TESTING BY WAVE PACKETS AND MODIFIED SCATTERING IN NONLINEAR
DISPERSIVE PDE’S

MIHAELA IFRIM AND DANIEL TATARU

ABSTRACT. Modified scattering phenomena are encountered in the study of global properties for nonlinear
dispersive partial differential equations in situations where the decay of solutions at infinity is borderline
and scattering fails just barely. An interesting example is that of problems with cubic nonlinearities in one
space dimension.

The method of testing by wave packets was introduced by the authors as a tool to efficiently capture
the asymptotic equations associated to such flows, and thus establish the modified scattering mechanism in
a simpler, more efficient fashion, and at lower regularity. In these expository notes we describe how this
method can be applied to problems with general dispersion relations.
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1. INTRODUCTION

Given a nonlinear perturbation of a linear partial differential equation, scattering theory aims to compare
the long time dynamics of the nonlinear problem with the long time dynamics of the corresponding linear
flow. This is particularly interesting in the context of dispersive equations, which have two key properties:

e a conservative nature at the L? level, with some energy that is either exactly conserved, or essentially
conserved for small data.

e some form of uniform or averaged decay, whose effect is that the strength of the nonlinear interactions
decays with time.

Whether scattering holds for a given problem, that depends on the relative strength of the nonlinearity on
one hand, and on the dispersive effects on the other hand. If the nonlinearity is mild, then scattering holds,
in the sense that, as time goes to infinity, the solutions to the nonlinear problem will approach solutions to
the linear problem.

In this paper we are instead interested in the modified scattering phenomena. These are encountered
in situations where the decay of solutions at infinity is borderline, and scattering fails just barely. Then
one might expect that the nonlinear asymptotic behavior can be seen as some perturbation of the linear
asymptotic behavior. Such dynamics are encountered for many classes of equations, and the modified
scattering effects may vary from case to case; this may include for instance corrections to the velocity,
amplitude or phase. The class of problems we are interested in here is that of dispersive problems with
cubic nonlinearities in one space dimension. As we will see, for this class modified scattering means a phase
correction on a logarithmic time scale.
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The method of testinﬂﬁg wave packets was introduced by the auﬁtl?g '1% & context of the cubic nonlinear
3] ) : [

Schrodinger flow (NLS) and used later in water wave contexts [9]; L0, |I] as a tool to efficiently capture
the asy _Srﬁgogcrezqggtions associated to such flows, and thus establish the modified scattering mechanism.
See also [0} (L7, 16, 18] for further examples where this idea is used. .

. sri-summer .

These notes, written by the authors for a summer school at MSRI ﬁuTZ in 2020, and based on earlier set of
notes prepared by the authors for an AMS meeting in Las Vegas in 2016, aim to describe how this method
can be applied to problems with general dispersion relations. Notably, here we work with with minimal
structure assumptions on the nonlinearity, which do not include a scaling symmetry or energy conservation.

1.1. A model dispersive problem. The model problem we consider here is a one dimensional evolution
of the form

(L.1) {i@tu — A(D)u = Q(u, u, u)

u(0,x) = up(x),

for a complex valued function
u:RxR— C.

Here we will make the following general assumptions:

(H1) Real symbol. The symbol a(£) of the multiplier A(D) is real and smooth; this guarantees that the
L? norm is preserved for solutions to the corresponding linear flow.
(H2) Dispersive character. The group velocity depends on the frequency,

R>¢—d(€) eR s adiffeomorphism  (i.e. a” #0).
(H3) Cubic, translation and phase shift invariant nonlinearity. The nonlinearity @ is defined by its smooth

symbol ¢ as follows:

_— 1 -

Q(u, u,u)(§) q(&1, 82, 83)u(81)u(€2)0(Es) do,

2 §=§1—82+¢3

with do = d¢,dg;, i # j = 1,3 (where one needs to adjust the sign corresponding to the chosen (i, 7)
pair).
(H4) Conservative nonlinearity. The symbol associated to @ and computed on the diagonal must be real
ie.
(&, ¢,8) e R.
For the Cauchy problem (|1.1)) we will ask the following question:

Question 1. Assume that the initial data for the evolution (1.1)) is small, localized and sufficiently smooth.
Does this guarantee that we have global solutions with dispersive decay and modified scattering ¢

Our goal in this paper will be to show that the answer is affirmative, under minimal assumptions on
the behaviour of the symbols a(-) and ¢(-,-,-) at infinity, and also under minimal regularity and decay
assumptions for the initial data ug.

1.2. An overview of the paper. To motivate the results, our exposition will begin with a brief discussion
of linear dispersion in Section [2] which notably ends with the vector field bound in Proposition The
standard linear scattering mechanism described here serves as the basis for the nonlinear, modified scattering
results which are the main goal of the paper.

In the following section, i.e. in Section [3] we provide a heuristic discussion of the modified scattering
phenomena. The premise here is that, relative to the linear scattering mechanism, the nonlinear asymptotic
profile is governed by an asymptotic equation. The objective is then to efficiently capture both of these
objects in the analysis. We outline several ideas which have been used over the years, and finish with a brief
introduction to wave packet testing.

At this point we are ready to present the main results of the paper, which in a nutshell assert that global
solutions with modified scattering dynamics exist for the flow in under suitable assumptions. For
expository purposes, we will split the discussion in two parts:
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(i) In Section {4] we consider cubic forms @ with compactly supported symbols. Then one may also
assume that the solution u has a compactly supported Fourier transform, and no restriction is
imposed on the behavior of a at infinity. In this setting the arguments are simpler, and we are able
to present the main steps, namely the energy estimates and the wave packet testing, in a streamlined
fashion, without distracting technicalities.

(ii) In Section [p| we consider cubic forms @ with bounded symbols, and, correspondingly, symbols a so
that a”(€) = |£]7 at infinity for some real o.

Then we show that, for initial data uy which is small in suitable spaces
ug € H®, xug € H®,
the solutions are global and their asymptotic behavior is still governed by the modified scattering
mechanism. Anticipating the precise results in Section [5] we point out here that there are two
qualitatively different scenarios:
(i) The generalized NLS case: ¢ > —1, where a is superlinear at infinity and thus we have
infinite speed of propagation. This includes for instance
a) SQG type problems, 0 = —1, where we take
so = 0+, s1 = 1.
b) NLS type problems, o = 0, where we take
L +
S0 = — =+, $1=—.
0T 2 T2
c) KdV type problems, o = 1, where we take
sg = —1+, s1 =0.

(ii) The generalized Klein-Gordon case: o < —1, where a is linear at infinity and then we have
finite speed of propagation in the high frequency limit. This includes for instance

a) gravity wave models, o = —3/2, where we take
so = 1+, S1 = 1
2
b) Klein-Gordon models, o = —3, where we take

So — 1+, S1 = 2

While our results do allow for a full range of asymptotic behaviors for a, this is far from capturing a full
range of problems, as @) is not in general bounded in many interesting models. We leave it for the interested
reader to investigate more general situations.

Another line of investigation which is completely omitted in our discussion here is that of normal form
methods, which in many instances allow one to expand the scope of this type of results to problems which
also have nonresonant quadratic nonlinearities.

1.3. Acknowledgements. The first author was supported by a Luce Professorship, by the Sloan Founda-
tion, and by an NSF CAREER grant DMS-1845037. The second author was supported by the NSF grant
DMS-2054975 as well as by a Simons Investigator grant from the Simons Foundation. Some of this work was
presented during an MSRI Graduate summer school in 2020. Other parts of the work were carried out while
both authors were participating in the MSRI program “Mathematical problems in fluid dynamics” during
Spring 2021.

The authors are very grateful to the anonymous referee for a thorough reading of the paper, which led to
many improvements and corrections.

2. DISPERSIVE DECAY FOR THE LINEAR EQUATION

In this section we consider the dispersive properties and the asymptotic behavior of the solutions to the
associated linear problem,
10 — A(D)u=0
(2.1)
u(0) = wp.
3
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To avoid distracting technicalities, we will assume that the initial data ug is frequency localized in a fixed
compact set.

2.1. The fundamental solution and dispersive decay. Denoting by 7, respectively £, the time and the
space Fourier variables, the symbol of the linear operator is

p(T,f) = _T_a(f), P:Zat _A(D)7
and its characteristic set is the graph of —a,
char P = {7 = —a(§)}.

This is commonly referred to as the dispersion relation.
The associated Hamilton flow is

(x,8) = (z +ta’(£),8).

In particular we note here the group velocity a’(£), which depends on the spatial frequency £ of the waves.
We denote the range of admissible group velocities by

V =d(R).
Here we may distinguish two different scenarios, depending on the asymptotic behavior of a at infinity.

a) The generalized NLS case, where a has superlinear growth at oo, in which case ¢’ : R — R is
surjective so V =R, i.e. waves propagate with all possible velocities.

b) The generalized Klein-Gordon case, where a has linear growth at oo, in which case the set V of
possible group velocities is a bounded open interval.

Of course, one may also differentiate between the behavior of a at +00 and at —oo, with obvious consequences.
The spatial Fourier transform of the fundamental solution K (¢, z) for (2.1) is given by
K(t,6) = e,

which yields the following oscillatory integral representation for K:

K(t,z) = %/ el@E—tal€)) ge
T Jr

By the assumption (H2), the phase function is nondegenerate, and has at most one critical point, namely
the solution £ of the equation

x—td (€)= 0.
Denoting v = x/t as the velocity along a ray starting from the origin, this becomes
(2.2) v=2d(%).

We denote the solution of by &,. In the generalized NLS case this solution exists for all real velocities
v. But in the generalized Klein-Gordon case the critical point exists only for v € V.

Assuming that v € V, the asymptotics of the ‘gﬁléenfundamental solution along the ray = = vt can be
computed using the stationary phase method, see T‘ZU}ITWhiCh yields the asymptotic expansion

~ ! it (v) o~ o) -1
(23) K(t, 'Ut) ~ me e 4 + O(t )

where the phase function ¢(v) is given by

¢(U) = v, — a(&,).
This holds uniformly for v in compact subsets of V', with a more complex behavior at the endpoints and
rapid decay along rays outside the closure of V' in the generalized Klein-Gordon case.
Since by (H2) a is either convex or concave, this last expression also allows one to interpret ¢ as the
Legendre transform of a, so that ¢’ and a’ are inverse functions,

(2.4) o = ' (v).
Equivalently, ¢ can be thought of as the solution to the eikonal equation
(2'5) a(¢v) =¢— U¢U-
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More generally, one may apply the stationary phase method to compute the asymptotics for any solution
u to the linear equation (2.1)) with initial data ug with a smooth Fourier transform (which corresponds to a
localized initial data), namely

1 . _am sgn(a’’) _
(2.6) u(t,z = vt) =~ v(v)me”d’(”)e T +Oo@rh,

where the asymptotic profile ¥ = v(v) depends on the initial data in a straightforward fashion,
Y(v) = dio(&v)-

The expansion in is uniform for v in a compact subset of V', or if 4y is compactly supported or at
the very least has sufficient decay at infinity.

One may also think of the linear dispersive decay of solutions to in a translation invariant fashion.
This is described by the following result:

Theorem 1. Assume that the conditions (H1), (H2) hold. Then the following translation invariant decay
estimates hold for frequency localized solutions to (2.1)):

e Dispersive bounds:

(2.7) (@)l S 2 u(0)] -

~

o Strichartz estimates:
(2.8) lullLapee < [Ju(0)]| Lz

The dispersive bound follows from the pointwise decay of the (frequency localized) fundamental solution,
see . The Strichartz estimates @ can be seen as a direct consequence of the dispersive estimates
and Young’s inequality, see %%1 and [T4].

Similar bounds hold for problems with unlocalized data, provided one adds appropriate multiplier weights
depending on the asymptotic behavior of a” at infinity. Some details are provided in the last section of the

paper.

2.2. Dispersion via energy estimates. As noted above, the standard proof of the dispersive bound
is via the pointwise bounds for the fr uency localized fundamental solution, which in turn follow from the
method of stationary phase, see e.g. EU]L However, there is also an alternative, more robust approach via
energy estimates and the vector field method.

Precisely, using the atomic structure of the L' space, it suffices to prove the t=2 decay in for initial
data wg which is both frequency localized and in the Schwartz space. To measure the decay, we introduce
the linear operator

(2.9) L=xz—-tA(D),

which is the pushforward of = along the corresponding linear flow. For Schwarz data, we control
(2.10) luollz2 + [ Luol| L2 S 1.

Then we want to show that

(2.11) ()| S 2.

To prove this, we observe that if u solves (2.1]) then Lu also solves (2.1). Hence, using the conservation
of the L? norm, it follows that

(2.12) la(®)llz2 + IZu(®)llz> S 1.

