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Abstract. We study the determination of the mass of a de Sitter-
Schwarzschild black hole from one quasinormal mode. We prove a local
uniqueness result with a Hölder type stability estimate.

1. Introduction

The possibility of inferring black hole parameters from quasinormal modes
(QNMs) has been explored in the physics literature, see Section 9 of the
review paper [2]. For example, for slowly rotating black holes, Detweiler
showed by numerical calculation in [7] that the QNM nearest to the real
axis (called the fundamental QNM) is an injective function of the black
hole parameters. Later, Echeverria in [10] investigated the stability issue.
Since the success of gravitational wave interferometers, the topic has gained
increasing attention, see e.g. [3]. One particular motivation for the study is
to verify the black hole no hair theorem for which two QNMs are needed:
one QNM is used to recover the black hole parameter and another QNM is
used to test the theorem. We refer to [2, Section 9.7] for a review and [16]
for the state of the art. Despite some convincing evidence, it seems that the
theoretical justification is not complete. For example, most of the analysis
in the literature is done for the fundamental modes corresponding to small
spherical harmonic indices. However, it is generally not known which modes
are excited and are extractable from the actual black hole ring down signals,
see [3, 2]. In this short note, we aim to provide a mathematical justification
of the recovery of black hole parameters from a single QNM.

We consider the model of a non-rotating de Sitter-Schwarzschild black
hole (M, gdS):

(1)
M = Rt ⇥X

�
, X = (rbH , rsI)⇥ S2

gdS = ↵
2
dt

2 � ↵
�2

dr
2 � r

2
dw

2

where dw
2 denotes the standard metric on S2 and

(2) ↵ = (1� 2m

r
� 1

3
⇤r2)

1
2 .

Here, m > 0 is the mass of the black hole and ⇤ > 0 is the cosmological
constant. They satisfy 0 < 9m2⇤ < 1. rbH , rsI are the two positive roots of
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↵(r) = 0 which corresponds to horizons. Throughout the note, we assume
that ⇤ is known. Consider the d’Alembertian on (M, gdS):

(3) ⇤M = ↵
�2(D2

t � ↵
2
r
�2

Dr(r
2
↵
2)Dr � ↵

2
r
�2�S2)

where Dr = �i@r and �S2 the positive Laplacian on S2. The stationary
scattering is governed by the operator

(4) �X = ↵
2
r
�2

Dr(r
2
↵
2)Dr + ↵

2
r
�2�S2 ,

see [20]. On L
2(X;⌦) with measure ⌦ = ↵

�2
r
2
drdw, �X is an essentially

self-adjoint, non-negative operator, see [18]. Consider the resolvent

(5) RX(�) = (�X � �
2)�1

.

Here, we use �2 as the spectral parameter and take Im� � 0 to be the
physical plane such that RX(�) is bounded on L

2(X;⌦) for Im� >> 0,
according to the spectral theorem. Sá Barreto and Zworski demonstrated in
[20, Proposition 2.1] that RX(�) has a meromorphic continuation as opera-
tors from C

1
0
(X) to C

1(X) from Im� � 0 to C with poles of finite rank.
The poles of RX(�) are called resonances. The fact that they are equivalent
to the quasinormal modes defined by using Zerilli’s equation (see e.g. [6, 5])
is discussed in [20], see also [4, 18].

We set O = (0, 1/(3
p
⇤)). For m 2 O, we denote the set of resonances

by R(m). Below, Q(m) is a discrete set of i(�1, 0] \ R(m) defined in (22).
Our main result is:

Theorem 1.1. Let ⇤ > 0 and m 2 O. For any � 2 R(m)\(Q(m) [
�i

p
⇤/3N), there exists � > 0 (depending on �) such that for any em 2 O

with |em�m| < �, if � 2 R(em) then m = em. Moreover, if e� 2 R(em)\(Q(em)[
�i

p
⇤/3N) is su�ciently close to �, then

|em�m|  C|e�� �|1/N

for some C > 0 and N 2 N depending on �.

