RECOVERY OF BLACK HOLE MASS FROM A SINGLE
QUASINORMAL MODE

GUNTHER UHLMANN AND YIRAN WANG

ABSTRACT. We study the determination of the mass of a de Sitter-
Schwarzschild black hole from one quasinormal mode. We prove a local
uniqueness result with a Holder type stability estimate.

1. INTRODUCTION

The possibility of inferring black hole parameters from quasinormal modes
(QNMs) has been explored in the physics literature, see Section 9 of the
review paper [2]. For example, for slowly rotating black holes, Detweiler
showed by numerical calculation in [7] that the QNM nearest to the real
axis (called the fundamental QNM) is an injective function of the black
hole parameters. Later, Echeverria in [10] investigated the stability issue.
Since the success of gravitational wave interferometers, the topic has gained
increasing attention, see e.g. [3]. One particular motivation for the study is
to verify the black hole no hair theorem for which two QNMs are needed:
one QNM is used to recover the black hole parameter and another QNM is
used to test the theorem. We refer to [2, Section 9.7] for a review and [16]
for the state of the art. Despite some convincing evidence, it seems that the
theoretical justification is not complete. For example, most of the analysis
in the literature is done for the fundamental modes corresponding to small
spherical harmonic indices. However, it is generally not known which modes
are excited and are extractable from the actual black hole ring down signals,
see [3, 2]. In this short note, we aim to provide a mathematical justification
of the recovery of black hole parameters from a single QNM.

We consider the model of a non-rotating de Sitter-Schwarzschild black
hole (M, gas):

M=R; x X°, X = (rpg,rer) x S
2

(1)

gas = a2dt®* — o 2dr? — r?dw

where dw? denotes the standard metric on S? and

2m 1 1

2 = (1—=— — -Ar?)a.

2) a=(1-=" o)

Here, m > 0 is the mass of the black hole and A > 0 is the cosmological

constant. They satisfy 0 < 9m?A < 1. 7y, 757 are the two positive roots of
1



2 GUNTHER UHLMANN AND YIRAN WANG

a(r) = 0 which corresponds to horizons. Throughout the note, we assume
that A is known. Consider the d’Alembertian on (M, g4s):

3 Ou = a 2(D? — o®r 2D, (r?a?) D, — o’r?Ag

( ) M t T r S

where D, = —id, and Ag: the positive Laplacian on S?. The stationary
scattering is governed by the operator

(4) Ax = a*r 2D, (r*a®)D, 4+ o’r 2 Age,

see [20]. On L?(X;Q) with measure Q = a~2?r?drdw, Ax is an essentially
self-adjoint, non-negative operator, see [18]. Consider the resolvent

(5) Rx(A) = (Ax =271,

Here, we use A2 as the spectral parameter and take Im A > 0 to be the
physical plane such that Rx()) is bounded on L?(X;Q) for ImA >> 0,
according to the spectral theorem. S& Barreto and Zworski demonstrated in
[20, Proposition 2.1] that Rx(\) has a meromorphic continuation as opera-
tors from C§°(X) to C*°(X) from Im A > 0 to C with poles of finite rank.
The poles of Rx () are called resonances. The fact that they are equivalent
to the quasinormal modes defined by using Zerilli’s equation (see e.g. [6, 5])
is discussed in [20], see also [4, 18].

We set O = (0,1/(3v/A)). For m € O, we denote the set of resonances
by R(m). Below, Q(m) is a discrete set of i(—o0,0] N R(m) defined in (22).
Our main result is:

Theorem 1.1. Let A > 0 and m € O. For any A € R(m)\(Q(m) U
—iy/A/3N), there exists 6 > 0 (depending on \) such that for any m € O
with |m—m| < 8, if A € R(m) then m = m. Moreover, if X € R(m)\(Q(m)U
—iy/A/3N) is sufficiently close to A, then

| —m| < CIA = AN
for some C' > 0 and N € N depending on .