Hence, one can think of the decay bound as a consequence of a Sobolev-type interpolation bound,
where the uniform norm for u is estimated in terms of the uniform energy bound in . For later use, we
will state and prove a more general statement, where uniform dispersion is assumed globally and implicit
constants are carefully controlled:
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Proposition 2.1. Assume that the symbol a(-) satisfies the bounds
(2.13) a’ ~ R, la"”’| < MR,
where M and R are positive constants. Then the following estimate holds for any frequency localized function
w:
1
(2.14) lu@®)lZ~ < i Ulullz2llLull 22 + M||ul|Z).
In particular, this yields the following result in the context of Theorem

Proposition 2.2. Assume that the conditions (H1), (H2) hold. Then the following estimate holds for any
function u which is frequency localized in a fixed compact set:

(2.15) lu@lZee St~ (lullp2 | Lull 2 + [lull2)

As discussed above, this in turn implies (2.7). Conversely, we remark that the above inequality can be
obtained as a direct consequence of (2.7)).

Proof of Proposition [2.1, We begin by observing that, by independently scaling the space and the time, both

R and M can be seen as scaling parameters. Precisely, a linear change of coordinates x — Mx reduces the

problem to the case when M = 1. Thus without any restriction in generality we will assume R =1, M = 1.
A second observation is that we can regularize the symbol a on the v/t scale,

a=P 1 (Dg)a

<t2
The bound on a’” shows that
|a/ . &I| S; t71
so that a¢ and a can be used interchangeably in the Proposition. The advantage is that a satisfies higher
regularity bounds

(2.16) @ s, j>s.

From here on we will drop the @ notation and assume that a satisfies (2.16)).
Next we introduce a secondary operator L, which can be used interchangeably with L in energy estimates.
We recall that the symbol of L is

Uz, &) =z —ta'(£),
so its characteristic set is given by
char L = {d'(¢) = x/t}.
Using the property (2.4)), this can be written as
char L = {¢ = ¢'(z/t)}.
This leads us to define the operator
L :=t(8, —i¢'(z/t))
which has symbol

and thus the key property that it has the same characteristic set as L. Since a’ and ¢’ are inverse functions,
it follows directly that

(b” ~ 1
In addition, from (2.16)) and differentiation rules one also obtains

(2.17) 6D St T, j>3

To compare the two operators L and L we need the following Garding type inequality

Lemma 2.3. We have

IZullz2 S I Lullzz + llull 2.
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The conclusion of the lemma is a direct consequence of the corresponding symbol bound

(2, )] S ()] -
via a semiclassical form of Gérding’s inequality. Precisely, we will directly invoke H%T; Theorem 3], with the

semiclassical parameter p = t=2. For convenience, we recall it here:
T-FF
Theorem 2. hH:Theorem 3] Let u > 0 and aj,b be real symbols which satisfy

o lal=18]
(218) 0200 a(w, ) < casp 7, o]+ 18] =2
so that |b| <3 |a;|. Then
(2.19) 1B (z, Dyull = £ Y | AY (x, Dyul 2 + [[ull 2 -

The fact that this is stated in the Weyl calculus makes no difference in our context. We also refer the
reader to %3]1,—Wlﬁe a similar bound is derived using semiclassical calculus.

Now we return to the proof of Proposition where as discussed above we may substitute L by L. Then
all we need is a simple integration, based on the relation

d

This yields
1 .
lelzee S Iz [ Lull 2z,

thus completing the proof.
|

We conclude this section with one last observation, which is that, if u is assumed to be frequency localized
in some compact interval I, then both the L? and the pointwise bounds for u are better outside a neighbour-
hood of the the velocity range J = a’(I). The following result clarifies the proper localization scales. The
analysis is identical to the left and to the right of J. Hence, in order to set the notations, we fix a frequency
&o, the corresponding group velocity vg = a’(&y) and the associated position at time t, zg = tvyg. We also
assume without any loss of generality that a is convex.

Proposition 2.4. In the context of Proposition 2.1, assume in addition that u is frequency localized in
I ={¢ < &}. Then we have better bounds for u outside J = {x < x0}, as follows:

a) L? bounds:
(2.20) (@ = zo)yull> S [|LullL2 + Mllul| 2,

b) L bounds

(2.21) fu(@)? § ——

N m(HLU||L2+MHU||L2)2, x> To.

We remark that the bounds in the proposition are only interesting in the region {x —x¢ > (Rt)z}. Closer
to 2o, and in effect in the full region {|z — 20| < (Rt)2} they can be replaced by

1
(2:22) lu(@)]” < (I Lull gz + Mlullz2)?,  [o = xo| S (RE)Z.

1
(Rt)%
Proof. We first note that R and M in the hypothesis of the proposition are scaling parameters, and we can
simply set them equal to 1.

Let x = x(x) be a spatial cutoff function supported outside J, smooth on the r scale and equal to 1 in

[xo + 7,00), where r > 0 is a parameter which will be chosen later as r = tz. We will establish the stronger
L? bound

(2.23) (@ — @o)xullrz + tlIX(D — &o)ullrz < [[Lullrz + [[ull 2
for u frequency localized in & < &y. To start with, we verify that this implies the bounds in the proposition.
This is immediate for > x¢ + r, so we need to cover the remaining range. It suffices to show that

_3
lu@)| S 7 ([ Lullez + [[ullzz), [z =zl Sy
7
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which is in effect exactly the bound ([2.22).
We already know this if z —x¢ ~ r. To capture the remaining range we recall that we can use the operators
L and L interchangeably in these bounds. Our starting point is the straightforward relation

e~ te@/ty) = 1|[~/u|
t

d d
= < |2
dx|u|’ ~ ’dm
Then for x; in the full range |z1 — 20| < r we write by the fundamental theorem of calculus
xT
llu(e)| = [u(z)]] St / |Luldy St oy — 2l | Lul| g2 S5,
x1

which suffices. It remains to prove (2.23]).
First, using the form of the operator L, we write

—iL = t(D — &) — H(¢' (x/t) — ¢/ (x0/1))
and estimate
tx(D = &o)ulle < [(x — zo)xullz> + [ Lul L2
and thus reduce the bound (2.23)) to
(2.24) (= = zo)xullze < ullze + || Lul 2
The next step is to discard the frequency localization, by adding a term on the right
(2.25) [z = zo)xullz2 S l[ullL2 + 16D = &0)n(D — &o)ull 22 + || Lull 2,

where 7 selects the region & — &y > p, with the parameter p > 0 to be chosen later of size p ~ t3.
Here we use again the Garding type inequality (2.19) with p = t=2. At the symbol level, we need to
verify that

(2.26) (x = x0)x S t(€ = &o)n(€ — &o) + |z — ta’ ()]

If € > &y + p then n = 1 and the inequality is directly verified without x. Else, for z > x¢o+r and £ < & +p
we have
xz—tad (§) >z —x9— Ctp >r— Ctp, C =supa”(9),
¢

which suffices provided that » > 2C'%p.
It remains to ensure that we have the correct symbol regularity, as required by Theorem [2| with © = t 3.
This is indeed the case provided that

Nl=

r 1 < t*%, p <tz
To satisfy all of the above requirements it suffices to choose r and p so that
T%t%, p%f%, r > 2Ctp.
Then the L? bound ([2.25) follows from the symbol bound ([2.26)), and the proof of the proposition is complete.
|
3. THE ASYMPTOTIC EQUATION FOR THE NONLINEAR PROBLEM

We begin the discussion by recalling the asymptotic behavior of solutions for the linear flow (2.1]), namely
1 .
3.1 u(t, z) ~ —=~(v)e*W),
(3.1) (t,z) \/{ﬂ( )

and ask whether such a pattern is also possible for the nonlinear flow . This would require the cubic
term in the equation to play a perturbative role near infinity.

However, a heuristic computation shows that this cannot happen. To see that, suppose, more generally,
that for the solution u we have an asymptotic representation of the form

1 i
u(t, ) ~ %v(t,we”““%

8
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where v is a smooth function of v, uniformly in ¢. Then, at (¢, ), this solution has spatial frequency close to

gv = (,25/(’[}).

Expanding the symbol for A in a Taylor series around £ = &, we obtain

a(6) = al) + @ (6)(E ~ &) + 30" (€)(E ~ &) + O~ &),

which at the operator level yields

A(D) = a(&) + d'(§)(i0x — &) + %a"(ﬁv)¢"(v) +O0(t7?) + Ot )(i0, — &) + O(1) (10, — &)

This further simplifies since ¢’ and o’ are inverse functions, so a”(£,)¢”(v) = 1. Hence we obtain the
semiclassical formula

A(D)u ~ t~ 3 (a(fv)’Y(t, )+ it~ (€))7 (t,v) + %t—l - O(t‘2)> :

A similar but simpler computation shows that

Q(u, @i, u) = t72e™0) (£71q(&y, &, &)V (E V) (E, )2 + O(2)).
Finally, by chain rule,

i0pu =t~ 2 M) (—v(t, ) (@(v) —v¢'(v)) — it~ vy (v) — ét’l + i%) :

Substituting the last three relations into the equation, we cancel the leading terms using the eikonal equation
(2.5) (which justifies the phase in our ansatz in the first place), and the 4’ terms using . This leaves us
with the relation
i =t (6, &, E)VNIP + O(E72).

Since ¢t~! is not integrable at infinity, we see that it is not possible for the function v to have a nontrivial
limit at infinity, which justifies our earlier claim that an asymptotic behavior as in cannot hold for the
nonlinear evolution.

However, all is not lost. We can ensure that the last relation is satisfied if we allow a very mild dependence
of v on t, precisely if we set v to satisfy the asymptotic equation

(32) 1Y = t71(](£va§v7§v)7|7‘2'
This is an ode which only has global solutions provided that

Jq(&,6,€) <0, ¢eR.

The case when S¢(€,£,€) < 0 corresponds to a damping nonlinearity, and solutions for the asymptotic
equation which decay to 0. The more interesting case, which we will refer to as the conservative case, is
when ¢ is real on the diagonal. In this case, the solutions to the asymptotic equation have constant
amplitude.

In all cases, we remark that the asymptotic equation can be converted into an autonomous evolution with
an exponential substitution, t = e®. Then becomes

(3.3) s = q(fvagvagv)7|7|2'

Hence, the objective of the analysis becomes to show that the solutions to (1.1)) with small and localized
data have the asymptotic behavior

1 .
3.4 u(t,z) ~ —~(Int,v)e*®)
(3.4) (t, ) \/%7( )

where ~ solves the asymptotic equation (|3.3). This has solutions of the form
(35) ’Y(S’ U) — e_iSQ(f'mivvgv)"‘/0(”)'270(1]),

depending on a function g, which we will call the scattering profile for the solution u. We will refer to such
an asymptotic behavior as modified scattering.
We remark that in this case we cannot expect 7y to be uniformly regular in v as s — co. However, this is
harmless from the perspective of any asymptotic computation as above, as it only yields extra logt factors.
9



To summarize, we conclude that the objective of any asymptotic analysis for the equation (|1.1)) is two-fold:

a) Make a good choice for the profile v, so that (3.4) holds.
b) Show that v approximately solves the asymptotic equation (3.3)).

The goal of these notes is to describe thf ethod of testing by wave packets, introduced by the aut TS o1 obal
in, the context of a model NLS problem in SL]EZmd then applied to quasilinear water wave evolutions in 9],

10]. This method is applied here in combination with energy estimates, which also raise some interesting
questions due to the generality of the model considered, i.e. without any direct conservation laws.

3.1. Asymptotic equations in the NLS context. To set the stage for the presentation of our method,
we will begin by first describing several alternative ideas which were proposed over the years in the context
of the cubic NLS problem in one space dimension,

1
(3.6) iug — iagu = +ulul?.

There one may take a(¢) = 1£2, in which case ¢(v) = 2v? and &, = v.

A. Asymptoti¢ equation in the Fourier space, introduced by Hayashi-Naumkin W], and refined by Kato-
Pusateri [I3]. This is based on the idea that, taking a Fourier transform in an asymptotic formula
like (3.4)), one obtains a related asymptotic for @, namely

it &) ~ (t, e+
Defining v by
A(t,6) = e u(t, ©),
one then seeks an asymptotic equation for the Fourier transform of the solutions,

Lt €) = —i€%a(t,€) + it~ alt, Oa(t, O + O (17,

where the first, respectively the second term on the right correspond to the linear, respectively the
nonlinear part of the equation (|L.1J).

S
B. Asymptotic equation in the physical space, introduced by Lindblad-Soffer h()], here the goal is to
derive an asymptotic equation in the physical space along rays,

1
(tOy + 20, + §)u(t7 x) = Fitu(t, z)|u(t, 2)|* + Op=(t7°),

where the left hand side represents the linear contribution, while the right hand side represents the
nonlinear contribution.

. . . 1207209 . . .
C. Nonlinear Fourier methods, developed by Deift-Zhou qu , who used complete integrability and inverse
scattering to obtain long range asymptotics via the steepest descent method. Unfortunately, these
ideas are only available in the integrable case.