We note that a discrete set of i(�1, 0] is excluded from the theorem due
to the following reasons. First, there is the possibility that some resonances
cannot be used to determine the mass. We call � a trivial resonance if
� 2 R(m) for all m 2 O. For example, 0 is a trivial resonance, see [18].
Thanks to a recent work [14] (see also [13]), we know that for m & 0, the
set R(m) converges to �i

p
⇤/3N[{0}. So these are the only possible trivial

resonances. The numerical study [14, Fig. 6(b)] seems to indicate that such
points except 0 are not trivial, but this remains to be proved rigorously.
Second, our method does not apply to the resonances in Q(m), see Section
5. However, we point out that all these points are purely imaginary and
they seem to be less relevant in practical cases, see for instance [16].

We also remark that for recovering black hole parameters, it is common
to use only one or a few QNMs. This is very di↵erent from the usual
inverse spectral/resonance problem for which the whole set R(m) is used
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to determine the parameters. In fact, there is a large literature on the
distribution of resonances in the high energy regime, by which we mean
resonances � with |Re�| >> 1. For example, Theorem in [20] states that
there exists K > 0, ✓ > 0 such that for any C > 0 there is an injective map
eb from the set of pseudo-poles

(±l ± 1

2
� i

2
(k +

1

2
))
(1� 9⇤m2)

1
2

33/2m
to R(m,⇤) such that all the poles in

⌦C = {� : Im� > �C, |�| > K, Im� > �✓|Re�|}

are in the image of eb and for eb(µ) 2 ⌦C , we have eb(µ)� µ ! 0 as |µ| ! 1.

See Figure 1. By looking at the sequence of resonances for large l, k, one

Figure 1. Resonances for de Sitter-Schwarzschild black
holes. The black dots are resonances captured by Theorem
in [20]. The hollow dots and resonances in the shaded region
are not.

recovers m. Similar results exist for rotating black holes, see for example
[8].

Our proof of the theorem is based on an analytic perturbation argument,
by observing that the coe�cients of the operator �X are analytic functions
in m. There are some resonance perturbation theories, see for instance
Agmon [1], Howland [15], which are developed upon perturbation theory for
eigenvalues, see for example [19]. Here, we use that �X has asymptotically
hyperbolic structure near the two horizons to construct a parametrix modulo
a trace-class error term, following Mazzeo and Melrose [17]. We then use
the Fredholm determinant and its analyticity in m to finish the proof. This
approach has the benefit of not relying on the spherical symmetry of the
black hole metric. For example, one can add general metric or potential
perturbations with suitable decay at the horizons and obtain similar results
to Theorem 1.1.

The note is organized as follows. We begin in Section 2 with a scatter-
ing problem to demonstrate the possibility of recovering parameters from
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a single resonance. In Section 3, we discuss the asymptotically hyperbolic
structure and the analyticity. We construct the resolvent in Section 4 and
finish the proof in Section 5.

2. An example: the potential barrier

In this section, we give an example of a scattering system depending on
one parameter, for which a single resonance recovers the parameter. The ex-
ample was actually used by Chandrasekhar and Detweiler in [6] to illustrate
the concept of quasinormal modes.

Consider
u
00(x)� V (x)u(x) + �

2
u(x) = 0, x 2 R

where � is constant and V is the rectangular barrier

V (x) =

(
1, x 2 [�L,L]

0, otherwise.

See Figure 2. Note that the potential is characterized by L. In this case, the
scattering resonances can be defined as the poles of the scattering matrix.
It is a standard exercise in scattering theory to find the scattering matrix.
Let us look at a wave traveling to the right, hitting the potential and getting
reflected and transmitted. In this case, the solution looks like

uR(x) =

(
e
i�x + re

�i�x
, x < �L

te
i�x

, x > L

Here, r is the refection coe�cient and t is the transmission coe�cient. Sim-
ilarly, we can consider a wave traveling to the left of the form

uL(x) =

(
t
0
e
�i�x

, x < �L

e
�i�x + r

0
e
i�x

, x > L

with r
0
, t

0 the reflection, transmission coe�cient respectively. The scattering
matrix is

S =

✓
t r

r
0

t
0

◆
.

