we
combine our balanced energy estimates with the ort, time Strichartz bounds in order to
complete the proof of our main result in Theorem [[.3[ Our rough solutions are constructed
as limits of smooth solutions obtained by regularizing the initial data, so the emphasis is on
obtaining favourable estimates for these smooth solutions.

11.1. Reduction to small data. By Sobolev embeddings, the initial data satisfies

n
uollcre + |luillce S 1, c=s—5 - 1

Then given zy € R”, within a small ball B(xg,4r) we have
|uo(x) — (uo(w0) + (z — @0)Ou(wo))| + |ur — ur(wo)| S 77
This allows us to truncate the above differences near xg to obtain the localized data
ug™ (x) = (uo(wo) + ( — wo)ulxo)) + x(r~" (& — o) )uo(w) — (uo(20) + (z — z0)du(w)),

20

uy™ (x) = g (o) + X (™ (& — o)) (u1 — wr (),

where x € D(R™) is equal to 1 in B(0,2) and 0 outside B(0,4).
Let € > 0. Then for small enough r, depending on €, these initial data are close to the
initial data for the linear solution to the minimal surface equation given by

a”" (t, x) = (ugp(xo) + (x — w)Ou(xg)) + tug (x0),
in the sense that
(11.1) |u®"[0] — a™"[0]]|ys < €< 1.

This will be our srna“ness_ Loudition for the initial data, with Ju®™" in a compact subset of
the set described in (L.T2J.
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To reduce the problem to the case when the initial data satisfies instead the simpler
smallness condition

mall-data+| (11.2) |u"[0]||l3s < ek 1

it suffices to apply a linear transformation in the Minkowski space R™*2 that preserves the

time slices but maps our linear solution 4" to the zero solution. The price we pay for this

is that the background Minkowski metric is then changed to another Lorentzian metric. But

the new metric belongs to a compact set in the space of flat Lorenzian metrics for which the

time slices are uniformly space-like and the graph of the zero function is uniformly time_].ikell—Lorentz
Hence our small data result applies uniformly to these localized solutions, see Remark @7
Then, due to the finite speed of propagation, we also obtain solutions up to time O(r) for

the original problem.

11.2. Uniform bounds for regularized solutions. Let s be as in Theorem | 3 Criven
an initial data u[0] € H® that is small,
-data-last| (11.3) |ul0]]|#: <e< 1,
we consider a continuous family of frequency localizations
u[0] = Pojul0]
to frequencies < 27, Qfa{éxgd h and a short time which may depend on h, these solutions
exist by Theorem . Furfher, they are smooth and also depend smoothly on h. Finally,
we consider the functions
d
h_ @ h
vt =
These functions solve the linearized equation around u”, with initial data
(11.4) v"[0] = Pyul0],

which is localized at frequency 2*. The functions v" will be measured in H? in dimension
n > 3 and in % in dimension n = 2. Thus the initial data for v satisfies the bound

["O)l, 2 S 276 e n >3,

(115) wh
[0 0]l,5 S270 P m=2,

jon

Our first objective will be to show that these solutions exist on a time interval that does
not depend on h, and satisfy uniform bounds:

t:uh| Theorem 11.1. The above solutions u" have the following properties:

a) Uniform lifespan and uniform bounds: The solutions u"

uniform bounds

exist up to time 1, with

uh-s (116) ||uh[']||c([0’1};7.[s) S €,
and higher regqularity bounds

(117) Huh[']|‘c([071];ﬂs+1) S 2h€.
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vh-uniform

boot-uh-hi

b) Bounds for the linearized flow: The linearized equation around u" is well-posed in
Hz, with uniform estimates in [0, 1], uniformly in h,

s ol oy S 0000,y =3
ol oty S 000 m=2
and uniform Strichartz estimates with loss of derivatives,
" D)0 £ Wbl 25
(Dz) 2717200 pare S 0[O, 5, n=2,
for any 6 > 0.
The exponent s + 1 in 5 +1IS chosen so that it falls into the range of existing theory,

where we already have well-posedness and continuous dependence. We remark that, as a
corollary of part (b), we also obtain uniform bounds for the functions v, namely

h (s—2)h
(11.10) 10 e o gty S €272 23,
0" <R p=2

Lo((0,1]HE) ~
11.3. The bootstrap assumptions. Our proof of the main result in Theorem ﬁ will
be formulated as a bootstrap argument. Then the question is what is a good bootstrap
assumption. Having the bounds for the linearized equation as part of the bootstrap assump-
tion would be technically complicated. On the other hand, not having any assumptions at
all related to the linearized equation would introduce too many difficulties in getting the
argument started. As it turns out, there is a good middle ground, which is to have the
uniform energy bounds on both u" and v" as part of the bootstrap assumptions, which are
then set as follows:

i) Uniform H* bounds:

(11.11) " [lleoae < 1,
ii) Higher regularity bounds:
(11.12) 1" [ e,y < 2",
iii) Difference bounds,
(s

(11.13)

—(s—3)h _
HUhHLOO([O,l];Hg) < 27T n=2.

