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Abstract. Modified scattering phenomena are encountered in the study of global properties for nonlinear

dispersive partial differential equations in situations where the decay of solutions at infinity is borderline

and scattering fails just barely. An interesting example is that of problems with cubic nonlinearities in one
space dimension.

The method of testing by wave packets was introduced by the authors as a tool to efficiently capture
the asymptotic equations associated to such flows, and thus establish the modified scattering mechanism in

a simpler, more efficient fashion, and at lower regularity. In these expository notes we describe how this

method can be applied to problems with general dispersion relations.
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1. Introduction

Given a nonlinear perturbation of a linear partial differential equation, scattering theory aims to compare
the long time dynamics of the nonlinear problem with the long time dynamics of the corresponding linear
flow. This is particularly interesting in the context of dispersive equations, which have two key properties:

• a conservative nature at the L2 level, with some energy that is either exactly conserved, or essentially
conserved for small data.

• some form of uniform or averaged decay, whose effect is that the strength of the nonlinear interactions
decays with time.

Whether scattering holds for a given problem, that depends on the relative strength of the nonlinearity on
one hand, and on the dispersive effects on the other hand. If the nonlinearity is mild, then scattering holds,
in the sense that, as time goes to infinity, the solutions to the nonlinear problem will approach solutions to
the linear problem.

In this paper we are instead interested in the modified scattering phenomena. These are encountered
in situations where the decay of solutions at infinity is borderline, and scattering fails just barely. Then
one might expect that the nonlinear asymptotic behavior can be seen as some perturbation of the linear
asymptotic behavior. Such dynamics are encountered for many classes of equations, and the modified
scattering effects may vary from case to case; this may include for instance corrections to the velocity,
amplitude or phase. The class of problems we are interested in here is that of dispersive problems with
cubic nonlinearities in one space dimension. As we will see, for this class modified scattering means a phase
correction on a logarithmic time scale.
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The method of testing by wave packets was introduced by the authors in the context of the cubic nonlinear
Schrödinger flow (NLS)

NLS
[8], and used later in water wave contexts

IT-global
[9],

IT-t
[10],

AIT-global
[1] as a tool to efficiently capture

the asymptotic equations associated to such flows, and thus establish the modified scattering mechanism.
See also

BHG,r1,r2,r3
[5, 17, 6, 18] for further examples where this idea is used.

These notes, written by the authors for a summer school at MSRI
msri-summer
[12] in 2020, and based on earlier set of

notes prepared by the authors for an AMS meeting in Las Vegas in 2016, aim to describe how this method
can be applied to problems with general dispersion relations. Notably, here we work with with minimal
structure assumptions on the nonlinearity, which do not include a scaling symmetry or energy conservation.

1.1. A model dispersive problem. The model problem we consider here is a one dimensional evolution
of the form

mainmain (1.1)

{︄
i∂tu−A(D)u = Q(u, ū, u)

u(0, x) = u0(x),

for a complex valued function

u : R× R → C.
Here we will make the following general assumptions:

(H1) Real symbol. The symbol a(ξ) of the multiplier A(D) is real and smooth; this guarantees that the
L2 norm is preserved for solutions to the corresponding linear flow.

(H2) Dispersive character. The group velocity depends on the frequency,

R ∋ ξ → a′(ξ) ∈ R is a diffeomorphism (i.e. a′′ ̸= 0).

(H3) Cubic, translation and phase shift invariant nonlinearity. The nonlinearity Q is defined by its smooth
symbol q as follows:

ˆ︂Q(u, ū, u)(ξ) =
1

2π

ˆ
ξ=ξ1−ξ2+ξ3

q(ξ1, ξ2, ξ3)û(ξ1)û(ξ2)û(ξ3) dσ,

with dσ = dξidξj , i ̸= j = 1, 3 (where one needs to adjust the sign corresponding to the chosen (i, j)
pair).

(H4) Conservative nonlinearity. The symbol associated to Q and computed on the diagonal must be real
i.e.

q(ξ, ξ, ξ) ∈ R.
For the Cauchy problem (1.1) we will ask the following question:

Question 1. Assume that the initial data for the evolution (1.1) is small, localized and sufficiently smooth.
Does this guarantee that we have global solutions with dispersive decay and modified scattering ?

Our goal in this paper will be to show that the answer is affirmative, under minimal assumptions on
the behaviour of the symbols a(·) and q(·, ·, ·) at infinity, and also under minimal regularity and decay
assumptions for the initial data u0.

1.2. An overview of the paper. To motivate the results, our exposition will begin with a brief discussion
of linear dispersion in Section 2, which notably ends with the vector field bound in Proposition 2.1. The
standard linear scattering mechanism described here serves as the basis for the nonlinear, modified scattering
results which are the main goal of the paper.

In the following section, i.e. in Section 3, we provide a heuristic discussion of the modified scattering
phenomena. The premise here is that, relative to the linear scattering mechanism, the nonlinear asymptotic
profile is governed by an asymptotic equation. The objective is then to efficiently capture both of these
objects in the analysis. We outline several ideas which have been used over the years, and finish with a brief
introduction to wave packet testing.

At this point we are ready to present the main results of the paper, which in a nutshell assert that global
solutions with modified scattering dynamics exist for the flow in (1.1) under suitable assumptions. For
expository purposes, we will split the discussion in two parts:
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(i) In Section 4 we consider cubic forms Q with compactly supported symbols. Then one may also
assume that the solution u has a compactly supported Fourier transform, and no restriction is
imposed on the behavior of a at infinity. In this setting the arguments are simpler, and we are able
to present the main steps, namely the energy estimates and the wave packet testing, in a streamlined
fashion, without distracting technicalities.

(ii) In Section 5 we consider cubic forms Q with bounded symbols, and, correspondingly, symbols a so
that a′′(ξ) ≈ |ξ|σ at infinity for some real σ.

Then we show that, for initial data u0 which is small in suitable spaces

u0 ∈ Hs0 , xu0 ∈ Hs1 ,

the solutions are global and their asymptotic behavior is still governed by the modified scattering
mechanism. Anticipating the precise results in Section 5, we point out here that there are two
qualitatively different scenarios:
(i) The generalized NLS case: σ ≥ −1, where a is superlinear at infinity and thus we have

infinite speed of propagation. This includes for instance
a) SQG type problems, σ = −1, where we take

s0 = 0+, s1 = 1.

b) NLS type problems, σ = 0, where we take

s0 = −1

2
+, s1 =

1

2
.

c) KdV type problems, σ = 1, where we take

s0 = −1+, s1 = 0.

(ii) The generalized Klein-Gordon case: σ < −1, where a is linear at infinity and then we have
finite speed of propagation in the high frequency limit. This includes for instance

a) gravity wave models, σ = −3/2, where we take

s0 = 1+, s1 =
1

2
.

b) Klein-Gordon models, σ = −3, where we take

s0 = 1+, s1 = 2.

While our results do allow for a full range of asymptotic behaviors for a, this is far from capturing a full
range of problems, as Q is not in general bounded in many interesting models. We leave it for the interested
reader to investigate more general situations.

Another line of investigation which is completely omitted in our discussion here is that of normal form
methods, which in many instances allow one to expand the scope of this type of results to problems which
also have nonresonant quadratic nonlinearities.

1.3. Acknowledgements. The first author was supported by a Luce Professorship, by the Sloan Founda-
tion, and by an NSF CAREER grant DMS-1845037. The second author was supported by the NSF grant
DMS-2054975 as well as by a Simons Investigator grant from the Simons Foundation. Some of this work was
presented during an MSRI Graduate summer school in 2020. Other parts of the work were carried out while
both authors were participating in the MSRI program “Mathematical problems in fluid dynamics” during
Spring 2021.

The authors are very grateful to the anonymous referee for a thorough reading of the paper, which led to
many improvements and corrections.

2. Dispersive decay for the linear equation
s:linear

In this section we consider the dispersive properties and the asymptotic behavior of the solutions to the
associated linear problem,

linearlinear (2.1)

{︄
i∂tu−A(D)u = 0

u(0) = u0.
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To avoid distracting technicalities, we will assume that the initial data u0 is frequency localized in a fixed
compact set.

2.1. The fundamental solution and dispersive decay. Denoting by τ , respectively ξ, the time and the
space Fourier variables, the symbol of the linear operator is

p(τ, ξ) = −τ − a(ξ), P = i∂t −A(D),

and its characteristic set is the graph of −a,

char P = {τ = −a(ξ)}.
This is commonly referred to as the dispersion relation.

The associated Hamilton flow is

(x, ξ) → (x+ ta′(ξ), ξ).

In particular we note here the group velocity a′(ξ), which depends on the spatial frequency ξ of the waves.
We denote the range of admissible group velocities by

V = a′(R).
Here we may distinguish two different scenarios, depending on the asymptotic behavior of a at infinity.

a) The generalized NLS case, where a has superlinear growth at ±∞, in which case a′ : R → R is
surjective so V = R, i.e. waves propagate with all possible velocities.

b) The generalized Klein-Gordon case, where a has linear growth at ±∞, in which case the set V of
possible group velocities is a bounded open interval.

Of course, one may also differentiate between the behavior of a at +∞ and at−∞, with obvious consequences.

The spatial Fourier transform of the fundamental solution K(t, x) for (2.1) is given by

K̂(t, ξ) = e−ita(ξ),

which yields the following oscillatory integral representation for K:

K(t, x) =
1

2π

ˆ
R
ei(xξ−ta(ξ)) dξ.

By the assumption (H2), the phase function is nondegenerate, and has at most one critical point, namely
the solution ξ of the equation

x− ta′(ξ) = 0.

Denoting v = x/t as the velocity along a ray starting from the origin, this becomes

xivxiv (2.2) v = a′(ξ).

We denote the solution of (2.2) by ξv. In the generalized NLS case this solution exists for all real velocities
v. But in the generalized Klein-Gordon case the critical point exists only for v ∈ V .

Assuming that v ∈ V , the asymptotics of the the fundamental solution along the ray x = vt can be
computed using the stationary phase method, see

Stein
[20], which yields the asymptotic expansion

fundamentalfundamental (2.3) K(t, vt) ≈ 1√︁
2πt|a′′(ξv)|

eitϕ(v)e−
iπ sgn(a′′)

4 +O(t−1)

where the phase function ϕ(v) is given by

ϕ(v) = vξv − a(ξv).

This holds uniformly for v in compact subsets of V , with a more complex behavior at the endpoints and
rapid decay along rays outside the closure of V in the generalized Klein-Gordon case.

Since by (H2) a is either convex or concave, this last expression also allows one to interpret ϕ as the
Legendre transform of a, so that ϕ′ and a′ are inverse functions,

phi-primephi-prime (2.4) ξv = ϕ′(v).

Equivalently, ϕ can be thought of as the solution to the eikonal equation

a-vs-phia-vs-phi (2.5) a(ϕv) = ϕ− vϕv.
4



More generally, one may apply the stationary phase method to compute the asymptotics for any solution
u to the linear equation (2.1) with initial data u0 with a smooth Fourier transform (which corresponds to a
localized initial data), namely

linear-scatteringlinear-scattering (2.6) u(t, x = vt) ≈ γ(v)
1√︁

t|a′′(ξv)|
eitϕ(v)e−

iπ sgn(a′′)
4 +O(t−1),

where the asymptotic profile γ = γ(v) depends on the initial data in a straightforward fashion,

γ(v) = û0(ξv).

The expansion in (2.6) is uniform for v in a compact subset of V , or if û0 is compactly supported or at
the very least has sufficient decay at infinity.

One may also think of the linear dispersive decay of solutions to (2.1) in a translation invariant fashion.
This is described by the following result:

t:disp Theorem 1. Assume that the conditions (H1), (H2) hold. Then the following translation invariant decay
estimates hold for frequency localized solutions to (2.1):

• Dispersive bounds:

dispersivedispersive (2.7) ∥u(t)∥L∞ ≲ t−
1
2 ∥u(0)∥L1 .

• Strichartz estimates:

StrichartzStrichartz (2.8) ∥u∥L4L∞ ≲ ∥u(0)∥L2 .

The dispersive bound follows from the pointwise decay of the (frequency localized) fundamental solution,
see (2.3). The Strichartz estimates (2.8) can be seen as a direct consequence of the dispersive estimates (2.7)
and Young’s inequality, see

GV
[4] and

KeTa
[14].

Similar bounds hold for problems with unlocalized data, provided one adds appropriate multiplier weights
depending on the asymptotic behavior of a′′ at infinity. Some details are provided in the last section of the
paper.

2.2. Dispersion via energy estimates. As noted above, the standard proof of the dispersive bound (2.7)
is via the pointwise bounds for the frequency localized fundamental solution, which in turn follow from the
method of stationary phase, see e.g.

Stein
[20]. However, there is also an alternative, more robust approach via

energy estimates and the vector field method.
Precisely, using the atomic structure of the L1 space, it suffices to prove the t−

1
2 decay in (2.7) for initial

data u0 which is both frequency localized and in the Schwartz space. To measure the decay, we introduce
the linear operator

def:Ldef:L (2.9) L = x− tA′(D),

which is the pushforward of x along the corresponding linear flow. For Schwarz data, we control

(2.10) ∥u0∥L2 + ∥Lu0∥L2 ≲ 1.

Then we want to show that

disp-decay-lindisp-decay-lin (2.11) ∥u(t)∥L∞ ≲ t−
1
2 .

To prove this, we observe that if u solves (2.1) then Lu also solves (2.1). Hence, using the conservation
of the L2 norm, it follows that

unif-enunif-en (2.12) ∥u(t)∥L2 + ∥Lu(t)∥L2 ≲ 1.

Hence, one can think of the decay bound (2.11) as a consequence of a Sobolev-type interpolation bound,
where the uniform norm for u is estimated in terms of the uniform energy bound in (2.12). For later use, we
will state and prove a more general statement, where uniform dispersion is assumed globally and implicit
constants are carefully controlled:
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p:vf Proposition 2.1. Assume that the symbol a(·) satisfies the bounds

(2.13) a′′ ≈ R, |a′′′| ≲ MR,

where M and R are positive constants. Then the following estimate holds for any frequency localized function
u:

vf-Sobolevvf-Sobolev (2.14) ∥u(t)∥2L∞ ≲
1

tR
(∥u∥L2∥Lu∥L2 +M∥u∥2L2).

In particular, this yields the following result in the context of Theorem 1.

p:vf-comp Proposition 2.2. Assume that the conditions (H1), (H2) hold. Then the following estimate holds for any
function u which is frequency localized in a fixed compact set:

vf-Sobolev-corvf-Sobolev-cor (2.15) ∥u(t)∥2L∞ ≲ t−1(∥u∥L2∥Lu∥L2 + ∥u∥2L2)

As discussed above, this in turn implies (2.7). Conversely, we remark that the above inequality can be
obtained as a direct consequence of (2.7).

Proof of Proposition 2.1. We begin by observing that, by independently scaling the space and the time, both
R and M can be seen as scaling parameters. Precisely, a linear change of coordinates x → Mx reduces the
problem to the case when M = 1. Thus without any restriction in generality we will assume R = 1, M = 1.

A second observation is that we can regularize the symbol a on the
√
t scale,

ã = P
<t

1
2
(Dξ)a

The bound on a′′′ shows that

|a′ − ã′| ≲ t−1

so that a and ã can be used interchangeably in the Proposition. The advantage is that ã satisfies higher
regularity bounds

a-higha-high (2.16) |ã(j)| ≲ t
j−3
2 , j ≥ 3.

From here on we will drop the ã notation and assume that a satisfies (2.16).

Next we introduce a secondary operator L̃, which can be used interchangeably with L in energy estimates.
We recall that the symbol of L is

ℓ(x, ξ) = x− ta′(ξ),

so its characteristic set is given by

charL = {a′(ξ) = x/t}.
Using the property (2.4), this can be written as

charL = {ξ = ϕ′(x/t)}.