By matching the solution and its derivatives at x = L,�L, we can find the
coe�cients as

r = r
0 =

e
�2i�L+2iqL � e

�2i�L�2iqL

K
,

t = t
0 = e

�2i�L�2iqL + r
q + �

q � �
e
�2iqL

where

K =
q + �

q � �
e
�2iqL � q � �

q + �
e
2iqL

.

Thus, the resonances are solutions of K = 0 or equivalently

(6) (
q + �

q � �
)2 = e

4iqL
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where q
2 = �

2 � 1. Suppose we have � such that Im q 6= 0. Then we can
take modulus of (6) to find L as

(7) L = � 1

2 Im q
ln |q + �

q � �
|.

This shows that one can recover L from one resonance.
Now we provide a numerical verification. We compute resonances using a

Matlab code from [21] and identify L using (7). It is important to note that
the code from [21] does not calculate resonances by solving (7). Take L =
1.3. The potential and resonances are plotted in Figure 2. The numerical
values of the four resonances nearest to the origin with positive real parts
are

�1 = 1.2127� 0.4432i, �2 = 2.2120� 1.1135i,

�3 = 3.4242� 1.4810i, �4 = 4.6501� 1.7230i.

Using any of these resonances in (7), we find L = 1.3 with a 10�4 error.
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Figure 2. A rectangular barrier and its resonances.

3. The asymptoically hyperbolic structure and analyticity

It is known that �X in (4) can be essentially viewed as perturbed Lapla-
cians associated with some asymptotically hyperbolic metrics near @X. We
follow the presentation in [18]. Let X be a compact manifold of dimen-
sion n+ 1 with boundary @X. Let ⇢ be a boundary defining function such
that ⇢ > 0 in X, ⇢ = 0 at @X, d⇢ 6= 0 at @X. A metric g on X is called
conformally compact if G = ⇢

2
g is a non-degenerate Riemannian metric on

the closure X. If in addition |d⇢|2
G
|@X = K is constant, the metric g is

called asymptotically hyperbolic. In this case, the sectional curvature ap-
proaches �K along any curve towards @X, see [17, Lemma (2.5)]. There is
a normal form of the metric near @X, see e.g. Graham [11]. In particular,
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there is a choice of boundary defining function x such that in a neighbor-
hood U = [0, ✏)x ⇥ Y, Y ⇢ @X of p 2 @X, we can use local coordinates
(x, y), y 2 Y and get

(8) g =
dx

2 + h(x, y, dy)

x2
.

Now we consider �X in (12) on X. We define

� =
1

2

d↵
2

dr
=

m

r2
� ⇤

3
r.

We see that � is a smooth function of r on [rbH , rsI ] and analytic in m 2 O.
We set �bH = �(rbH) > 0,�sI = �(rsI) < 0. Here, we recall that

(9)
rbH = Im(

q
1� (3m

p
⇤)2 + i3m

p
⇤)1/3/

p
⇤,

rsI = Im(�
q

1� (3m
p
⇤)2 + i3m

p
⇤)1/3/

p
⇤,

see page 6 of [20]. Thus �sI ,�bH are both analytic functions of m 2 O. Now
we write (4) as

(10) �X = �r
�2
↵D↵(�r

2
↵D↵) + ↵

2
r
�2�S2 .

For convenience, we denote @X = @XsI [ @XbH with

@XsI = {rsI}⇥ S2, @XbH = {rbH}⇥ S2.
Note that ↵ only vanishes at @X. We let ⇢ be a boundary defining function
defined through

(11)
↵ = 2rbH�bH⇢ near r = rbH

and ↵ = 2rsI�sI⇢ near r = rsI .

Here, the smooth structure on X is changed. Before, r � rbH is a smooth

boundary defining function near @XbH but now we think of (r � rbH)
1
2 as

a smooth boundary defining function, see [20, Section 2]. By using ⇢, (10)
becomes

(12)
�X = �r

�2
⇢D⇢(�r

2
⇢D⇢) + 4⇢2�2

bH
r
2

bH
r
�2�S2 near @XbH ,

�X = �r
�2
⇢D⇢(�r

2
⇢D⇢) + 4⇢2�2sIr

2

sIr
�2�S2 near @XsI .