The v, bootstrap bound will be useful in particular in order to obtain good low frequency
bounds for differences of the u" functions,
(11.14) Wﬁ—kMMMW”52*%W h <k,
with the obvious change in two dimensions.

To avoid having a bootstrap assumption on a noncompact set of functions, we may freely
restrict the range of h. Precisely, given an arbitrary threshold hg, we assume the bootstrap
assumption to hold for all A < hg and show that the desired bounds hold in the same range.

Since hg plays no role in the analysis, we will simply drop it in the proofs.
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uh-short3

uh-short2

vh-short3

vh-short2

du-short3

du-short2

11.4. Short time St '(_:ilazlirr%z_mgstimates for " and v". Our goal here is to use the
results in Theorem ogether with our bootstrap assumption in order to obtain short

. . . h h
time Strichartz estimates for' both, u gu%d v gh-hi
By the bootstrap assumptions (IT.T1]) and (@‘W may bound the local well-posedness

norm H*' of the solution u”" by
(11.15) [ pooner < My, = 20E179),
:ST-1
Then the result of Theorem “ (i% s vatid on time intervals n of length

_51—s

_1
Iy =Ty =M, ° =2 s,
=s2) =s3
In practice, s; will be chosen as close as possible to the threshold in @% li)% i This will

insure that in all dimensions we have

S1— S 1

51— 8. 2

+ST-1
In particular, by Theorem ﬁ_ltgf%ﬁlows that the solution u" satisfies full Strichartz

estimates on such intervals,

_1
(11.16) (D) P °0u" | poryirey ST 2, n >3,
respectively

_3
(11.17) (D) F00u" | pagryreey STy, Y =2

Also the linearized problem and the linear paradifferential flow will be well-posed in H2 and
will satisfy Strichartz estimates on similar time intervals,

(11.18) Do 0oy S M0lyy sy 723
respectively

_n_1_
(11.19) D) 3500l iaimy S ol sy =2

where the L norm on the right may be replaced by the same > norm evaluated at some
fixed time within 7,. The last set of bounds may be in particular applied to v", which, in
view of our bootstrap assumption, yields

11.20 D) 2000 | 1o g, ey < 27 (52N n>3

( ( hs ) ~ Y )
respectively

11.21 D)5 5090 |y geey < 275 RR n=2.
( T LA(Ip;L%°) ~5 )

11.5. Long time Strichartz estimates for u" and v". Our objective now is to obtain
long time Stricha, tzrlg ungds b s}{%ply adding up the short time bounds. Some care is needed
when using (%ﬁd 1‘[ iﬁ%ii because, as h increases, we gain on one hand in the bound
on the right, but we loose in the size of the interval I;,. However, the gain overrides the loss,
so integrating in h we arrive at the difference bound

(11.22) (D)~ 00(u" — ub)|| 2oy S 27" 0 >3, h<k,
respectively
(11.23) 1(D,) "5 75 00(ul — )| sy S27C70 m=2 h<k
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BB3

BB2

Now we are able to obtain Strichartz bounds for u” on the full time interval [0, 1], simply
by adding the short time bounds. Precisely, we claim that for some small universal d; > 0
we have

(11.24) (D)2 Pdu"| 2oy S 1, 1> 3,
respectively
(11.25) (D)2 Podu” | psoniey S 1 =2

To see this, we differentiate cases depending on how k£ and h compare. We fix the dimension
to n > 3 for clarity.

= t3 = t2
a) If k > h, then we simply apply 1‘ i.i%iror 1‘ 1 ? i,rfaking the loss from the number of
intervals. For instance in three and higher dimensions we get for d; < d

1 -1 1
(D)2 Pou™ || p2qoagineey S Ty 2 sup [[{Dy)2 T Peou®|| 21, .10

In,
_1 Kk
ST, 2 Sup 1{Dg) "% Puou|| p2(r,.; 1oy
h

51—8

I S . | ( 1
< T 72757 2 = olee

"

)

for a favourable choice of sq; for instance s; = s + ;11 suffices, as then ;11%; < % The two
c
dimensional argument is similar.

b) if k& < h instead, then we first write
P = Pof + Py(u — ub).

