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ABSTRACT: A broadband preconditioner based on a modified version of the sparsified nested dissection ordering (m-spaNDO) tech-
nique is proposed for the full wave discrete exterior calculus (DEC) A-® formulation solver in electromagnetics. The matrix equation
discretized by the DEC A-® solver is in general complex symmetric and indefinite. When conductive media and disparate mesh are
involved, the DEC A-® matrix equation is ill-conditioned, and proper preconditioner must be utilized to accelerate iterative solver con-
vergence. In this letter, an introduction to the DEC A-® solver is provided, followed by the implementation details of the m-spaNDO
preconditioner. Numerical examples in this paper show that the proposed m-spaNDO preconditioner can effectively accelerate the con-
vergence of iterative solvers in solving ill-conditioned problems. The m-spaNDO preconditioned DEC A-® solver has O(N log N)
computational complexity and the efficiency of the preconditioner is independent of parameters such as frequency and conductivity in
the problem, which indicates the broadband nature of the m-spaNDO preconditioner.

1. INTRODUCTION

The A-® formulation in electromagnetics is under active
study [1-3], where A and ® are the vector and scalar po-
tential of the electromagnetic field, respectively. Compared
with traditional E-H formulation, the A-® formulation is free
of low-frequency breakdown, thanks to the additional gauge
term that removes the null space of the double curl operator.
Recently, a numerical A-® formulation solver based on dis-
crete exterior calculus (DEC) is proposed, which has shown its
broadband stability from DC to optics [2]. Thus, the DEC A-
® solver is ideal for broadband and multi-scale analysis, where
static physics and wave physics could co-exist in the same prob-
lem and require the same solving accuracy. To make the DEC
A-® solver capable of solving large scale problems, iterative
solvers, such as the conjugate gradient (CG) method [4], bi-
conjugate gradient (BiCG) method [5] and generalized min-
imal residual method (GMRES) [6], are prefered over direct
solvers. This is because the error minimization mechanism in
the iterative solvers allows user to control the effect of numer-
ical error to the solution accuracy. However, when conductive
media or disparate mesh in multi-scale structures are involved,
the matrix equation discretized by the DEC A-® solver is ill-
conditioned, and the iterative solvers converge very slowly or
even are impossible to converge. In such cases, proper precon-
ditioners are needed to accelerate the convergence of iterative
solvers. Meanwhile, consider the broadband nature of the DEC
A-® solver, the preconditioner should also be broadband in na-
ture, which means its efficiency should be insensitive to param-
eters such as frequency and conductivity in the problem.

The construction of preconditioners is usually problem de-
pendent. Due to the smoothness of the Green’s function of elec-
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tromagnetic wave equations, the coupling between separated
structures is usually low-rank. In other words, in integral equa-
tion solvers, such as the method of moments (MoM), the resul-
tant coupling matrix has low-rank off-diagonal mutual coupling
blocks [7, 8]. One popular way to construct preconditioners is
by compressing the low-rank off-diagonal matrix blocks, find
the approximate inverse of the coupling matrix using fast arith-
matics such as the hierarchical matrices (#-matrices). The ap-
proximate inverse of the coupling matrix can be used as a pre-
conditioner to the original matrix system. Depending on the
compression technique utilized, such methods include the hi-
erarchical off-diagonal low-rank (HODLR) format method [9],
the hierarchically semiseparable (HSS) matrices [10] and the
hierarchical interpolative factorization (HIF) method [11].

Different from the integral equation solver, where the dis-
cretized matrix is dense, the DEC A-® solver is a differential
equation solver and generates sparse matrix system. However,
by eliminating the interior unknowns in the computational do-
main, the remaining unknowns and their coupling are pushed to
the boundary. The corresponding coupling matrix after interior
unknown elimination is much denser, and shares similar prop-
erties with integral equation solver matrices. In [8], a sparsified
nested dissection ordering (spaNDQ) algorithm is proposed as
a preconditioner to the real symmetric positive definite matrix
system discretized by differential equation solver, such as fi-
nite difference method (FDM) [12] and finite element method
(FEM) [13].