We note that a discrete set of i(—o0, 0] is excluded from the theorem due
to the following reasons. First, there is the possibility that some resonances
cannot be used to determine the mass. We call A a trivial resonance if
A € R(m) for all m € O. For example, 0 is a trivial resonance, see [18].
Thanks to a recent work [14] (see also [13]), we know that for m ™\, 0, the
set R(m) converges to —iy/A/3NU{0}. So these are the only possible trivial
resonances. The numerical study [14, Fig. 6(b)] seems to indicate that such
points except 0 are not trivial, but this remains to be proved rigorously.
Second, our method does not apply to the resonances in Q(m), see Section
5. However, we point out that all these points are purely imaginary and
they seem to be less relevant in practical cases, see for instance [16].

We also remark that for recovering black hole parameters, it is common
to use only one or a few QNMs. This is very different from the usual
inverse spectral/resonance problem for which the whole set R(m) is used
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to determine the parameters. In fact, there is a large literature on the
distribution of resonances in the high energy regime, by which we mean
resonances A with |[Re\| >> 1. For example, Theorem in [20] states that
there exists K > 0,60 > 0 such that for any C' > 0 there is an injective map
b from the set of pseudo-poles
1 i 1..(1-9Am?)2

Gy ) ey,

to R(m, A) such that all the poles in

Qe={A:ImA>—-C, |\ > K, Im\ > —6|Re \|}

are in the image of b and for b(p) € Q¢, we have g(u) —pu—0as |u| = .
See Figure 1. By looking at the sequence of resonances for large [, k, one

[ ) [ ] [ ] [ ) [ ] [ ]
[ ) L] [ ] o, L] [ ]
[ ) [ ] [ ] o [ ] [ ]
[ ) [ ] o) [ ] [ ]

FiGURE 1. Resonances for de Sitter-Schwarzschild black
holes. The black dots are resonances captured by Theorem
in [20]. The hollow dots and resonances in the shaded region
are not.

recovers m. Similar results exist for rotating black holes, see for example
8].

Our proof of the theorem is based on an analytic perturbation argument,
by observing that the coefficients of the operator Ax are analytic functions
in m. There are some resonance perturbation theories, see for instance
Agmon [1], Howland [15], which are developed upon perturbation theory for
eigenvalues, see for example [19]. Here, we use that Ax has asymptotically
hyperbolic structure near the two horizons to construct a parametrix modulo
a trace-class error term, following Mazzeo and Melrose [17]. We then use
the Fredholm determinant and its analyticity in m to finish the proof. This
approach has the benefit of not relying on the spherical symmetry of the
black hole metric. For example, one can add general metric or potential
perturbations with suitable decay at the horizons and obtain similar results
to Theorem 1.1.

The note is organized as follows. We begin in Section 2 with a scatter-
ing problem to demonstrate the possibility of recovering parameters from
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a single resonance. In Section 3, we discuss the asymptotically hyperbolic
structure and the analyticity. We construct the resolvent in Section 4 and
finish the proof in Section 5.

2. AN EXAMPLE: THE POTENTIAL BARRIER

In this section, we give an example of a scattering system depending on
one parameter, for which a single resonance recovers the parameter. The ex-
ample was actually used by Chandrasekhar and Detweiler in [6] to illustrate
the concept of quasinormal modes.

Consider

u'(z) = V(x)u(z) + o’u(z) =0, xR
where o is constant and V is the rectangular barrier

1 _
iy = {b relL ]
0, otherwise.

See Figure 2. Note that the potential is characterized by L. In this case, the
scattering resonances can be defined as the poles of the scattering matrix.
It is a standard exercise in scattering theory to find the scattering matrix.
Let us look at a wave traveling to the right, hitting the potential and getting
reflected and transmitted. In this case, the solution looks like

B €T 4 reTi0T g L
ur(w) = te'o* x> L
)

Here, r is the refection coefficient and ¢ is the transmission coefficient. Sim-
ilarly, we can consider a wave traveling to the left of the form
te 0% < —L
’U,L(I‘) = —i0x ! iox
e +r'eT x> L

with 7/, ¢’ the reflection, transmission coefficient respectively. The scattering

matrix is
t r
5= < t,).

By matching the solution and its derivatives at © = L, — L, we can find the

coefficients as
o—2i0L+2igL _ ,—2icL—2igL

r=r = N

K
f— ¢ = p-2ioL=2igL | 9T T —2iqL
q— 0

where
K — q-+ 0 ~2iqgl _ 470 2igL
q—o0o q+o
Thus, the resonances are solutions of K = 0 or equivalently

IRV’ 4iqL
6 q
( ) (q ) (&
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where ¢> = 02 — 1. Suppose we have o such that Imgq # 0. Then we can
take modulus of (6) to find L as

(7) [ M B

_QImq q—o

This shows that one can recover L from one resonance.