=short3
%er_egtl%%zﬁrst term was already estimated before, while for the second we use (@h

, where the loss from the interval size is only in terms of k£ and not h. In dimension
three and higher this yields

1 _1
(D)2 Pud(u” — uh)l| 2qoapz=) S Ty * sup | Pd(u — u*) |2,z

Ip,

< T};%Q*(S*%)kQ("THM)k = 9T —(s= )+ +o)k

< 2(512;56_(5_SC)+6)k < 1

— ’

again for a good choice of sy (s%séabove) and a gmall gnough 4.

In particular, the estimates , respectively (TT.25)) allow us to estimate our control
parameter B as follows:

(11.26) 1Bl 2017 S 1, n > 3,
respectively
(11.27) 1B 4oy S 1, n=2.

This in turn allows us to use Theorem e_o contro tbe&nergy growth for the full equation,
and in particular to prove th% bou_rﬁs 0) and (LL7, thus closing part of the bootstrap

loop, namely for the bounds (IT.ITj and for (IT.12
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11.6. Strichartz estimates for the paradifferential flow. Our objective here is to es-
tablish Strichartz estimates with loss of derivatives for the linear paradifferential flow around
u". Thus, we consider an H2 solution v for the paradifferential flow around u", and we seek
to estimate it dyadic pieces in the Strichartz norm, with frequency losses:

—uh ] —uh-hji —vh
Proposition 11.2. Under the bootstrap assumptions @T I Iig; and (@‘%HT solu-

tions v for the linear paradifferential equation
(1128) 8aTga5(auh)85v = f
=full+
satisfy the Strichartz estimates @fu_wzﬁl S = Sarr for all r € R.

Compared with the full Strichartz bounds, here we have a loss of 1/4 derivative in dimen-
sion 3 and higher, respectively 1/8 derivative in dimension 2.

-move-around

Proof. Our starting point is Theorem I'lit!] which allows us to reduce the problem to proving
the homogeneous Strichartz estimates (f.33]] for the corresponding homogeneous equation,

again for all real r. To prove the proposition in this case, we have two tools at our disposal:
BB

(i) The energy estimates of Theorem ﬁf“aralr_lwview of the bounds @ and
these give uniform H" bounds for v,

Y

[0l zoorer S [[0[0] [l

(ii) The short time Strich?r_% Sstimates (@‘%i’ch S = Sgr on the T time scale,

provided by Theorem ing these with respect to the time intervals, we
arrive at
_d_ -1
(11.20) IDI 300 2o m) S Ty 20Dl n23,
respectively
_9_ -1
(11.30) || D] s 68U||L4(1h;Loo) ST, 4||U[O]HH%, n=2.

Now we want to use these tools in order to prove the long term bounds @w_vr&rllith S = Surr
9L he unit time scale, Giyen, the expression for T}, our first observation is that the estimates
i i.ﬁ?i, respectively suffice for our bounds at frequencies > h, but not below that.
Thus, consider a lower frequency k < h, and seek to estimate P,v. At this frequency, we
have the correct estimate for the solution v to the linear paradifferential equation around
ug. It remains to compare v and 0. For this we use the T, flow, and we think of P,v as

an approximate solution for this flow,

Tp(uk)PkU = [Tp(uk)7 Pk]v + Pkaangﬁ_

ggB aB/U

We can bound the source terms as follows, fixing the dimension to n > 3:
1Tp@n Prvll gy -4y S (0*u |1 (1) + 28| Per(g(0u) — g(0u)) | pr200) 1011, 3
To conclude it suffices to estimate

(11.31) 10" | g2y S 1,

(11.32) 1P<i(g(0u") — g(0u")) | L 10y S 27"
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:Str-v-1lin

. . . ih-shorth-short3
The first bound follows from our earlier Strichartz estimates for u*, see (TT.T7)), (IT.16)). For

the second bound, we expand and then it suffices to have
(11.33) | Per(g'(0u?) 00 || pr gy poey S 2772700 >k,
( ks )

with a positive constant ¢ in order to allow for integration in j. We expand paradifferentially,
depending on the frequencies of the two factors above. It suffices to consider the following
two cases:

a) v/ has the frequency below 2. Then we use the Strichartz bounds for v; over intervals
I;, and then sum over such intervals. For instance in dimension n > 3 we get

_1
| P<iOvj || 1 1000y S k|| 1;] 2 5111p 1P<k 00 £2(15512)
J
n (e 1 |_[k| 1
< 2 Hkg=(=3)i Zh 13
|1
_ ol +0- Sy (b=