Let gbH be the metric defined in a neighborhood of @XbH given by

(13) gbH =
d⇢

2

�2⇢2
+

r
2

(2�bHrbH)2
dw

2

⇢2
,

and let gsI be the metric defined in a neighborhood of @XsI given by

(14) gsI =
d⇢

2

�2⇢2
+

r
2

(2�sIrsI)2
dw

2

⇢2
.

These can be viewed as metric perturbations of the hyperbolic metrics

gbH,0 =
4dz2

�
2

bH
(1� |z|2)

gsI,0 =
4dz2

�
2

sI
(1� |z|2)
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on B3 = {z 2 R3 : |z|  1} with constant negative sectional curvature ��2
bH

and ��2
sI

respectively. Here, (1 � |z|2)
1
2 is the boundary defining function.

Also, gbH , gsI are even asymptotically hyperbolic metrics as defined in Guil-
larmou [12].

After some calculation, see [18, Proposition 8.1], we conclude that there
are two smooth functions WbH ,WsI such that

(15)
↵�X↵

�1 = ⇢�X⇢
�1 = �gbH

+ ⇢
2
WbH � �

2

bH
, near @XbH ,

↵�X↵
�1 = ⇢�X⇢

�1 = �gsI
+ ⇢

2
WsI � �

2

sI , near @XsI .

This shows the asymptotically hyperbolic structure of ↵�X↵
�1 near @X.

Consider the dependency of the operator ↵�X↵
�1 on m. Note that the

manifold X varies when varying m. We change the notation from X to
X(m). The dependency can be fixed by transforming X(m) to a fixed
reference manifold. Let X = (1, 2)⇥ S2 and let

 : X ! X(m)

be a di↵eomorphism defined by (s, w) =  (s, w) = ( (s), w) with

 (s) = (s� 1)rsI + (2� s)rbH .

Note that  extends smoothly to X ! X(m). Since rbH , rsI are analytic
functions of m 2 O,  and  are also analytic in m 2 O. Now, the pull back
⇢
⇤ =  

⇤(⇢) is a family of smooth boundary defining functions for @X. To
see their dependency on m, we write (2) as

↵ =
p
⇤/3(r � rbH)

1
2 (r � rsI)

1
2 (r � r0)

1
2

where rbH , rsI are two positive roots of ↵ = 0 and r0 is the third negative
root. Using (11) and on X near @XbH , we have
(16)

⇢
⇤ =

p
⇤/3(r � rbH)

1
2 (r � rsI)

1
2 (r � r0)

1
2

2�bHrbH

=

p
⇤/3(rsI � rbH)(s� 1)

1
2 (2� s)

1
2 ((s� 1)rsI + (2� s)rbH � r0)

1
2

2�bHrbH

= (s� 1)
1
2AbH(s,m)

where AbH(s,m) is defined through the last two lines. It is clear that AbH

is smooth in s. Since (s � 1)rsI + (2 � s)rbH � r0 > 0 for s 2 [1, 2], we see
that AbH , hence ⇢⇤, is analytic in m 2 O. Near @XsI , we have a similar form

(17) ⇢
⇤ = (2� s)

1
2AsI(s,m).

From (13), (14), we see that the pull-back of the metrics are

(18)

 ⇤
gbH =

(d⇢⇤)2

(rsI � rbH)2(�⇤)2(⇢⇤)2
+

[(s� 1)rsI + (2� s)rbH ]2

(2�bHrbH)2
dw

2

(⇢⇤)2

 ⇤
gsI =

(d⇢⇤)2

(rsI � rbH)2(�⇤)2(⇢⇤)2
+

[(s� 1)rsI + (2� s)rbH ]2

(2�sIrsI)2
dw

2

(⇢⇤)2
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near @XbH , @XsI respectively. Here, �⇤ =  
⇤(�).