Now we provide a numerical verification. We compute resonances using a
Matlab code from [21] and identify L using (7). It is important to note that
the code from [21] does not calculate resonances by solving (7). Take L =
1.3. The potential and resonances are plotted in Figure 2. The numerical
values of the four resonances nearest to the origin with positive real parts
e A1 = 1.2127 — 0.4432i, X9 = 2.2120 — 1.1135¢,

A3 = 3.4242 — 1.48104, X4 = 4.6501 — 1.7230:.

Using any of these resonances in (7), we find L = 1.3 with a 10~ error.

Potential
T
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FIGURE 2. A rectangular barrier and its resonances.

3. THE ASYMPTOICALLY HYPERBOLIC STRUCTURE AND ANALYTICITY

It is known that Ay in (4) can be essentially viewed as perturbed Lapla-
cians associated with some asymptotically hyperbolic metrics near 9X. We
follow the presentation in [18]. Let X be a compact manifold of dimen-
sion n + 1 with boundary 0X. Let p be a boundary defining function such
that p > 0in X, p = 0 at 90X, dp # 0 at 9X. A metric g on X is called
conformally compact if G = p?g is a non-degenerate Riemannian metric on
the closure X. If in addition |dp|4|ox = K is constant, the metric g is
called asymptotically hyperbolic. In this case, the sectional curvature ap-
proaches —K along any curve towards 0X, see [17, Lemma (2.5)]. There is
a normal form of the metric near X, see e.g. Graham [11]. In particular,
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there is a choice of boundary defining function z such that in a neighbor-
hood U = [0,€); x Y, Y C 90X of p € 0X, we can use local coordinates

(z,y),y € Y and get
da® + h(z,y, dy)
g =

¥ x?
Now we consider Ax in (12) on X. We define

1do®> m A
b==-—=———r.
2dr 12 3
We see that § is a smooth function of  on [ryg, rs7] and analytic in m € O.
We set By = B(remr) > 0, Bs; = B(rsy) < 0. Here, we recall that

ror = Im(1/1 — (3mV/A)2 4 i3mVA) Y3 /VA,
rer = Im(—1/1 — (3mV/A)2 + i3mVA) /3 /VA,

see page 6 of [20]. Thus By, Bpy are both analytic functions of m € O. Now
we write (4) as

(10) Ax = fr2aDq(Br?aDy) + a’r 2 Age.
For convenience, we denote 0X = 90X 7 U0Xpy with
BXS] = {7'5]} X SQ, 8XbH = {TbH} X 82.

Note that o only vanishes at X . We let p be a boundary defining function
defined through

(1)

Here, the smooth structure on X is changed. Before, r — 1y is a smooth

(9)

o = 2rygPep near v = ryp

and a = 2rs7Bsrp near r = rgy.

boundary defining function near dXy but now we think of (r — rbH)% as
a smooth boundary defining function, see [20, Section 2|. By using p, (10)
becomes

Ax = ﬁr_Qpr(ﬁTQpr) + 4p2ﬁgHr§H7“_2Agz near 0Xpy,
Ax = 5r_2pr(5r2pr) + 4p268217“§ﬁ_2Agz near 0Xj.
Let gy be the metric defined in a neighborhood of 90Xy given by
dp? r? dw?
13 = + ,
13) = 5202 T 2By )2 PP
and let g;; be the metric defined in a neighborhood of 90X, given by

2 2 2
/8 1Y (2/831 Tsr ) P
These can be viewed as metric perturbations of the hyperbolic metrics
4dz? Adz?

9bHO0 = 75 77 19y 9sI,0 = 5 7 9y
Bpn( =12 ™ (1= 12%)

(12)
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on B3 = {2z € R3: |2] < 1} with constant negative sectional curvature — 3%

and —j3?; respectively. Here, (1 — |z]2)% is the boundary defining function.
Also, gy, gsr are even asymptotically hyperbolic metrics as defined in Guil-
larmou [12].