LS.IT-global,IT-t

D. The wave packet testing method, introduced by the authors in nggfmhtﬁts—ﬁrom the observation
that the methods described in A. and B. above lack balance when it comes to estimating the errors
in the asymptotic equation. Working on the Fourier side, there are no linear errors but the nonlinear
errors are large. On the physical side, there are no nonlinear errors, but instead the linear errors
are large. This led to the idea of looking for a balanced way of defining the asymptotic profile =,
where the linear and nonlinear errors are smaller and comparable. This is achieved by testing the
NLS solution with an approximate wave packet type linear wave u,,,

v(t,v) = (u,uy) 2,

where u,, is both spatially localized in a tz neighbourhood of the ray x = vt, and frequency localized
in a dual t—2 neighbourhood of the frequency &, = v. This perfectly balances the linear and the
nonlinear errors, and leads to results which are near optimal with respect to the regularity and decay
of the initial data.

10
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4. GLOBAL SOLUTIONS FOR SMALL LOCALIZED DATA: THE MODEL CASE

In order to avoid distracting technicalities, in our first result we will make the simplifying assumption
(H5) Frequency localized nonlinearity. The symbol ¢ is compactly supported.

This assumption makes the behavior of a at infinity irrelevant. Using the operator L, we define the following
weighted time dependent function space X:

lu)l% = llu@®)llzz + [ Lu®)]Z--

This will be used both for the initial data, and in order to measure the solution as it evolves in time. In
particular, at time ¢ = 0 the X norm measures the localization of the initial data ug,

1
luollx =~ [1(1 + 2%)Zugl| 2
With these notations, our main result is as follows:

Theorem 3. Assume that the conditions (H1-5) above are satisfied, and that the initial data for our equation

(1.1) satisfies:

(4.1) lu(0)][x Se< 1.
Then the solution exists globally in time, with energy bounds
(4.2) lu(t)]x < et

and pointwise decay

< S

(4.3) )l S

The rest of this section contains the proof of this result, organized as follows. Section provides the
set-up for the main bootstrap argument. The energy estimates leading to the bound (4.2)) are discussed
in Subsection this includes the energy bound in Proposition and the vector field bound in Propo-
sition 2] Thus we arrive at the main objective of the paper, namely the wave packet analysis, which is
considered in Subsection 4.3

Finally, in Subsection 4.6| we briefly discuss the inverse problem, which is to reconstruct a solution given
its asymptotic profile.

4.1. Overview of the proof: A bootstrap argument. The starting point of the proof is to make a
bootstrap assumption for the pointwise bound,

(44) Ju(®)z= < Ce(t) .
Then the proof proceeds in two steps:
1. Energy estimates: Here the objective is to establish the energy bound
262
(4.5) [u®llx S & u(0)]|x-

This uses Gronwall’s inequality in the equation for u, and then a cubic correction to Lu. We note that, by
the vector field bound in Proposition this yields

1 2.2
(4.6) lu)llz= St = u@®)lx S e
This step is carried out in Section
2. Pointwise bounds: Here the goal is to improve the bootstrap assumption, and show that
1
(4.7) Ju(®)l[e S €(t)™2.

This step is carried out in Section [4.3] and uses the method of testing with wave-packets to produce an
asymptotic profile v(¢,v), which may be compared to the solution u using the bounds , respectively
(4.6). Then it remains to prove an € bound for -y, which is achieved by showing that ~ is a good approximate
solution for the asymptotic equation .

11



|

energy-first

p:Lu

dt-Lu

nergy-second

4.2. Energy estimates. Our objective here is to prove energy estimates for u and Lu, i.e. the bound (4.5)).
In the case of u, we have the following straightforward result:

Proposition 4.1. Assume that u € L? solves (L.1)). Then

d
(4.8) Zlullze S llullze flulZ-

We note that by Gronwall’s inequality, this gives
(4.9) lu(®)llze S ()
which is the first half of (4.5).

Proof. Multiplying equation (|1.1)) with @, integrating over x, (H1) assumption, and adding the complex
conjugate counterpart we obtain

d
<l :/[utﬁ+ﬁtu] do = —2S/Q(u,a,u)ﬂdx.

Thus,

d
=l

/ g + ] dz < S / 1Qu, @ )| di < [l 2 ]2

where for the last inequality we used the (H3) assumption on the nonlinearity @ and pulled out the L*°—norm
of |u|?. Here one could think of the bound for @ as a trilinear product bound, using for instance the idea of
separation of variables discussed in a more general setting in Section [5.1

O

The more delicate matter is the energy estimate for Lu, which solves the equation
(4.10) (10 — A(D))Lu = LQ(u, T, u).

The difficulty is that the source term on the right does not directly satisfy a perturbative bound, e,g, of the
form

(4.11) ILQ(u, @ w)[ 2 < llullf~ (| Lullzz + [[ul ).
To address this issue, we will add a nonlinear correction to Lu, precisely
LNy = Lu 4+ tC(u, @, u),

where C' is a well chosen trilinear form which has a smooth compactly supported symbol. Precisely, we have
the following:

Proposition 4.2. There exists a smooth, compactly supported symbol c(-,-,-) with the property that the
following estimate holds for solutions u to (1.1)):

d
(4.12) I e S Nl |2 ull e + ullZe llull 2 + tlul 7o ull 2.

In essence, the correction C' will be chosen so that a modified version of (4.11]) holds; precisely, that is
the bound (4.17)) in the proof below.

Given our bootstrap assumption (4.4) and the L? estimate (4.9)) for u, Gronwall’s inequality allows us to
close the energy estimate for LYy and obtain
(4.13) 1LY a2 S ety
Here we can use LV* and L interchangeably since by (4.4 and the L? estimate ([4.9) we have a good bound
for the difference,

2 2

(4.14) [t (uy @, u) | 2 S tlullgee ull 2 S 6

Hence, the second part of (4.5) also follows.
12
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Proof. We write the equation for LV Xy in the form
(i0y — A(D))LNFu = LQ(u, @, u) + iC(u, @, u) — tR3(u, @, u) — tRs(u, @, u, 4, u) := f,
where R3 and Rj are translation invariant multilinear forms with smooth compactly supported symbols, 3,
and rj respectively. Furthermore, the symbol of R3 is given by
r3(€1, &2, &3) = (&1, €2, &) (al&r) — alé2) + a(§s) — a(&r — &2+ &3)).
To prove it suffices to have the following bound for the above source term f:

(4.15) 1£1lze S llullfe | Lullz + [lullfee llll 2 + tllel 7 lull 2.
Here we used to replace LNPu by Lu in the right.

The terms iC(u, 4, u) respectively tRs(u, @, u, 4, u) can be directly estimated by the second, respectively
the third term on the right in , without using any structural properties of the corresponding symbols.
Hence it remains to consider the expression

LQ(u,u,u) — tR3(u, @, u).

Our objective will be to choose the trilinear form C with the property that the bound (4.11)) holds for the
above expression. The choice of the symbol ¢ is given by the following algebraic division Lemma:

Lemma 4.3. There exist smooth, compactly supported symbols c, c1, co and c3 so that the following algebraic
relation holds:

3
(4.16) 0z, €)q(&1, 62, 83) — te(ér, &, 6)(alér) — al&e) + alés) — a(€)) =Y ¢; (61, &2, &) l(x, &)

J=1
whenever £ = &1 — &3 + 3.
We first use Lemma to complete the proof of Proposition The relation (4.16]) translates into the
following operator identity:
LQ(u,u,u) — tR3(u, u,u) = C1(Lu, i, u) + Co(u, Lu,u) + C3(u, 4, Lu) + D(u, i, u),
where D has symbol
d(&i, &2,&3) = (O, c1 — O, 2 + Ogyc3).
This directly implies the bound
(4.17) ILQ(u, w,u) — tRy(u, @, w)| p2 S [|ullfee (|| La]| 2 + [l 22),

and the proof of Proposition [4.2]is concluded.

It remains to prove Lemma [4.3]

Proof of Lemmal[f.3 We start with some simplifications. Without any restriction in generality we can set
g = 1, with the minor proviso that now we discard the compact support property for ¢ and c¢;. Secondly,
we can separate the x and the ¢t component of the above identity, and conclude that we need to satisfy two
identities:
cp—cy+c3=1,

and

crag(§1) — c2ae(&2) + csag(€s) = ag(§) + (61, &2, 83)(alér) — al&2) + a(8s) — a(§)).
Simplifying further, we set ¢; = 1 so that the first identity is trivially satisfied. We are left with

. _ag(§1) —ag(€2) + ag(§s) — ag(§)
(51752353)* a(§1)—a(£2)—|—a(£3)—a(§) 5

where we need to show that the quotient is smooth.
Since a is strictly convex (or concave), it is easily seen that the denominator can only vanish on the set

D={&{+&=8+¢)

if and only if
{61,&}) = {£, &

13



We claim that the denominator admits a representation of the form

(4.18) a(§1) — a(&2) + a(€s) — a(§) = (€ — &)(§ — £3)b(&1, 62, 63)

with b smooth and nonzero.
We start with the standard representation

a(é1) —a(§) = (€ —&1)ar (6, 6)

with smooth, symmetric a1, and then write on D

a(§1) —a(é2) + a(&s) — a(§) = (€ — &) (a1(&, §) — a1(€s,62)).
Then we repeat the process for a; to pull out a factor of
§—& =84 —&.

This yields a representation as in (4.18)), with a smooth b. It remains to verify that b is nonzero, for which
we compute b on the zero set. Suppose for instance that £ = & and & = &3. Then a1(£,&1) = o/(&1), and
a’'(§) —a'(&s)

§—&
which is nonzero due to the strict convexity (concavity) of a. We also remark that at the double zero, when
all frequencies are equal, we have

b=

b=a"(¢) #0.
Next we consider the numerator, for which we also have a representation
(4.19) ag (&) — ag(§2) + ag(€s) — ag(§) = (§ — &1)(€ — &3)b1 (&1, €2, 83)-

Here by is again smooth, but not necessarily nonzero.
Finally, we divide the expressions in (4.18) and (4.19)) to obtain

o b1(£17£27£3)

6(517’52;53) - )
b(&1,62,€3)
which is easily seen to be smooth as the denominator is nonzero.
This concludes the proof of the lemma. O

4.3. Wave packet testing. Our objective here is to describe the method of testing by wave packets,
and show how it applies to our problem in order to define the asymptotic profile v and to show that is
approximately solves the asymptotic equation, with the final objective of establishing the uniform bound for
v, which in turn implies the uniform bound for the solution wu.

We will begin with a short description of wave packes on a fixed spatial scale, both for the linear and then
for the nonlinear model. Then we discuss the wave packets on a time dependent scale, which are critical in
our analysis here. Finally, we use these wave packets to construct the asymptotic profile v, and prove that
it has the desired properties.

4.3.1. Linear wave packets on a fized scale. The idea here is to look for solutions to the linear equation ([2.1)
which are localized near a trajectory for the Hamilton flow,

(wo,&0) = (xo + tag(§o), &o)-

Most desirably, this localization should occur both in position and in frequency, on the sharp, uncertainty
principle scale. The localization scales are denoted as follows:

(6z, 68), 0x - 06 &~ 1 (uncertainty principle)

The first step is to choose these scales so that this localization is coherent up to a given time 7". Heuristically,
the varying group velocities within the §¢ range leads to position variations for the Hamilton flow up to the
time 7', which are given by
ox = TCL§§ (60)55
Matching this with the uncertainty principle relation, we obtain the localization scales adapted to the time
scale T', namely
dx = T%agg(fo)%» 0§ = T_%agf.
14



So far we have only looked at the coherence at the level of the Hamilton flow. Next, we ask whether one
can realize this localization at the level of actual solutions. This leads to the so called wave packet solutions,
which are approximately of the form

ua, t) =y x((6x) "N (a — zo — tag(&y)))e'@sotaléo)),
Here one can adopt two equally useful view points. On one hand, keeping the Schwartz function y indepen-
dent of ¢, one obtains an approximate solution to , with errors which are smalﬂ up to time 7. On the
other hand, one can start with a given Schwartz function y at ¢t = 0, and show that the representation above
persists exactly with a time dependent Schwartz function y which satisfies uniform bounds up to time 7.
This can be achieved via Fourier analysis, but also via energy estimates, using the operat TL defined above,
as well as its powers. This philosophy applies as well in variable coefficient case, see e.g. [15].

One can think of general L? solutions to the linear flow as linear, square summable superpositions of
wave packets, which can be taken either relative to a discrete set of centers (z,£) (wave packet parametrices)
or with respect to a continuous set of centers, akin to phase space transform method

Finally, we remind the reader that, under the name of Knapp counterexamples, wave packets have been
used to show that Strichartz and the dispersive estimates are sharp.

4.3.2. Nonlinear wave packet solutions on a fized scale. Here we switch to the nonlinear flow , and
consider wave packet solutions, which are localized on scales similar to the ones above. The new factor here
is the amplitude of the nonlinearity, which we denote by M. Then the linear ansatz for wave packets is
modified to
u(a, ) = At (02) (2 — 20 — tag(€o)))e!Eo=tol0)),

where the modulation factor v is taken to have size M.