§1—S8

o—kollse=s) (1= gy )+ 0lkg —(s— 5~ grei=ey ) k)

Here the coefficient of j — k is negative by a large margin, while the coefficient of k£ in the

middle factor is also nz%at%yg.since 81 — S¢ > % and ¢ is arbitrarily small. Hence we obtain

a bound as desired in (IT.

b) The balanced case, where both frequencies have size 2! with [ > k. This is easier, as
we have a better energy bound for the first factor. Hence in this case it is more efficient to
estimate the output by applying Bernstein’s inequality first,

. - 1, nk ; j
1P<k[Frg (0w) POV | 1y o0y S k]2 72 | g (0u) || oo (1) | P10V | 21 )
_1nk ; ;
S Ml 722% (| Pig' (0w | o2 sup [P0V 21, 1)
J

< || |1] 22 27 (= Dig( +0)ig=(s=3)i
s1—s o

n n 1_ 5178 s
— 2[5_Sl_sc}k2(§—5+1+6)l2_(s_Q_Q(Si_sc))j

_ g-hollse=5)(2— 51515 +olh g (st L48)(1—k) g~ (5~ 3~ 522y G —R)

Y

which is better than in case (a). O

11.7. Striclhartz estimates for the linearized flow. Our aim here is to show that that
we have Hz well-posedness and Strichartz estimates with loss of derivatives for the linearized
flow around u” in H2 (respectively Hs if n = 2):

= —uh-hi ] —vh
Proposition 11.3. Under the bootstrap assumptions d%laﬂtl__rb%tll liii and [IT. V, the lin-

earized equation around u" is well-posed. ﬂlﬁ% (respectively H= if n = 2), and its solutions
satisfy the full Strichartz estimates (B. with S = Sarr.

L . :linearized :linearized
Here we use the analysis in Section [9] Precisely Theorem erg SHows that the above

proposition follows directly from the similar result in Proposition or the linear parad-
ifferential equation.
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uh-unif+1

vh-unif

Al

-diff-high

uh-diff-lo

1

11.8. Closing the bootstrap argument.. Combining the Strichartz estip; tieée%)giglég linear
paradifferential equation in Proposition with the result of Theorem E ;F 1t follows that

the linearized flow around u” is wellpoged, in ‘?—[% (respectively HE ifn = 2), with 1'heisame

Strichartz estimates as in Proposition [[T.2) which is exactly part (b) of Theo m | L As
a consequence, the initial data bound ?6_1‘9
in turn closes the bootstrap assumption ( 3

N implies the uniform bound , which

11.9. The well-posedness result, In g{ggrr to be able to obtain a complete well-posedness
argument, we follow the outline in [21], and measure the size of the functions «” and v" in
terms of frequency envelopes. Precisely, we consider a normalized frequency envelope ec;, for
u[0] in H°. Then for the localized initial data we have the bounds

(11.34) | [0] 25 < e,

(11.35) | [0][|ggs+1 < 2"ech.

On the other hand, fixing the dimension to n > 3, we will measure v” in ’H%, where for the
initial data we have

(11.36) " 0]||, 1 S 27 2he,  p >3

1
HD

Then by Theorem ﬁ, we obtain corresponding uniform bounds for the solutions on the
time interval [0, 1],

(11.37) " [l o0y S €

(11.38) 6" [z (o17:2041) S 2"ech.

Similarly, the linearized increments v;, satisfy the uniform bounds

1

(11.39) [CARI NP €26573)3¢,
Integrating the last bound with respect to h, we obtain the difference bounds
(11.40) 0 =) oty S 2% Pren h<
This implies that the limit
= i o
exists in C([0,1];H2). In view of @#ﬁ% limit » will also satisfy

w1l 2o o,1575) S €

We can also prove that we have the previous convergence in this stronger topelggy. To see
this, we co §ider unit increments in h, and compare u;, with w1, using ﬁﬁ one hand,
and ll; i%l)i on the other hand. This yields

(11.41) ||uh — Uh+1||c([071];7.[s+1) S 2hech,

respectively

(11.42) |u — u" |

(s-3)s
clond) < e2¥2)8¢, h < k.
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These two bounds balance exactly at frequency 2", and measure the H* norm but with decay
away from frequency 2*. Hence the differences are almost orthogonal in H*, and, summing
them up, we obtain

uh-diff= (11.43) Huh — ukHC([OJ];Hs) S €Clh,k]-

This implies uniform convergence in H?®. Thus our solution w is uniquely identified as the
strong H* uniform limit of u”. Teorimer
The continuous dependence and the weak Lipschitz dependence follow exactly as in hIZT :
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