After some calculation, see [18, Proposition 8.1], we conclude that there
are two smooth functions Wy, Wy such that

aAxa = pAxpt = Agy + 0 Wyr — ﬂgH, near 0Xpp,

(15) -1 —1 2 2
alAxa " =pAxp - =Ay,, +p W — B, near 0X,1.

This shows the asymptotically hyperbolic structure of A xa ™! near 0.X.

Consider the dependency of the operator aAxa~! on m. Note that the
manifold X varies when varying m. We change the notation from X to
X(m). The dependency can be fixed by transforming X(m) to a fixed
reference manifold. Let X = (1,2) x S? and let

U:X — X(m)
be a diffeomorphism defined by (s,w) = ¥(s,w) = (¢(s),w) with
P(s) = (s —Drsr + (2 — 8)rpm.

Note that ¥ extends smoothly to X — X (m). Since ryz,7s; are analytic
functions of m € O, v and ¥ are also analytic in m € O. Now, the pull back
p* = 1¥*(p) is a family of smooth boundary defining functions for 9X. To
see their dependency on m, we write (2) as

a=+/A/3(r— ’I“bH)%(’I” - 7“51)%(7“ - ro)%

where 7y, 757 are two positive roots of @« = 0 and r¢ is the third negative
root. Using (11) and on X near 0Xpz, we have

(16) 1 1 1
. AN/3(r —rpp)2(r —rsp)2(r —1mp)2
2BvHTH
AJ3(rsr — rom)(s — 1)2(2— 8)2 ((s — L)res + (2 — 8)rpm — 10)2

28pHToH
= (s —1)2 App(s,m)
where App(s,m) is defined through the last two lines. It is clear that Apy

is smooth in s. Since (s — 1)rg; + (2 — s)rpg — 10 > 0 for s € [1, 2], we see
that Apg, hence p*, is analytic in m € O. Near 0X;7, we have a similar form

(17) P = (2 — 8)2 Ayr(s,m).
From (13), (14), we see that the pull-back of the metrics are
" (dp*)? [(s = Drsr + (2 = s)rpn)? duw?
Vigon = 3322 2 2
(18) (rs1 — mom)*(8%)%(p*) (2BvmTom) (p*)
Vg = (dp*)? _ (s — Ve + (2 — 8)rpm)? dw?

(rsr — ror)*(8*)*(p*)? (2Bs17s1)? (p*)?
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near 0Xpp, 0Xs1 respectively. Here, * = ¢*(f).

Let Vo(X) be the Lie algebra of smooth vector fields on X vanishing at 9X.
In local coordinates (x,y) near 90X with = being the boundary defining func-
tion, Vo(X) is generated by x0,,x0,. For k € N, the space of 0-differential
operators of order x on X, denoted by Difff(X), is generated by up to x-fold
products of vector fields in Vo(X). From the analyticity of the diffeomor-
phism ¥ in m, we see that the pull-back of aAxa~! to X is a differential
operator on X with coefficients analytic in m. To see that it belongs to
Diff3(X) with coefficients analytic in m € O, we consider aAya ™" near 9X
for example near s = 1. We change the boundary defining function from p*

toy = (s — 1)% so p* = yApg (7%, m). Then the metric in (18) becomes

1+ 5»yAbH)(d7)2 (s — Drer + (2 — 8)rpg)? dw?
(rsr — 7o1)?(B*)2 Af 2 (2Bprrom )2 Apy 7

which is a family of Riemannian metrics on X analytic in m.

U gy =

4. THE RESOLVENT CONSTRUCTION

We obtain an approximation of Rx(A) in (5) following Mazzeo-Melrose
[17]. In fact, we will find the resolvent of aAxa~! on X. We will be using
operators acting on half densities on X. For convenience, we introduce an
auxiliary Riemannian metric gy on X which equals gpg, gs1 near 0Xpg, X1
respectively. Such a metric can be obtained by gluing gyx, gsr near 0X and
some Riemannian metric in the interior of X. The choice is clearly not
unique and its dependency on m is not important. We use gy to trivialize
the (zero) one-density bundle €, that is we take Qg to be the volume form

1

|dgx|. The half-density bundle is QZ. Let = be a boundary defining function
such that in local coordinates (x,%),z > 0,y € S? near X, gy is expressed
in form of (8). In these coordinates,

1 dx d
0f = H(x,y)|——2

for some smooth function H. Now we consider A xa~! acting on smooth

1
sections C*°(X;Q3) in the following way:
1 1
aAxa H(uQ?) = (aAxa u)Qg.