Let V0(X) be the Lie algebra of smooth vector fields on X vanishing at @X.
In local coordinates (x, y) near @X with x being the boundary defining func-
tion, V0(X) is generated by x@x, x@y. For  2 N, the space of 0-di↵erential
operators of order  on X, denoted by Di↵0(X), is generated by up to -fold
products of vector fields in V0(X). From the analyticity of the di↵eomor-
phism  in m, we see that the pull-back of ↵�X↵

�1 to X is a di↵erential
operator on X with coe�cients analytic in m. To see that it belongs to
Di↵20(X) with coe�cients analytic in m 2 O, we consider ↵�X↵

�1 near @X
for example near s = 1. We change the boundary defining function from ⇢

⇤

to � = (s� 1)
1
2 so ⇢⇤ = �AbH(�2,m). Then the metric in (18) becomes

 ⇤
gbH =

(1 + @�AbH)(d�)2

(rsI � rbH)2(�⇤)2A2

bH
�2

+
[(s� 1)rsI + (2� s)rbH ]2

(2�bHrbH)2A2

bH

dw
2

�2

which is a family of Riemannian metrics on X analytic in m.

4. The resolvent construction

We obtain an approximation of RX(�) in (5) following Mazzeo-Melrose
[17]. In fact, we will find the resolvent of ↵�X↵

�1 on X. We will be using
operators acting on half densities on X. For convenience, we introduce an
auxiliary Riemannian metric gX on X which equals gbH , gsI near @XbH , @XsI

respectively. Such a metric can be obtained by gluing gbH , gsI near @X and
some Riemannian metric in the interior of X. The choice is clearly not
unique and its dependency on m is not important. We use gX to trivialize
the (zero) one-density bundle ⌦0, that is we take ⌦0 to be the volume form

|dgX|. The half-density bundle is ⌦
1
2
0
. Let x be a boundary defining function

such that in local coordinates (x, y), x � 0, y 2 S2 near @X, gX is expressed
in form of (8). In these coordinates,

⌦
1
2
0
= H(x, y)|dx

x

dy

x
|
1
2

for some smooth function H. Now we consider ↵�X↵
�1 acting on smooth

sections C1(X;⌦
1
2
0
) in the following way:

↵�X↵
�1(u⌦

1
2
0
) = (↵�X↵

�1
u)⌦

1
2
0
.

The resolvent R↵(�) = (↵�X↵
�1 � �

2)�1 acts on ⌦
1
2
0
in the same way.

The parametrix is constructed on the 0-double space of X⇥ X as in [17].
Let Diag = {(z, z) 2 X ⇥ X} be the diagonal of X ⇥ X. Let @Diag =
Diag\ (@X⇥ @X) which has two (disjoint) connected components. As a set,
the 0-double space is

X⇥0 X = (X⇥ X)\@Diag t S++(@Diag)
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where S++(@Diag) denotes the inward pointing spherical bundle of T ⇤
@Diag

(X⇥
X). Let

�0 : X⇥0 X ! X⇥ X(19)

be the blow-down map. Then X⇥0X is equipped with a topology and smooth
structure of a manifold with corners for which �0 is smooth. The manifold
X ⇥0 X has the following boundary hyper-surfaces: the left and right faces

L = �
�1

0
(@X⇥ X), R = �

�1

0
(X⇥ @X), and the front face ↵ = �

�1

0
(@Diag).

Since @X = @XbH [ @XsI where the asymptotic behavior of the resolvent is
di↵erent at each connected component, it is convenient to introduce

LbH = �
�1

0
(@XbH ⇥ X), LsI = �

�1

0
(@XsI ⇥ X),

RbH = �
�1

0
(X⇥ @XbH), RsI = �

�1

0
(X⇥ @XsI),

so L = LbH[LsI , R = RbH[RsI , see Figure 3. The lifted diagonal is denoted

by Diag0 = �
�1

0
(Diag \ @Diag). X⇥0 X has co-dimension two corners at the

intersection of two of the boundary faces L,R,↵ and co-dimension three
corners given by the intersection of all the three faces. See Figure 3.

