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We present a novel generalization of the chain mapping technique that applies to few-atom,
multimode systems by making use of coupling matrix transformations. This is extremely useful for
tensor network simulations of the multimode Dicke model and multi-spin-boson model because their
coupling structures are altered from the star form to the chain form with near-neighbor interactions.
Our approach produces an equivalent Hamiltonian with the latter coupling form, which we call the
band Hamiltonian, and we demonstrate its equivalence to the multimode Dicke Hamiltonian. In
the single atom case, our approach reduces to the chain mapping technique. When considering
several tens of field modes, we have found that tensor network simulation of two atoms in the
ultrastrong coupling regime is possible with our approach. We demonstrate this by considering a
pair of entangled atoms confined in a cavity, interacting with thirty electromagnetic modes.

I. INTRODUCTION

The Dicke model describes the physics between a col-
lection of two-level atoms and quantized electromagnetic
field [1]. It has been used to study rich and nontrivial
physics such as superradiance and quantum phase transi-
tions [2, 3]. Such physics have been found to occur in the
ultrastrong coupling (USC) regime [4–6] where the field-
atom coupling coefficient is comparable to the atomic
transition frequency. In this regime, the rotating wave
approximation is invalid, rendering the analysis of the
system much more difficult. Hence, approximate tech-
niques such as the Holstein-Primakoff transformation are
often used, which is valid only in specific settings.

Nevertheless, the USC regime gives rise to intriguing
physics that must be explored further. For instance, it
may enable fast two-qubit gate operations for quantum
computing applications [7], and it has been shown that
the multimode fields must be taken into account in or-
der for the system to be causal [8]. Furthermore, from
rigorous derivation in circuit quantum electrodynamics
(QED), the extended Dicke model has been shown to
include a direct qubit-qubit interaction term which be-
comes non-negligible in the USC regime [9]. Such novel
phenomena unique to this regime greatly motivate the
need to develop numerical techniques to efficiently simu-
late multi-atom, multimode systems.

For the study of single atom interacting with mul-
tiple field modes, the chain mapping technique has
been extremely useful for tensor network analysis of the
spin-boson model [10–13] and multimode quantum Rabi
model [8, 14]. Since these models have the so-called
star coupling structure [10], they are transformed to
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an equivalent Hamiltonian with a linear chain coupling
structure with nearest-neighbor interactions. Once trans-
formed, numerical algorithms such as matrix product
states (MPS) [15, 16] or density matrix renormalization
group [17] can be applied efficiently.
Although it is highly effective, the chain mapping tech-

nique is limited to systems with single two-level atom
or spin-1/2 system. Naturally, various efforts have been
made to extend the technique to more general systems
such as the two-bath spin-boson model [18, 19]. However,
the generalization to a multi-atom, multimode system
has remained challenging. Strathearn et al. [20] devel-
oped an extension to a spin-boson model with two spins
by projecting the system onto a subspace and mapping
it to a single spin-boson model. Most notably, trans-
formation of the multi-spin-boson model to a chain-like
structure has been achieved by applying the block Lanc-
zos algorithm [21].
In this paper, we present a novel generalization of

the chain mapping technique that works for few-atom,
multimode systems. Our method is straightforward to
implement and numerically stable as opposed to meth-
ods involving Lanczos algorithms. It also completely
specifies all coupling coefficients (field-atom and field-
field) after the transformation for arbitrary configura-
tions. Our method utilizes coupling matrix transforma-
tions to achieve this, and it leads to equivalent Hamilto-
nians that are more compatible with tensor network algo-
rithms. We demonstrate this through various numerical
simulations in the USC regime.
The rest of this paper is organized as follows. In Sec. II,

we present our formulation that is based on coupling
matrix transformations and discuss the applicability and
limitations of our approach. After that, in Sec. III, we
numerically validate our proposed approach. A numer-
ical example of two entangled atoms ultrastrongly cou-
pled to multimode fields is discussed in Sec. IV. And
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FIG. 1. The coupling matrices for the Dicke (left) and band (right) Hamiltonians. The matrix entries correspond to the
coefficients in (1) and (7).

finally, summary and directions for future work are given
in Sec. V.