For functions u with wave packet localization near frequency &g, it turns out that the nonlinearity is well
approximated by

Q(u, ) = q(€0, €0, &0)lul?u+ O(5E|M?),

where the error can be thought off as perturbative provided that the amplitude is small enough,
SEM? < 1.
Assuming this is the case, the amplitude function 7 should approximatively solve the asymptotic ode

% = q(&o, o, &)Y

This in turn is conservative if q(&o, &0, &o) is real.

One should relate these heuristics with the idea of NLS approximation, which roughly asserts that solutions
with this type of localization and amplitude are well approximated by solutions to a suitable NLS problem,
obtained by replacing the symbol a with its quadratic approxim }gr_l fo 9aznd the cubic form @ by
q(€0, €0, €0)|u|?u. For more information on this we refer the reader to [TT], [T9] and further references therein.

4.3.3. Linear wave packets with time dependent scale. Working with packets with fixed scales is useful for
the study of the local problem, but not so much for the global in time evolution. Because of this, we will now
consider global in time approximate wave packet solutions for the linear problem . To understand their
structure, we recall that the spatial scales associated to time scale ¢ at velocity v and associated frequency

a’(&,) = v are given by
b = t2[age(€,)]3, 0€ =t 2[age(6)] 2.
We now replicate the previous wave packet ansatz, but do it globally in time, with a time dependent scale.
Thus we define the linear wave packet u, associated with velocity v by
" _1 itd(z/t r — vt
(4.20) u, =a"(§) 2x(y)e (@/t), y= m-
where y is a compactly supported smooth function, which we normalize so that

/x(y)dy =1

1Say in LIL2.

9 Pisa
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FI1GURE 1. The support of a wave packet with velocity v.

This is a good approximate solution for the linear flow on dyadic time scales:
(4.21) (i0; — A(D))u, ~ Ot~ H)u.

However, we carefully remark that this is not a good approximate solution globally in time. Indeed, any
global solution should disperse, rather than stay concentrated near a ray. As a corollary of this remark, we
note that the above relation will still remain satisfied if we replace u,, say, by t*u,. The choice we made
above is for convenience only, and not at all intrinsic. If one wanted for instance to have solutions which
stay bounded in L?, then choosing j = —i would be the appropriate choice.

However, there is one advantage for our normalization, which is seen when one attempts to gain a better
understanding of the error term in the linear equation for u,. Precisely we have the following:

Lemma 4.4. The wave packet w, defined above solves a linear equation of the form
(4.22) (i0 — A(D))u, =t~ Lul + ¢ 3r,,
where ul and r, have a wave packet form similar to u,.

Compared to (4.21]), the lemma provides a more accurate description of the t~% term. The function uf
here is quite explicit,
I i .
u, = —55 (X' (y) = iyx(y))
This is not important later on, what matters is that the operator L is applied to it. The function r, is less
explicit but this is also not important as r, only plays a perturbative role later on.

cito@/t).

Proof. While not absolutely necessary, here it is helpful to simplify the problem using some simple linear
transformations:

e Using a Galilean transformation x — vt — x, the problem reduces to the case v = 0. Note that this
changes a by a linear term.

e Using a spatial phase shift, u, to u,e™*®¢, we can also ensure that £, = 0. This translates a by &,.

e Using a temporal phase shift, the problem reduces also to the case a(0) = 0.

e If a”’(0) < 0, we can shift to a”(0) > 0 by replacing v with @ (and thus a(£) by a(=¢)).

After these simplifications, we are now in the case when
v=0, & =0, a(0)=0, d'(0)=0.

This in turn implies that




Now we finally compute the equation for ug. For this, we use the Taylor expansion of a at 0,

a(6) = 5a" ()€ + 0(&).

The contribution of the &3 sized error has size t_%, and may be included into rg. Similarly, we have
U(x,€) = x —td'(§) = x — t&a"(0) + O(t€?),

where the contribution of the t£2 tail also can be included into rg.
Since the v in the lemma was set to 0, in what follows we use the notation v = x/t. Hence we have

(100 = AP0 = (100 % %“II(O)ai)uo +t g

— L Ba@(0) Y W) — (@(0) (6(0) - v () x(w)e
+ 5(a//(o))—% (Xﬂt(y) + 2i(a”)% X/(y

Noting the leading order cancellation

—
E\
—~
<
=

—a"(0)x(y)¢™(v) + m"(o)X(y)@M”)> et 4 p=3p.

Z
t

1

B(v) - v/ (v) = —3

where the last term only contributes to the error, we obtain

@"(0)62 () + 0(*),

(idh — AD)uo = — L17H (o + ita” (0)0,)[a” (0) X (9)e™ )] + La(0)3 0 (x(w)ef (1)) + 1,
1, 3 . 1.7 itd(v { 1 . itd(v -2
= =5t 7 (@ +ita”(0)0,)[a” (0) 7N (W) ™) + 5a"(0)3 (9 — i/ (v) De()e ()] + 1 7.
Since ¢'(v) = (a”(0))"'v + O(v?), we can rewrite the second term on the right to get
(10— AD)mo = — 2a”(0) ¢ Ha + ita” (0)2) [X' ()" + igx(w)e )] + 1~ I,

Z//

= — 50" O EL [ () + iyx()e ™| + g

as needed.

We also need to consider the v dependence of u,.
Lemma 4.5. The wave packet w, defined above solves a linear equation of the form
(4.23) dpu, = Lull +r,,

where ul! and r, have a wave packet form similar to u,.

Here we have
ull = —ifa” (&))" F x(y)e'?@/t),

v
Proof. Differentiating with respect to v yields
OvUy = —10, [X(y)]elt(b(l/t) + 1y,
and the first term on the right is similar to the second term on the right in the computation in the previous

lemma. O

4.3.4. Wave packet testing. As described earlier, we will define our asymptotic profile function v by

(4.24) v(t,v) = (u,uy) 2.

Now our objective is two-fold:
e To show that « provides a good approximation for u, in the sense of (3.4)).
e To show that ~ is an approximate solution for the asymptotic equation ((3.2)).
17



4.4. Bounds for 7. Here we establish some base-line bounds for v, using the energy estimates in Proposi-

tion [4.1k
Proposition 4.6. Assume that u satisfies the energy bounds in Proposition[{.1 Then v satisfies
2
(4.25) V2 + 19uv]l 2z S et

Proof. If we bound u, by
1

N rem——T
1+ tlv— v
then the L? bound for v can be interpreted as a convolution estimate, as
1
v)| < tlu(vt)| %y ———
@) S )]+ 1o
where the convolution kernel is integrable. By Young’s inequality this yields

ez S Vellui)lce < llullzz

[, (t,71) 1 = tvy,

as needed.
For the L? bound for 8,7y we first apply Lemma Then we obtain the convolution bound

10,9(0)| S (1Ll + ul)(0t) %, T,

and then conclude as above. O
4.4.1. Approzimate profile. Our goal here is to estimate the difference

1 )
T(tax) = U(t,l‘) - 77(75’ U)elt¢(v)7 v =
Vit

i
t
as follows:

Proposition 4.7. Assume that u satisfies the energy bounds in Proposition [{.1. Then the above error r
satisfies the uniform bound

(4.26) 7| oo < et™3FC7e,
and the L? bound
(4.27) 7l e S et 2tC%

Proof. We represent
Ve Wt o) = (u, w,),
where on the right we use the L2 pairing, with

W, = Vet ?5,_ — u,.

Using the normalization [ x =1 we rewrite w, as

wy =120, (x1(y) sgn(y))e™® =2 (9, — i/ (x/t)) [x1 (y) sgn(y)e™],

where y1 is

— ffoo x(z)dz y<0

xi1(y) =

- fyoo x(z)dz y >0,

which leads to
Ve W (¢ ) = 2 (Lu, ultly, ulll = 1 (y) sgn(y)e'®.

Now ul’! has the same size and localization as u, so we can argue as in the proof of Proposition that
~ 1
[r(t, vt)| S |Lu(t, vt)| *, TR
Then by Young’s inequality we conclude that

1 fd _1,=x
lr(t @)Lz = t2[r(t, vt)llz S 1 Lult, vt)l|z = 72 ([ Lult, @)l 2
18



gamma-asympt

respectively
lrllze < ¢4 Zutt,vt)l g = ¢ 4| Zull 2.
Now we can conclude using Lemma [2.3 |
4.4.2. The asymptotic equation for ~v. Here we prove the following:
Proposition 4.8. Assume that u satisfies the energy bounds
2 2

lullx < et)
Then ~ solves the asymptotic equation
(4.28) Y(t,v) = iq(€o, &0, €)™ (E,0) (8, 0) P + (2, v),

where f satisfies the uniform bound

(4.29) il S et= 34367
and the L? bound
(4.30) Ifllzz < et™#+3C%,

Proof. We compute
A(t,v) = —i{(i0; — A(D))u,uy) + i{u, (10 — A(D))u,) := I (t,v) + Iz (¢, v).
For I we use Lemma [£4] to write
L(t,v) = it ((Lu,ul) + (u,r,)).

This allow us to bound its size both in L, using Holder’s inequality, and in L? via convolution bounds.
The expression I, on the other hand, has the form

I (t,v) = i(Q(u, @, u),u,).

Here we first use the bounds for = in Proposition|4.7|in order to substitute u with t’%'y(h z/t)e’*@/t) modulo
acceptable errors,

I(t,v) = it_%v(t,v)h(tv)|2<Q(7(t,x/t)e”¢,ﬁ(t,x/t)e_”‘b,v(t, z/t)e®), u,) + f,
where the error f is as in (4.29), (4.30).

Then we take advantage of the fact that the kernel of @ is localized on the unit scale in order to re-
place (¢, z/t) with v(¢,v), again with acceptable errors, which are estimated using the bounds for 9,7 in
Proposition Thus we get

Li(tv) = it (8 o)y (E o) Q™ e, ), uy) + f.
Finally, a semiclassical computation shows that

so the desired asymptotic equation follows.
|

4.5. Conclusion. Here we show how to close the bootstrap argument, and prove that the global result
follows as a consequence of the results in Propositions [£.7] and [£:28
The bootstrap argument closes as follows:

e Proposition gives the energy bounds on our corrected vector field LYY, where we made use of
the energy estimates on « obtained in (4.9) and of the bootstrap assumption expressed in (4.4]) to
get

LY u(®)llze S ety
19



scat-error

t:scat-model

e We use the pointwise decay bound obtained in Proposition [.7] for the difference between the as-

ymptotic profile y(¢,v) and solution u to conclude that the error term f in the asymptotic equation
4.28)) for « is acceptable, i.e. has better than ¢! decay, as stated in Proposition Integrating
4.28) leads to a pointwise bound for :

t
o)l < h1o)l+ [ 170l ds,
1
Here, we use the energy bound (4.9) at time ¢t = 1 and the pointwise bound on v to conclude that

V(L o)L= Se,

as well as the pointwise bound on f given in Proposition [£.8] and get

t
) < )+ [ 1ol ds S e
e Lastly, from the above estimate and Proposition |4.7] it follows that the pointwise bound on w is
Jul S et™2,
which, under the constraint 1 < C, concludes the bootstrap argument.
4.6. Modified scattering and asymptotic completeness. An immediate consequence of the approxi-

mate asymptotic equation (4.28) for ~ is that, as t — oo, the function v converges to a solution ¥ to the
exact asymptotic equation,

7 = iq(&o, &0, €)1 V) A(E V)P,
which can be represented in the form

F(t,v) = W (v)el1(Ev b &o) W ()]

We will refer to the function W as the asymptotic profile of the solution u, which is now asymptotically
described as

1 . _
u(t,z) ~ %W(v)e“’(gv*g“’g”) Int|W (v)|? gite(z/t)

Then it is natural to consider the relation between the initial data uy and the asymptotic profile W, via
bounds for the difference

(431) e(t7 x) = u(t7 x) — %W(,U)eiq(fv,fv,&u)lnt‘W(’U)Feit(ﬁ(x/t).

In order to avoid any discussion of the asymptotic behavior of a at infinity, here we choose some compact
frequency interval I so that the the symbol ¢ of the nonlinearity is supported in I3, and assume that the
initial data ug is frequency localized in I. Then the associated range of velocities is J = a’(I).

Theorem 4. a) For each initial data ug satisfying the smallness condition (4.1) and which is frequency
localized in I, there exists an asymptotic profile W € H'~C¢, supported in J = a'(I) and with the property
that

(4.32) W ce Se,
for which the above difference satisfies the L? bounds

(4.33) lellze < et™7,
as well as the L*° bounds

(4.34) leflree S et e

Furthermore, the map ug — W is injective.
b) For each W supported in J and satisfying

(4.35) W S e,

there exists an associated initial data ug satisfying the smallness condition (4.1)) and frequency localized in I
so that W is the asymptotic profile of ug.
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Often one refers to the first property as the scattering property (modified scattering) and the second as
the existence of wave operators (modified wave operators in our context). Together, they are called the
asymptotic completeness property.