This leads us to define the operator

L̃ := t(∂x − iϕ′(x/t))

which has symbol

ℓ̃(x, ξ) = it(ξ − ϕ′(x/t)),

and thus the key property that it has the same characteristic set as L. Since a′ and ϕ′ are inverse functions,
it follows directly that

ϕ′′ ≈ 1.

In addition, from (2.16) and differentiation rules one also obtains

phi-highphi-high (2.17) |ϕ(j)| ≲ t
j−3
2 , j ≥ 3.

To compare the two operators L and L̃ we need the following Gärding type inequality

l:tL Lemma 2.3. We have

∥L̃u∥L2 ≲ ∥Lu∥L2 + ∥u∥L2 .
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The conclusion of the lemma is a direct consequence of the corresponding symbol bound

|ℓ̃(x, ξ)| ≲ |ℓ(x, ξ)|
via a semiclassical form of Gärding’s inequality. Precisely, we will directly invoke

T-FF
[21, Theorem 3], with the

semiclassical parameter µ = t−
1
2 . For convenience, we recall it here:

Theorem 2.
T-FF
[21, Theorem 3] Let µ > 0 and aj , b be real symbols which satisfyt:garding

a2a2 (2.18) |∂αx ∂
β
ξ a(x, ξ)| ≤ cαβµ

|α|−|β|
2 , |α|+ |β| ≥ 2

so that |b| ≤
∑︁

|aj |. Then

gardinggarding (2.19) ∥Bw(x,D)u∥L2 ≲
∑︂

∥Awj (x,D)u∥L2 + ∥u∥L2 .

The fact that this is stated in the Weyl calculus makes no difference in our context. We also refer the
reader to

Delort-KG
[3], where a similar bound is derived using semiclassical calculus.

Now we return to the proof of Proposition 2.1, where as discussed above we may substitute L by L̃. Then
all we need is a simple integration, based on the relation

d

dx
|u|2 =

2

t
ℑ(ūL̃u).

This yields

∥u∥2L∞ ≲
1

t
∥u∥L2∥L̃u∥L2 ,

thus completing the proof.
□

We conclude this section with one last observation, which is that, if u is assumed to be frequency localized
in some compact interval I, then both the L2 and the pointwise bounds for u are better outside a neighbour-
hood of the the velocity range J = a′(I). The following result clarifies the proper localization scales. The
analysis is identical to the left and to the right of J . Hence, in order to set the notations, we fix a frequency
ξ0, the corresponding group velocity v0 = a′(ξ0) and the associated position at time t, x0 = tv0. We also
assume without any loss of generality that a is convex.

p:vf-ell Proposition 2.4. In the context of Proposition 2.1, assume in addition that u is frequency localized in
I = {ξ < ξ0}. Then we have better bounds for u outside J = {x < x0}, as follows:

a) L2 bounds:

vf-ell-L2vf-ell-L2 (2.20) ∥(x− x0)+u∥L2 ≲ ∥Lu∥L2 +M∥u∥L2 ,

b) L∞ bounds

vf-ell-Linfvf-ell-Linf (2.21) |u(x)|2 ≲
1

|x− x0|Rt
(∥Lu∥L2 +M∥u∥L2)2, x > x0.

We remark that the bounds in the proposition are only interesting in the region {x−x0 > (Rt)
1
2 }. Closer

to x0, and in effect in the full region {|x− x0| ≲ (Rt)
1
2 } they can be replaced by

vf-ell-nearvf-ell-near (2.22) |u(x)|2 ≲
1

(Rt)
3
2

(∥Lu∥L2 +M∥u∥L2)2, |x− x0| ≲ (Rt)
1
2 .

Proof. We first note that R and M in the hypothesis of the proposition are scaling parameters, and we can
simply set them equal to 1.

Let χ = χ(x) be a spatial cutoff function supported outside J , smooth on the r scale and equal to 1 in

[x0 + r,∞), where r > 0 is a parameter which will be chosen later as r = t
1
2 . We will establish the stronger

L2 bound

locloc (2.23) ∥(x− x0)χu∥L2 + t∥χ(D − ξ0)u∥L2 ≲ ∥Lu∥L2 + ∥u∥L2

for u frequency localized in ξ < ξ0. To start with, we verify that this implies the bounds in the proposition.
This is immediate for x > x0 + r, so we need to cover the remaining range. It suffices to show that

|u(x)| ≲ t−
3
4 (∥Lu∥L2 + ∥u∥L2), |x− x0| ≲ r,
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which is in effect exactly the bound (2.22).
We already know this if x−x0 ≈ r. To capture the remaining range we recall that we can use the operators

L and L̃ interchangeably in these bounds. Our starting point is the straightforward relation⃓⃓⃓⃓
d

dx
|u|

⃓⃓⃓⃓
≲

⃓⃓⃓⃓
d

dx
e−itϕ(x/t)u

⃓⃓⃓⃓
=

1

t
|L̃u|.

Then for x1 in the full range |x1 − x0| ≲ r we write by the fundamental theorem of calculus

||u(x1)| − |u(x)|| ≲ t−1

ˆ x

x1

|L̃u|dy ≲ t−1|x1 − x| 12 ∥L̃u∥L2 ≲ t−
3
4 ,

which suffices. It remains to prove (2.23).

First, using the form of the operator L̃, we write

−iL̃ = t(D − ξ0)− t(ϕ′(x/t)− ϕ′(x0/t))

and estimate

t∥χ(D − ξ0)u∥L2 ≲ ∥(x− x0)χu∥L2 + ∥L̃u∥L2

and thus reduce the bound (2.23) to

loc-aloc-a (2.24) ∥(x− x0)χu∥L2 ≲ ∥u∥L2 + ∥L̃u∥L2 .

The next step is to discard the frequency localization, by adding a term on the right

loc-bloc-b (2.25) ∥(x− x0)χu∥L2 ≲ ∥u∥L2 + ∥t(D − ξ0)η(D − ξ0)u∥L2 + ∥L̃u∥L2 ,

where η selects the region ξ − ξ0 > ρ, with the parameter ρ > 0 to be chosen later of size ρ ≈ t−
1
2 .

Here we use again the Gärding type inequality (2.19) with µ = t−
1
2 . At the symbol level, we need to

verify that

loc-cloc-c (2.26) (x− x0)χ ≲ t(ξ − ξ0)η(ξ − ξ0) + |x− ta′(ξ)|.

If ξ > ξ0 + ρ then η = 1 and the inequality is directly verified without χ. Else, for x > x0 + r and ξ < ξ0 + ρ
we have

x− ta′(ξ) > x− x0 − Ctρ > r − Ctρ, C = sup
ξ

a′′(ξ),

which suffices provided that r ≥ 2Ctρ.
It remains to ensure that we have the correct symbol regularity, as required by Theorem 2 with µ = t−

1
2 .

This is indeed the case provided that

r−1 ≲ t−
1
2 , ρ−1 ≲ t

1
2 .

To satisfy all of the above requirements it suffices to choose r and ρ so that

r ≈ t
1
2 , ρ ≈ t−

1
2 , r ≥ 2Ctρ.

Then the L2 bound (2.25) follows from the symbol bound (2.26), and the proof of the proposition is complete.
□

3. The asymptotic equation for the nonlinear problem
s:asymptotic

We begin the discussion by recalling the asymptotic behavior of solutions for the linear flow (2.1), namely

wishwish (3.1) u(t, x) ≈ 1√
t
γ(v)eitϕ(v),

and ask whether such a pattern is also possible for the nonlinear flow (1.1). This would require the cubic
term in the equation to play a perturbative role near infinity.

However, a heuristic computation shows that this cannot happen. To see that, suppose, more generally,
that for the solution u we have an asymptotic representation of the form

u(t, x) ≈ 1√
t
γ(t, v)eitϕ(v),
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where γ is a smooth function of v, uniformly in t. Then, at (t, x), this solution has spatial frequency close to

ξv = ϕ′(v).

Expanding the symbol for A in a Taylor series around ξ = ξv we obtain

a(ξ) = a(ξv) + a′(ξv)(ξ − ξv) +
1

2
a′′(ξv)(ξ − ξv)

2 +O(ξ − ξv)
3,

which at the operator level yields

A(D) = a(ξv) + a′(ξv)(i∂x − ξv) +
i

2
a′′(ξv)ϕ

′′(v) +O(t−2) +O(t−1)(i∂x − ξv) +O(1)(i∂x − ξv)
2.

This further simplifies since ϕ′ and a′ are inverse functions, so a′′(ξv)ϕ
′′(v) = 1. Hence we obtain the

semiclassical formula

A(D)u ≈ t−
1
2 eitψ(v)

(︃
a(ξv)γ(t, v) + it−1a′(ξv)γ

′(t, v) +
i

2
t−1 +O(t−2)

)︃
.

A similar but simpler computation shows that

Q(u, ū, u) = t−
1
2 eitψ(v)

(︁
t−1q(ξv, ξv, ξv)γ(t, v)|γ(t, v)|2 +O(t−2)

)︁
.

Finally, by chain rule,

i∂tu = t−
1
2 eitψ(v)

(︃
−γ(t, v)(ϕ(v)− vϕ′(v))− it−1vγ′(v)− i

2
t−1 + iγt

)︃
.

Substituting the last three relations into the equation, we cancel the leading terms using the eikonal equation
(2.5) (which justifies the phase in our ansatz in the first place), and the γ′ terms using (2.2). This leaves us
with the relation

iγt = t−1q(ξv, ξv, ξv)γ|γ|2 +O(t−2).

Since t−1 is not integrable at infinity, we see that it is not possible for the function γ to have a nontrivial
limit at infinity, which justifies our earlier claim that an asymptotic behavior as in (3.1) cannot hold for the
nonlinear evolution.

However, all is not lost. We can ensure that the last relation is satisfied if we allow a very mild dependence
of γ on t, precisely if we set γ to satisfy the asymptotic equation

asymptotic-tasymptotic-t (3.2) iγt = t−1q(ξv, ξv, ξv)γ|γ|2.
This is an ode which only has global solutions provided that

ℑq(ξ, ξ, ξ) ≤ 0, ξ ∈ R.
The case when ℑq(ξ, ξ, ξ) < 0 corresponds to a damping nonlinearity, and solutions for the asymptotic
equation which decay to 0. The more interesting case, which we will refer to as the conservative case, is
when q is real on the diagonal. In this case, the solutions to the asymptotic equation (3.2) have constant
amplitude.

In all cases, we remark that the asymptotic equation can be converted into an autonomous evolution with
an exponential substitution, t = es. Then (3.2) becomes

asymptotic-sasymptotic-s (3.3) iγs = q(ξv, ξv, ξv)γ|γ|2.
Hence, the objective of the analysis becomes to show that the solutions to (1.1) with small and localized

data have the asymptotic behavior

u-asymptu-asympt (3.4) u(t, x) ≈ 1√
t
γ(ln t, v)eitψ(v),

where γ solves the asymptotic equation (3.3). This has solutions of the form

(3.5) γ(s, v) = e−isq(ξv,ξv,ξv)|γ0(v)|
2

γ0(v),

depending on a function γ0, which we will call the scattering profile for the solution u. We will refer to such
an asymptotic behavior as modified scattering.

We remark that in this case we cannot expect γ to be uniformly regular in v as s → ∞. However, this is
harmless from the perspective of any asymptotic computation as above, as it only yields extra log t factors.
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To summarize, we conclude that the objective of any asymptotic analysis for the equation (1.1) is two-fold:

a) Make a good choice for the profile γ, so that (3.4) holds.
b) Show that γ approximately solves the asymptotic equation (3.3).

The goal of these notes is to describe the method of testing by wave packets, introduced by the authors
in the context of a model NLS problem in

NLS
[8] and then applied to quasilinear water wave evolutions in

IT-global
[9],

IT-t
[10]. This method is applied here in combination with energy estimates, which also raise some interesting
questions due to the generality of the model considered, i.e. without any direct conservation laws.

3.1. Asymptotic equations in the NLS context. To set the stage for the presentation of our method,
we will begin by first describing several alternative ideas which were proposed over the years in the context
of the cubic NLS problem in one space dimension,

NLSNLS (3.6) iut −
1

2
∂2
xu = ±u|u|2.

There one may take a(ξ) = 1
2ξ

2, in which case ϕ(v) = 1
2v

2 and ξv = v.

A. Asymptotic equation in the Fourier space, introduced by Hayashi-Naumkin
HN
[7], and refined by Kato-

Pusateri
KP
[13]. This is based on the idea that, taking a Fourier transform in an asymptotic formula

like (3.4), one obtains a related asymptotic for û, namely

û(t, ξ) ≈ γ(t, ξ)e−
i
2 tξ

2

.

Defining γ by

γ(t, ξ) = e
i
2 tξ

2

u(t, ξ),

one then seeks an asymptotic equation for the Fourier transform of the solutions,

d

dt
û(t, ξ) = −iξ2û(t, ξ) +±it−1 û(t, ξ)|û(t, ξ)|2 +OL∞(t−1−ϵ),

where the first, respectively the second term on the right correspond to the linear, respectively the
nonlinear part of the equation (1.1).

B. Asymptotic equation in the physical space, introduced by Lindblad-Soffer
LS
[16]; here the goal is to

derive an asymptotic equation in the physical space along rays,

(t∂t + x∂x +
1

2
)u(t, x) = ±itu(t, x)|u(t, x)|2 +OL∞(t−ϵ),

where the left hand side represents the linear contribution, while the right hand side represents the
nonlinear contribution.

C. Nonlinear Fourier methods, developed by Deift-Zhou
MR1207209
[2], who used complete integrability and inverse

scattering to obtain long range asymptotics via the steepest descent method. Unfortunately, these
ideas are only available in the integrable case.

D. The wave packet testing method, introduced by the authors in
NLS,IT-global,IT-t
[8, 9, 10], starts from the observation

that the methods described in A. and B. above lack balance when it comes to estimating the errors
in the asymptotic equation. Working on the Fourier side, there are no linear errors but the nonlinear
errors are large. On the physical side, there are no nonlinear errors, but instead the linear errors
are large. This led to the idea of looking for a balanced way of defining the asymptotic profile γ,
where the linear and nonlinear errors are smaller and comparable. This is achieved by testing the
NLS solution with an approximate wave packet type linear wave uv,

γ(t, v) = ⟨u,uv⟩L2 ,

where uv is both spatially localized in a t
1
2 neighbourhood of the ray x = vt, and frequency localized

in a dual t−
1
2 neighbourhood of the frequency ξv = v. This perfectly balances the linear and the

nonlinear errors, and leads to results which are near optimal with respect to the regularity and decay
of the initial data.

10



4. Global solutions for small localized data: the model case
s:compact

In order to avoid distracting technicalities, in our first result we will make the simplifying assumption

(H5) Frequency localized nonlinearity. The symbol q is compactly supported.

This assumption makes the behavior of a at infinity irrelevant. Using the operator L, we define the following
weighted time dependent function space X:

∥u(t)∥2X := ∥u(t)∥L2 + ∥Lu(t)∥2L2 .

This will be used both for the initial data, and in order to measure the solution as it evolves in time. In
particular, at time t = 0 the X norm measures the localization of the initial data u0,

∥u0∥X ≈ ∥(1 + x2)
1
2u0∥L2 .

With these notations, our main result is as follows:

t:comp Theorem 3. Assume that the conditions (H1-5) above are satisfied, and that the initial data for our equation
(1.1) satisfies:

smallsmall (4.1) ∥u(0)∥X ≲ ϵ ≪ 1.

Then the solution exists globally in time, with energy bounds

energyenergy (4.2) ∥u(t)∥X ≲ ϵtCϵ
2

,

and pointwise decay

disp-decaydisp-decay (4.3) ∥u(t)∥L∞ ≲
ϵ√
t
.

The rest of this section contains the proof of this result, organized as follows. Section 4.1 provides the
set-up for the main bootstrap argument. The energy estimates leading to the bound (4.2) are discussed
in Subsection 4.2; this includes the energy bound in Proposition 4.1 and the vector field bound in Propo-
sition 4.2. Thus we arrive at the main objective of the paper, namely the wave packet analysis, which is
considered in Subsection 4.3.