II. GENERALIZED CHAIN MAPPING

A. Formulation

We are primarily concerned with QED applications in
the USC regime where the rotating wave approximation
is invalid. Therefore, we use the multimode Dicke Hamil-
tonian to represent a system with Na atoms and M elec-
tromagnetic modes, namely

ĤD = ℏ
Na∑
j=1

ωa,j

2
σ̂z
j+ℏ

M∑
k=1

[
ωkâ

†
kâk−i

Na∑
j=1

gj,kσ̂
x
j (âk−â

†
k)
]
,

(1)
where ℏ is the reduced Planck constant; ℏωa,j and σ̂

l
j are

the energy gap and the Pauli operator, respectively, of
the j-th atom where l = x, y, or z; ωk is the electromag-

netic mode frequency, and âk (â†k) is the photon annihila-
tion (creation) operator, all for mode-k. The coupling co-
efficient between the j-th atom and mode-k is gj,k, which
is based on the electric dipole interaction [14].

The coupling structure of the multimode Dicke Hamil-
tonian can be represented by a coupling matrix of size
(Na +M)× (Na +M) partitioned as

MD =

[
ωa g
gT ωf

]
, (2)

where ωa and ωf are diagonal matrices of atomic and
field frequencies, and g is an Na ×M dense matrix rep-
resenting the field-atom coupling coefficients. The Dicke
coupling matrix is a real-valued, symmetric matrix that
is visualized on the left in Fig. 1.

The far off-diagonal coupling elements of MD such as
g1,M (shown in Fig. 1) are what makes the tensor network
simulation of (1) inefficient. In MPS simulations, this
type of interaction terms are referred to as long-range
interactions [22], and they require implementing a great

number of SWAP gates.1 To avoid this inefficiency, we
annihilate these coupling elements by applying a series
of Householder transformations [24, 25] and orthogonally
transform the coupling matrix into a band matrix as

MB = QM−Na−1 . . .Q2Q1︸ ︷︷ ︸
=Q

MDQ
T

1 Q
T

2 . . .Q
T

M−Na−1

(3)

or simply MB = QMDQ
T
.

The Householder matrix is constructed as

Qi = I− 2viv
T
i

vT
i vi

(4)

where I is an (Na+M)× (Na+M) identity matrix, and

the vector vi is built from the i-th column of M
(i−1)

D as

vi =

[
0i

mi

]
− αeNa+i. (5)

In the above, M
(i−1)

D = Qi−1 . . .Q1MDQ
T

1 . . .Q
T

i−1; 0i

is a length-(Na+i−1) vector of zeros; mi is a length-(M−
i+1) vector whose entries are equal to everything below

(Na + i− 1)-th entry of the i-th column of M
(i−1)

D ; α =

− sgn(m
(i−1)
Na+i,i)∥mi∥2 with sgn being the sign function

that is defined to be one at the origin [sgn(0) = 1] and
∥ · ∥2 being the 2-norm; and eNa+i is a standard unit
vector that is equal to one in the (Na + i)-th entry with

zeros in all other entries. Equation (5) and M
(i−1)

D are
illustrated in Fig. 5 for visual clarity.
In (3), each Qi implements a Householder transforma-

tion that annihilates everything below the (Na + i)-th

entry of the i-th column of the target matrix M
(i−1)

D .
The final result is a symmetric band matrix of the same
size as MD with bandwidth Na that can be expressed in
the block matrix form as

MB =

[
ωa ρ
ρT ξ

]
, (6)

1 A SWAP gate is a quantum gate that exchanges the states of
two qubits. More generally, for MPS simulations, a SWAP gate
exchanges the states of two identical quantum systems [23].
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FIG. 2. The vector vi (5) is built from a part of the i-th

column of the intermediate matrix M
(i−1)
D .

where ρ is a lower-triangular matrix of size Na×M repre-
senting the modified field-atom coupling coefficients, and
ξ is a band matrix of sizeM ×M with diagonal elements
[ξ]ii = ξi representing the transformed bosonic frequen-
cies and off-diagonal elements [ξ]ij = tij for i ̸= j and
|i− j| ≤ Na representing the newly created boson-boson
coupling coefficients. The resulting band matrix is visu-
alized on the right in Fig. 1.