We also remark on the slight imperfection in the above result, connected with the +C'e terms in the Sobolev
indices. These are largely unavoidable due to the logt terms in the phase, though one might possibly replace
small powers with logs.

Proof. The argument here repeats the one in H\%ﬁ and is omitted. O

5. GLOBAL SOLUTIONS FOR SMALL LOCALIZED DATA: THE GENERAL CASE

Here we consider several possible extensions of our main result, where we drop the compact support
assumption on the symbol of the nonlinearity Q. Then we can no longer work with frequency localized data,
so instead we will have to assume a suitable Sobolev type regularity at infinity. Precisely, we will define the
space X by

(5.1) [ull% = |Ao(D)ull 2 + [[A1 (D) Lu| 2
with suitable multiplier weights Ag and A;. The question we ask is

Question 2. Given the symbols a,q and the above space X, under what assumptions does a small initial
data in X guarantee global solutions and modified scattering for the equation (L.1)) #

Here there are three high frequency properties that play a role, namely the behaviors of a, of ¢ and of
Ao, Ay, all of which will be assumed to be of symbol type. These need to be considered both at frequencies
close to 400 and at —co, and the two regions are largely independent. For convenience only we will not
differentiate between the two. We begin our discussion with several remarks, which will play a role both in
terms of the model we consider (i.e. the choice of a and ¢) and the regularity level for the result (i.e. the
choice of Ag and A;):

(i) The behavior of a and a”: The convexity (concavity) of a is associated to dispersion, and plays a
critical role. To simplify the notations we will assume a is convex, a’ > 0, and also we will assume
some polynomial behavior for ¢ at infinity,

(5.2) a’(§) = ()7,  [fl—+o00, oER,
with symbol type bounds for higher derivatives,
(5-3) a" (Ol S (€7, j=2

Here we distinguish two different scenarios:

e The generalized Klein-Gordon case, 0 < —1, where a has linear behavior at infinity and the
linear problem has finite speed of propagation in the high frequency limit. Here we could
further distinguish the range o € [—2, —1) where a does not have a linear asymptote. The exact
Klein-Gordon problem corresponds to o = —3.

e The generalized NLS case 0 > —1, where a is superlinear at infinity and we have infinite speed of
propagation. The NLS equation in particular corresponds to o = 0, while mKdV type behavior
is associated to o = 1.

(ii) The NLS smallness condition: In the regime of balanced frequency interactions, our problem is well
approximated by a cubic NLS problem. There solitons can occur in the focusing case, but not small
solitons. To avoid such a scenario, a smallness condition is required. A straightforward scaling
computation yields the relation

(5.4 Ro(€)s () 2 1658

as necessary in order for scattering to hold.
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(iii) The relative size of Ag, Aq: It is natural to expect the function space X in our result to be sta-
ble with respect to dyadic frequency localizations. Commuting = with localizations leads to the
requirement

(5.5) A1 (€) < (€)Ao(§).

The two norms in (5.1)) will be close in scaling in the high frequency limit when we are close to
equality in this relation.

(iv) The normalization of ¢: Here we observe that our problem admits the invariance

Ao = bAo, A1 — DA, q(€1,62,83) = b1 (& — & + €3)b(&1)b(£2)b(E3) (€1, &2, &)

obtained via the substitution u = B(D)v. Because of this, we can normalize ¢ at least in the region
of balanced frequency interactions,

(5.6) lq(€1,62,€3)| S 1 when 61| = [&o] = |€3] = &1 — &2 + &3

(v) Semilinear vs. quasilinear: While the size of ¢ in the balanced region contributes to resonant inter-
actions, a large size in the imbalanced region may provide a quasilinear term, for which just looking
at the size is not enough to even guarantee local well-posedness. In this article we will simply avoid
this issue, and simply assume that ¢ is bounded everywhere, with symbol type regularity separately
in each component.

Based on the discussion above, for the results in this section we will consider the following set-up for the
symbols a and ¢:

(a) The symbol a is smooth, convex, with a” as in (5.2)), and symbol type regularity.
(b) The symbol g is smooth, real on the diagonal, and has the form

(5.7) q(&1,&2,83) = q(61, 62,63, &1 + & — &2),

(i.e. the trace of q on the diagonal & — & + &3 — &4 = 0), where q is bounded and with separate
symbol type regularity in all variables,

4
(5.8) |01 082022 08 (€1, &2, 63, €a)l S [ (&)
j=1

Here & — & + &3 appears naturally as the output frequency in the trilinear interaction.

Now we turn our attention to the regularity required by our result, which is determined by the symbols
Ag and A;. This will be chosen to be
(59) AO = <€>So’ Al = <£>817
so that

2 2 2
Jull% = llull=0 + | Lullze: -

It remains to discuss the choice of sy and s;, which we would like to have as low as possible. So far, the
heuristics above indicate that the following two conditions, arising from (5.4) and (5.5)), are required:

(510) 30+81 2 —a, S1 S 80+]..
Within this range, we note the best case scenario

o+1 o—1
(5.11) & £ R et

Indeed, this would correspond to a scale invariant result in the pure power case in the high frequency limitﬂ
We retain these values as an ideal but unreachable goal, and seek to at least get close to these values. In
particular, it is helpful to allow for at least a small positive margin in the first inequality in , in order
to be able to allow for the small power type growth in . Even with this proviso, we will only be able to
get close to the ideal setting in only for o = —3 (i.e. exact Klein-Gordon) and for the restricted range
-1 <0 <1 (i.e. weak NLS).

3Here, if ¢ < —1, then we can normalize in a Galilean fashion to set a/(co) = 0 before scaling.
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The conditions in ([5.10)) above are required by the behavior of balanced interactions. However, managing
imbalanced frequency interactions imposes further restrictions, which will be reflected in the choices below.
To summarize, we will distinguish several cases, where ¢ stands for a small positive constant:

(I) Weak Klein-Gordon, o < —3. Then we set

80:—0'—2 81:—0'—]..

(IT) Intermediate Klein-Gordon, —3 < ¢ < —2. Then we set
so =1+, s1=—0—1
(ITI) Strong Klein-Gordon —2 < ¢ < —1. Then we set
80:70714*6, 81:1.
(IV) Weak NLS, —1 < ¢ < 1. Then we set

1 -1
—U; —|—5, 81:—0 .

So =

(V) Strong NLS (or KdV+), 1 < 0. Then we set

80:—1, S1 =0.

S1

FIGURE 2. The Sobolev exponents sy and s; as a function of o. Dotted lines indicate the
best case scenario in ([5.11]).
Under these assumptions, we have

Theorem 5. Assume that the symbols a,q, Ao, A1 are as above, and that the initial data for our equation

(1.1) satisfies:

(5.12) [u(0)[x Se<1.
Then the solution exists globally in time, with energy bounds
(5.13) lu(®)lx < et
and pointwise decay

s €
5.14 DYtu(t)||pe S —.
(5.14) (D) *u(t)|l ST

Here 6 is a small positive parameter, which depends on the choice of sg and s; above, and which can be
taken to be exactly the one in the choice of sp in cases (II)-(IIT)-(IV) above.
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Remark 5.1. Our choice of exponents (so, s1) in the cases (I)-(V) above was guided by the goal of coming
as close as possible to the end-points of the two necessary conditions in , giving priority to the first
one. To minimize technicalities we have fized the choice of some exponents rather than giving a range. We
note however that increasing so while keeping s1 fived is straightforward. This is also connected with the
fact that we have simply assumed that the symbol for the cubic nonlinearity is bounded, rather than imposing
various polynomial bounds. Many of the restrictions arising in the proofs are of technical nature rather than
fundamental, and arise only in the study of unbalanced interactions, which is secondary to our main purpose.
We leave it to the reader to explore other variants of these results, as needed.

One may also supplement Theorem [5| with a matching result on modified scattering and asymptotic
completeness, which exactly mirrors the result provided in Theorem 4| in the model case.

In order to best capture the behavior of the asymptotic profile W at high frequencies, it is best to
parametrize W by &, rather than by v. To account for this change, we define the asymptotic solution
Ugsympt associated to a profile W as

LW(E/U)eiq(fU?&U)E’U) In t‘W(éu)lzeitqﬁ(v) fOI' v E a/(R)

asympt (L, = vt = vt,
Yasympt (@) {0 for v ¢ d/(R), ey

where the second alternative occurs only in the generalized Klein-Gordon case (I)-(II)-(III).
Then we consider the relation between the initial data uy and the asymptotic profile W, via bounds for
the difference

(5.15) e(t, ) = u(t, z) — Uasympt (t, ).
Theorem 6. a) For each initial data ug satisfying the smallness condition (5.12)), there exists an asymptotic
profile W € HL-C¢(R) with the property that

loc

(5.16) [(€)*0FE 7O Wlpz + () E O W[ pa-ce S e

for which the above difference satisfies the L? bounds

(5.17) lellz Set™®,  61>0
as well as the L* bounds

(5.18) lellpe Set™27%, 6y > 0.

Furthermore, the map ug — W is injective.
b) For each W satisfying

(5.19) 1(€)0F EXCEW | 1o + (€)1 E~CW || isee S e

there exists an associated initial data ug satisfying the smallness condition (4.1)) so that W is the asymptotic
profile of ug.

Just as in the case heorem [4 this result is also provided without proof. The proof follows again
the same outline as in%‘é}g The exponents in , respectively closely bracket the corresponding
exponents in Lemma [5.9

To avoid technicalities due to the many cases that would need to be considered, we do not attempt to
specify exactly the positive constants 01 and do (which are independent of €).

We remark that the choice of the exponents sy and s1, and more precisely the second bounds in
guarantee that satisfies the pointwise bound

—20te 45 O?

W) S ef€) = oo
From here, the first bound in (5.10)), if strict, guarantees that
lim W(¢) =0.

E—+oo

This is particularly interesting in the generalized Klein-Gordon case o < 1, where it implies that the asymp-
totic solution decays to zero at the edge of its support.
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The proof of Theorem [5| follows the same outline as the proof of Theorem [3] using a bootstrap argument.
The bootstrap assumption will be

5 Ce
5.20 Dysu(t)||pe < —.
(5.20) (D)= u(t)|lz S
Using the bootstrap assumption, we first prove the energy bound (5.13]) with C replaced by C?. By vector
field bounds, the energy estimates will imply a pointwise estimate of the form
3 € 2.2
5.21 D)2 u(t)|[pe < —t¢°¢,
(5.21) [{D)>u(t)| L N
which would give the bound (5.14) with an additional $C%e loss, but also with a high frequency gain. To
rectify that, we use our wave packet method to define a suitable asymptotic profile -, which is then shown
to be an approximate solution for the asymptotic equation. This will allow us to obtain pointwise bounds
for the asymptotic profile without the loss, which are the transferred back to u. In the rest of the section,
we successively discuss each of the steps of the proof, following the template of the model problem.

5.1. Dyadic decompositions. Here we motivate and describe the dyadic decompositions that will be used
in the sequel. In particular, these will turn out to depend on the ranges for .

1. The frequency decomposition. Here instead of the classical base 2 dyadic decomposition we will use

narrower ranges,
A=(1+p)™, m e N, O<pxl,

with the understanding that at frequencies < 1 we simply split into intervals of size p. Here p is a small
universal parameter. The motivation for this choice is to allow for a clean classification of cubic interactions
into balanced and unbalanced simply depending on the relative values of m.

We denote the corresponding frequency regions by I;\—L. Here the + signs stand for positive and negative
frequencies, and will be at times omitted if they are not useful. We will also use an adapted partition of
unity, again using the 4 superscripts where needed.

1= ZV,\(E)-
A

2. The velocity decomposition. At a given time t, we partition the spatial real axis corresponding to
velocities associated to frequencies in I. Precisely, we denote by J)j\[ =ad (Iit) the velocity ranges associated
to frequencies in I, and by jf the corresponding spatial intervals, J ;E =tJ ;t We can compute the size of
these regions depending on the parameter ~,

| x| & Aa” (M), [Ty & tha” (N),
where we simply denote a”()\) ~ |\|”. Within each interval Jy, respectively .Jy we will choose reference
points vy, respectively xy.
Depending on the value of o, we distinguish several scenarios:

a) The generalized NLS case, o > —1. Here Jy are increasing in size with A, and cover the entire real
line (except for the degenerate case ¢ = —1 where they have equal size). In this case we have an
associated spatial partition of unity

I:ZXf(x), suppx)j\E CQJ/\i.
A

b) The strong Klein-Gordon case, —2 < 0 < —1. Here Jy are decreasing in size with X, but their sizes
tAa” () are large enough to dominate the associated uncertainty principle scale A~! as A\ — co. On
the other hand, they do not cover the entire real line, only the range J;,, = (ta’(—o0),ta’(+00)).
Thus we consider the partition of unity

1= ZX%(-@) + Xout(l‘)z
A

where xout is the characteristic function of the outer region R\ Jyq:.
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FIGURE 3. The velocity decomposition in Case (a), o > —1: all group velocities are allowed.

N/

X

FIGURE 4. The velocity decomposition in Case (b), —2 < o < —1: all dispersive waves are
localized in an angle.