Finally, in Subsection 4.6 we briefly discuss the inverse problem, which is to reconstruct a solution given
its asymptotic profile.

s:boot
4.1. Overview of the proof: A bootstrap argument. The starting point of the proof is to make a
bootstrap assumption for the pointwise bound,

bootboot (4.4) ∥u(t)∥L∞ ≲ Cϵ⟨t⟩− 1
2 .

Then the proof proceeds in two steps:

1. Energy estimates: Here the objective is to establish the energy bound

o:energyo:energy (4.5) ∥u(t)∥X ≲ ⟨t⟩C
2ϵ2∥u(0)∥X .

This uses Gronwall’s inequality in the equation for u, and then a cubic correction to Lu. We note that, by
the vector field bound in Proposition 2.1, this yields

o:first-pointo:first-point (4.6) ∥u(t)∥L∞ ≲ t−
1
2 ∥u(t)∥X ≲ ϵ⟨t⟩C

2ϵ2 .

This step is carried out in Section 4.2.

2. Pointwise bounds: Here the goal is to improve the bootstrap assumption, and show that

o:pointo:point (4.7) ∥u(t)∥L∞ ≲ ϵ⟨t⟩− 1
2 .

This step is carried out in Section 4.3, and uses the method of testing with wave-packets to produce an
asymptotic profile γ(t, v), which may be compared to the solution u using the bounds (4.5), respectively
(4.6). Then it remains to prove an ϵ bound for γ, which is achieved by showing that γ is a good approximate
solution for the asymptotic equation (3.2).

11



s:energy
4.2. Energy estimates. Our objective here is to prove energy estimates for u and Lu, i.e. the bound (4.5).
In the case of u, we have the following straightforward result:

p:energy Proposition 4.1. Assume that u ∈ L2 solves (1.1). Then

eeee (4.8)
d

dt
∥u∥2L2 ≲ ∥u∥2L∞∥u∥2L2 .

We note that by Gronwall’s inequality, this gives

o:energy-firsto:energy-first (4.9) ∥u(t)∥L2 ≲ ϵ⟨t⟩C
2ϵ2

which is the first half of (4.5).

Proof. Multiplying equation (1.1) with ū, integrating over x, (H1) assumption, and adding the complex
conjugate counterpart we obtain

d

dt
∥u∥2L2 =

ˆ
[utū+ ūtu] dx = −2ℑ

ˆ
Q(u, ū, u)ū dx.

Thus, ⃓⃓⃓⃓
d

dt
∥u∥2L2

⃓⃓⃓⃓
=

⃓⃓⃓⃓ˆ
[utū+ ūtu] dx

⃓⃓⃓⃓
≲ ℑ
ˆ

|Q(u, ū, u)ū| dx ≲ ∥u∥2L∞∥u∥2L2 ,

where for the last inequality we used the (H3) assumption on the nonlinearity Q and pulled out the L∞−norm
of |u|2. Here one could think of the bound for Q as a trilinear product bound, using for instance the idea of
separation of variables discussed in a more general setting in Section 5.1.

□

The more delicate matter is the energy estimate for Lu, which solves the equation

(4.10) (i∂t −A(D))Lu = LQ(u, ū, u).

The difficulty is that the source term on the right does not directly satisfy a perturbative bound, e,g, of the
form

Lu-notLu-not (4.11) ∥LQ(u, ū, u)∥L2 ≲ ∥u∥2L∞(∥Lu∥L2 + ∥u∥L2).

To address this issue, we will add a nonlinear correction to Lu, precisely

LNLu = Lu+ tC(u, ū, u),

where C is a well chosen trilinear form which has a smooth compactly supported symbol. Precisely, we have
the following:

p:Lu Proposition 4.2. There exists a smooth, compactly supported symbol c(·, ·, ·) with the property that the
following estimate holds for solutions u to (1.1):

dt-Ludt-Lu (4.12)
d

dt
∥LNLu∥L2 ≲ ∥u∥2L∞∥LNLu∥L2 + ∥u∥2L∞∥u∥L2 + t∥u∥4L∞∥u∥L2 .

In essence, the correction C will be chosen so that a modified version of (4.11) holds; precisely, that is
the bound (4.17) in the proof below.

Given our bootstrap assumption (4.4) and the L2 estimate (4.9) for u, Gronwall’s inequality allows us to
close the energy estimate for LNLu and obtain

o:energy-secondo:energy-second (4.13) ∥LNLu(t)∥L2 ≲ ϵ⟨t⟩C
2ϵ2 .

Here we can use LNL and L interchangeably since by (4.4) and the L2 estimate (4.9) we have a good bound
for the difference,

C-L2C-L2 (4.14) ∥tC(u, ū, u)∥L2 ≲ t∥u∥2L∞∥u∥L2 ≲ ⟨t⟩C
2ϵ2 .

Hence, the second part of (4.5) also follows.
12



Proof. We write the equation for LNLu in the form

(i∂t −A(D))LNLu = LQ(u, ū, u) + iC(u, ū, u)− tR3(u, ū, u)− tR5(u, ū, u, ū, u) := f,

where R3 and R5 are translation invariant multilinear forms with smooth compactly supported symbols, r3,
and r5 respectively. Furthermore, the symbol of R3 is given by

r3(ξ1, ξ2, ξ3) := c(ξ1, ξ2, ξ3)(a(ξ1)− a(ξ2) + a(ξ3)− a(ξ1 − ξ2 + ξ3)).

To prove (4.12) it suffices to have the following bound for the above source term f :

f-L2f-L2 (4.15) ∥f∥L2 ≲ ∥u∥2L∞∥Lu∥L2 + ∥u∥2L∞∥u∥L2 + t∥u∥4L∞∥u∥L2 .

Here we used (4.14) to replace LNLu by Lu in the right.
The terms iC(u, ū, u) respectively tR5(u, ū, u, ū, u) can be directly estimated by the second, respectively

the third term on the right in (4.15), without using any structural properties of the corresponding symbols.
Hence it remains to consider the expression

LQ(u, ū, u)− tR3(u, ū, u).

Our objective will be to choose the trilinear form C with the property that the bound (4.11) holds for the
above expression. The choice of the symbol c is given by the following algebraic division Lemma:

l:division Lemma 4.3. There exist smooth, compactly supported symbols c, c1, c2 and c3 so that the following algebraic
relation holds:

divisiondivision (4.16) ℓ(x, ξ)q(ξ1, ξ2, ξ3)− tc(ξ1, ξ2, ξ3)(a(ξ1)− a(ξ2) + a(ξ3)− a(ξ)) =

3∑︂
j=1

cj(ξ1, ξ2, ξ3)ℓ(x, ξj)

whenever ξ = ξ1 − ξ2 + ξ3.

We first use Lemma 4.3 to complete the proof of Proposition 4.2. The relation (4.16) translates into the
following operator identity:

LQ(u, ū, u)− tR3(u, ū, u) = C1(Lu, ū, u) + C2(u, Lu, u) + C3(u, ū, Lu) +D(u, ū, u),

where D has symbol
d(ξi, ξ2, ξ3) = i(∂ξ1c1 − ∂ξ2c2 + ∂ξ3c3).

This directly implies the bound

Lu-not+Lu-not+ (4.17) ∥LQ(u, ū, u)− tR3(u, ū, u)∥L2 ≲ ∥u∥2L∞(∥Lu∥L2 + ∥u∥L2),

and the proof of Proposition 4.2 is concluded.
□

It remains to prove Lemma 4.3.

Proof of Lemma 4.3. We start with some simplifications. Without any restriction in generality we can set
q = 1, with the minor proviso that now we discard the compact support property for c and cj . Secondly,
we can separate the x and the t component of the above identity, and conclude that we need to satisfy two
identities:

c1 − c2 + c3 = 1,

and
c1aξ(ξ1)− c2aξ(ξ2) + c3aξ(ξ3) = aξ(ξ) + c(ξ1, ξ2, ξ3)(a(ξ1)− a(ξ2) + a(ξ3)− a(ξ)).

Simplifying further, we set cj = 1 so that the first identity is trivially satisfied. We are left with

c(ξ1, ξ2, ξ3) =
aξ(ξ1)− aξ(ξ2) + aξ(ξ3)− aξ(ξ)

a(ξ1)− a(ξ2) + a(ξ3)− a(ξ)
,

where we need to show that the quotient is smooth.
Since a is strictly convex (or concave), it is easily seen that the denominator can only vanish on the set

D = {ξ1 + ξ3 = ξ2 + ξ}
if and only if

{ξ1, ξ3} = {ξ, ξ2}.
13



We claim that the denominator admits a representation of the form

d4ad4a (4.18) a(ξ1)− a(ξ2) + a(ξ3)− a(ξ) = (ξ − ξ1)(ξ − ξ3)b(ξ1, ξ2, ξ3)

with b smooth and nonzero.
We start with the standard representation

a(ξ1)− a(ξ) = (ξ − ξ1)a1(ξ1, ξ)

with smooth, symmetric a1, and then write on D
a(ξ1)− a(ξ2) + a(ξ3)− a(ξ) = (ξ − ξ1)(a1(ξ1, ξ)− a1(ξ3, ξ2)).

Then we repeat the process for a1 to pull out a factor of

ξ − ξ3 = ξ1 − ξ2.

This yields a representation as in (4.18), with a smooth b. It remains to verify that b is nonzero, for which
we compute b on the zero set. Suppose for instance that ξ = ξ1 and ξ2 = ξ3. Then a1(ξ, ξ1) = a′(ξ1), and

b =
a′(ξ)− a′(ξ3)

ξ − ξ3
,

which is nonzero due to the strict convexity (concavity) of a. We also remark that at the double zero, when
all frequencies are equal, we have

b = a′′(ξ) ̸= 0.

Next we consider the numerator, for which we also have a representation

d4dad4da (4.19) aξ(ξ1)− aξ(ξ2) + aξ(ξ3)− aξ(ξ) = (ξ − ξ1)(ξ − ξ3)b1(ξ1, ξ2, ξ3).

Here b1 is again smooth, but not necessarily nonzero.
Finally, we divide the expressions in (4.18) and (4.19) to obtain

c(ξ1, ξ2, ξ3) =
b1(ξ1, ξ2, ξ3)

b(ξ1, ξ2, ξ3)
,

which is easily seen to be smooth as the denominator is nonzero.
This concludes the proof of the lemma. □

s:wp
4.3. Wave packet testing. Our objective here is to describe the method of testing by wave packets,
and show how it applies to our problem in order to define the asymptotic profile γ and to show that is
approximately solves the asymptotic equation, with the final objective of establishing the uniform bound for
γ, which in turn implies the uniform bound for the solution u.

We will begin with a short description of wave packes on a fixed spatial scale, both for the linear and then
for the nonlinear model. Then we discuss the wave packets on a time dependent scale, which are critical in
our analysis here. Finally, we use these wave packets to construct the asymptotic profile γ, and prove that
it has the desired properties.

4.3.1. Linear wave packets on a fixed scale. The idea here is to look for solutions to the linear equation (2.1)
which are localized near a trajectory for the Hamilton flow,

(x0, ξ0) → (x0 + taξ(ξ0), ξ0).

Most desirably, this localization should occur both in position and in frequency, on the sharp, uncertainty
principle scale. The localization scales are denoted as follows:

(δx, δξ), δx · δξ ≈ 1 (uncertainty principle)

The first step is to choose these scales so that this localization is coherent up to a given time T . Heuristically,
the varying group velocities within the δξ range leads to position variations for the Hamilton flow up to the
time T , which are given by

δx = Taξξ(ξ0)δξ.

Matching this with the uncertainty principle relation, we obtain the localization scales adapted to the time
scale T , namely

δx = T
1
2 aξξ(ξ0)

1
2 , δξ = T− 1

2 a
− 1

2

ξξ .
14



So far we have only looked at the coherence at the level of the Hamilton flow. Next, we ask whether one
can realize this localization at the level of actual solutions. This leads to the so called wave packet solutions,
which are approximately of the form

u(x, t) ≈ γ χ((δx)−1(x− x0 − taξ(ξ0)))e
i(xξ0−ta(ξ0)).

Here one can adopt two equally useful view points. On one hand, keeping the Schwartz function χ indepen-
dent of t, one obtains an approximate solution to (2.1), with errors which are small1 up to time T . On the
other hand, one can start with a given Schwartz function χ at t = 0, and show that the representation above
persists exactly with a time dependent Schwartz function χ which satisfies uniform bounds up to time T .
This can be achieved via Fourier analysis, but also via energy estimates, using the operator L defined above,
as well as its powers. This philosophy applies as well in variable coefficient case, see e.g.

KT
[15].

One can think of general L2 solutions to the linear flow (2.1) as linear, square summable superpositions of
wave packets, which can be taken either relative to a discrete set of centers (x, ξ) (wave packet parametrices)
or with respect to a continuous set of centers, akin to phase space transform methods2

Finally, we remind the reader that, under the name of Knapp counterexamples, wave packets have been
used to show that Strichartz and the dispersive estimates are sharp.

4.3.2. Nonlinear wave packet solutions on a fixed scale. Here we switch to the nonlinear flow (1.1), and
consider wave packet solutions, which are localized on scales similar to the ones above. The new factor here
is the amplitude of the nonlinearity, which we denote by M. Then the linear ansatz for wave packets is
modified to

u(x, t) ≈ γ(t, (δx)−1(x− x0 − taξ(ξ0)))e
i(xξ0−ta(ξ0)),

where the modulation factor γ is taken to have size M.
For functions u with wave packet localization near frequency ξ0, it turns out that the nonlinearity is well

approximated by
Q(u, ū, u) = q(ξ0, ξ0, ξ0)|u|2u+O(δξ|M|3),

where the error can be thought off as perturbative provided that the amplitude is small enough,

δξM2 ≪ 1.

Assuming this is the case, the amplitude function γ should approximatively solve the asymptotic ode

iγ̇ = q(ξ0, ξ0, ξ0)γ|γ|2.
This in turn is conservative if q(ξ0, ξ0, ξ0) is real.

One should relate these heuristics with the idea of NLS approximation, which roughly asserts that solutions
with this type of localization and amplitude are well approximated by solutions to a suitable NLS problem,
obtained by replacing the symbol a with its quadratic approximation at ξ0, and the cubic form Q by
q(ξ0, ξ0, ξ0)|u|2u. For more information on this we refer the reader to

NLS-approx
[11],

MR3409892
[19] and further references therein.

4.3.3. Linear wave packets with time dependent scale. Working with packets with fixed scales is useful for
the study of the local problem, but not so much for the global in time evolution. Because of this, we will now
consider global in time approximate wave packet solutions for the linear problem (2.1). To understand their
structure, we recall that the spatial scales associated to time scale t at velocity v and associated frequency
a′(ξv) = v are given by

δx = t
1
2 [aξξ(ξv)]

1
2 , δξ = t−

1
2 [aξξ(ξv)]

− 1
2 .

We now replicate the previous wave packet ansatz, but do it globally in time, with a time dependent scale.
Thus we define the linear wave packet uv associated with velocity v by

wp-defwp-def (4.20) uv = a′′(ξv)
− 1

2χ(y)eitϕ(x/t), y =
x− vt

t
1
2 a′′(ξv)

1
2

.

where χ is a compactly supported smooth function, which we normalize so thatˆ
χ(y)dy = 1.

1Say in L1
tL

2
x.

2a.k.a. the Bargman or the FBI transform, see e.g.
Pisa
[22].
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δx =
√
t, δξ =

1√
t

x
=
vt

√
t

x

t

Figure 1. The support of a wave packet with velocity v.

This is a good approximate solution for the linear flow on dyadic time scales:

uu-approxuu-approx (4.21) (i∂t −A(D))uv ≈ O(t−1)u.