Inspired by the chain mapping technique [10–13], the
Hamiltonian whose coupling structure is represented by
the band coupling matrix MB can be written in terms of
the entries of MB as

ĤB = ℏ
Na∑
j=1

[
ωa,j

2
σ̂z
j − i

∑
k≤j

ρj,kσ̂
x
j (b̂k − b̂†k)

]

+ ℏ
M∑
k=1

[
ξk b̂

†
k b̂k +

Na∑
j=1

tk,k+j(b̂
†
k b̂k+j + b̂†k+j b̂k)

]
(7)

with tk,k+j = 0 for k + j > M . It is remarkable that
(7) compared to (1) lacks the far off-diagonal couplings
as a result of the coupling matrix transformation. This
is explicitly shown by the summation indices for the in-
teraction terms that are limited by the atomic index j
(first row, second summation) and the number of atoms
Na (second row, second summation). This absence of
far off-diagonal couplings is what makes (7) much more
compatible with tensor network algorithms.

The orthogonal matrix Q in (3) that implements the
transformation is of the form

Q =

[
INa

0
0 U

]
, (8)

where INa is anNa×Na identity matrix, andU is anM×
M orthogonal matrix. From this form of Q, it is evident
that the transformation only applies to the bosons and
not the atoms. This is why the atomic frequencies in MB

are left unchanged and are equal to those in MD. The

photonic operator âk and the chain bosonic operator b̂j
are related as b̂j =

∑M
k=1 Ujkâk where Ujk = [U]jk is the

block matrix from (8). In other words, a particular way
of clustering the photons gives rise to the chain bosonic
modes. This is precisely the same as what is done in the
chain mapping technique [10–13].
There is a good reason that we do not trim the off-

diagonal elements of MD all the way to the tridiago-
nal form. If it were tridiagonalized, then we would lose
the identity block matrix INa in the upper left corner of
(8), and Q will end up being a full matrix, which would
mix the two-level and bosonic operators in the process of
transformation. The resulting Hamiltonian will not be
well-defined. To avoid this, we make sure that the trans-
formation only applies to the bosonic operators as shown
in (8).

B. Complexity, applicability, and limitations

Since our scheme is based on Householder transfor-
mations which costs O(N3) where N = Na +M is the
number of rows and columns of the coupling matrices,
it is numerically stable. This is in contrast to the chain
mapping technique that is unstable due to the Lanczos
algorithm [O(MN2) assuming M > Na] on which it is
based. Hence, chain mapping needs stabilization using
methods such as the modified Gram-Schmidt orthogo-
nalization [14] which costs O(N3) also.
The generalized chain mapping technique works the

best when there are just few atoms interacting with mul-
tiple modes (Na < M). If Na ≥ M , then Na −M + 1
atoms remain coupled to all the modes even after the cou-
pling matrix transformation, making the resulting system
incompatible with tensor network algorithms.
We have investigated time-domain MPS simulations

with the band Hamiltonian (7) using the time-evolving
block decimation (TEBD) algorithm [16, 26] and the
time-dependent variational principle [22, 27]. Both algo-
rithms require forming an (Na + 1)-site operator due to
the near-neighbor coupling structure of the band Hamil-
tonian (7). For example, in TEBD, this operator is
then turned into a matrix product operator (MPO),
whose bond dimensions scale exponentially in Na. If
we let Nf be the number of Fock states considered for
each bosonic mode in the simulation, then the maxi-
mum bond dimension of the MPO would be NNa

f or

NNa+1
f when Na is even or odd, respectively. An ex-

ample of Na = 3 case is illustrated in Fig. 3. The
4-site operator in this example is formed from a part

of the band Hamiltonian (7) as exp{−iĥk∆t/ℏ} where

ĥk = ξk b̂
†
k b̂k +

∑3
j=1 tk,k+j(b̂

†
k b̂k+j + b̂†k+j b̂k) for some k.

At the onset of the USC regime, we found that at least
Nf = 8 is required for the simulation times we explore
in Sec. IV. In this case, the largest bond dimension of
the MPO would be N4

f = 84 = 4096, which makes 3-
atom MPS simulation computationally impracticable at
this coupling strength. For weaker coupling strengths
where Nf could be lower without sacrificing the accuracy,
it is possible to simulate up to 3 or 4 atoms with this
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FIG. 3. Left: 4-site operator for TEBD in Na = 3 case.
Right: Decomposed MPO of the 4-site operator. All vertical
indices (on top and bottom of tensors) are bosonic indices of
dimension Nf . As a result of the decomposition, bonds are
formed with the highest dimensional bond being at the center
of the MPO.

FIG. 4. Comparison of the original chain mapping technique
from [10] and our coupling matrix transformation (CMT) ap-
proach presented in this paper. They are in good agreement.
ξn represents the transformed bosonic frequencies, and tn rep-
resents the chain boson-boson coupling coefficient.

approach. For these reasons, we simulated two atoms in
the USC regime as demonstrated in Sec. IV.