X

X
LbH

RbH

LsI

RsI

↵

↵

Diag0
Diag

⇢
0

⇢

⇢
0

⇢

�0

Figure 3. The 0-double space. The blown-up at the two
components of @Diag0 are shown.

Now we introduce spaces of operators on X ⇥0 X. First, let K

0
(X) ⇢

D 0(X ⇥0 X;⌦
1
2
0
) be the space of distributional sections of the bundle ⌦

1
2
0

which are conormal to Diag0 and vanish to infinite order at L,R. Here, it

is understood that ⌦
1
2
0
denotes the half-density bundle lifted from the one

on X⇥ X by �0. The corresponding class of pseudo-di↵erential operators is

denoted by  

0
(X,⌦

1
2
0
). Next, let Vb be the space of smooth vector fields

on X ⇥0 X which are tangent to each of the boundary faces L,R,↵. Let
⇢•, • = LbH , LsI , RbH , RsI ,↵ be boundary defining functions. We set

(20)
Aa,b,c,d(X⇥0 X) = {u 2 D 0(X⇥0 X) : V1 · · ·Vku 2

⇢
a

LbH
⇢
b

RbH
⇢
c

LsI
⇢
d

RsI
L
1(X⇥0 X), Vi 2 Vb, i = 1, 2, · · · , k, 8k � 0}.



10 GUNTHER UHLMANN AND YIRAN WANG

Then define

K�1,a,b,c,d

0
(X⇥0 X) = Aa,b,c,d(X⇥0 X)⌦ C

1(X⇥0 X;⌦
1
2
0
).

Finally, define

K,a,b,c,d

0
(X) = K�1,a,b,c,d

0
(X⇥0 X) +K

0(X).

Then we let  ,a,b,c,d

0
(X) be the space of operators on X whose Schwartz

kernel when lifted to X⇥0 X belongs to K,a,b,c,d

0
(X).

Below, we let ⇢ 2 C
1(X) be such that ⇢ = ⇢sI near @XsI and ⇢ = ⇢bH

near @XbH . We have the following result.

Proposition 4.1. There is a family of operators M(�,m) 2  �2,a,a,b,b

0
(X)

with

(21) a = 1 +
�

�bH
i, b = 1 +

�

|�sI |
i,

analytic in m 2 O and holomorphic in � 2 C\Q(m) with

(22) Q(m)
.
=

�i

�bH
N [ �i

|�sI |
N [ {0}

such that

(23) (↵�X↵
�1 � �

2)M(�,m) = Id+E(�,m).

Here, E(�,m) 2 ⇢
1
↵  

�1,1,a,1,b

0
(X) is trace class on ⇢

l
L
2(X) for l > 1 �

min(Re a,Re b). Moreover, its Schwarz kernel is holomorphic in � 2 C\Q(m),
and analytic in m 2 O.

Proof. For fixed m, the construction of M(�,m) and E(�,m) and their holo-
morphy in � is essentially contained in Proposition (7.4) of [17], which applies
to the Laplacian of asymptotically hyperbolic metrics. As argued in Propo-
sition 2.2 of [20], the result applies to ↵�X↵

�1��2 as the normal operator is
elliptic. Because we argued in Section 3 that ↵�X↵

�1 2 Di↵20(X) with coe�-
cients analytic in m 2 O, the construction in [17] produces M(�,m), E(�,m)
analytic in m. For the meromorphic properties in �, it su�ces to consider
the operators near @XbH , @XsI respectively. Write gbH = ⇢

�2
hbH . From

[17, Theorem (7.1)], see also [12, Theorem 1.1], we know that the resolvent
of

(24) |d⇢|�2

hbH
�gbH

+ ⇣(⇣ � 2)

belongs to  �2,⇣,⇣

0
(X) and is meromorphic in ⇣ with poles at �i

�bH

N [ {0}.
Here, we followed [17] and used a di↵erent spectral parameter ⇣. Near @XbH ,
�|d⇢|2

hbH
approaches ��2

bH
. Comparing (24) with (12), we get

�
2

bH
⇣(⇣ � 2) = ��2 � �

2

bH



11

which gives ⇣ = 1 + i�/�bH . This gives a, and b = 1 + i�/|�sI | can be
found in the same way near @XsI . The set Q(m) comes from the poles of the
resolvent of

�
�2

bH
�0 � �

2 and ��2

sI
�0 � �

2

acting between weighted C
1 spaces on B3, see Lemma (6.15) of [17] for the

precise statement. Here, �0 denotes the positive Laplacian of the standard
hyperbolic metric. By rescaling the operator, we find the set Q(m).