However, we carefully remark that this is not a good approximate solution globally in time. Indeed, any
global solution should disperse, rather than stay concentrated near a ray. As a corollary of this remark, we
note that the above relation will still remain satisfied if we replace uv, say, by tµuv. The choice we made
above is for convenience only, and not at all intrinsic. If one wanted for instance to have solutions which
stay bounded in L2, then choosing µ = − 1

4 would be the appropriate choice.
However, there is one advantage for our normalization, which is seen when one attempts to gain a better

understanding of the error term in the linear equation for uv. Precisely we have the following:

l:Puu Lemma 4.4. The wave packet uv defined above solves a linear equation of the form

wp-eqnwp-eqn (4.22) (i∂t −A(D))uv = t−
3
2LuIv + t−

3
2 rv,

where uIv and rv have a wave packet form similar to uv.

Compared to (4.21), the lemma provides a more accurate description of the t−1 term. The function uIv
here is quite explicit,

uIv = − i

2a′′
(χ′(y)− iyχ(y))eitϕ(x/t).

This is not important later on, what matters is that the operator L is applied to it. The function rv is less
explicit but this is also not important as rv only plays a perturbative role later on.

Proof. While not absolutely necessary, here it is helpful to simplify the problem using some simple linear
transformations:

• Using a Galilean transformation x− vt → x, the problem reduces to the case v = 0. Note that this
changes a by a linear term.

• Using a spatial phase shift, uv to uve
−ixξv , we can also ensure that ξv = 0. This translates a by ξv.

• Using a temporal phase shift, the problem reduces also to the case a(0) = 0.
• If a′′(0) < 0, we can shift to a′′(0) > 0 by replacing u with ū (and thus a(ξ) by a(−ξ)).

After these simplifications, we are now in the case when

v = 0, ξv = 0, a(0) = 0, a′(0) = 0.

This in turn implies that

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) =
1

a′′(0)
.
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Now we finally compute the equation for u0. For this, we use the Taylor expansion of a at 0,

a(ξ) =
1

2
a′′(0)ξ2 +O(ξ3).

The contribution of the ξ3 sized error has size t−
3
2 , and may be included into r0. Similarly, we have

ℓ(x, ξ) = x− ta′(ξ) = x− tξa′′(0) +O(tξ2),

where the contribution of the tξ2 tail also can be included into r0.
Since the v in the lemma was set to 0, in what follows we use the notation v = x/t. Hence we have

(i∂t −A(D))u0 = (i∂t +
1

2
a′′(0)∂2

x)u0 + t−
3
2 r0

= − i

2
t−

3
2x(a′′(0))−1χ′(y)eitϕ(v) − (a′′(0)−

1
2 (ϕ(v)− vϕ′(v))χ(y)eitϕ(v)

+
1

2
(a′′(0))−

1
2

(︃
χ′′(y)

t
+ 2i(a′′)

1
2
χ′(y)ϕ′(v)

t
1
2

− a′′(0)χ(y)ϕ′2(v) + ia′′(0)
χ(y)ϕ′′(v)

t

)︃
eitϕ + t−

3
2 r0.

Noting the leading order cancellation

ϕ(v)− vϕ′(v) = −1

2
a′′(0)ϕ′2(v) +O(v3),

where the last term only contributes to the error, we obtain

(i∂t −A(D))u0 = − i

2
t−

3
2 (x+ ita′′(0)∂x)[a

′′(0)−1χ′(y)eitϕ(v)] +
i

2
a′′(0)

1
2 ∂x(χ(y)ϕ

′(v))eitϕ(v) + t−
3
2 r0

= − i

2
t−

3
2 (x+ ita′′(0)∂x)[a

′′(0)−1χ′(y)eitϕ(v)] +
i

2
a′′(0)

1
2 (∂x − iϕ′(v))[χ(y)ϕ′(v)eitϕ(v)] + t−

3
2 r0.

Since ϕ′(v) = (a′′(0))−1v +O(v2), we can rewrite the second term on the right to get

(i∂t −A(D))u0 = − i

2
a′′(0)−1t−

3
2 (x+ ita′′(0)∂x)

[︂
χ′(y)eitϕ(v) + iyχ(y)eitϕ(v)

]︂
+ t−

3
2 r0

= − i

2
a′′(0)−1t−

3
2L

[︂
(χ′(y) + iyχ(y))eitϕ(v)

]︂
+ t−

3
2 r0

as needed.
□

We also need to consider the v dependence of uv.

l:dv-uv Lemma 4.5. The wave packet uv defined above solves a linear equation of the form

dv-wpdv-wp (4.23) ∂vuv = LuIIv + rv,

where uIIv and rv have a wave packet form similar to uv.

Here we have

uIIv = −i[a′′(ξv)]
− 3

2χ(y)eitϕ(x/t).

Proof. Differentiating with respect to v yields

∂vuv = −t∂x[χ(y)]e
itϕ(x/t) + rv,

and the first term on the right is similar to the second term on the right in the computation in the previous
lemma. □

4.3.4. Wave packet testing. As described earlier, we will define our asymptotic profile function γ by

def-gammadef-gamma (4.24) γ(t, v) = ⟨u,uv⟩L2 .

Now our objective is two-fold:

• To show that γ provides a good approximation for u, in the sense of (3.4).
• To show that γ is an approximate solution for the asymptotic equation (3.2).
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s:bd-gamma
4.4. Bounds for γ. Here we establish some base-line bounds for γ, using the energy estimates in Proposi-
tion 4.1:

p:gamma Proposition 4.6. Assume that u satisfies the energy bounds in Proposition 4.1. Then γ satisfies

(4.25) ∥γ∥L2
v
+ ∥∂vγ∥L2

v
≲ ϵtC

2ϵ.

Proof. If we bound uv by

|uv(t, x1)| ≲
1

1 + t|v − v1|2
, x1 = tv1,

then the L2 bound for γ can be interpreted as a convolution estimate, as

|γ(v)| ≲ t|u(vt)| ∗v
1

1 + tv2
,

where the convolution kernel is integrable. By Young’s inequality this yields

∥γ∥L2
v
≲

√
t∥u(vt)∥L2

v
≲ ∥u∥L2

x

as needed.
For the L2 bound for ∂vγ we first apply Lemma 4.5. Then we obtain the convolution bound

|∂vγ(v)| ≲ t(|Lu|+ |u|)(vt) ∗v
1

1 + tv2
,

and then conclude as above. □

4.4.1. Approximate profile. Our goal here is to estimate the difference

r(t, x) = u(t, x)− 1√
t
γ(t, v)eitϕ(v), v =

x

t

as follows:

p:u-gamma Proposition 4.7. Assume that u satisfies the energy bounds in Proposition 4.1. Then the above error r
satisfies the uniform bound

(4.26) ∥r∥L∞ ≲ ϵt−
3
4+C

2ϵ,

and the L2 bound

(4.27) ∥r∥L2 ≲ ϵt−
1
2+C

2ϵ.

Proof. We represent √
te−itϕ(v)r(t, tv) = ⟨u,wv⟩,

where on the right we use the L2
x pairing, with

wv =
√
teitϕδx=vt − uv.

Using the normalization
´
χ = 1 we rewrite wv as

wv = t
1
2 ∂x(χ1(y) sgn(y))e

itϕ = t
1
2 (∂x − iϕ′(x/t))[χ1(y) sgn(y)e

itϕ],

where χ1 is

χ1(y) =

⎧⎨⎩
−
´ y
−∞ χ(z)dz y < 0

−
´∞
y

χ(z)dz y > 0,

which leads to √
te−itϕ(v)r(t, tv) = t−

1
2 ⟨L̃u,uIIIv ⟩, uIIIv = χ1(y) sgn(y)e

itϕ.

Now uIIIv has the same size and localization as u, so we can argue as in the proof of Proposition 4.6 that

|r(t, vt)| ≲ |L̃u(t, vt)| ∗v
1

1 + tv2
.

Then by Young’s inequality we conclude that

∥r(t, x)∥L2
x
= t

1
2 ∥r(t, vt)∥L2

v
≲ ∥L̃u(t, vt)∥L2

v
= t−

1
2 ∥L̃u(t, x)∥L2

x

18



respectively

∥r∥L∞ ≲ t−
1
4 ∥L̃u(t, vt)∥L2

v
= t−

3
4 ∥L̃u∥L2

x
.

Now we can conclude using Lemma 2.3. □

4.4.2. The asymptotic equation for γ. Here we prove the following:

p:gamma-er Proposition 4.8. Assume that u satisfies the energy bounds

∥u∥X ≲ ϵ⟨t⟩C
2ϵ2 .

Then γ solves the asymptotic equation

gamma-asymptgamma-asympt (4.28) γ̇(t, v) = iq(ξv, ξv, ξv)t
−1γ(t, v)|γ(t, v)|2 + f(t, v),

where f satisfies the uniform bound

e:f-infte:f-inft (4.29) ∥f∥L∞ ≲ ϵt−
5
4+3C2ϵ,

and the L2 bound

e:f-l2e:f-l2 (4.30) ∥f∥L2
v
≲ ϵt−

3
2+3C2ϵ.

Proof. We compute

γ̇(t, v) = −i⟨(i∂t −A(D))u,uv⟩+ i⟨u, (i∂t −A(D))uv⟩ := I1(t, v) + I2(t, v).

For I2 we use Lemma 4.4 to write

I2(t, v) = it−
3
2 (⟨Lu,uIv⟩+ ⟨u, rv⟩).

This allow us to bound its size both in L∞, using Hölder’s inequality, and in L2 via convolution bounds.
The expression I1, on the other hand, has the form

I1(t, v) = i⟨Q(u, ū, u),uv⟩.

Here we first use the bounds for r in Proposition 4.7 in order to substitute u with t−
1
2 γ(t, x/t)eitϕ(x/t) modulo

acceptable errors,

I1(t, v) = it−
3
2 γ(t, v)|γ(t, v)|2⟨Q(γ(t, x/t)eitϕ, γ̄(t, x/t)e−itϕ, γ(t, x/t)eitϕ),uv⟩+ f,

where the error f is as in (4.29), (4.30).
Then we take advantage of the fact that the kernel of Q is localized on the unit scale in order to re-

place γ(t, x/t) with γ(t, v), again with acceptable errors, which are estimated using the bounds for ∂vγ in
Proposition 4.6. Thus we get

I1(t, v) = it−
3
2 γ(t, v)|γ(t, v)|2⟨Q(eitϕ, e−itϕ, eitϕ),uv⟩+ f.

Finally, a semiclassical computation shows that

Q(eitϕ, e−itϕ, eitϕ) = q(ξv, ξv, ξv)e
itϕ +O(t−1),

so the desired asymptotic equation follows.
□

4.5. Conclusion. Here we show how to close the bootstrap argument, and prove that the global result
follows as a consequence of the results in Propositions 4.7 and 4.28.

The bootstrap argument closes as follows:

• Proposition 4.2 gives the energy bounds on our corrected vector field LNL, where we made use of
the energy estimates on u obtained in (4.9) and of the bootstrap assumption expressed in (4.4) to
get

∥LNLu(t)∥L2 ≲ ϵ⟨t⟩C
2ϵ2 .
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• We use the pointwise decay bound obtained in Proposition 4.7 for the difference between the as-
ymptotic profile γ(t, v) and solution u to conclude that the error term f in the asymptotic equation
(4.28) for γ is acceptable, i.e. has better than t−1 decay, as stated in Proposition 4.8. Integrating
(4.28) leads to a pointwise bound for γ:

|γ(t, v)| ≤ |γ(1, v)|+
ˆ t

1

|f(s, v)| ds.

Here, we use the energy bound (4.9) at time t = 1 and the pointwise bound on γ to conclude that

∥γ(1, v)∥L∞ ≲ ϵ,

as well as the pointwise bound on f given in Proposition 4.8, and get

|γ(t, v)| ≤ |γ(1, v)|+
ˆ t

1

|f(s, v)| ds ≲ ϵ.

• Lastly, from the above estimate and Proposition 4.7, it follows that the pointwise bound on u is

|u| ≲ ϵt−
1
2 ,

which, under the constraint 1 ≪ C, concludes the bootstrap argument.
s:complete

4.6. Modified scattering and asymptotic completeness. An immediate consequence of the approxi-
mate asymptotic equation (4.28) for γ is that, as t → ∞, the function γ converges to a solution γ̃ to the
exact asymptotic equation,

̇̃γ = iq(ξv, ξv, ξv)t
−1γ̃(t, v)|γ̃(t, v)|2,

which can be represented in the form

γ̃(t, v) = W (v)eiq(ξv,ξv,ξv) ln t|W (v)|2 .

We will refer to the function W as the asymptotic profile of the solution u, which is now asymptotically
described as

u(t, x) ≈ 1√
t
W (v)eiq(ξv,ξv,ξv) ln t|W (v)|2eitϕ(x/t).

Then it is natural to consider the relation between the initial data u0 and the asymptotic profile W , via
bounds for the difference

scat-errorscat-error (4.31) e(t, x) = u(t, x)− 1√
t
W (v)eiq(ξv,ξv,ξv) ln t|W (v)|2eitϕ(x/t).

In order to avoid any discussion of the asymptotic behavior of a at infinity, here we choose some compact
frequency interval I so that the the symbol q of the nonlinearity is supported in I3, and assume that the
initial data u0 is frequency localized in I. Then the associated range of velocities is J = a′(I).

t:scat-model Theorem 4. a) For each initial data u0 satisfying the smallness condition (4.1) and which is frequency
localized in I, there exists an asymptotic profile W ∈ H1−Cϵ, supported in J = a′(I) and with the property
that

(4.32) ∥W∥H1−Cϵ
v

≲ ϵ,

for which the above difference satisfies the L2 bounds

(4.33) ∥e∥L2
x
≲ ϵt−

1
2+Cϵ,

as well as the L∞ bounds

(4.34) ∥e∥L∞
x

≲ ϵt−
3
4+Cϵ.

Furthermore, the map u0 → W is injective.
b) For each W supported in J and satisfying

(4.35) ∥W∥H1+Cϵ
v

≲ ϵ,

there exists an associated initial data u0 satisfying the smallness condition (4.1) and frequency localized in I
so that W is the asymptotic profile of u0.
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Often one refers to the first property as the scattering property (modified scattering) and the second as
the existence of wave operators (modified wave operators in our context). Together, they are called the
asymptotic completeness property.

We also remark on the slight imperfection in the above result, connected with the±Cϵ terms in the Sobolev
indices. These are largely unavoidable due to the log t terms in the phase, though one might possibly replace
small powers with logs.

Proof. The argument here repeats the one in
NLS
[8], and is omitted. □

5. Global solutions for small localized data: the general case
s:general

Here we consider several possible extensions of our main result, where we drop the compact support
assumption on the symbol of the nonlinearity Q. Then we can no longer work with frequency localized data,
so instead we will have to assume a suitable Sobolev type regularity at infinity. Precisely, we will define the
space X by

def:Xdef:X (5.1) ∥u∥2X = ∥Λ0(D)u∥L2 + ∥Λ1(D)Lu∥L2

with suitable multiplier weights Λ0 and Λ1. The question we ask is

Question 2. Given the symbols a, q and the above space X, under what assumptions does a small initial
data in X guarantee global solutions and modified scattering for the equation (1.1) ?

Here there are three high frequency properties that play a role, namely the behaviors of a, of q and of
Λ0, Λ1, all of which will be assumed to be of symbol type. These need to be considered both at frequencies
close to +∞ and at −∞, and the two regions are largely independent. For convenience only we will not
differentiate between the two. We begin our discussion with several remarks, which will play a role both in
terms of the model we consider (i.e. the choice of a and q) and the regularity level for the result (i.e. the
choice of Λ0 and Λ1):

(i) The behavior of a and a′′: The convexity (concavity) of a is associated to dispersion, and plays a
critical role. To simplify the notations we will assume a is convex, a′′ > 0, and also we will assume
some polynomial behavior for a′′ at infinity,

choose-achoose-a (5.2) a′′(ξ) ≈ ⟨ξ⟩σ, |ξ| → ∞, σ ∈ R,

with symbol type bounds for higher derivatives,

choose-a-regchoose-a-reg (5.3) |∂ja′′(ξ)| ≲ ⟨ξ⟩σ−j , j ≥ 2.