III. NUMERICAL VALIDATION

A. Equivalence to the chain mapping

What is reassuring is that when Na = 1, our coupling
matrix transformation technique reduces to the chain
mapping technique and implements the exact same trans-
formation. This is numerically demonstrated2 in Fig. 4.
Here, we consider a single atom placed at the center of
a 1D lattice with periodic boundary conditions, and we
consider the lowest fifty electromagnetic eigenmodes of
this system. The parameters for this test are selected to
be ωk = kωa with integer k ∈ [1, 50] and gk = g

√
ωk

with g = 1. Since there is only one atom in this case,
the atomic index is fixed at j = 1 and is omitted here. It
is observed in Fig. 4 that the coefficients agree perfectly,
so it is clear that the coupling matrix transformation re-
duces to the chain mapping technique in the single atom
case.

2 Since the Householder transformation is by and large a numerical
technique, it is difficult (or impossible) to mathematically prove
the equivalence between our coupling matrix transformation and
the chain mapping technique. This is why we numerically demon-
strate their equivalence.

FIG. 5. Illustration of three identical atoms placed in a 1D
PEC cavity interacting with the first five modes.

FIG. 6. 3-atom, 5-mode simulation of the Dicke (1) and band
(7) Hamiltonians with normalized coupling strength 0.25 be-
tween Atom 1 and the fundamental mode of the cavity. Here,
we are numerically demonstrating the equivalence between
the two Hamiltonians.

B. Equivalence of the Hamiltonians

To show that the multimode Dicke Hamiltonian (1)
is equivalent to the band Hamiltonian (7), we perform
a simple numerical time-domain simulation for both sys-
tems for 3-atom, 5-mode case in the USC regime.3 This is
small enough that the computational cost for simulating
either system is very low (and tensor network algorithm
is not needed here).

The three atoms are assumed to be identical and placed
in a 1D cavity with perfect electric conductor (PEC)
walls. The cavity occupies x ∈ [−L/2, L/2] where L is
the length of the cavity, and the atoms are placed at
x = 0, L/4, and −3L/8. This setting is depicted in
Fig. 5. The plot of the time-domain simulation result
is shown in Fig. 6. We numerically solve the quantum
state equation (also known as Schrödinger equation) for
Hamiltonians (1) and (7) to obtain the time-evolved state
|ψ(t)⟩ and compute the excited-state atomic population
⟨σ+

j σ
−
j ⟩ = ⟨ψ(t)|σ̂+

j σ̂
−
j |ψ(t)⟩ for each atom. The initial

state is given by |ψ0⟩ = |e, e, e, 0, . . . , 0⟩, i.e., three ex-
cited atoms in vacuum. Excellent agreement is observed
in Fig. 6, and we conclude that the Dicke (1) and band (7)
Hamiltonians represent an equivalent physical system.

3 This is realized by setting one of the coupling coefficients as
g1,1/ω1 = 0.25, i.e., the normalized coupling coefficient between
the first atom and fundamental field mode of the cavity is 0.25.
The coupling coefficients for the other modes and other atoms
are determined by the electric dipole interaction which depends
on the field profile, atoms’ positions, and their dipole moments.
Since we assume identical atoms here, their dipole moments are
equal. The expression for the electric dipole coupling coefficient
is given in [14, Eq. (7)].
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FIG. 7. MPS simulation results of the two-atom, thirty-mode Dicke model using the band Hamiltonian (7). First, the atomic
population in the excited state is calculated as ⟨σ+

j σ
−
j ⟩ = ⟨ψ(t)|σ̂+

j σ̂
−
j |ψ(t)⟩ and plotted in the top row. This is equal for both

atoms because they are placed symmetrically within the cavity. Second, the first-order field correlation function is computed
as ⟨E(−) ·E(+)⟩ = ⟨ψ(t)|Ê(−)(r) · Ê(+)(r)|ψ(t)⟩ whose calculation is detailed in [14]. Third, we compute the components of
four possible two-atomic states in |ψ(t)⟩ as |⟨ϕ|ψ(t)⟩|2 where |ϕ⟩ = |g1g2⟩, |g1e2⟩, |e1g2⟩, and |e1e2⟩. Finally, the von Neumann
entanglement entropy of the MPS S1:m(t) is calculated for two different bipartitions of the MPS: one between the first two sites
and the other between the second and third sites.