¢) The Klein-Gordon case o < —2. Here Jy are also decreasing in size with A, but their sizes tAa”(\)
no longer dominate the associated uncertainty principle scale A~! as A — oco. For this reason, based
on this comparison we define the time dependent threshold Ay by

(5.22) tAga” (o) =1
and, depending on Ay, we separate into low and high frequencies, and consider the partition of unity
1= X3 (@) + xwi (@) + Xou (x),
A> Ao
where xp; selects a region of size A\ ! Here the intuition is that up to frequency Ao we see dispersive

effects at time ¢, whereas above that we are simply solving a transport equation at leading order.

3. The decomposition of Q. For the trilinear form @, it will be very useful to split it into a balanced and
an unbalanced component,

Q(u, u,u) = Q" (u, w,u) + Q""" (u, @, ),

depending on the size of the three interacting frequencies. Precisely, at the symbol level we set

qbal(§17€27 £3a 54) = X<§1>%<§2>z<§3>z<§4>q(§1a 527 537 64)
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FIGURE 5. The velocity decomposition in Case (¢), 0 < —2: the dispersive region is above
the blue curve.

Here the balanced part will play the leading role, and is the one responsible for the modified scattering
behavior. The unbalanced, part, on the other hand, we will want to treat largely in a perturbative manner.
However, some technical difficulties will have to be dealt with along the way.

From the perspective of the spatial Littlewood-Paley decomposition defined earlier, we will essentially
think of the two components as combinations of dyadic frequency localizations. Precisely, given dyadic
frequencies A; = (14 ¢)™, we will call the quadruplet (A1, A2, Ag, A1) diagonal if max{|m; — m;|} < 4. We
denote the diagonal set of frequencies by ©. Then we will simply set

Qbal(uaavu) = Z P>\4Q(u171_‘2’u3)’
A1, A2, A3, A4 €D
respectively
Qb (u, w,u) = Z Py, Q(u1, U2, us),
A1,A2,A3,A4 €D
where for brevity we have denoted u; := Py,u. We remark that the Py, projection can be omitted in the
case when )4 is comparable to the highest frequency; this includes in particular the balanced case.
As a trilinear form applied to u, the symbol of the expression
Py, Q(uy, tz, u3)

has the form

Tandans (615,62, 63) = v, (§1)vag (§2)a, (€3)va, (Sa)a(1, €2, €3, €a), §1+ 8 =8+,
and can be thought of as the diagonal trace of a bump function on the rectangle Iy, x I, x I, X Iy,. Using
separation of variables on this product region, we can expand these localized symbols as rapidly convergent
series

Ax1,22,23,24 51?62753 ZV 51 V2 52 Vs (53)1/4 (54) &1 +€3 = £2 + &4,
k=1

where the factors have decaying sizes

0" SENATL TSN,
for a large N.

Since the dyadic multipliers 1/]’? are bounded in X, this will allow us to replace Qx, x,,x5,), in all X bounds
with product type operators, precisely of the form

QA17>\27>\3,)\4 ('l_l,, u, u) ~ P)\4 (u1ﬂ2u3)'
Furthermore, if A1, A2, A3 S Ay then we can further eliminate the outer projection Py,. We will refer to this
reduction, later in the paper, as separation of variables.
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5.2. The vector field bound. Our primary goal here is to discuss the counterpart of the vector field
estimate in Proposition [2.1l We will do this in a frequency localized setting, and also consider the better
elliptic bounds outside the corresponding dyadic velocity range. Precisely, we have the following linear
estimates:

Proposition 5.2. a) Let § = sg + s1 + 0 > 0. Then we have the uniform bound

s
(5.23) I{D)> " ullp~ < flullx.
b) We also have the dyadic elliptic bounds for a function uy localized at frequency X\, and x) € Jx:

(5.24) 11 =) (@ —zx)ualle S A luallx,
respectively

A—Sr+%
(5.25) (1 =xa)ua(@)] S ——lluallx.

|z — 2|

Proof. Using a dyadic decomposition in frequency as described earlier in Section [5.1
=Y
A

we first observe that we can localize the X bound and conclude that

lullx < llullx.

This is where the condition s1 < s¢ + 1 is used.

The advantage is that for each A, the size of a” is essentially constant, and we may harmlessly extend a
to have uniform convexity outside I. Hence we will be able to apply directly the results in Propositions 2.1
with the choice of parameters

R=d"(\) =~ )\, M~ 21
a) Since we have sg + s1 > —o + ¢ as well as s1 < sg + 1, a direct application of Proposition yields
1
ta’ (\)
which immediately yields the bound .
We further remark that, in the context of the classification of cases in the previous subsection, in case

(c), which is the Klein-Gordon case, it is also interesting to distinguish the low frequencies from the high
frequencies, and replace the full dyadic decomposition of u by

U= Z Ux + Ui,
[A[<Xo
where the threshold ) is as in ((5.22). While the above argument applies in all cases, for high frequencies

the desired bound also follows directly from Bernstein’s inequality, completely neglecting the Luy bound,

1 —5,—1
lunillze S D AF@ )2 fullaso S A2 Jullx-
A>Xo

e ogn— 1
lurloe S s A7 4 X720 un e S el

This is consistent with the fact that in this regime our evolution is at leading order a transport equation,
with negligible dispersion. Precisely, in this frequency range we can perturbatively replace the symbol a with
its affine asymptotes as & approaches too.

b) Here we similarly apply Proposition 2.4, The bound (5.24) is obtained directly from (2.20). For (5.25)
we first use a multiplier Py with slightly larger support to decompose
(1= xa) (@ — 2 )uxy = Pa(1 — xa) (@ — 2x)un + (1= P)(1 = xa)(z — 22)uy
The first term is localized at frequency A, so we can estimate it using Bernstein’s inequality and (5.24)),

~ 1 — 1
[Px(1 = xa) (@ — za)unlzee SAZ[(L—xa) (@ — za)uallz S A2 lua] x.
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In the second term the coefficient (1 — x»)(z — ) must be localized at frequency at least A,

(1= Py)(1—xa)(z — ax)ux = (1 — Py)gsyux, g=1=x\)(z—z).
Then we estimate
(1= PO)(1 = xa) (@ — zx)uallze < llgsauallo
A2 [lgzyuallze + A2 [ Belgzaun]l L2
(AZllgzallze + A2 1009z Al o) a2
A

)

S
S
S
S

_1
21029l Lo luallx
which suffices since ||0,9]|L~ <1 and so > s — 1.

5.3. Bounds for ) and the energy estimate for u. Here the first goal is to prove the following energy
bound for the function u:

Proposition 5.3. Assume that u is a solution to (1.1)), under the same assumptions as in Theorem @ Then
we have the bound

d 5
(5.26) %HU(t)II?m SID) S ullF e [lull% -

We note that in many problems this bound is independent on the X norm, and has instead the form

d 5
@IIU(t)II?{so SID) S w1 e [l o -

This is the case if sg > 0 (see the proof below) but also if () has additional structure.

(5.27)

Proof. Differentiating in time and using the equation (1.1]), this reduces to the weighted inequality

S
(5.28) 1Q(u, @, w) [l o0 < KDY ul[Zoe |l x-
Here we distinguish two cases depending on the sign of sq:

i) so > 0. Here we have the simpler bound
_ 5
(5.29) 1Q(u, @, u)l[ o S (D) SullFoe |lull oo,

which does not involve any control for Lu. Since @) satisfies the symbol bounds 7 this easily follows by
a standard Littlewood-Paley decomposition with respect to all inputs and the output. The H®° factor on
the right is always chosen to correspond to the highest frequency, and the § exponent readily ensures dyadic
summation. More precisely, writing

Q(u,ﬂ, u) = Z P)\4Q(’LL)\1,7__L)\2,U)\3)7
A1,A2,A3,A4
and relabeling increasing order {1, A2, A3} = { Ao, Admid, Ani} we must have either
(a) Ag =~ Ap;, or
(b) A4 < Apmid = Anis
and correspondingly decompose QQ = Q, + Q5.
For Q, we may use orthogonality to estimate

2
1Qa(w, @ )0 S D D lun i lunallze | un o
Ani \MlosAmid
where the inner sum is estimated by the L> norm in (5.29).
For @ on the other hand we neglect orthogonality and estimate directly
1Qb(u )| S Y N, llzoel[un,ullze lux,, |l meo.

Ao Amid=Ani

where the summation with respect to the two indices is again guaranteed by the L° norm in ([5.29).
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ii) sp < 0, which is needed only in the generalized NLS case 0 > —1. In this case, the bound applies
only to the portion of @ where at least one of the three input frequencies, which we denote by A1, A2 and
A3, is at most comparable to the output frequency \4.

Hence, from here on we assume that Ay < A;, 7 = 1,2,3. This guarantees that \;, Ay and A3 should all
be distinct, and also the largest two should be comparable. Under these assumptions, it remains to prove

the estimate
(5.30) AL NP Q (U s Ty s ung)llnz S llung oo [Jun, | zoe lung [|x + [lun, [[ oo [[ung || 2o [[u, | x
+ lug [l oo [l [l zoo lux, || x-

Here we note that, since the two highest frequencies are comparable, the dyadic summation with respect to
the four frequencies is straightforward using the ¢ factor, and follows.

To prove the last bound, we retain the restrictions on A1, Ao and A3, but then harmlessly drop the
projection Py,. Then we can use separation of variables and reduce the problem to the product case, where
it suffices to show that

(5.31) [, Bxuxs 2 S lluag loes [Juxg oo luns [l x + lluxg oo llung [lzos [lu, | x
+ g | oo flun, f el [ x -
Next, we separate the product with respect to dyadic velocity ranges. Since the A’s cannot be all equal,
it suffices to estimate the expression
IT=[(1 = xa Jun, Ursung [ 22
By Proposition [5.2] we have

TS =anyun [z lussl[ze [[uxg | 2=

A%
< 1 . R
~ )\S;ﬁli)l t|a,()\1) — a/()\)| ||U)\1 ||X||U)\2 HL H’U//\3 ||L
AT

S m”“hHX||U/\2||L°°||U/\3||L°°7

where the \ dependent weight is maximized when A is near A\;. Then it suffices to check that
s
)‘17 <1.
tA1]a” (A1) ™
Given the choice of s; and that ¢ > —1, this is true with a substantial gain. Thus the proof of the Proposition

is complete. O

A second objective here is to show that, in the context of the balanced /unbalanced decomposition for the
cubic nolinearity @), we have a better bound for the unbalanced part. This bound will play a role in our wave
packet testing in the next subsection, precisely in the estimate for the error in the asymptotic equation.

Proposition 5.4. The unbalanced part QU™ of Q satisfies the better L™ bound
A4

t3+3

(5.32) DAPAQ ™ (u, , u) || e S lull

provided that either o > —2 or {o < —2 and tA\°*2 > 1}.

We remark that, depending on ¢ and on the balance of the three frequencies, in some of the cases one
can get a better asymptotic equation error bound by using L? estimates for Q“"**. We do not pursue this
here because it is not needed.

Remark 5.5. This bound is needed in order to be able to control the contribution of Q“™ to the error in
the wave packet testing. Precisely, we will need to be able to verify that

<Qunbal(u, a, ’LL), uv> 5 t—l—é
forv e Jy, and X\ < Ay in the case o < —2. This requires the L bound

_s_
IXAPAQ[ L~ S T2
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Proof. We first simply consider a triple product u;@sus where A1, Ay and A3 are not all equal, and estimate
it within a dyadic velocity region Ay. For that we apply (5.24) and (5.23) for a A;, say Az, which is away
from A. This yields

4%y
—S1
< A PA %Ay

5.33 U U2 U, ull%,
( ) ”X)\ 102 3||L2 ~ tQ‘a/()\?’) _a/(/\)‘” ||X
respectively
3 S 1
AN AT
5.34 T o< L7273 3.
( ) HX,\UIUQU?)HL ~ tQ‘G/()\g) _ G,/()\)| ||u||X
We complement these with the trivial bound
) ) . 1
ALTAy AT
(5.35) I uitgus|pe § H—2="——lul%-

t
To use these estimates we consider two scenarios:

(i) Ay = X and A3 < A2 < A. Then we can separate variables to discard Py, and apply the above bounds
(5.34) and (5.35). Now we examine the coefficient in (5.34) as a function of A3. For ¢ > —1 we get

B _s _5 _ +l 1 <
||XAU1U2U3||L°° §A1 2)‘22>\351 AT 2||u||3Xa

which suffices. For o < —1 we get

—51—%—0

_s _3s
[xaurtigus|[Le S Ay % Ay 2 Ag 72 [lullk-

This still suffices directly in the range —2 < ¢ < —1, and after interpolation with (5.35) in the remaining
range o < —%. In all cases the summation in As and Ag is straightforward.