Here we distinguish two different scenarios:
• The generalized Klein-Gordon case, σ < −1, where a has linear behavior at infinity and the
linear problem has finite speed of propagation in the high frequency limit. Here we could
further distinguish the range σ ∈ [−2,−1) where a does not have a linear asymptote. The exact
Klein-Gordon problem corresponds to σ = −3.

• The generalized NLS case σ ≥ −1, where a is superlinear at infinity and we have infinite speed of
propagation. The NLS equation in particular corresponds to σ = 0, while mKdV type behavior
is associated to σ = 1.

(ii) The NLS smallness condition: In the regime of balanced frequency interactions, our problem is well
approximated by a cubic NLS problem. There solitons can occur in the focusing case, but not small
solitons. To avoid such a scenario, a smallness condition is required. A straightforward scaling
computation yields the relation

no-solitonno-soliton (5.4) Λ0(ξ)Λ1(ξ) ≳
q(ξ, ξ, ξ)

a′′(ξ)
,

as necessary in order for scattering to hold.
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(iii) The relative size of Λ0, Λ1: It is natural to expect the function space X in our result to be sta-
ble with respect to dyadic frequency localizations. Commuting x with localizations leads to the
requirement

localizationlocalization (5.5) Λ1(ξ) ≲ ⟨ξ⟩Λ0(ξ).

The two norms in (5.1) will be close in scaling in the high frequency limit when we are close to
equality in this relation.

(iv) The normalization of q: Here we observe that our problem admits the invariance

Λ0 → bΛ0, Λ1 → bΛ1, q(ξ1, ξ2, ξ3) → b−1(ξ1 − ξ2 + ξ3)b(ξ1)b(ξ2)b(ξ3)q(ξ1, ξ2, ξ3)

obtained via the substitution u = B(D)v. Because of this, we can normalize q at least in the region
of balanced frequency interactions,

q-symbolq-symbol (5.6) |q(ξ1, ξ2, ξ3)| ≲ 1 when |ξ1| ≈ |ξ2| ≈ |ξ3| ≈ |ξ1 − ξ2 + ξ3|.
(v) Semilinear vs. quasilinear: While the size of q in the balanced region contributes to resonant inter-

actions, a large size in the imbalanced region may provide a quasilinear term, for which just looking
at the size is not enough to even guarantee local well-posedness. In this article we will simply avoid
this issue, and simply assume that q is bounded everywhere, with symbol type regularity separately
in each component.

Based on the discussion above, for the results in this section we will consider the following set-up for the
symbols a and q:

(a) The symbol a is smooth, convex, with a′′ as in (5.2), and symbol type regularity.

(b) The symbol q is smooth, real on the diagonal, and has the form

(5.7) q(ξ1, ξ2, ξ3) = q(ξ1, ξ2, ξ3, ξ1 + ξ3 − ξ2),

(i.e. the trace of q on the diagonal ξ1 − ξ2 + ξ3 − ξ4 = 0), where q is bounded and with separate
symbol type regularity in all variables,

(5.8) |∂α1

ξ1
∂α2

ξ2
∂α3

ξ3
∂α4

ξ4
q(ξ1, ξ2, ξ3, ξ4)| ≲

4∏︂
j=1

⟨ξj⟩−αj .

Here ξ1 − ξ2 + ξ3 appears naturally as the output frequency in the trilinear interaction.

Now we turn our attention to the regularity required by our result, which is determined by the symbols
Λ0 and Λ1. This will be chosen to be

choose-Lambdachoose-Lambda (5.9) Λ0 = ⟨ξ⟩s0 , Λ1 = ⟨ξ⟩s1 ,
so that

∥u∥2X = ∥u∥2Hs0 + ∥Lu∥2Hs1 .

It remains to discuss the choice of s0 and s1, which we would like to have as low as possible. So far, the
heuristics above indicate that the following two conditions, arising from (5.4) and (5.5), are required:

choose-s0choose-s0 (5.10) s0 + s1 ≥ −σ, s1 ≤ s0 + 1.

Within this range, we note the best case scenario

choose-s-idealchoose-s-ideal (5.11) s0 = −σ + 1

2
, s1 = −σ − 1

2
.

Indeed, this would correspond to a scale invariant result in the pure power case in the high frequency limit3.
We retain these values as an ideal but unreachable goal, and seek to at least get close to these values. In
particular, it is helpful to allow for at least a small positive margin in the first inequality in (5.10), in order
to be able to allow for the small power type growth in (4.2). Even with this proviso, we will only be able to
get close to the ideal setting in (5.11) only for σ = −3 (i.e. exact Klein-Gordon) and for the restricted range
−1 ≤ σ ≤ 1 (i.e. weak NLS).

3Here, if σ < −1, then we can normalize in a Galilean fashion to set a′(∞) = 0 before scaling.
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The conditions in (5.10) above are required by the behavior of balanced interactions. However, managing
imbalanced frequency interactions imposes further restrictions, which will be reflected in the choices below.
To summarize, we will distinguish several cases, where δ stands for a small positive constant:

(I) Weak Klein-Gordon, σ < −3. Then we set

s0 = −σ − 2 s1 = −σ − 1.

(II) Intermediate Klein-Gordon, −3 ≤ σ < −2. Then we set

s0 = 1 + δ, s1 = −σ − 1

(III) Strong Klein-Gordon −2 ≤ σ < −1. Then we set

s0 = −σ − 1 + δ, s1 = 1.

(IV) Weak NLS, −1 ≤ σ ≤ 1. Then we set

s0 = −σ + 1

2
+ δ, s1 = −σ − 1

2
.

(V) Strong NLS (or KdV+), 1 < σ. Then we set

s0 = −1, s1 = 0.

s1

s0

σ

s

Figure 2. The Sobolev exponents s0 and s1 as a function of σ. Dotted lines indicate the
best case scenario in (5.11).

Under these assumptions, we have

t:no-comp Theorem 5. Assume that the symbols a, q,Λ0,Λ1 are as above, and that the initial data for our equation
(1.1) satisfies:

small+small+ (5.12) ∥u(0)∥X ≲ ϵ ≪ 1.

Then the solution exists globally in time, with energy bounds

energy+energy+ (5.13) ∥u(t)∥X ≲ ϵtCϵ
2

,

and pointwise decay

disp-decay+disp-decay+ (5.14) ∥⟨D⟩ δ
4u(t)∥L∞ ≲

ϵ√
t
.

Here δ is a small positive parameter, which depends on the choice of s0 and s1 above, and which can be
taken to be exactly the one in the choice of s0 in cases (II)-(III)-(IV) above.
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Remark 5.1. Our choice of exponents (s0, s1) in the cases (I)-(V) above was guided by the goal of coming
as close as possible to the end-points of the two necessary conditions in (5.10), giving priority to the first
one. To minimize technicalities we have fixed the choice of some exponents rather than giving a range. We
note however that increasing s0 while keeping s1 fixed is straightforward. This is also connected with the
fact that we have simply assumed that the symbol for the cubic nonlinearity is bounded, rather than imposing
various polynomial bounds. Many of the restrictions arising in the proofs are of technical nature rather than
fundamental, and arise only in the study of unbalanced interactions, which is secondary to our main purpose.
We leave it to the reader to explore other variants of these results, as needed.

One may also supplement Theorem 5 with a matching result on modified scattering and asymptotic
completeness, which exactly mirrors the result provided in Theorem 4 in the model case.

In order to best capture the behavior of the asymptotic profile W at high frequencies, it is best to
parametrize W by ξv rather than by v. To account for this change, we define the asymptotic solution
uasympt associated to a profile W as

uasympt(t, x) =

{︄
1√
t
W (ξv)e

iq(ξv,ξv,ξv) ln t|W (ξv)|2eitϕ(v) for v ∈ a′(R)
0 for v ̸∈ a′(R),

x = vt,

where the second alternative occurs only in the generalized Klein-Gordon case (I)-(II)-(III).
Then we consider the relation between the initial data u0 and the asymptotic profile W , via bounds for

the difference

scat-error+scat-error+ (5.15) e(t, x) = u(t, x)− uasympt(t, x).

Theorem 6. a) For each initial data u0 satisfying the smallness condition (5.12), there exists an asymptotic

profile W ∈ H1−Cϵ
loc (R) with the property that

which-Wwhich-W (5.16) ∥⟨ξ⟩s0+σ
2 −Cϵ2W∥L2

ξ
+ ∥⟨ξ⟩s1+σ

2 −Cϵ2W∥H1−Cϵ
ξ

≲ ϵ

for which the above difference satisfies the L2 bounds

(5.17) ∥e∥L2
x
≲ ϵt−δ1 , δ1 > 0

as well as the L∞ bounds

(5.18) ∥e∥L∞ ≲ ϵt−
1
2−δ2 , δ2 > 0.

Furthermore, the map u0 → W is injective.
b) For each W satisfying

which-W-inwhich-W-in (5.19) ∥⟨ξ⟩s0+σ
2 +Cϵ2W∥L2 + ∥⟨ξ⟩s1+σ

2 −CϵW∥H1+Cϵ ≲ ϵ

there exists an associated initial data u0 satisfying the smallness condition (4.1) so that W is the asymptotic
profile of u0.

Just as in the case of Theorem 4, this result is also provided without proof. The proof follows again
the same outline as in

NLS
[8]. The exponents in (5.16), respectively (5.19) closely bracket the corresponding

exponents in Lemma 5.9.
To avoid technicalities due to the many cases that would need to be considered, we do not attempt to

specify exactly the positive constants δ1 and δ2 (which are independent of ϵ).
We remark that the choice of the exponents s0 and s1, and more precisely the second bounds in (5.10)

guarantee that (5.16) satisfies the pointwise bound

|W (ξ)| ≲ ϵ⟨ξ⟩−
s0+s1

2 +σ−Cϵ2 .

From here, the first bound in (5.10), if strict, guarantees that

lim
ξ→±∞

W (ξ) = 0.

This is particularly interesting in the generalized Klein-Gordon case σ < 1, where it implies that the asymp-
totic solution decays to zero at the edge of its support.
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The proof of Theorem 5 follows the same outline as the proof of Theorem 3, using a bootstrap argument.
The bootstrap assumption will be

disp-decay+bootdisp-decay+boot (5.20) ∥⟨D⟩ δ
8u(t)∥L∞ ≲

Cϵ√
t
.

Using the bootstrap assumption, we first prove the energy bound (5.13) with C replaced by C2. By vector
field bounds, the energy estimates will imply a pointwise estimate of the form

disp-decay+firstdisp-decay+first (5.21) ∥⟨D⟩ δ
2u(t)∥L∞ ≲

ϵ√
t
tC

2ϵ2 ,

which would give the bound (5.14) with an additional tC
2ϵ2 loss, but also with a high frequency gain. To

rectify that, we use our wave packet method to define a suitable asymptotic profile γ, which is then shown
to be an approximate solution for the asymptotic equation. This will allow us to obtain pointwise bounds
for the asymptotic profile without the loss, which are the transferred back to u. In the rest of the section,
we successively discuss each of the steps of the proof, following the template of the model problem.

s:dyadic
5.1. Dyadic decompositions. Here we motivate and describe the dyadic decompositions that will be used
in the sequel. In particular, these will turn out to depend on the ranges for γ.

1. The frequency decomposition. Here instead of the classical base 2 dyadic decomposition we will use
narrower ranges,

λ = (1 + µ)m, m ∈ N, 0 < µ ≪ 1,

with the understanding that at frequencies ≲ 1 we simply split into intervals of size µ. Here µ is a small
universal parameter. The motivation for this choice is to allow for a clean classification of cubic interactions
into balanced and unbalanced simply depending on the relative values of m.

We denote the corresponding frequency regions by I±λ . Here the ± signs stand for positive and negative
frequencies, and will be at times omitted if they are not useful. We will also use an adapted partition of
unity, again using the ± superscripts where needed.

1 =
∑︂
λ

νλ(ξ).

2. The velocity decomposition. At a given time t, we partition the spatial real axis corresponding to
velocities associated to frequencies in Iλ. Precisely, we denote by J±

λ = a′(I±λ ) the velocity ranges associated

to frequencies in Iλ, and by J̃±
λ the corresponding spatial intervals, J̃±

λ = tJ±
λ . We can compute the size of

these regions depending on the parameter γ,

|Jλ| ≈ λa′′(λ), |J̃λ| ≈ tλa′′(λ),

where we simply denote a′′(λ) ≈ |λ|σ. Within each interval Jλ, respectively J̃λ we will choose reference
points vλ, respectively xλ.

Depending on the value of σ, we distinguish several scenarios:

a) The generalized NLS case, σ ≥ −1. Here J̃λ are increasing in size with λ, and cover the entire real
line (except for the degenerate case σ = −1 where they have equal size). In this case we have an
associated spatial partition of unity

1 =
∑︂
λ

χ±
λ (x), suppχ±

λ ⊂ 2J̃±
λ .

b) The strong Klein-Gordon case, −2 ≤ σ < −1. Here J̃λ are decreasing in size with λ, but their sizes
tλa′′(λ) are large enough to dominate the associated uncertainty principle scale λ−1 as λ → ∞. On

the other hand, they do not cover the entire real line, only the range J̃in = (ta′(−∞), ta′(+∞)).
Thus we consider the partition of unity

1 =
∑︂
λ

χ±
λ (x) + χout(x),

where χout is the characteristic function of the outer region R \ Jout.
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x

t

J̃λ

Figure 3. The velocity decomposition in Case (a), σ ≥ −1: all group velocities are allowed.

x

t

J̃λ

Figure 4. The velocity decomposition in Case (b), −2 ≤ σ < −1: all dispersive waves are
localized in an angle.

c) The Klein-Gordon case σ < −2. Here J̃λ are also decreasing in size with λ, but their sizes tλa′′(λ)
no longer dominate the associated uncertainty principle scale λ−1 as λ → ∞. For this reason, based
on this comparison we define the time dependent threshold λ0 by

lambda0lambda0 (5.22) tλ2
0a

′′(λ0) = 1

and, depending on λ0, we separate into low and high frequencies, and consider the partition of unity

1 =
∑︂
λ>λ0

χ±
λ (x) + χhi(x) + χout(x),

where χhi selects a region of size λ−1
0 . Here the intuition is that up to frequency λ0 we see dispersive

effects at time t, whereas above that we are simply solving a transport equation at leading order.

3. The decomposition of Q. For the trilinear form Q, it will be very useful to split it into a balanced and
an unbalanced component,

Q(u, ū, u) = Qbal(u, ū, u) +Qunbal(u, ū, u),

depending on the size of the three interacting frequencies. Precisely, at the symbol level we set

qbal(ξ1, ξ2, ξ3, ξ4) = χ⟨ξ1⟩≈⟨ξ2⟩≈⟨ξ3⟩≈⟨ξ4⟩q(ξ1, ξ2, ξ3, ξ4).
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x

t

J̃λ

Figure 5. The velocity decomposition in Case (c), σ < −2: the dispersive region is above
the blue curve.

Here the balanced part will play the leading role, and is the one responsible for the modified scattering
behavior. The unbalanced, part, on the other hand, we will want to treat largely in a perturbative manner.
However, some technical difficulties will have to be dealt with along the way.

From the perspective of the spatial Littlewood-Paley decomposition defined earlier, we will essentially
think of the two components as combinations of dyadic frequency localizations. Precisely, given dyadic
frequencies λj = (1 + c)mj , we will call the quadruplet (λ1, λ2, λ3, λ4) diagonal if max{|mi −mj |} ≤ 4. We
denote the diagonal set of frequencies by D. Then we will simply set

Qbal(u, ū, u) =
∑︂

λ1,λ2,λ3,λ4∈D

Pλ4
Q(u1, ū2, u3),

respectively

Qunbal(u, ū, u) =
∑︂

λ1,λ2,λ3,λ4 ̸∈D

Pλ4
Q(u1, ū2, u3),

where for brevity we have denoted ui := Pλj
u. We remark that the Pλ4

projection can be omitted in the
case when λ4 is comparable to the highest frequency; this includes in particular the balanced case.