1
The resolvent Ry (A\) = (aAxa™ — A2)7! acts on ¢ in the same way.
The parametrix is constructed on the 0-double space of X x X as in [17].
Let Diag = {(z,2) € X x X} be the diagonal of X x X. Let dDiag =
Diag N (0X x 0X) which has two (disjoint) connected components. As a set,
the 0-double space is

X x9 X = (X x X)\0Diag LI S4+(9Diag)
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where S 1 (0Diag) denotes the inward pointing spherical bundle of T3, (Xx
X). Let

(19) BQ:XXO:X:—)DCXDC

be the blow-down map. Then X x¢X is equipped with a topology and smooth
structure of a manifold with corners for which (y is smooth. The manifold
X x¢ X has the following boundary hyper-surfaces: the left and right faces
L = By (0X x X), R = B, (X x 8X), and the front face ff = ;! (9Diag).
Since 0X = 0Xpg U OXs; where the asymptotic behavior of the resolvent is
different at each connected component, it is convenient to introduce

Lowr = By (0Xpmr x X),  Lsr = By (0Xs1 x X),

Ry = By H(X x 0Xppr),  Rsr = By (X x 9Xsy),
soL = LygULgsr, R = RygUR,g, see Figure 3. The lifted diagonal is denoted

by Diag, = 8, ' (Diag \ dDiag). X x¢ X has co-dimension two corners at the
intersection of two of the boundary faces L, R,ff and co-dimension three
corners given by the intersection of all the three faces. See Figure 3.

FiGURE 3. The 0-double space. The blown-up at the two
components of dDiag, are shown.

Now we introduce spaces of operators on X x¢ X. First, let K§(X) C

1 1
2'(X %o X;9Q2) be the space of distributional sections of the bundle Q2
which are conormal to Diag, and vanish to infinite order at L, R. Here, it

1

is understood that €27 denotes the half-density bundle lifted from the one

on X x X by By. The corresponding class of pseudo-differential operators is
1

denoted by ¥§(X,Q2). Next, let % be the space of smooth vector fields
on X X X which are tangent to each of the boundary faces L, R,ff. Let
Pe,® = Lyrr, L1, Rppr, Rsr, ff be boundary defining functions. We set

A“’b7c’d(f)c X0 :X) = {u S .@’(DC X0 DC) Vi Viu €

(20) .
p‘inprprcLS[deleoo(DC x0X), Vi € Vy,i =1,2,---  k,Vk > 0}.
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Then define
Ky P g X) = AWPSUX X0 X) @ CF(X X0 X; Qé )-
Finally, define
3 A0 = 5 PO R0 X) + K5 ().

Then we let U§*”“4(X) be the space of operators on X whose Schwartz

kernel when lifted to X x¢ X belongs to ng’“’b’C’d(f)C).
Below, we let p € C*°(X) be such that p = ps; near 90Xy and p = ppy
near 0Xpg. We have the following result.

Proposition 4.1. There is a family of operators M(\,m) € ¥g Qa“bb(f)C)
with

A
21 a=1+—-i, b=14—
( ) BbH ’le|

analytic in m € O and holomorphic in A € C\Q(m) with

(22) Q(m) = ﬁb—HN U |BSI‘N U {0}
such that
(23) (aAxa ™t =AM\, m) =Id+E(\ m).

Here, E(\,m) € pF¥, 00:02,0:00b (%) i trace class on p'L2(X) for | > 1 —
min(Rea, Reb). Moreover, its Schwarz kernel is holomorphic in A € C\Q(m),
and analytic in m € O.