The sparsity pattern of the matrix equation discretized by dif-
ferential equation solvers can be determined by the mesh in-
formation. Nested dissection ordering (NDO) algorithm takes
advantage of the sparsity pattern information of the coupling
matrix, creates separators in the computational domain and re-
orders the unknowns in the problem accordingly [14]. As a

Published by THE ELECTROMAGNETIC ACADEMY


https://doi.org/xxxxxxxxxxxxxx

LastNamel etal.

direct matrix equation solver, the computational complexity of
NDO for factorizing the matrix system is O(N?), where N is
the number of unknowns. In contrast, if one uses regular factor-
ization method, such as the LU decomposition or the Gaussian
elimination method, the computational complexity is O(N3).
Although the O(N?) complexity of NDO is proved to be the
optimal complexity of direct solvers, its O(N?) complexity still
makes the problem intractable when N gets large.

To further reduce the computational complexity, low-rank
approximation can be introduced in NDO [8]. After the interior
unknowns are eliminated, the remaining separator unknowns
coupling matrix represents an integral equation where the nu-
merical Green’s function is buried in the matrix. Thus, the off-
diagonal mutual coupling blocks are low-rank and can be com-
pressed to accelerate the computation of the approximate in-
verse of the coupling matrix. The spaNDO preconditioner in
[8] effectively accelerates the convergence of iterative solvers
in solving real symmetric positive definite matrix systems with
O(N log N) complexity. Such matrix systems are often en-
countered in mechanical systems. However, in computational
electromagnetic (CEM) problems, when conductive medium is
involved, the matrix system is not real-valued anymore. The
DEC A-® matrix system is in general complex symmetric and
indefinite. Thus, the spaNDO preconditioner in [8] can not be
used directly to the DEC A-® solver.

In this letter, a modified version of the spaNDO (m-spaNDO)
is proposed, which works as an efficient preconditioner to the
complex symmetric matrix systems discretized by the DEC A-
® solver. The m-spaNDO preconditioner shows O (N log N)
computational complexity, and its efficiency is independent of
frequency and conductivity parameters in the problems, which
indicaates its broadband property. The rest of the paper is orga-
nized as follows. In Section 2, introduction to the m-spaNDO
preconditioned DEC A-® solver is provided. In Section 3, nu-
mercal examples are presented for illustrating the complexity
and broadband efficiency of the m-spaNDO preconditioner. In
Section 4, discussion and conclusion of this letter are given.

2. THE m-spaNDO PRECONDITIONED DEC A-9
SOLVER

2.1. The DEC A-® Solver

The A-® formulation with generalized Lorenz gauge is [1]:
1
VX —VxA—-wA—-eV[x 'V (EA)] = Jim, (1)
I

V- (V) + wX® = —0im, (2)

where A and @ are the vector and scalar potential of the elec-
tromagnetic field, respectively; J;,,, and g;,, are the impressed
current density and impressed charge density, respectively; w is
the angular frequency; u is the permeability; € = € + *Z is the
complex permittivity; e and o are the permittivity and conduc-
tivity, respectively; ¥ = aué? and « is an arbitrary non-zero
constant. The generalized Lorenz gauge is used to decouple the
A and ® equations:

V- (FA) = iwx®. 3)

Egs. (1) and (2) can be discretized by using DEC [2, 15, 16]
with tetrahedral mesh, which generates the matrix equations:

— T —
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NOr R (d(o)) «WA=TJ @

— T —

_ (d(o)) *gl)d(o)@ + UJQ*;O)Q = —o. (5)
where A = [A1, Aa, -+, An, |7 is the vector contains the vec-
tor potential unknowns A; on each edge in the mesh; & =
[@1, g, -+, Pn,]7T is the vector contains the scalar potential

unknowns ®; on each node in the mesh; N; and Ny are the total
number of edges and nodes in the mesh.

Matrices H(O) and H(” are called incidence matrices which
are the discrete representations of the gradient and curl opera-
tors on the primal mesh, respectively. They can be constructed
by using the connectivity information in the mesh.

*El) , *f,) . and *;O) are the Galerkin Hodge star operators rep-

resenting the constitutive relations. For simplicity of this letter,
the details are omitted but can be found in [2].