As a trilinear form applied to u, the symbol of the expression

Pλ4Q(u1, ū2, u3)

has the form

qλ1,λ2,λ3,λ4
(ξ1, ξ2, ξ3) = νλ1

(ξ1)νλ2
(ξ2)νλ3

(ξ3)νλ4
(ξ4)q(ξ1, ξ2, ξ3, ξ4), ξ1 + ξ3 = ξ2 + ξ4,

and can be thought of as the diagonal trace of a bump function on the rectangle Iλ1
× Iλ2

× Iλ3
× Iλ4

. Using
separation of variables on this product region, we can expand these localized symbols as rapidly convergent
series

qλ1,λ2,λ3,λ4
(ξ1, ξ2, ξ3) =

∞∑︂
k=1

νk1 (ξ1)ν
k
2 (ξ2)ν

k
3 (ξ3)ν

k
4 (ξ4) ξ1 + ξ3 = ξ2 + ξ4,

where the factors have decaying sizes

|∂lνkj | ≲ k−Nλ−l
j , l ≤ N,

for a large N .
Since the dyadic multipliers νkj are bounded in X, this will allow us to replace Qλ1,λ2,λ3,λ4

in all X bounds
with product type operators, precisely of the form

Qλ1,λ2,λ3,λ4
(u, ū, u) ≈ Pλ4

(u1ū2u3).

Furthermore, if λ1, λ2, λ3 ≲ λ4 then we can further eliminate the outer projection Pλ4 . We will refer to this
reduction, later in the paper, as separation of variables.
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5.2. The vector field bound. Our primary goal here is to discuss the counterpart of the vector field
estimate in Proposition 2.1. We will do this in a frequency localized setting, and also consider the better
elliptic bounds outside the corresponding dyadic velocity range. Precisely, we have the following linear
estimates:

p:vf-gen Proposition 5.2. a) Let δ = s0 + s1 + σ > 0. Then we have the uniform bound

vf-point-lambdavf-point-lambda (5.23) ∥⟨D⟩ δ
2−u∥L∞ ≲ ∥u∥X .

b) We also have the dyadic elliptic bounds for a function uλ localized at frequency λ, and xλ ∈ J̃λ:

vf-ell-ll2vf-ell-ll2 (5.24) ∥(1− χλ)(x− xλ)uλ∥L2 ≲ λ−s1∥uλ∥X ,

respectively

vf-ell-llinfvf-ell-llinf (5.25) |(1− χλ)uλ(x)| ≲
λ−s1+ 1

2

|x− xλ|
∥uλ∥X .

Proof. Using a dyadic decomposition in frequency as described earlier in Section 5.1,

u =
∑︂
λ

uλ,

we first observe that we can localize the X bound and conclude that

∥uλ∥X ≲ ∥u∥X .

This is where the condition s1 ≤ s0 + 1 is used.
The advantage is that for each λ, the size of a′′ is essentially constant, and we may harmlessly extend a

to have uniform convexity outside Iλ. Hence we will be able to apply directly the results in Propositions 2.1,
2.4, with the choice of parameters

R = a′′(λ) ≈ λσ, M ≈ λ−1.

a) Since we have s0 + s1 ≥ −σ + δ as well as s1 ≤ s0 + 1, a direct application of Proposition 2.1 yields

∥uλ∥2L∞ ≲
1

ta′′(λ)
(λ−s0−s1 + λ−2s0−1)∥uλ∥2X ≲

1

tλδ
∥uλ∥2X ,

which immediately yields the bound (5.23).
We further remark that, in the context of the classification of cases in the previous subsection, in case

(c), which is the Klein-Gordon case, it is also interesting to distinguish the low frequencies from the high
frequencies, and replace the full dyadic decomposition of u by

u =
∑︂

|λ|<λ0

uλ + uhi,

where the threshold λ0 is as in (5.22). While the above argument applies in all cases, for high frequencies
the desired bound also follows directly from Bernstein’s inequality, completely neglecting the Luλ bound,

∥uhi∥L∞ ≲
∑︂
λ>λ0

λ1+δ(a′′(λ))
1
2 ∥u∥Hs0 ≲ λ−δ

0 t−
1
2 ∥u∥X .

This is consistent with the fact that in this regime our evolution is at leading order a transport equation,
with negligible dispersion. Precisely, in this frequency range we can perturbatively replace the symbol a with
its affine asymptotes as ξ approaches ±∞.

b) Here we similarly apply Proposition 2.4. The bound (5.24) is obtained directly from (2.20). For (5.25)

we first use a multiplier P̃λ with slightly larger support to decompose

(1− χλ)(x− xλ)uλ = P̃λ(1− χλ)(x− xλ)uλ + (1− P̃λ)(1− χλ)(x− xλ)uλ

The first term is localized at frequency λ, so we can estimate it using Bernstein’s inequality and (5.24),

∥P̃λ(1− χλ)(x− xλ)uλ∥L∞ ≲ λ
1
2 ∥(1− χλ)(x− xλ)uλ∥L2 ≲ λ−s1+ 1

2 ∥uλ∥X .
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In the second term the coefficient (1− χλ)(x− xλ) must be localized at frequency at least λ,

(1− P̃λ)(1− χλ)(x− xλ)uλ = (1− P̃λ)g≳λuλ, g = (1− χλ)(x− xλ).

Then we estimate

∥(1− P̃λ)(1− χλ)(x− xλ)uλ∥L∞ ≲ ∥g≳λuλ∥L∞

≲ λ
1
2 ∥g≳λuλ∥L2 + λ− 1

2 ∥∂x[g≳λuλ]∥L2

≲ (λ
1
2 ∥g≳λ∥L∞ + λ− 1

2 ∥∂xg≳λ∥L∞)∥uλ∥L2

≲ λ−s0− 1
2 ∥∂xg∥L∞∥uλ∥X

which suffices since ∥∂xg∥L∞ ≲ 1 and s0 ≥ s1 − 1.

5.3. Bounds for Q and the energy estimate for u. Here the first goal is to prove the following energy
bound for the function u:

p:ee-u Proposition 5.3. Assume that u is a solution to (1.1), under the same assumptions as in Theorem 5. Then
we have the bound

(5.26)
d

dt
∥u(t)∥2Hs0 ≲ ∥⟨D⟩ δ

8u∥2L∞∥u∥2X .

We note that in many problems this bound is independent on the X norm, and has instead the form

(5.27)
d

dt
∥u(t)∥2Hs0 ≲ ∥⟨D⟩ δ

8u∥2L∞∥u∥2Hs0 .

This is the case if s0 ≥ 0 (see the proof below) but also if Q has additional structure.

Proof. Differentiating in time and using the equation (1.1), this reduces to the weighted inequality

q1q1 (5.28) ∥Q(u, ū, u)∥Hs0 ≲ ∥⟨D⟩ δ
8u∥2L∞∥u∥X .

Here we distinguish two cases depending on the sign of s0:

i) s0 ≥ 0. Here we have the simpler bound

q1-easyq1-easy (5.29) ∥Q(u, ū, u)∥Hs0 ≲ ∥⟨D⟩ δ
8u∥2L∞∥u∥Hs0 ,

which does not involve any control for Lu. Since Q satisfies the symbol bounds (5.6), this easily follows by
a standard Littlewood-Paley decomposition with respect to all inputs and the output. The Hs0 factor on
the right is always chosen to correspond to the highest frequency, and the δ exponent readily ensures dyadic
summation. More precisely, writing

Q(u, ū, u) =
∑︂

λ1,λ2,λ3,λ4

Pλ4
Q(uλ1

, ūλ2
, uλ3

),

and relabeling increasing order {λ1, λ2, λ3} = {λlo, λmid, λhi} we must have either

(a) λ4 ≈ λhi, or
(b) λ4 < λmid ≈ λhi,

and correspondingly decompose Q = Qa +Qb.
For Qa we may use orthogonality to estimate

∥Qa(u, ū, u)∥2Hs0 ≲
∑︂
λhi

⎛⎝ ∑︂
λlo,λmid

∥uλlo
∥L∞∥uλmid

∥L∞

⎞⎠2

∥uλhi
∥2Hs0 ,

where the inner sum is estimated by the L∞ norm in (5.29).
For Qb on the other hand we neglect orthogonality and estimate directly

∥Qb(u, ū, u)∥2Hs0 ≲
∑︂
λlo

∑︂
λmid≈λhi

∥uλlo
∥L∞∥uλmid

∥L∞∥uλhi
∥Hs0 ,

where the summation with respect to the two indices is again guaranteed by the L∞ norm in (5.29).
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ii) s0 < 0, which is needed only in the generalized NLS case σ ≥ −1. In this case, the bound (5.29) applies
only to the portion of Q where at least one of the three input frequencies, which we denote by λ1, λ2 and
λ3, is at most comparable to the output frequency λ4.

Hence, from here on we assume that λ4 ≪ λj , j = 1, 2, 3. This guarantees that λ1, λ2 and λ3 should all
be distinct, and also the largest two should be comparable. Under these assumptions, it remains to prove
the estimate

(5.30)
λs04 ∥Pλ4Q(uλ1 , ūλ2 , uλ3)∥L2 ≲ ∥uλ1∥L∞∥uλ2∥L∞∥uλ3∥X + ∥uλ2∥L∞∥uλ3∥L∞∥uλ1

∥X
+ ∥uλ3∥L∞∥uλ1∥L∞∥uλ2∥X .

Here we note that, since the two highest frequencies are comparable, the dyadic summation with respect to
the four frequencies is straightforward using the δ factor, and (5.28) follows.

To prove the last bound, we retain the restrictions on λ1, λ2 and λ3, but then harmlessly drop the
projection Pλ4 . Then we can use separation of variables and reduce the problem to the product case, where
it suffices to show that

(5.31)
∥uλ1

ūλ2
uλ3

∥L2 ≲ ∥uλ1
∥L∞∥uλ2

∥L∞∥uλ3
∥X + ∥uλ2

∥L∞∥uλ3
∥L∞∥uλ1

∥X
+ ∥uλ3∥L∞∥uλ1∥L∞∥uλ2

∥X .

Next, we separate the product with respect to dyadic velocity ranges. Since the λ’s cannot be all equal,
it suffices to estimate the expression

I = ∥(1− χλ1)uλ1 ūλ2uλ3∥L2 .

By Proposition 5.2 we have

I ≲ ∥(1− χλ1)uλ1
∥L2∥uλ2

∥L∞∥uλ3
∥L∞

≲ sup
λ ̸=λ1

λ−s1
1

t|a′(λ1)− a′(λ)|
∥uλ1∥X∥uλ2∥L∞∥uλ3∥L∞

≲
λ−s1
1

tλ1|a′′(λ1)|
∥uλ1

∥X∥uλ2
∥L∞∥uλ3

∥L∞ ,

where the λ dependent weight is maximized when λ is near λ1. Then it suffices to check that

λ−s1
1

tλ1|a′′(λ1)|
≲ 1.

Given the choice of s1 and that σ ≥ −1, this is true with a substantial gain. Thus the proof of the Proposition
is complete. □

A second objective here is to show that, in the context of the balanced/unbalanced decomposition for the
cubic nolinearity Q, we have a better bound for the unbalanced part. This bound will play a role in our wave
packet testing in the next subsection, precisely in the estimate for the error in the asymptotic equation.

Proposition 5.4. The unbalanced part Qunbal of Q satisfies the better L∞ bound

Q-L2-from-LhQ-L2-from-Lh (5.32) ∥χλPλQunbal(u, ū, u)∥L∞ ≲
λ− δ

4

t
3
2+

δ
4

∥u∥3X ,

provided that either σ ≥ −2 or {σ < −2 and tλσ+2 ≥ 1}.

We remark that, depending on σ and on the balance of the three frequencies, in some of the cases one
can get a better asymptotic equation error bound by using L2 estimates for Qunbal. We do not pursue this
here because it is not needed.

Remark 5.5. This bound is needed in order to be able to control the contribution of Qunbal to the error in
the wave packet testing. Precisely, we will need to be able to verify that

⟨Qunbal(u, ū, u),uv⟩ ≲ t−1−δ

for v ∈ Jλ, and λ < λ0 in the case σ < −2. This requires the L∞ bound

∥χλPλQ∥L∞ ≲ t−
3
2−.
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Proof. We first simply consider a triple product u1ū2u3 where λ1, λ2 and λ3 are not all equal, and estimate
it within a dyadic velocity region Aλ. For that we apply (5.24) and (5.23) for a λj , say λ3, which is away
from λ. This yields

Q-2Q-2 (5.33) ∥χλu1ū2u3∥L2 ≲
λ
− δ

2
1 λ

− δ
2

2 λ−s1
3

t2|a′(λ3)− a′(λ)|
∥u∥3X ,

respectively

Q-infQ-inf (5.34) ∥χλu1ū2u3∥L∞ ≲
λ
− δ

2
1 λ

− δ
2

2 λ
−s1+ 1

2
3

t2|a′(λ3)− a′(λ)|
∥u∥3X .

We complement these with the trivial bound

Q-inf+Q-inf+ (5.35) ∥χλu1ū2u3∥L∞ ≲
λ
− δ

2
1 λ

− δ
2

2 λ
−s0+ 1

2
3

t
∥u∥3X .

To use these estimates we consider two scenarios:

(i) λ1 = λ and λ3 < λ2 ≪ λ. Then we can separate variables to discard Pλ, and apply the above bounds
(5.34) and (5.35). Now we examine the coefficient in (5.34) as a function of λ3. For σ ≥ −1 we get

∥χλu1ū2u3∥L∞ ≲ λ
− δ

2
1 λ

− δ
2

2 λ
−s1+ 1

2
3 λ−σ−1t−2∥u∥3X ,

which suffices. For σ < −1 we get

∥χλu1ū2u3∥L∞ ≲ λ
− δ

2
1 λ

− δ
2

2 λ
−s1− 1

2−σ
3 t−2∥u∥3X .

This still suffices directly in the range − 3
2 ≤ σ ≤ −1, and after interpolation with (5.35) in the remaining

range σ < − 3
2 . In all cases the summation in λ3 and λ2 is straightforward.

(ii) In the remaining case we must have at least two comparable high frequencies, say λ2, λ3 ≳ λ, one of
which, say λ3, is separated from λ. Then we replace the cutoff χλ by one with a double support, call it χ̃λ,
which equals one on a comparably sized neighbourhood of the support of χλ. Precisely, we write

χλPλ = χλPλχ̃λ + χλPλ(1− χ̃λ).

The second term is easily taken care of by noting that

∥χλPλ(1− χ̃λ)∥L∞→L∞ ≲
1

(ta′′(λ)λ2)N

combined with the pointwise bound for each of the factors.
For the first term we apply (5.33), noting that the coefficient is nonincreasing in λ3 ≳ λ. For σ ≥ −1 we

obtain

∥χ̃λu1ū2u3∥L2 ≲
λ−s1
3

t2λ1+σ
3

∥u∥3X ,

and conclude using Bernstein’s inequality at frequency λ. For σ < −1 we obtain

∥χ̃λu1ū2u3∥L2 ≲
λ−s1
3

t2λ1+σ
∥u∥3X ,

Then we use Bernstein’s inequality at frequency λ and interpolate with (5.35) as in case (i).
□

5.4. The energy estimate for Lu. Here the objective is to prove the energy estimate for Lu. As in the
model case, this will be achieved via a cubic correction C so that we can obtain a favorable estimate for the
nonlinear expression

LNLu = Lu+ tC(u, ū, u).

Precisely, we will prove the following
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p:ee-Lu Proposition 5.6. There exists a trilinear, translation invariant correction C with the following properties
(i) Uniform bound for C:

L2-CL2-C (5.36) ∥C(u, ū, u)∥Hs1 ≲ ∥⟨D⟩ δ
8u∥2L∞∥u∥Hs0 .