IV. NUMERICAL EXAMPLE: TWO
ENTANGLED ATOMS IN A CAVITY

In the USC regime, single electromagnetic mode ap-
proximation is likely to fail due to the possibility of super-
luminal signaling [8], so multiple modes must be consid-
ered. It was found that several tens of modes are enough
to accurately characterize the propagation effects in this
coupling regime [8]. When so many modes need to be
incorporated into the model, it is highly inefficient (or
impossible) to numerically simulate the system using the
multimode Dicke Hamiltonian (1). Since we have seen
their equivalence, we use the band Hamiltonian (7) for
tensor network simulations in the remainder of this pa-
per.

A. Simulation setting

We restrict our MPS simulations to two identical atoms
in 1D PEC cavity in the presence of thirty electromag-
netic modes (M = 30). In particular, we are interested in
how entangled atoms interact with multiple field modes
in the USC regime. This is important since obtaining
entangled qubits is an essential step in all quantum al-
gorithms. Moreover, it has been shown in circuit QED
that ultrastrong interactions can be leveraged to “har-
vest” entangled atoms [28]. Our simulations will show
how quantized multimode fields impact the time evolu-
tion of entangled atoms in different configurations in the
USC regime.

The simulation setting is similar to the one depicted in
Fig. 5 but only with two atoms now placed at x = ±L/4.
We assume that the atoms are resonant with the funda-

mental mode of the cavity such that the mode frequencies
are ωk = (2k − 1)ωa with integer k ∈ [1,M ], where the
atomic frequency for both atoms is ωa. These mode fre-
quencies are a consequence of the homogeneous 1D PEC
cavity. Other than the fact that it eliminates the possi-
bility of superluminal signaling [8], considering 30 modes
is also adequate because in this type of setting the nor-
malized coupling coefficient (gj,k/ωk) decays rapidly with
mode index k [14]. MPS is used to efficiently represent
the time-evolving quantum state |ψ(t)⟩, and the time evo-

lution operator e−iĤB∆t/ℏ is approximately constructed
as an MPO using TEBD.

We consider three initial states:

|ψ1⟩ =
(
|e1e2⟩+ |g1g2⟩

)
/
√
2, (9a)

|ψ2⟩ =
(
|e1g2⟩+ |g1e2⟩

)
/
√
2, (9b)

|ψ3⟩ =
(
|e1⟩+ |g1⟩

)(
|e2⟩+ |g2⟩

)
/2 (9c)

with vacuum (no photons) in all three cases. The sub-
scripts in the above distinguish the two atoms. The first
two states are maximally entangled with different config-
urations, while the last is separable (non-entangled). We
reveal the differences in their time evolution characteris-
tics for these three initial states.

B. MPS simulation results

We deal with the onset of the USC regime where
maxj,k |gj,k/ωk| = 0.1. The simulation results are shown
in Fig. 7. In particular, the von Neumann entanglement
entropies are plotted in the last row to quantify the de-
gree of entanglement for two different bipartitions of the
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FIG. 8. Tensor network diagram of the total density operator
formed by taking the outer product of the MPS. The first two
sites represent the atoms, and the remaining sites represent
the electromagnetic modes. The bipartition is taken between
sites one and two (red dashed line) to calculate S1(t), and sites
two and three (blue dotted line) to calculate S1:2(t). After the
bipartition, the right side of the density operator is traced out
by taking the partial trace.

time-evolving MPS. The entropies are expressed as

S1(t) = − tr[ρ̂1(t) ln ρ̂1(t)], (10a)

S1:2(t) = − tr[ρ̂1:2(t) ln ρ̂1:2(t)], (10b)

where the reduced density operators in the above are ob-
tained by taking the partial trace of the total density
operator, ρ(t) = |ψ(t)⟩⟨ψ(t)|, as ρ̂1:m(t) = trm+1:N [ρ̂(t)],
wherem indexes the physical sites of MPS, and the bipar-
tition is taken between sites m and m+1. When m = 1,
we simply denote ρ̂1:1(t) = ρ̂1(t). The density operator
and its bipartitions are further explained in Fig. 8. With
MPS, these entropies can be simply computed by taking
the singular values at the zero-site center located right
along the bipartition [22].

The simulations in Fig. 7 take place at the lowest end
of the USC regime where both the weak and USC effects
take place. The weak coupling effect is shown in the field
correlation plot where a “glow” in the cavity is observed.
This glow represents the fundamental mode of the cavity
to which the atoms couple dominantly. The propagation
effects characterized by the traveling wavefront (travel-
ing at the speed of light) is also visible due to the USC
between the atoms and field modes.