(ii) In the remaining case we must have at least two comparable high frequencies, say A2, A3 2 A, one of
which, say A3, is separated from A. Then we replace the cutoff x» by one with a double support, call it xy,
which equals one on a comparably sized neighbourhood of the support of x,. Precisely, we write

XaPa = XaPaxa + xaPa(1 = xa)-

The second term is easily taken care of by noting that

1
Py(1-x oo S
||X)\ )\( XA)”L —L> J (ta//(A))\Q)N

combined with the pointwise bound for each of the factors.
For the first term we apply (5.33]), noting that the coefficient is nonincreasing in A3 = A. For ¢ > —1 we
obtain
At s
[Xaurtizus||zz S ;5@1;HUHX,
3

and conclude using Bernstein’s inequality at frequency A. For 0 < —1 we obtain

—51

. A
Rawtausl|e S i lul

Then we use Bernstein’s inequality at frequency A and interpolate with (5.35) as in case (i).
|

5.4. The energy estimate for Lu. Here the objective is to prove the energy estimate for Lu. As in the
model case, this will be achieved via a cubic correction C' so that we can obtain a favorable estimate for the
nonlinear expression

LNy = Lu 4 tC(u, @, u).

Precisely, we will prove the following
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p:ee-Lu| Proposition 5.6. There exists a trilinear, translation invariant correction C with the following properties
(i) Uniform bound for C':

=
¢
Q

s
(5.36) I1C @, @, w)| o S (D) S ullf [lull 220 -
(i) Energy bound for LNEu,
d s 1 s
L2-LNL | (5.37) I ullf S ulX D) Sull e + 72 full (D) S ull o~
One immediate consequence of ([5.36) combined with the bootstrap assumption (5.20)) is the norm equiv-
alence
same-X | (5.38) lullX = lluliFreo + 1LY FullZe,

Using this property one easily sees that, combining the energy estimates for v and LY *u in Propositions
nd using the bootstrap assumption (5.20]), we obtain by Gronwall’s inequality the energy estimate in
(5.13)

Proof. For the expression w := L™V’ u we have an equation of the form
(10 — A)w = LQ(u, u,u) + tR3(u, @, u) + iC(u, @, u) + tRs(u, @, u, @, u),
where R3 has symbol

73(81,82,83) = c(&1,€2,63)(a(§1) — a(&a) + a(és) — a(&r — &2 + &3)),

and Ry is simply the quintilinear form arising from the time derivative of C.
The objective is then to choose the correction C so that (5.36]) holds, and we can estimate the source
terms in H"!,

S
(5.39) ILQ(u, @, u) + tR3(u, t,w)l| e < [lullx[[(D)>ullf~,
respectively
s
(5.40) 1Rs (u, @, w, @, w)l| e S Hlull o[ (D) S ul| 7.

Here naively one may hope to use the same correction C' as in the compact case, so that we have
LQ(u,u,u) + tR3(u, u,u) = Q(Lu, ti,u) — Q(u, Lu,u) + Q(u, @, Lu).

However, as it turns out, there are some difficulties which such a direct approach. Precisely, considering a
full dyadic decomposition for @, there are two interesting scenarios to consider:

a) Balanced interactions, where the three input frequencies and the output frequency are all comparable,
say to a fixed frequency A. Then the symbol ¢ has similar support, symbol type regularity and size

le(€1, 62, &) S A Ma(&r, &2, &) SN

In this case the bounds (5.36)) and (5.39) are straightforward, nothing but a rescaled version of the cor-
responding bounds in the compact case. We still need to prove ([5.40), which contains some unbalanced
interactions, but this is not so difficult.

b) Unbalanced interactions, where, instead, the use of the correction C' would cause trouble:

e The expression of C' would be more complicated, which causes difficulties with (5.36]) and (5.40)).
e the bound (5.39) is unbalanced, which causes difficulties unless s; = 0 or we have a favourable
frequency balance.

However, the redeeming feature in this case is that, in each dyadic velocity range, at least one of the three
inputs must correspond to a different range of velocities, so the corresponding frequency localized operator
L is elliptic there. It follows that the expression LQ(u, @, u) no longer needs to be corrected, and instead
should be estimated directly, in an elliptic fashion.

To implement the heuristic strategy described above, we decompose @ into a balanced and an unbalanced
component,

Q(u’ ’0" u) = Qbal (u7 ’a" u) + Qunbal (u7 ﬂ? ’U/),
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c2+

where at the symbol level we set

A" (€1, 62,63, €0) = X(eyymien)m (e moien A(E1, €2, €3, Ea).

Then we choose the normal form correction C' = C** to account for the balanced term, where the corre-
sponding errors are estimated as discussed above. On the other hand, the unbalanced term we simply treat
perturbatively, without any correction.

A. The balanced term. To account for the balanced term, we follow the compact case and set

bal _ bal ag(§1) — ag(82) + ag(§s) — ag(§)
(41 G ba) = L 8 ) e T )+ ale) —ale)

so that we have the algebraic relation
LQ" (u, @, u) — tRE (u, @, u) = Q"™ (Lu, @, u) — C**(u, Lu, u) + C** (u, @, Lu) + D(u,u,u),
with
d(&1,2,83) = i(0e, — O, + 0g,) " (&1, 62, E3).

Then we have

Lemma 5.7. The above correction C** satisfies the estimates (5.36)), (5.39) and (5.40)).

Proof. As mentioned earlier, the proof of , is simply a rescaled version of the similar argument
in Section As such, it is omitted and left as an exercise for the reader.

The bound , on the other hand, involves also some unbalanced interactions and deserves some
separate attention. Localizing in frequency and separating variables, we split

bal bal
o=y ey
A

where we can assume that the frequency A portion Ci“l of C* has the form
Ogal(u, U, ’L_L) = /\71U)\I_LAU)\.
Then the corresponding component of R5 has terms of the form
Ry (u, @, u, @, u) = A tupiiy PAQ(u, @, u).

Hence, we can bound it by

3
8

[R5 (w, s, w) [ e S AT Hluall e lua [z 1Q(u, w, w)l| e S lunllzeo [{D) = ull -

O

B. The unbalanced term. This corresponds to the unbalanced component Q***® of Q. Here we set
our correction to 0, so that R3 and Rj5 also vanish. Then it remains to prove that we have the following
result:

Lemma 5.8. Assume that sg, s1 are chosen as in Theorem @ Then for 6 > 0 we have the following L* type
bound:

unba —~ s _1_ 3
(5.42) ILQ™™ (u, @, w)l| s S [full x [{D) SulZoe + 72 [l X [(D) S ]| e

Here the advantage is that we can choose which inner u we place the L on. Using the bound (5.42)) in the
lemma, the proof of the L? energy bound (5.37) for LY u is concluded.

Proof. We localize the cubic expression @) in frequency to dyadic regions associated with input frequencies A1,
A2, A3 and output frequency Ay4. Since the choice of the small parameter ¢ is flexible, the dyadic summation
with respect to A1, Ag, A3 and A4 is straightforward. For this reason, it suffices to prove the lemma in the
case when Ay, A2, A3 and A4 are fixed. To streamline notations, we will denote u; := Pyu for j =1,2,3.

In each such region, the nonlinear expression @ is essentially like a product, which then gets localized to
the output frequency A4. Using separation of variables, we can reduce the problem to the case

Q"™ (uy, Ug, uz) = Py, (urtigus),
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where A1, A2, A3 are not all equal. This key property implies that, in a given a dyadic velocity range associated
to a frequency A, we must have at least one of the three L’s act as an elliptic operator; our estimate is primarily
based on this principle. We will further separate the problem into two cases, depending on the relative size
of the three interacting frequencies A1, Ay and As.

a) The llh case, where
A< A K Ag,

or the symmetric case where A\; and A3 are interchanged. In this case we must have Ay =~ A3, and we can
also use separation of variables to discard the Py, projector. Further, it will be convenient to commute L
inside, and write

L(Ulﬂgu:;) = 'U,l’l_l,QL’U,g -+ tR(ul, 1_1,2, Ug),
where the symbol of R is

r(&1,62,83) = a' (&1 — & + &3) — d/(&3).

This is a smooth symbol in all three variables on the corresponding dyadic scales, and has size
7(£1,€2,&3)| S A2a”(A3).
The first term is estimated in a straightforward fashion,
leusio Ll sres S sl oe s oo | s s
For the second term we can use separation of variables to drop again the multipliers, and we are left with
the task of estimating the expression
t)\gl )\Qa//()\g)llul17,QU3||L2.
Finally, we use a spatial angular localization to separate into directions associated to a dyadic frequency A.
In this case we can consider a very simple separation, depending on whether the direction A matches A3 or
not, writing
U1tz = X, (urtizuz) + (1 — x,) (urti2us).
For the first term we use (5.24)) for us in order to write

EAG Aaa” (As) [Ixxs (uatigus) ([ L2 S 1A Aoa” (As)Ixas 2| 2 [lua || oo [Jus| Lo

S tA3 Aaa” (A3) |||u2||XHU1HL°° sl Lo

1
Ay tla’(A2) — a’(A3)
Here the coefficient on the right is nondecreasing in s in all cases (this corresponds to the restriction s; <1
if o > —1, respectively s; < —o if 0 < —1, which are satisfied for our choice of exponents) and equals 1 if
Ao = As.

For the second term we instead use ([5.24]) for usy in order to write
tAS A2a” (A3)[[(1 = xag ) (wrtizus) || 22 S EAG A2a” (N3) [ || e [|us || oo [[(1 — xag ) uz ] 22
1

A3 tAsla’ (As)]
S lluzllx lluallpe lus Lo

This concludes the proof of ([5.42)) in this case.

S A3 A2a"(Xa) lJua|| x [[ur ]| Loe [|us| Lo

b) The lhh case,
A1 <>\2%>\3, )\45)\2.
or permutations thereof. Here we have many subcases to consider. We first reduce their number by peeling
off some of the easier ones.
A first argument we can apply is to simply write
(543) LP)\4 (ulﬁgu;),) = P,\4 (Lulﬂgu;g) + [{,C, PA4](U1’[LQU3) + tR(’U,h Ug, U3),

where the commutator term is essentially of the form A;'Py, (ujuous) and the remainder R arises from
switching the argument of L, and has symbol

7(&1,€2,83) = d' (&) — d' (&1 — & + &3).
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This is a smooth symbol on the four associated dyadic scales, and of size
I7(€1,62,&8)] S la' (A1) — (M)
Here we can estimate the first term in in H% by
[ Px, (Luatious)|| e S | Lua || zren [[uz | Lo [[usll oo,
provided that
(5.44) either Ay <A or o2>1,

where the second condition ensures that s; = 0.
The second term in ((5.43)) is estimated by

Az 1P (urtigus) || e S Jlurtizus]|meo,

after which we can reuse the bounds in Proposition [5.3
Finally, for the last term we separate variables, and it remains to estimate

Aftla’ (M) — @' (Ag)[[Jur tizus]| 2.
We split the triple product with respect to angles,
u1liguz = Xxzurlizuz + (1 — Xag)urtizus,
and estimate the two terms separately. For the first one we use for uq,
Aitla' (A1) — a’ (M)l lxas urtizus| e S Afttla’(Ar) — ' (Aa)[Ixaguallpe luzll Lo [Jus | L

S AYtla’ (M) —a'(Ag)]

)\i1t|a/()\1) _ a/()\3)| ||U1||XHU2HL°° Hu3||L°°~

If 0 > —1 then the coefficient equals

Ala' (M) —a'A)] o AT (A + A7
A51AU+1 ~ )\51)\0'+1 — =
1 13 1 73

Else, Ay < A therefore the coefficient equals
s1\yo+1

MM
ASIATT

For the second one we use ([5.24) for uq,

AT tla (M) — @' A)II(1 = xong )urtizus e S Ajttla’ (A1) — @' (Ag)[lua | pee [[uz | oo [ (1 = Xag)usll 2
1
/\g1 tx\ga//(Ag)‘

and the coefficient is again easily verified to be < 1 by considering the same two cases as above.

S A tla’ (M) —a' (M) ([ | x [Juz || zoe |us || zoe,

After this reduction, it remains to consider the case when
(5.45) A €A S A= Ag, o<1

Here we separate the case 0 < —2, where the threshold Ay plays a role. Precisely, if A3 > Ay then we can
use (5.43)) where 7 has size A" in order to write schematically

LP)\4 (U117,QU3) = P)\4 (Ul’L_LQLU3) + )\le)\4 (Ulﬂg’Ug) —+ t>\40+1p)\4 (Ul’l._LQUg).
The first two terms are easy to estimate directly. So it remains to consider the third, where we estimate
AT Py (wtious) |l S AP Jua || o uz | poe [lus]| 2

SNl e fluall e [lus]|x

SN2 Jun || poe fluel| oo [|us | x

where t)\§+2 < t)\g+2 =1.
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From here on, we will assume that A3 < Ag in the case 0 < —2. Since A\ < A4, we can harmlessly move
the P, projection to the product uous, and work with

v 1= u1 Py, (tgus).
To simplify matters, we note that within the A4 frequency region we have
I(x,8) =z — x4 +tON]T),
and similarly at the operator level we get
(5.46) Lol S AT (2 — za)ur Pa (G2us) | 2 + AT [Jua P, (@2us) | 22).-

We will rely on this bound for o > —1. However, for ¢ < —1 we can process the first term further. We first
move = — x4 inside Py, at the expense of a mild commutator term, which is schematically written as

(.’E — SL’4)U1P,\4 (’ﬁgu?,) = U1P)\4(($ — 374)112’113) + )\ZIU1PA4 (’CLQU;),).

