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Abstract—In this work, we propose two approaches of inves-
tigating quantum entanglement. In the first approach, canonical
quantization with numerical mode decomposition is applied to in-
homogeneous dispersive media. Nonlocal dispersion cancellation
effect of energy-time-entangled photon pair is demonstrated. In
the second approach, we study the effect of scattering on spatial-
entangled photon pair from spontaneous parametric down-
conversion. Schmidt number is calculated numerically. Migration
of entanglement between amplitude and phase is studied.

I. INTRODUCTION

Quantum entanglement based on photons has important
applications in quantum communication, quantum radar and
quantum sensing. To describe entangled photons, formulations
of quantum electromagnetics applicable to complex media
are needed. In this work, we propose two approaches of
investigating quantum entanglement.

In the first approach, canonical quantization with numerical
mode decomposition is performed to rigorously quantize the
Hamiltonian for finite-sized dispersive media [1]. A general-
ized Hermitian eigenvalue problem for electromagnetic fields
coupled to nonuniformly distributed Lorentz oscillators is
developed. Eigenmodes are obtained with arbitrary geometric
complexity using computational electromagnetics methods.
Second-order correlation function is calculated. Nonlocal dis-
persion cancellation effect through energy-time entanglement
of photon pair is studied.

In the second approach, we leverage electromagnetic
scattering theory to study spatial entanglement of photon
pair. A computational method to track the evolution of
two-photon amplitude from spontaneous parametric down-
conversion (SPDC) after the photon pair hit the scatterer is
proposed. Schmidt decomposition is performed to evaluate the
degree of entanglement. Migration of entanglement between
amplitude and phase is studied.

II. CANONICAL QUANTIZATION APPROACH

A. Formulation

When dispersive media are present in the system, auxilliary
fields should be included. They act as Lorentz oscillators
placed in dispersive media interacting with electromagnetic
fields. Hence the conjugate pairs are defined accordingly [1]

q = [A,ΠΦ,ΠP ]
T (1)

p = [ΠAP ,Φ,−P]T (2)

where A, Φ and P are the vector potential, scalar potential
and polarization current, ΠAP , ΠΦ and ΠP are their conjugate

momenta, respectively. Compared to [2], the reordering of
conjugate pair eliminates the cross-coupling term, so that the
Hamiltonian can be recasted as
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and f(r) = ω2
0(r)/ω

2
p(r) and β(r) = 1/ω2

p(r), where ω2
p(r)

and ω2
0(r) are the plasma and resonant frequencies of the local

Lorentz oscillator. The elimination of cross coupling between
q and p allows one to derive the decoupled equations of
motion (EoMs). In frequency domain, the EoM for q is

ω2 M
−1 · q = K · q. (6)

This reduction saves computational cost. Hence, the resulting
quantum observable can be written in terms eigenmodes as

q̂(r, t) =
∑
ω

q̃ω(r)

√
h̄

ω
d̂ω(t) + h.c. (7)

where q̃ω(r) is the eigenmode with eigenfrequency ω, and
d̂ω(t) is the time-harmonic creation operator for this mode.

B. Nonlocal Dispersion Cancellation

We study the nonlocal dispersion cancellation effect [3].
We consider a 1-D problem geometry, as illustrated in Fig.
1(a). An energy-time entangled photon pair is initialized in
the center and propagate to left and right. The second order
correlation function is computed to characterize the degree of
coincidence from two photodetections at x1, t1 and x2, t2. Fi-
nite difference method with Bloch-Floquet boundary condition
is used to solve (6) numerically.

As shown in Fig. 1(c), for non-entangled photon pair, the
coincidence curve in the presence of both dispersive media is
wider than in the one-sided dispersive medium cases. Thus
it does not exhibit dispersion cancellation effect. However
with entangled photon pair, the coincidence curve becomes
narrower in the presence of both dispersive media, as shown
in Fig. 1(b).



Fig. 1. (a) Problem geometry of 1-D simulations to observe nonlocal
dispersion cancellation. Coincidence versus time difference for (b) entangled
and (c) nonentangled photon pair. In courtesy of [1].

III. SCATTERING OF SPATIAL-ENTANGLED PHOTON PAIR

A. Formulation

We then consider the spatial entanglement as the photon pair
propagate through arbitrary scatterer. Assuming a strong, col-
limated pump beam propagating in z direction and degenerate
down-conversion, the biphoton wave function in momentum
space is [4]

Φ(q1,q2) = N sinc

(
L

4kp
|q1 − q2|2

)
e−σ2

p|q1+q2|2 (8)

where N is the normalization constant, kp is the momentum
of pump field, qi = kx,ik̂x,i + ky,ik̂y,i is the transverse
momentum of photon i, and σp is the beam width in coordinate
space. After performing the 4D Fourier transform, the wave
function in coordinate space is

Ψ(ρ1, ρ2) = N ′ Ssi

(
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)
e
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8σ2
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where N ′ is another normalization constant, ρi is the trans-
verse coordinate of photon i, and Ssi is the shifted sine
integral. Given that Φ(q1,q2) is nonzero only around a narrow
region of transverse momentum, Φ(q1,q2) is approximately
the plane wave expansion of Ψ(ρ1, ρ2) [5]

Ψ(ρ1, ρ2) =

∫
dk̂1dk̂2Φ(q1,q2)e

i(k1·r1+k2·r2). (10)

As the photon pair propagate near the paraxial axis, the wave
function at another optical plane Φ(q1,q2; z1, z2) can be
found by multiplying the paraxial free-space transfer function.

Now we let the photon pair hit a scatterer, and use the
above wave function as the incident wave, as illustrated in
Fig. 2(a). Considering far-field limit, the scattered biphoton
wave function can be written as [6]

Φs(q1,q2) =

∫
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1⟩⟨q2|T |q′
2⟩Φi(q
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Fig. 2. (a) Problem setup of an entangled photon pair hit a scatterer. (b)
Migration of entanglement between amplitude and phase.

where ⟨q|T |q′⟩ is the momentum space T -matrix. It can be
found by solving a scattering problem with an incident plane-
wave in the q′ direction, using integral equation. Observing the
scattered field in the far-field in the q direction, after factoring
out eikr/r, the remaining part is ⟨q|T |q′⟩.

B. Degree of Entanglement

To characterize the degree of entanglement of the entangled
photon pair, we perform the Schmidt decomposition

Φ(q1,q2) =
∑
n

√
λnϕ1(q1)ϕ2(q2) (12)

where
∑

n λn = 1. When there are morn than one nonzero
λn, Schmidt number K = (

∑
n λ

2
n)

−1 is a general criterion
to evaluate the degree of entanglement. Larger K indicates
higher nonseparability, i.e., higher degree of entanglement.

The migration of entanglement between amplitude and
phase has been calculated in [7], as shown in Fig. 2(b). In
this work, we will show the total Schmidt number and its
distribution between amplitude and phase, as the photon pair
undergo scattering.
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