Proof. For fixed m, the construction of M (A, m) and E(XA, m) and their holo-
morphy in A is essentially contained in Proposition (7.4) of [17], which applies
to the Laplacian of asymptotically hyperbolic metrics. As argued in Propo-
sition 2.2 of [20], the result applies to «A ya~! —\? as the normal operator is
elliptic. Because we argued in Section 3 that aAxa ™! € Diff3(X) with coeffi-
cients analytic in m € O, the construction in [17] produces M (X, m), E(A,m)
analytic in m. For the meromorphic properties in A, it suffices to consider
the operators near 0Xyxg,0X,; respectively. Write oy = p 2hpg. From
[17, Theorem (7.1)], see also [12, Theorem 1.1], we know that the resolvent
of

(24) ldpl;2 Agyr +C(C—2)

belongs to \I'aQ’C’C(f)C) and is meromorphic in ¢ with poles at ﬁN U {0}.
Here, we followed [17] and used a different spectral parameter (. Near X,
—\dp\,%bH approaches —f32;,. Comparing (24) with (12), we get

BrC(¢ —2) = - Bim
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which gives ( = 1 4+ iA/Bpy. This gives a, and b = 1 + i\/|Bs;| can be
found in the same way near 0Xs;. The set Q(m) comes from the poles of the
resolvent of
ByAo — A* and B2 Ag — A2

acting between weighted C* spaces on B3, see Lemma (6.15) of [17] for the
precise statement. Here, Ag denotes the positive Laplacian of the standard
hyperbolic metric. By rescaling the operator, we find the set Q(m).

Finally, we consider the mapping properties of E(\, m). We recall a result
[17, Lemma (5.24)] that the push forward of the space pge% * (X x ¢ X)

1S

1 1
ARV X 0F © OF) = (TPASHX x ), 72 = [y — Y2+ 7 + ()
P
with A%%¢4(X x X) defined similarly to (20). Let Kg(z, 2') be the Schwarz
kernel of E. As F € pfofolllaoo’oo’“’oo’b(DC), we have the estimate

|pil(Z)KE(Z, Z/, A\, m)pl(zl)’ < Clermin(Rea,Re b) (Z/)

for some C' > 0. By applying Schur’s lemma more precisely Lemma 6.2 of
[18], we conclude that E(\, m) is bounded on p! L2 for I > 1—min(Rea, Reb).
To see E(\, m) is trace class on p'L?, we write

KE(Zv 2, )\7 m) = praprN(z7 )‘7 m)

where Fy € C*(X) is analytic in m € O. The integral [ |Kg(z,z)|dgx(2)
is finite for NV large so E is of trace class. O

5. PROOF OoF THEOREM 1.1

We apply the resolvent to (23) to get
(25) M(X\,m) = Ro(A\)(Id+E(X, m)).

Since F(\, m) is compact on ! L?(X), using the analytic Fredholm theorem,
we see that for any m € O, (Id +E(\,m)) ! is a family of bounded operators
on 2! L?(X), meromorphic in A € C\Q(m). The poles are the resonances.

We use the determinant of Id +F to analyze the poles. We recall that if
A is a trace class operator on a Hilbert space H with eigenvalues Ag, k =
1,2, with |A1] > |A2| > --- > 0, then the Fredholm determinant det(Id +A) =
II12° (1 + Ag). See [9, Appendix B]. Also, Id +A is invertible if and only if
det(Id +A) is non-zero, see [9, Proposition B.28]. Therefore, the set of res-
onances of R,(\) is contained in the zero set of

K(\,m) =det(Id+E(\, m)).
Using the argument at the end of [9, Section B.5], we conclude that K (A, m)
is a function holomorphic in A € C\Q(m), and analytic in m € O.
Now we suppose Ag is a resonance so K(\g,m) = 0. By the analyticity

in m, either K(\g,m) is identically zero for all m which means g is a
resonance for all m € O, or m is the only (discrete) zero locally. For the first
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alternative, we can apply Theorem 1.1 of [13] (with zero angular momentum)
to conclude that the trivial resonances must be contained in —i/A/3NU{0}.
This proves the first assertion of Theorem 1.1.

For the stability, we write K(\,m) = (m —mg)Y f(\,m) for some N > 0
and f analytic in m with f(\g,mo) # 0. Now we set t = (m — mp)"¥ and
get

K(\t) = K\, m) =tf(\mo+ t"/N).
We see that
8tK()\, t)|t:0 = f()\, Tn()) 7é 0.

Using the implicit function theorem, we get that ¢t = g(\) is differentiable
in a neighborhood of Ag. Thus, |t| < C|\ — A| which implies

Im —m| < C|A— AV,

This completes the proof of the Theorem 1.1.
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