The contribution of the L? norm of the commutator term can be harmlessly included into the second RHS
term in (5.46]), using the upper bound Ay < Mg if ¢ < —2. On the other hand for the main term we can write

(x — x4)us = Lug + tRus, || ~= AT

Since o < —1, the contribution of the error term R can also be included into the second RHS term in ([5.46]).
Finally, for the Lus term we estimate directly

: s
(547 i PunLaalie 5 (32) ol el

which is an acceptable contribution. We arrive at the following simplification of ([5.46]),

(5.48) | Lo|| Lrigs @A S (5.47) + tA; T jug Py, (Ggus) |2, o < —1.

At this point we would like to consider angular localizations for the triple product v = uy Py, (G2us),
centered on the angle associated to Az. This angular region has size thza”(A\3) = tA\"!, whereas v has
frequency A4. So, by the uncertainty principle, this localization is meaningful only if

(5.49) AT > 1.

This constraint is nontrivial only if ¢ < —1. We dispense with the complementary range by estimating
directly the second RHS term in (5.48]) as follows:

AT Juy Py, (tgus) || 22 S EA IS ua || oo Jluel|x ||us | L
= (EAS T ADAT TN Jun || oo [Juz |l x lusl| Lo,

where all the factors on the right are < 1 given our choice of sg and s;. We assume (|5.49)) from here on.

(5.50)

We are now ready to localize v using the angular cutoff ., associated to frequency A3 waves. It is easier
to first consider the contribution of (1 — x,)v. One difficulty we encounter is that we need to commute this
localization with Py,

(1= x0) Py = (1= x0,) P (1= Xas) + R,

N
1
T (tmgﬂ) .

Here, if o > —1 then we get % and the R bound becomes straightforward. Otherwise (5.49) holds so we
can simply add the R bound to the computation in (5.50)).
Hence we are left with the bound for the contribution of the expression

where the error R has size

U1P)\4(’U2(1 - X)\S)uiz,).
to either (5.46) (for o > —1) or (5.48)) (for o < —1). This is

I = A7 ([[(x — za)ur Pa, (2 (1 — X )us)|| 22 + AT T lug Py, (02(1 = X, )us) || 22)-
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Here we harmlessly commute x — z4 inside Py,, modulo a mild error term which is controlled by the second
term on the right. Then we use Proposition 2.4] to estimate

(1= xxs) (@ — ws)usllrz S A5 lus|x-
Bounding the other two factors in L°°, this yields

|z — 4] + AT

I S AT A" sup | sl x[[urll Lo [[uz | Lo

og A |z —

The supremum is attained when z is closest to z3, i.e. when |x — 23] ~ tAza’’(\3), in which case we get the

coefficient , ,
AST TSt ‘(l ()‘4) —a ()‘3)|
473 )\30,”()\3)
If 0 > —1 this gives
At Agt < 1
If 0 < —1 we get instead
)\Zl+a+1)\§517071 S 1’

both of which suffice.

Finally, we consider the most difficult case, where we estimate the contribution of x,v = xa,u1 Py, (G2us),
namely
Iy = A ([[(x = @a)xos w1 P, (2us) || 2 + AT X w1 P, (F2us) o] £2)
~ A} ' (M) = a'(As)lxas ur Pa, (T2us) | 2
Here we can apply the bound for uy to get
/\*SH*%

1-1 5.51 w < 1 _
( ) HX)\SUIHL ~ t|a/(>\1)—a/()\3)|||U1||X

On the other hand, for @isuz we compute

t@r (’U,Q’U,g) = .Z/UQUg, + 1_1,21:/7.1,3,

which allows us to estimate
Az 51

~ 3
[[Px, (2us)ll Lz < W(HWHXHUSHLM + Juzll Lo Jus||x)-
Combining the last two bounds, we arrive at
R o

I SAY 7 Md (M) — d'(Ns))

@ On) — @' (0a)] 20" (Os) ] x (luellx usll Lo + [Juz|l e [luslx)-

Now we examine the coefficient in front. If 0 > —1 then we obtain
)\sl—l)\—sl‘i‘% —1)\—31—0 < )\_% -1
4 1 1Az SAL U,

which is more than sufficient.
However, if ¢ < —1 then we get instead

g —g—4 e
Iy SAPTONT T RIS T Jun || x (Jfuel x [Jusl Lo + (o] o [lus] x ),

which is unsatisfactory since the power of the high frequency A3 is positive. To rectify this, we use again
(5.51)) but estimate us directly in L? to get

)\—51+%
/ / 1 —
Iy S Ajtla’ (M) —a (AB)\m% *Oflun || x [zl oo [|us| oo
oLl _
SAPTTEATTTTEAT ua [ x iz | e s | o
This has a negative power of A3 but insufficient time decay. Combining the two bounds we arrive at
)\4 51+U+% . 1 1
. — —s —2\—81—0
Rs(3) i frabge o sl uals + il )
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]

dv

Here the first exponent is negative s; + o + % < 0, and thus favourable. In the second factor, balancing
exactly at the middle would yield the factor

t_%As—go—ZSI—U ’
with a favourable negative power of A3 but a marginally insufficient power of ¢. But unbalancing this slightly
suffices in order to improve the power of ¢ while maintaining a negative power for As.

This concludes the proof of Lemma [5.8
O

The proof of Proposition [5.6|is now also concluded. (]

5.5. Wave packets and the asymptotic profile. For each admissible velocity v € J = a/(R) we define
the associated wave packet u, using the same formula (4.20)) as in the model case. Then the associated
asymptotic profile v(¢,v) can be defined exactly as before, following (4.24) but as a function

(5.52) v:D=JxRt = C.

If we consider velocities in the dyadic range v € Jy then the spatial localization scale for the associated
wave packet u, is
1 1
dr ~tz(a"(N\))2.
It is instructive to compare this scale with the size of the spatial region Jy associated to frequency A, which
is
|| = thd” (N).
It is meaningful to define our asymptotic profile only if this dominates the wave packet scale,
6z < |-
This is equivalent to
1 1
t2(a”)2 <tha” = t>(\%d’(\)7h
This is nontrivial only in the Klein-Gordon case o < —2, where it can be rewritten in the form A < Ag, which

is the same threshold we have encountered before. Hence, from here on, in the case 0 < —2 we will restrict
~ to a smaller set. Precisely, in this case we will redefine D as

(5.53) D=|J{(w,t) cTxRYwedy, t2 (X" (N)'}
A

The first step in our study of the asymptotic profile v is to obtain bounds for it in terms of the X norm
of u.

Lemma 5.9. Lett > 1, and u € X be a function at time t. Then within D we have the bounds

(5.54) 7112200y S (A% + (ta” (M)A ™) Jull x,
(5.55) ¥l () S A2 4 (a” (N)A2) ) Jul|x,
(5.56) 106 22 (n) S (A7 + (ta” (A)A2) ™) Ju x.

We remark that the term (ta” (A\)A%)~Y) is only relevant in the case ¢ < —2. Precisely, if o = —2 then it
gives t=V, and if 0 < —2 then it gives (A/Ag)".

Proof. Here we use the fact that, for v € Jy, our wave packet u, is essentially localized at frequency .
Precisely, we can represent it as
o —1 i€y T vt
u, = (a’'(N) 2x(v,y)e*s", Y= —F—,
2= (@ () Fx(,y) -
with x Schwartz in y, uniformly in v. This allows us to obtain favourable bounds for the portion of u, away
from frequency A,
1 _ -
|05 Peauo| Sy (@”(0) 72 (L [y)) VAR (ta” (N)N%) 7Y,
where one can distinguish three separate cases:
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a) o > —2, where we get an arbitrarily large gain,
05 Poauy| Sev AN (L4 y)) NN
b) 0 = —2, where we only have the gain in time,
1 N,
|05 Paauy| Spon (@ (V)72 (1+ [y) =N .
¢) 0 < —2, where the gain depends on the distance to Ag,

5P| S (@ (0) 2L+ [y) VA (ho/2) Y.
We now use this in order to prove the three bounds in the Lemma.
Proof of .' We separate frequencies A and frequencies away from A,
Y(t,v) = (ux, ay) + (u, Pzruy).
For the first inner product we use Young’s inequality to get
[{ux, w2 < lluallzs,

where we lose a t2 factor from the L! norm of u, but we regain it from the change of coordinates from z to
x/t. For the second product, on the other hand, we take advantage of the rapid decay in the above bounds
for Pxju,. In the nontrivial range ¢ < —2 we have so > 0, so the worst contribution comes from frequencies
<1lin u.

Proof of (5.55)): Here we use instead the pointwise bound (5.23]) for u. The main contribution comes from
u) via Young’s inequality, while the other frequencies only contribute a rapidly decaying tail, as above.

Proof of (5.56]): We have
7U(t7 U) = <u, avuv>-
For 0,u, we use the representation in Lemma to write the above expression as
Yo(t,v) = (Lu, u?) + (u,r,).
As above, the leading contribution comes from u) where we can use directly Young’s inequality. O

Next we compare the asymptotic profile with the exact solution, working in the same region.

Lemma 5.10. Suppose v € Jy, with the additional restriction A < Ao in the case when o < —2. Then we
have

(5.57) [y(t,v) = t2un(t, vt)e™ 0| < (120" (X))~ |lul | x.
Proof. Since A < \g, the contribution of uy to v has size (tA\%a” (X)) ™" and may be neglected.
Next we consider the contribution of u) to -y, which generates the error
T(t, U) = <uv, u)x) - t%u)\(ta vt)eiit(b(v)'

Here the scales are fixed, so we can directly apply the argument in Section [£:4] Proposition [£.7] to get the
error bound ,

[r(t o) S AR () fulx S ¢EATE (@) E ullx,
which is exactly as needed. O

Finally, we show that ~ is a good approximate solution for the asymptotic equation,
(5.58) Y(t,v) = iq(€o, &0, €)™ (E,0) (8, 0) P + (2, v),
where f satisfies favourable bounds:

Lemma 5.11. Suppose v € Jy and that, in addition, A < Ay if 0 < —2. Then the error f satisfies the
uniform bound

(5.59) )] S (N2 " + i s < —2 A% > 1,
respectively
(5.60) IfE o) St aA T s
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have

Proof. We can write

ft,v) = (u, (i0y — A(D))uy) + (Q(u, @, u), uy) := f1 + fa,

and estimate each term separately.
For f; we use Lemma [£.4] to write

(i0, — A(D))u, =t % (Lul +rl),

v

where

ul ~ () 2u,, r, ~ A\ (d") "2 u,.

Hence we can use Holder’s inequality to bound
At o)l S ¢ 5@) T IN T ullx S (1a"N) " F Jux.

Next we consider f2, where we use the balanced/unbalanced decomposition of @. The contribution of the
unbalanced part Q""" is placed in f using the bound and (5.32)).

It remains to consider the balanced component of ). Furthermore, in view of the frequency localization
of u, at frequency J, it suffices to consider the balanced component of @ localized to frequency A.

Here we go through two stages, exactly as in the similar argument in the model case:

a) Replace uy by t_%v(t, v)xxe?, with errors controlled by Lemmas and

b) Replace Qx(xae™™, xae ™, xa€''®) by 13 x3e"q(€n, &, &o)-

|

5.6. Conclusion. Our remaining objective is to recover our bootstrap assumption, and show that we have
the better bound

(5.61) (D) up < e

We consider separately each dyadic component uy, for which we seek to show that

(5.62) luallpe S et=2A75.

On the other hand, from the vector field bound and the energy estimates we have
(5.63) url[pe < et 2t A3,

Here € is sufficiently small, so in particular we can assume that ¢ < §. Hence, the desired conclusion
follows provided that ¢ < AV, where the large constant N can be chosen arbitrarily. It remains to consider
the complementary region ¢ > AV. We remark that in the case when o < —2, this region lies entirely within
D, so in particular it ensures that A < Ag.
We now divide and conquer depending on the spatial location:
a) Outside of the region J, we use the elliptic bound . This yields
)\781+% C2¢2 1 c2e?
[urllpoe (joy < mt S Wt ;

which suffices if ¢ > AN,
b) It remains to bound xjuy. By Lemma this is equivalent to showing that our asymptotic function
v satisfies a similar bound, namely

(5.64) (o) Sea 3, weldy,  t= AN

At this point it is natural to split into two cases:
A) 0 > —2. Here we initialize v at t = 1, and use the asymptotic equation to bound ~ at later
times.
B) 0 < —2. Here 7 is restricted to the set D, so for each velocity v € Jy we initialize at times where
t ~ AN, using , and propagate the bound using the asymptotic equation.
|
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