2.2. Nested Dissection Ordering in DEC A-® Solver

In this section, (4) is used as an example to demonstrate how
to construct its m-spaNDO preconditioner. (4) can be written
compactly as:

MA = J, (6)

where M is the coupling matrix among the unknowns in A. The
sparsity pattern of M can be determined from the mesh connec-
tivity information. By using NDO, separators are constructed
in the computational domain, and unknowns are reordered ac-
cordingly. A separator in NDO is defined as a set of unknowns.
By removing the edges associated with the separator unknowns
from the mesh, the remaining unknowns form two clusters that
are decoupled from each other [8, 14]. Fig. 1 shows an exam-
ple of NDO separator in 2D case, where the unknown set Asj is
the separator, A; and A, are two decoupled unknown clusters
that are separated by As. Accordingly, the unknowns in vector
A in (6) are reordered as:

A=[A;, Ay A5 (7)

Since A; and A, are decoupled, M has the following sparsity
pattern:

M 0 My
M=]0 My My, ®
M3, Msz Mg

where M; is the self-coupling matrix among unknowns in A;,
and the off-diagonal blocks represent the mutual couplings.
Unknown sets A1, Ay and Aj are eliminated successively in a
divide-and-conquer fashion, which introduces minimum matrix
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FIGURE 1. The construction of a NDO separator in 2D case.

element fill-ins in the elimination procedure [8]. This is the key
reason that NDO can achieve the optimal O(N?) complexity as
a direct solver.

Different levels of separators in NDO can be constructed re-
cursively. Fig. 2 illustrates the procedure of constructing two
levels of separators in 2D case. After the top level separator is
constructed in Fig. 2(b), two [ = 2 level separators are further
constructed in each of the subregions in Fig. 2(c).

Accordingly, Fig. 3 shows the elimination tree associated
with the NDO separation in Fig. 2(c). There are four leaf-level
unknown clusters, which correspond to the four ‘white spaces’
in Fig. 2(c). The three circle nodes in the elimination tree cor-
respond to the three separators in Fig. 2(c).

After the unknowns in A in (6) are reordered following the
NDO separation, elimination of unknowns should be performed
from bottom level to top level in the elimination tree, i.e., from
leaf-level clusters to the top level separator cluster [8, 14].

(a) I=0 by I=1 () I=2
FIGURE 2. An example of constructing different levels of separators in
2D case. (a) The original computational domain. (b) The [ = 1 level

separator. (¢) The | = 2 level separators.

%) =1

Leaf-level

FIGURE 3. The elimination tree associated with the NDO separation in
Fig. 2(c).

2.3. The Modified Version of spaNDO Preconditioner

After the elimination of the leaf-level unknown clusters, (6) be-
comes

M3145 = Jsa (9)

where A, only contains the separator unknowns, and M is a
dense matrix that represents the couplings among the separator
unknowns. Note that M, has similar properties as the matrix
discretized by integral equation solvers. Thus, the off-diagonal
blocks in M, which represent the mutual couplings of the sep-
arator clusters, are low-rank. By exploiting the low-rank nature
of the off-diagonal blocks, the approximate inverse of M, can
be computed with much cheaper computational cost.

When eliminating a certain separator cluster A,, one can
consider the following frontal matrix extracted from Mj:

~7 Maa Mab
M= | 7, 10
Bba Mbb:| (19)

where M, is the self-coupling matrix among the unknowns in
separator A,; A; denotes all the unknowns in other separators
that couple to A,. The meaning for M;, My, and My, are
self-explained.

Since M, and My, are low-rank, the following procedure
can be performed as the sparsified nested dissection ordering.
First, a scaling step with respect to M,.:

I L M,

ﬁ — 1 _
M, U My,

Coa My,

- [ ! C‘“’} —M,, (1)

where the LU decomposition, My, = LU, is involved in the
above operation.

Second, one can perform methods such as singular value
decomposition (SVD) [17], randomized SVD [18] or rank-
revealing QR factorization [19] to C,;, and Cy,, to explore their

low-rank property. Eventually, ﬁl in (11) can be transformed
into

~ Iy 0 W Iy 0 0 ~
M- |0 I. W, | ~|0 1. W.| =M.
Ny N. My 0 N. My
(12)

In the above, it is assumed that A, = [Ay, AC]T, where the
subscripts f and ¢ stand for fine and coarse, respectively, fol-
lowing the terminology from [8]. The fine unknowns, whose
self-coupling matrix is Iy in (12), represent the redundant
mutual couplings among separators. Specifically, in (12),
[IW g llrow < &l[Wellrow and [[N¢cor < &[N |col, Where [[ - [[row
and || - ||col denote the maximum row norm and the maximum
column norm of a matrix, respectively; ¢ is the prescribed tol-
erance chosen for the low-rank approximation (LRA).