(ii) Energy bound for LNLu,

L2-LNLL2-LNL (5.37)
d

dt
∥LNLu∥2Hs1 ≲ ∥u∥2X∥⟨D⟩ δ

8u∥2L∞ + t−
1
2−δ∥u∥3X∥⟨D⟩ δ

8u∥L∞ .

One immediate consequence of (5.36) combined with the bootstrap assumption (5.20) is the norm equiv-
alence

same-Xsame-X (5.38) ∥u∥2X ≈ ∥u∥2Hs0 + ∥LNLu∥2Hs1 .

Using this property one easily sees that, combining the energy estimates for u and LNLu in Propositions 5.3,
5.6, and using the bootstrap assumption (5.20), we obtain by Gronwall’s inequality the energy estimate in
(5.13).

Proof. For the expression w := LNLu we have an equation of the form

(i∂t −A)w = LQ(u, ū, u) + tR3(u, ū, u) + iC(u, ū, u) + tR5(u, ū, u, ū, u),

where R3 has symbol

r3(ξ1, ξ2, ξ3) = c(ξ1, ξ2, ξ3)(a(ξ1)− a(ξ2) + a(ξ3)− a(ξ1 − ξ2 + ξ3)),

and R5 is simply the quintilinear form arising from the time derivative of C.
The objective is then to choose the correction C so that (5.36) holds, and we can estimate the source

terms in Hs1 ,

c2c2 (5.39) ∥LQ(u, ū, u) + tR3(u, ū, u)∥Hs1 ≲ ∥u∥X∥⟨D⟩ δ
8u∥2L∞ ,

respectively

c3c3 (5.40) ∥R5(u, ū, u, ū, u)∥Hs1 ≲ ∥u∥Hs0 ∥⟨D⟩ δ
8u∥4L∞ .

Here naively one may hope to use the same correction C as in the compact case, so that we have

LQ(u, ū, u) + tR3(u, ū, u) = Q(Lu, ū, u)−Q(u, Lu, u) +Q(u, ū, Lu).

However, as it turns out, there are some difficulties which such a direct approach. Precisely, considering a
full dyadic decomposition for Q, there are two interesting scenarios to consider:

a) Balanced interactions, where the three input frequencies and the output frequency are all comparable,
say to a fixed frequency λ. Then the symbol c has similar support, symbol type regularity and size

|c(ξ1, ξ2, ξ3)| ≲ λ−1|q(ξ1, ξ2, ξ3)| ≲ |λ|−1.

In this case the bounds (5.36) and (5.39) are straightforward, nothing but a rescaled version of the cor-
responding bounds in the compact case. We still need to prove (5.40), which contains some unbalanced
interactions, but this is not so difficult.

b) Unbalanced interactions, where, instead, the use of the correction C would cause trouble:

• The expression of C would be more complicated, which causes difficulties with (5.36) and (5.40).
• the bound (5.39) is unbalanced, which causes difficulties unless s1 = 0 or we have a favourable

frequency balance.

However, the redeeming feature in this case is that, in each dyadic velocity range, at least one of the three
inputs must correspond to a different range of velocities, so the corresponding frequency localized operator
L is elliptic there. It follows that the expression LQ(u, ū, u) no longer needs to be corrected, and instead
should be estimated directly, in an elliptic fashion.

To implement the heuristic strategy described above, we decompose Q into a balanced and an unbalanced
component,

Q(u, ū, u) = Qbal(u, ū, u) +Qunbal(u, ū, u),
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where at the symbol level we set

qbal(ξ1, ξ2, ξ3, ξ4) = χ⟨ξ1⟩≈⟨ξ2⟩≈⟨ξ3⟩≈⟨ξ4⟩q(ξ1, ξ2, ξ3, ξ4).

Then we choose the normal form correction C = Cbal to account for the balanced term, where the corre-
sponding errors are estimated as discussed above. On the other hand, the unbalanced term we simply treat
perturbatively, without any correction.

A. The balanced term. To account for the balanced term, we follow the compact case and set

(5.41) cbal(ξ1, ξ2, ξ3) = qbal(ξ1, ξ2, ξ3)
aξ(ξ1)− aξ(ξ2) + aξ(ξ3)− aξ(ξ)

a(ξ1)− a(ξ2) + a(ξ3)− a(ξ)
,

so that we have the algebraic relation

LQbal(u, ū, u)− tRbal3 (u, ū, u) = Qbal(Lu, ū, u)− Cbal(u, Lu, u) + Cbal(u, ū, Lu) +D(u, ū, u),

with
d(ξ1, ξ2, ξ3) = i(∂ξ1 − ∂ξ2 + ∂ξ3)q

bal(ξ1, ξ2, ξ3).

Then we have

Lemma 5.7. The above correction Cbal satisfies the estimates (5.36), (5.39) and (5.40).

Proof. As mentioned earlier, the proof of (5.36), (5.39) is simply a rescaled version of the similar argument
in Section 4.2. As such, it is omitted and left as an exercise for the reader.

The bound (5.40), on the other hand, involves also some unbalanced interactions and deserves some
separate attention. Localizing in frequency and separating variables, we split

Cbal =
∑︂
λ

Cbal
λ ,

where we can assume that the frequency λ portion Cbal
λ of Cbal has the form

Cbal
λ (u, ū, ū) = λ−1uλūλuλ.

Then the corresponding component of R5 has terms of the form

R5,λ(u, ū, u, ū, u) = λ−1uλūλPλQ(u, ū, u).

Hence, we can bound it by

∥R5,λ(u, ū, u, ū, u)∥Hs1 ≲ λs1−1∥uλ∥L2∥uλ∥L∞∥Q(u, u, u)∥L∞ ≲ ∥uλ∥Hs0 ∥⟨D⟩ δ
8u∥4L∞ .

□

B. The unbalanced term. This corresponds to the unbalanced component Qunbal of Q. Here we set
our correction to 0, so that R3 and R5 also vanish. Then it remains to prove that we have the following
result:

l:LQunbal Lemma 5.8. Assume that s0, s1 are chosen as in Theorem 5. Then for δ > 0 we have the following L2 type
bound:

c2+c2+ (5.42) ∥LQunbal(u, ū, u)∥Hs1 ≲ ∥u∥X∥⟨D⟩ δ
8u∥2L∞ + t−

1
2−δ∥u∥2X∥⟨D⟩ δ

8u∥L∞ .

Here the advantage is that we can choose which inner u we place the L on. Using the bound (5.42) in the
lemma, the proof of the L2 energy bound (5.37) for LNLu is concluded.

Proof. We localize the cubic expression Q in frequency to dyadic regions associated with input frequencies λ1,
λ2, λ3 and output frequency λ4. Since the choice of the small parameter δ is flexible, the dyadic summation
with respect to λ1, λ2, λ3 and λ4 is straightforward. For this reason, it suffices to prove the lemma in the
case when λ1, λ2, λ3 and λ4 are fixed. To streamline notations, we will denote uj := Pλj

u for j = 1, 2, 3.
In each such region, the nonlinear expression Q is essentially like a product, which then gets localized to

the output frequency λ4. Using separation of variables, we can reduce the problem to the case

Qunbal(u1, ū2, u3) = Pλ4
(u1ū2u3),
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where λ1, λ2, λ3 are not all equal. This key property implies that, in a given a dyadic velocity range associated
to a frequency λ, we must have at least one of the three L’s act as an elliptic operator; our estimate is primarily
based on this principle. We will further separate the problem into two cases, depending on the relative size
of the three interacting frequencies λ1, λ2 and λ3.

a) The llh case, where
λ1 ≤ λ2 ≪ λ3,

or the symmetric case where λ1 and λ3 are interchanged. In this case we must have λ4 ≈ λ3, and we can
also use separation of variables to discard the Pλ4

projector. Further, it will be convenient to commute L
inside, and write

L(u1ū2u3) = u1ū2Lu3 + tR(u1, ū2, u3),

where the symbol of R is
r(ξ1, ξ2, ξ3) = a′(ξ1 − ξ2 + ξ3)− a′(ξ3).

This is a smooth symbol in all three variables on the corresponding dyadic scales, and has size

|r(ξ1, ξ2, ξ3)| ≲ λ2a
′′(λ3).

The first term is estimated in a straightforward fashion,

∥u1ū2Lu3∥Hs1 ≲ ∥u1∥L∞∥u2∥L∞∥Lu3∥Hs1 .

For the second term we can use separation of variables to drop again the multipliers, and we are left with
the task of estimating the expression

tλs13 λ2a
′′(λ3)∥u1ū2u3∥L2 .

Finally, we use a spatial angular localization to separate into directions associated to a dyadic frequency λ.
In this case we can consider a very simple separation, depending on whether the direction λ matches λ3 or
not, writing

u1ū2u3 = χλ3(u1ū2u3) + (1− χλ3)(u1ū2u3).

For the first term we use (5.24) for u2 in order to write

tλs13 λ2a
′′(λ3)∥χλ3(u1ū2u3)∥L2 ≲ tλs13 λ2a

′′(λ3)∥χλ3u2∥L2∥u1∥L∞∥u3∥L∞

≲ tλs13 λ2a
′′(λ3)

1

λs12 t|a′(λ2)− a′(λ3)|
∥u2∥X∥u1∥L∞∥u3∥L∞ .

Here the coefficient on the right is nondecreasing in λ2 in all cases (this corresponds to the restriction s1 ≤ 1
if σ ≥ −1, respectively s1 ≤ −σ if σ < −1, which are satisfied for our choice of exponents) and equals 1 if
λ2 = λ3.

For the second term we instead use (5.24) for u2 in order to write

tλs13 λ2a
′′(λ3)∥(1− χλ3

)(u1ū2u3)∥L2 ≲ tλs13 λ2a
′′(λ3)∥u1∥L∞∥u3∥L∞∥(1− χλ3

)u2∥L2

≲ tλs13 λ2a
′′(λ3)

1

λs13 tλ3|a′′(λ3)|
∥u2∥X∥u1∥L∞∥u3∥L∞

≲ ∥u2∥X∥u1∥L∞∥u3∥L∞ .

This concludes the proof of (5.42) in this case.

b) The lhh case,
λ1 < λ2 ≈ λ3, λ4 ≲ λ2.

or permutations thereof. Here we have many subcases to consider. We first reduce their number by peeling
off some of the easier ones.

A first argument we can apply is to simply write

LP3LP3 (5.43) LPλ4
(u1ū2u3) = Pλ4

(Lu1ū2u3) + [x, Pλ4
](u1ū2u3) + tR(u1, ū2, u3),

where the commutator term is essentially of the form λ−1
4 Pλ4

(u1u2u3) and the remainder R arises from
switching the argument of L, and has symbol

r(ξ1, ξ2, ξ3) = a′(ξ1)− a′(ξ1 − ξ2 + ξ3).
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This is a smooth symbol on the four associated dyadic scales, and of size

|r(ξ1, ξ2, ξ3)| ≲ |a′(λ1)− a′(λ4)|.

Here we can estimate the first term in (5.43) in Hs1 by

∥Pλ4
(Lu1ū2u3)∥Hs1 ≲ ∥Lu1∥Hs1 ∥u2∥L∞∥u3∥L∞ ,

provided that

(5.44) either λ4 ≲ λ1 or σ ≥ 1,

where the second condition ensures that s1 = 0.
The second term in (5.43) is estimated by

λ−1
4 ∥Pλ4

(u1ū2u3)∥Hs1 ≲ ∥u1ū2u3∥Hs0 ,

after which we can reuse the bounds in Proposition 5.3.
Finally, for the last term we separate variables, and it remains to estimate

λs14 t|a′(λ1)− a′(λ4)|∥u1ū2u3∥L2 .

We split the triple product with respect to angles,

u1ū2u3 = χλ3
u1ū2u3 + (1− χλ3

)u1ū2u3,

and estimate the two terms separately. For the first one we use (5.24) for u1,

λs14 t|a′(λ1)− a′(λ4)|∥χλ3
u1ū2u3∥L2 ≲ λs14 t|a′(λ1)− a′(λ4)|∥χλ3

u1∥L2∥u2∥L∞∥u3∥L∞

≲ λs14 t|a′(λ1)− a′(λ4)|
1

λs11 t|a′(λ1)− a′(λ3)|
∥u1∥X∥u2∥L∞∥u3∥L∞ .

If σ ≥ −1 then the coefficient equals

λs14 |a′(λ1)− a′(λ4)|
λs11 λσ+1

3

≲
λs14 (λ1 + λ4)

σ+1

λs11 λσ+1
3

≤ 1.

Else, λ4 ≲ λ1 therefore the coefficient equals

λs14 λσ+1
4

λs11 λσ+1
1

≤ 1.

For the second one we use (5.24) for u1,

λs14 t|a′(λ1)− a′(λ4)|∥(1− χλ3
)u1ū2u3∥L2 ≲ λs14 t|a′(λ1)− a′(λ4)|∥u1∥L∞∥u2∥L∞∥(1− χλ3

)u3∥L2

≲ λs14 t|a′(λ1)− a′(λ4)|
1

λs13 tλ3a′′(λ3)|
∥u1∥X∥u2∥L∞∥u3∥L∞ ,

and the coefficient is again easily verified to be ≤ 1 by considering the same two cases as above.

After this reduction, it remains to consider the case when

(5.45) λ1 ≪ λ4 ≲ λ2 ≈ λ3, σ < 1.

Here we separate the case σ < −2, where the threshold λ0 plays a role. Precisely, if λ3 > λ0 then we can
use (5.43) where r has size λσ+1

4 in order to write schematically

LPλ4
(u1ū2u3) = Pλ4

(u1ū2Lu3) + λ−1
4 Pλ4

(u1ū2u3) + tλσ+1
4 Pλ4

(u1ū2u3).

The first two terms are easy to estimate directly. So it remains to consider the third, where we estimate

tλσ+1
4 ∥Pλ4

(u1ū2u3)∥Hs1 ≲ λs1+σ+1
4 ∥u1∥L∞∥u2∥L∞∥u3∥L2

≲ tλs1+σ+1
4 λ−s0

3 ∥u1∥L∞∥u2∥L∞∥u3∥X
≲ tλσ+2

3 ∥u1∥L∞∥u2∥L∞∥u3∥X ,

where tλσ+2
3 ≤ tλσ+2

0 = 1.
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From here on, we will assume that λ3 < λ0 in the case σ < −2. Since λ1 ≪ λ4, we can harmlessly move
the Pλ4 projection to the product ū2u3, and work with

v := u1Pλ4
(ū2u3).

To simplify matters, we note that within the λ4 frequency region we have

l(x, ξ) = x− x4 + tO(λσ+1
4 ),

and similarly at the operator level we get

L-lastL-last (5.46) ∥Lv∥Hs1 ≲ λs14 (∥(x− x4)u1Pλ4
(ū2u3)∥L2 + tλσ+1

4 ∥u1Pλ4
(ū2u3)∥L2).

We will rely on this bound for σ ≥ −1. However, for σ < −1 we can process the first term further. We first
move x− x4 inside Pλ4

at the expense of a mild commutator term, which is schematically written as

(x− x4)u1Pλ4
(ū2u3) = u1Pλ4

((x− x4)ū2u3) + λ−1
4 u1Pλ4

(ū2u3).

The contribution of the L2 norm of the commutator term can be harmlessly included into the second RHS
term in (5.46), using the upper bound λ4 ≲ λ0 if σ < −2. On the other hand for the main term we can write

(x− x4)u3 = Lu3 + tRu3, |r| ≈ λσ+1
4 .

Since σ < −1, the contribution of the error term R can also be included into the second RHS term in (5.46).
Finally, for the Lu3 term we estimate directly

L-helpL-help (5.47) λs14 ∥u1Pλ4
u2Lu3∥L2 ≲

(︃
λ4

λ3

)︃s1
∥u1∥L∞∥u2∥L∞∥u3∥X ,

which is an acceptable contribution. We arrive at the following simplification of (5.46),

L-last+L-last+ (5.48) ∥Lv∥Hs1 ≲ RHSL-last+L-last+ (5.47) + tλs1+σ+1
4 ∥u1Pλ4(ū2u3)∥L2 , σ < −1.