What is notable about the simulation results in Fig. 7
is that although both initial states (9a) and (9b) are max-
imally entangled states, they exhibit very different behav-
iors in the presence of multiple electromagnetic modes.
The initial state (9b) displays a highly periodic behavior
resembling Rabi oscillations. It can be seen that this ini-

tial state is almost fully revived when t/(2π/ωa,1) = 5,
meaning that both atoms nearly go back to the maxi-
mally entangled initial state. This does not happen for
initial states (9a) and (9c).
Regarding the von Neumann entanglement entropy,

the maximum possible value of S1(t) is ln 2 ≈ 0.693 since
the first site of the MPS is occupied by a two-level atom.
When S1(t) goes back close to the maximum value at
times t > 0 for the entangled initial states (9a) and (9b),
either the atoms are back to the maximally entangled ini-
tial state (9b), or the first atom is entangled with both
the second atom and the field modes in the case of (9a).
For the separable initial state (9c), we observe the en-
tropies starting out at zero and slowly increasing over
time. For long enough simulations, these values will sat-
urate to a level that depends on the coupling strength.

V. SUMMARY AND FUTURE WORK

We have presented a novel generalization of the chain
mapping technique based on coupling matrix transfor-
mations that works accurately for few-atom, multimode
systems. Our technique is very useful for tensor network
simulations of the multimode Dicke model and multi-
spin-boson model because it can take the coupling struc-
tures of these models and alter them into a linear chain
form with near-neighbor interactions, which is highly
compatible with MPS. The coupling matrix transfor-
mations are numerically stable, and this technique re-
duces to the chain mapping technique in the single atom
case. We have demonstrated the equivalence between
the Dicke (1) and band (7) Hamiltonians and applied
the band Hamiltonian for MPS simulations of two en-
tangled atoms with thirty electromagnetic modes. Our
future work involves extending this technique for realistic
3D models such as flux qubits ultrastrongly coupled to
coplanar waveguide resonators [29, 30].
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[13] A. W. Chin, Á. Rivas, S. F. Huelga, and M. B. Ple-
nio, Exact mapping between system-reservoir quantum
models and semi-infinite discrete chains using orthogo-
nal polynomials, Journal of Mathematical Physics 51,
092109 (2010).

[14] C. J. Ryu, D.-Y. Na, and W. C. Chew, Matrix product
states and numerical mode decomposition for the anal-
ysis of gauge-invariant cavity quantum electrodynamics,
Phys. Rev. A 107, 063707 (2023).

[15] G. Vidal, Efficient classical simulation of slightly entan-
gled quantum computations, Physical Review Letters 91,
147902 (2003).

[16] G. Vidal, Efficient simulation of one-dimensional quan-
tum many-body systems, Physical Review Letters 93,
040502 (2004).

[17] S. R. White, Density matrix formulation for quantum
renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).

[18] C. Guo, A. Weichselbaum, J. von Delft, and M. Vojta,
Critical and strong-coupling phases in one- and two-bath
spin-boson models, Phys. Rev. Lett. 108, 160401 (2012).

[19] A. J. Dunnett and A. W. Chin, Matrix product state
simulations of non-equilibrium steady states and tran-
sient heat flows in the two-bath spin-boson model at finite
temperatures, Entropy 23, 10.3390/e23010077 (2021).

[20] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and
B. W. Lovett, Efficient non-Markovian quantum dynam-
ics using time-evolving matrix product operators, Nature
Communications 9, 3322 (2018).

[21] D. D. Noachtar, J. Knörzer, and R. H. Jonsson, Nonper-
turbative treatment of giant atoms using chain transfor-
mations, Phys. Rev. A 106, 013702 (2022).

[22] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken,
and F. Verstraete, Unifying time evolution and optimiza-
tion with matrix product states, Phys. Rev. B 94, 165116
(2016).

[23] E. Stoudenmire and S. R. White, Minimally entangled
typical thermal state algorithms, New Journal of Physics
12, 055026 (2010).

[24] A. S. Householder, Unitary triangularization of a non-
symmetric matrix, Journal of the ACM (JACM) 5, 339
(1958).

[25] M. T. Heath, Scientific Computing (Society for Industrial
and Applied Mathematics, Philadelphia, PA, 2018).
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