Apparently, the fine unknowns A are approximately elim-
inated without introducing any element fill-ins to My, in (12).
This sparsification step can be performed with respect to each
separator before eliminating a certain level of separators. It is
equivalent to reducing the number of unknowns in each sep-
arator with very small computational cost. Thus, the compu-
tational complexity of the m-spaNDO is greatly reduced com-
pared to that of NDO.
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A theoretical analysis of the computational complexity of the
original spaNDO preconditioner is carried out in [8]. As the
m-spaNDO proposed in this letter shares the same basic steps
compared to the spaNDO in [8], it also has O(N log N') com-
plexity.

3. NUMERICAL EXAMPLE

A rectangular wire loop case is used as a numerical example to
validate the proposed m-spaNDO preconditioner. As shown in
Fig. 4, the wire loop is assumed to be copper with conductivity
o = 5.8 x 107 S/m and is placed in air with ¢,, = 1. The fre-
quency of the impressed current source is f = 1 GHz. In this
case, the complex permittivity € in the copper region is 9 orders
larger than that in the air region. The coupling matrix M in (6)
has humongous condition number due to the huge contrast in
€. When using iterative solvers without preconditioning, it is
extremely slow, sometimes even impossible, for the iterative
solvers to converge.

30 nm

50 nm 4y Excitation ( 1
current

50 nm

(a) (b)

FIGURE 4. (a) Dimension of the rectangular wire loop and (b) the wire
loop is placed in dielectric region.

As a contrast, the proposed m-spaNDO preconditioner is
constructed with respect to the rectangular wire loop problem.
Biconjugate gradient (BiCG) method is used as the iterative
solver. Fig. 5 summarizes the total computation time and BiCG
iteration steps of the proposed m-spaNDO preconditioned DEC
A-® solver with different numbers of unknowns N. Here, the
total computation time includes the time cost in costructing the
m-spaNDO preconditioner and the BiCG iteration procedure.

As can be seen from Fig. 5, the total computation time of the
m-spaNDO preconditioned DEC A-® solver fluctuates around
O(N log N) complexity. The reason for the fluctuation is that
when conducting the theoretical complexity analysis of NDO
and spaNDO, N is assumed to be a multiple of 2 [8]. To flatten
the fluctuation, one can construct more than one separator in
each subregion in Fig. 2, and accordingly, the elimination tree
in Fig. 3 is not binary anymore.

The sensitivity of the m-spaNDO preconditioning efficiency
to parameters such as frequency and conductivity in the prob-
lem is studied as well. Two frequencies are considered, f; = 1
GHz and f> = 1 kHz, along with two conductivities of the wire
loop, 07 = 5.8% 107 S/mand oy = 5.8x10% S/m. Fig. 5 shows
the total computation time of the m-spaNDO preconditioned
solver and the BiCG iteration steps in different cases. The ef-
ficiency of the m-spaNDO preconditioned DEC A-® solver is
almost independent of the frequency and conductivity in the
problem. This indicates the m-spaNDO preconditioner is sta-

ble and broadband.

10*

—e— Total time of m-spaNDO 4
O(N) )
—-=+ O(NlogN)
e O(NV)
O(N?)

3><103

10° b

BiCG steps
|

Total Computation Time of m-spaNDO (s)

10* 2x10* 5x10* 10°
Number of Unknowns N

FIGURE 5. Summary of the total computation time and BiCG iteration
steps of the proposed m-spaNDO preconditioned DEC A-® solver.
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FIGURE 6. Study on the efficiency of the m-spaNDO preconditioned
DEC A-® solver with different frequencies and conductivities.

4. CONCLUSION

A modified version of the sparsified NDO (m-spaNDO) pre-
conditioner is proposed. The m-spaNDO preconditioner works
for the complex symmetric, indefinite matrix systems dis-
cretized from the DEC A-® solver. The m-spaNDO pre-
conditioner effectively accelerate the convergence of iterative
solvers in solving the DEC A-® matrix equations, especially
when conductive media and disparate mesh are involved. The
m-spaNDO preconditioned DEC A-® solver has O(N log N)
computational complexity, and its efficiency is independent of
parameters such as frequency and conductivity in the prob-
lem. Thus, the proposed m-spaNDO preconditioner can work
as an effective and broadband preconditioner for the DEC A-$
solver.
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