Finally, we consider the mapping properties of E(�,m). We recall a result

[17, Lemma (5.24)] that the push forward of the space ⇢1
↵
K�1,a,b,c,d

0
(X⇥0X)

is

Aa,b,c,d

0
(X⇥ X;⌦

1
2
0
⌦ ⌦

1
2
0
) =

\

p

⌧
pAa,b,c,d(X⇥ X), ⌧2 = |y � y

0|2 + ⇢
2 + (⇢0)2

with Aa,b,c,d(X⇥X) defined similarly to (20). Let KE(z, z0) be the Schwarz

kernel of E. As E 2 ⇢
1
↵
 �1,1,a,1,b

0
(X), we have the estimate

|⇢�l(z)KE(z, z
0
,�,m)⇢l(z0)|  C⇢

l+min(Re a,Re b)(z0)

for some C > 0. By applying Schur’s lemma more precisely Lemma 6.2 of
[18], we conclude that E(�,m) is bounded on ⇢lL2 for l > 1�min(Re a,Re b).
To see E(�,m) is trace class on ⇢lL2, we write

KE(z, z,�,m) = ⇢
N
⇢
a
⇢
b
FN (z,�,m)

where FN 2 C
1(X) is analytic in m 2 O. The integral

R
X |KE(z, z)|dgX(z)

is finite for N large so E is of trace class. ⇤

5. Proof of Theorem 1.1

We apply the resolvent to (23) to get

(25) M(�,m) = R↵(�)(Id+E(�,m)).

Since E(�,m) is compact on x
l
L
2(X), using the analytic Fredholm theorem,

we see that for any m 2 O, (Id+E(�,m))�1 is a family of bounded operators
on x

l
L
2(X), meromorphic in � 2 C\Q(m). The poles are the resonances.

We use the determinant of Id+E to analyze the poles. We recall that if
A is a trace class operator on a Hilbert space H with eigenvalues �k, k =
1, 2, · · · with |�1| � |�2| � · · · � 0, then the Fredholm determinant det(Id+A) =
⇧1

k=1
(1 + �k). See [9, Appendix B]. Also, Id+A is invertible if and only if

det(Id+A) is non-zero, see [9, Proposition B.28]. Therefore, the set of res-
onances of R↵(�) is contained in the zero set of

K(�,m) = det(Id+E(�,m)).

Using the argument at the end of [9, Section B.5], we conclude that K(�,m)
is a function holomorphic in � 2 C\Q(m), and analytic in m 2 O.

Now we suppose �0 is a resonance so K(�0,m) = 0. By the analyticity
in m, either K(�0,m) is identically zero for all m which means �0 is a
resonance for all m 2 O, or m is the only (discrete) zero locally. For the first
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alternative, we can apply Theorem 1.1 of [13] (with zero angular momentum)
to conclude that the trivial resonances must be contained in �i

p
⇤/3N[{0}.

This proves the first assertion of Theorem 1.1.
For the stability, we write K(�,m) = (m�m0)Nf(�,m) for some N � 0

and f analytic in m with f(�0,m0) 6= 0. Now we set t = (m � m0)N and
get

K(�, t) = K(�,m) = tf(�,m0 + t
1/N ).

We see that
@tK(�, t)|t=0 = f(�,m0) 6= 0.

Using the implicit function theorem, we get that t = g(�) is di↵erentiable
in a neighborhood of �0. Thus, |t|  C|�� e�| which implies

|m� em|  C|�� e�|1/N .

This completes the proof of the Theorem 1.1.
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