At this point we would like to consider angular localizations for the triple product v = u1Pλ4(ū2u3),
centered on the angle associated to λ3. This angular region has size tλ3a

′′(λ3) = tλσ+1
3 , whereas v has

frequency λ4. So, by the uncertainty principle, this localization is meaningful only if

t-uncertt-uncert (5.49) tλσ+1
3 λ4 ≳ 1.

This constraint is nontrivial only if σ < −1. We dispense with the complementary range by estimating
directly the second RHS term in (5.48) as follows:

directdirect (5.50)
tλs1+σ+1

4 ∥u1Pλ4
(ū2u3)∥L2 ≲ tλs1+σ+1

4 λ−s0
3 ∥u1∥L∞∥u2∥X∥u3∥L∞

= (tλσ+1
3 λ4)λ

s1+σ
4 λ−s0−σ−1

3 ∥u1∥L∞∥u2∥X∥u3∥L∞ ,

where all the factors on the right are ≲ 1 given our choice of s0 and s1. We assume (5.49) from here on.

We are now ready to localize v using the angular cutoff χλ3 associated to frequency λ3 waves. It is easier
to first consider the contribution of (1−χλ3)v. One difficulty we encounter is that we need to commute this
localization with Pλ4

,

(1− χλ3
)Pλ4

= (1− χλ3
)Pλ4

(1− χ̃λ3
) +R,

where the error R has size

∥R∥L2→L2 ≲

(︃
1

tλ4λ
σ+1
3

)︃N
.

Here, if σ ≥ −1 then we get t−N and the R bound becomes straightforward. Otherwise (5.49) holds so we
can simply add the R bound to the computation in (5.50).

Hence we are left with the bound for the contribution of the expression

u1Pλ4
(ū2(1− χλ3

)u3).

to either (5.46) (for σ ≥ −1) or (5.48) (for σ < −1). This is

I1 = λs14 (∥(x− x4)u1Pλ4(ū2(1− χλ3)u3)∥L2 + tλσ+1
4 ∥u1Pλ4(ū2(1− χλ3)u3)∥L2).
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Here we harmlessly commute x− x4 inside Pλ4 , modulo a mild error term which is controlled by the second
term on the right. Then we use Proposition 2.4 to estimate

∥(1− χλ3
)(x− x3)u3∥L2 ≲ λ−s1

3 ∥u3∥X .

Bounding the other two factors in L∞, this yields

I1 ≲ λs14 λ−s1
3 sup

x ̸∈A3

|x− x4|+ tλσ+1
4

|x− x3|
∥u3∥X∥u1∥L∞∥u2∥L∞ .

The supremum is attained when x is closest to x3, i.e. when |x− x3| ≈ tλ3a
′′(λ3), in which case we get the

coefficient

λs14 λ−s1
3

|a′(λ4)− a′(λ3)|
λ3a′′(λ3)

.

If σ ≥ −1 this gives
λs14 λ−s1

3 ≤ 1.

If σ < −1 we get instead
λs1+σ+1
4 λ−s1−σ−1

3 ≤ 1,

both of which suffice.

Finally, we consider the most difficult case, where we estimate the contribution of χλ3v = χλ3u1Pλ4(ū2u3),
namely

I2 = λs14 (∥(x− x4)χλ3
u1Pλ4

(ū2u3)∥L2 + tλσ+1
4 ∥χλ3

u1Pλ4
(ū2u3)v∥L2)

≈ tλs14 |a′(λ4)− a′(λ3)|∥χλ3u1Pλ4(ū2u3)∥L2 .

Here we can apply the bound (5.25) for u1 to get

u1-lowu1-low (5.51) ∥χλ3
u1∥L∞ ≲

λ
−s1+ 1

2
1

t|a′(λ1)− a′(λ3)|
∥u1∥X .

On the other hand, for ū2u3 we compute

t∂x(ū2u3) = L̃u2u3 + ū2L̃u3,

which allows us to estimate

∥Pλ4(ū2u3)∥L2 ≲
λ−s1
3

tλ4a′′(λ3)
(∥u2∥X∥u3∥L∞ + ∥u2∥L∞∥u3∥X).

Combining the last two bounds, we arrive at

I2 ≲ λs1−1
4 |a′(λ4)− a′(λ3)|

λ
−s1+ 1

2
1

|a′(λ1)− a′(λ3)|
λ−s1
3

ta′′(λ3)
∥u1∥X(∥u2∥X∥u3∥L∞ + ∥u2∥L∞∥u3∥X).

Now we examine the coefficient in front. If σ ≥ −1 then we obtain

λs1−1
4 λ

−s1+ 1
2

1 t−1λ−s1−σ
3 ≤ λ

− 1
2

4 t−1,

which is more than sufficient.
However, if σ < −1 then we get instead

I2 ≲ λs1+σ4 λ
−s1−σ− 1

2
1 t−1λ−s1−σ

3 ∥u1∥X(∥u2∥X∥u3∥L∞ + ∥u2∥L∞∥u3∥X),

which is unsatisfactory since the power of the high frequency λ3 is positive. To rectify this, we use again
(5.51) but estimate u3 directly in L2 to get

I2 ≲ λs14 |a′(λ4)− a′(λ3)|
λ
−s1+ 1

2
1

|a′(λ1)− a′(λ3)|
λ−s0
3 ∥u1∥X∥u2∥L∞∥u3∥Hs0

≲ λs1+σ+1
4 λ

−s1−σ− 1
2

1 λ−s0
3 ∥u1∥X∥u2∥L∞∥u3∥Hs0 .

This has a negative power of λ3 but insufficient time decay. Combining the two bounds we arrive at

I2 ≲

(︃
λ4

λ1

)︃s1+σ+ 1
2

min
{︂
t−1λ

1
2
4 λ

−s0
3 , λ

− 1
2

4 λ−s1−σ
3

}︂
∥u1∥X(∥u2∥X∥u3∥L∞ + ∥u2∥L∞∥u3∥X).
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Here the first exponent is negative s1 + σ + 1
2 < 0, and thus favourable. In the second factor, balancing

exactly at the middle would yield the factor

t−
1
2λ

−s0−s1−σ
2

3 ,

with a favourable negative power of λ3 but a marginally insufficient power of t. But unbalancing this slightly
suffices in order to improve the power of t while maintaining a negative power for λ3.

This concludes the proof of Lemma 5.8.
□

The proof of Proposition 5.6 is now also concluded. □

5.5. Wave packets and the asymptotic profile. For each admissible velocity v ∈ J = a′(R) we define
the associated wave packet uv using the same formula (4.20) as in the model case. Then the associated
asymptotic profile γ(t, v) can be defined exactly as before, following (4.24) but as a function

domain-gammadomain-gamma (5.52) γ : D = J × R+ → C.
If we consider velocities in the dyadic range v ∈ Jλ then the spatial localization scale for the associated

wave packet uv is

δx ≈ t
1
2 (a′′(λ))

1
2 .

It is instructive to compare this scale with the size of the spatial region J̃λ associated to frequency λ, which
is

|J̃λ| = tλa′′(λ).

It is meaningful to define our asymptotic profile only if this dominates the wave packet scale,

δx ≲ |J̃λ|.
This is equivalent to

t
1
2 (a′′)

1
2 ≲ tλa′′ ⇐⇒ t ≳ (λ2a′′(λ))−1.

This is nontrivial only in the Klein-Gordon case σ < −2, where it can be rewritten in the form λ ≲ λ0, which
is the same threshold we have encountered before. Hence, from here on, in the case σ < −2 we will restrict
γ to a smaller set. Precisely, in this case we will redefine D as

domain-gamma-lowdomain-gamma-low (5.53) D =
⋃︂
λ

{(v, t) ⊂ J × R+; v ∈ Jλ, t ≳ (λ2a′′(λ))−1}.

The first step in our study of the asymptotic profile γ is to obtain bounds for it in terms of the X norm
of u.

l:gamma Lemma 5.9. Let t ≥ 1, and u ∈ X be a function at time t. Then within D we have the bounds

gamma-L2gamma-L2 (5.54) ∥γ∥L2
v(Jλ)

≲ (λ−s0 + (ta′′(λ)λ2)−N )∥u∥X ,

gamma-infgamma-inf (5.55) ∥γ∥L∞(Jλ) ≲ (λ− δ
2 + (ta′′(λ)λ2)−N )∥u∥X ,

gamma-dvgamma-dv (5.56) ∥∂vγ∥L2
v(Jλ)

≲ (λ−s1−σ + (ta′′(λ)λ2)−N )∥u∥X .

We remark that the term (ta′′(λ)λ2)−N ) is only relevant in the case σ ≤ −2. Precisely, if σ = −2 then it
gives t−N , and if σ < −2 then it gives (λ/λ0)

N .

Proof. Here we use the fact that, for v ∈ Jλ, our wave packet uv is essentially localized at frequency λ.
Precisely, we can represent it as

uv = (a′′(λ))−
1
2χ(v, y)eiξvx, y =

x− vt√︁
ta′′(λ)

,

with χ Schwartz in y, uniformly in v. This allows us to obtain favourable bounds for the portion of uv away
from frequency λ,

|∂kxP̸=λuv| ≲k,N (a′′(λ))−
1
2 (1 + |y|)−Nλk(ta′′(λ)λ2)−N ,

where one can distinguish three separate cases:
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a) σ > −2, where we get an arbitrarily large gain,

|∂kxP̸=λuv| ≲k,N λ−N (1 + |y|)−N t−N .

b) σ = −2, where we only have the gain in time,

|∂kxP̸=λuv| ≲k,N (a′′(λ))−
1
2 (1 + |y|)−N t−N .

c) σ < −2, where the gain depends on the distance to λ0,

|∂kxP ̸=λuv| ≲k,N (a′′(λ))−
1
2 (1 + |y|)−Nλk(λ0/λ)

−N .

We now use this in order to prove the three bounds in the Lemma.

Proof of (5.54): We separate frequencies λ and frequencies away from λ,

γ(t, v) = ⟨uλ,uv⟩+ ⟨u, P̸=λuv⟩.
For the first inner product we use Young’s inequality to get

∥⟨uλ,uv⟩∥L2
v
≲ ∥uλ∥L2

x
,

where we lose a t
1
2 factor from the L1

x norm of uv but we regain it from the change of coordinates from x to
x/t. For the second product, on the other hand, we take advantage of the rapid decay in the above bounds
for P ̸=λuv. In the nontrivial range σ ≤ −2 we have s0 > 0, so the worst contribution comes from frequencies
≲ 1 in u.

Proof of (5.55): Here we use instead the pointwise bound (5.23) for u. The main contribution comes from
uλ via Young’s inequality, while the other frequencies only contribute a rapidly decaying tail, as above.

Proof of (5.56): We have
γv(t, v) = ⟨u, ∂vuv⟩.

For ∂vuv we use the representation in Lemma 4.5, to write the above expression as

γv(t, v) = ⟨Lu,u2
v⟩+ ⟨u, rv⟩.

As above, the leading contribution comes from uλ where we can use directly Young’s inequality. □

Next we compare the asymptotic profile with the exact solution, working in the same region.

l:u-gamma Lemma 5.10. Suppose v ∈ Jλ, with the additional restriction λ < λ0 in the case when σ < −2. Then we
have

(5.57) |γ(t, v)− t
1
2uλ(t, vt)e

−itϕ(v)| ≲ (tλ2a′′(λ))−
1
4 ∥u∥X .

Proof. Since λ < λ0, the contribution of u̸=λ to γ has size (tλ2a′′(λ))−N and may be neglected.
Next we consider the contribution of uλ to γ, which generates the error

r(t, v) = ⟨uv, uλ⟩ − t
1
2uλ(t, vt)e

−itϕ(v).

Here the scales are fixed, so we can directly apply the argument in Section 4.4, Proposition 4.7 to get the
error bound

|r(t, v)| ≲ λ−s1t−
1
4 a′′(λ)−

3
4 ∥u∥X ≲ t−

1
4λ− 1

2 (a′′)−
1
4 ∥u∥X ,

which is exactly as needed. □

Finally, we show that γ is a good approximate solution for the asymptotic equation,

gamma-asympt-regamma-asympt-re (5.58) γ̇(t, v) = iq(ξv, ξv, ξv)t
−1γ(t, v)|γ(t, v)|2 + f(t, v),

where f satisfies favourable bounds:

l:asympt-err Lemma 5.11. Suppose v ∈ Jλ and that, in addition, λ < λ0 if σ < −2. Then the error f satisfies the
uniform bound

(5.59) |f(t, v)| ≲ (t−1(tλ2a′′)−
1
4 + t−1− δ

4λ− δ
4 )tC

2ϵ2 , σ ≤ −2, tλ2a′′ ≥ 1,

respectively

(5.60) |f(t, v)| ≲ t−1− δ
4λ− δ

4 tC
2ϵ2 , σ > −2.
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Proof. We can write

f(t, v) = ⟨u, (i∂t −A(D))uv⟩+ ⟨Q(u, ū, u),uv⟩ := f1 + f2,

and estimate each term separately.
For f1 we use Lemma 4.4 to write

(i∂t −A(D))uv = t−
3
2 (Lu1

v + r1v),

where

u1
v ≈ (a′′)−

1
2uv, rv ≈ λ−1(a′′)−

1
2uv.

Hence we can use Holder’s inequality to bound

|f1(t, v)| ≲ t−
5
4 (a′′)−

3
4λ−s1∥u∥X ≲ t−1(ta′′λ2)−

1
4 ∥u∥X .

Next we consider f2, where we use the balanced/unbalanced decomposition of Q. The contribution of the
unbalanced part Qunbal is placed in f using the bound and (5.32).

It remains to consider the balanced component of Q. Furthermore, in view of the frequency localization
of uv at frequency λ, it suffices to consider the balanced component of Q localized to frequency λ.

Here we go through two stages, exactly as in the similar argument in the model case:
a) Replace uλ by t−

1
2 γ(t, v)χλe

itϕ, with errors controlled by Lemmas 5.10 and 5.9.

b) Replace Qλ(χλe
itϕ, χλe

−itϕ, χλe
itϕ) by t−

3
2χ3

λe
itϕq(ξv, ξv, ξv).

□

5.6. Conclusion. Our remaining objective is to recover our bootstrap assumption, and show that we have
the better bound

(5.61) ∥⟨D⟩ δ
4u∥L∞ ≲ ϵ.

We consider separately each dyadic component uλ, for which we seek to show that

wantwant (5.62) ∥uλ∥L∞ ≲ ϵt−
1
2λ− δ

3 .

On the other hand, from the vector field bound (5.23) and the energy estimates (5.13) we have

havehave (5.63) ∥uλ∥L∞ ≲ ϵt−
1
2+C

2ϵ2λ− δ
2 .

Here ϵ is sufficiently small, so in particular we can assume that ϵ ≪ δ. Hence, the desired conclusion (5.63)
follows provided that t ≲ λN , where the large constant N can be chosen arbitrarily. It remains to consider
the complementary region t ≳ λN . We remark that in the case when σ < −2, this region lies entirely within
D, so in particular it ensures that λ < λ0.

We now divide and conquer depending on the spatial location:
a) Outside of the region J̃λ, we use the elliptic bound (5.25). This yields

∥uλ∥L∞(J̃C
λ ) ≲

λ−s1+ 1
2

tλa′′(λ)
tC

2ϵ2 ≲
1

(tλ2a′′(λ))
1
2

tC
2ϵ2 ,

which suffices if t ≳ λN .
b) It remains to bound χλuλ. By Lemma 5.10, this is equivalent to showing that our asymptotic function

γ satisfies a similar bound, namely

(5.64) |γ(t, v)| ≲ ϵλ− δ
2 , v ∈ Jλ, t ≳ λN .

At this point it is natural to split into two cases:
A) σ > −2. Here we initialize γ at t = 1, and use the asymptotic equation (5.58) to bound γ at later

times.
B) σ ≤ −2. Here γ is restricted to the set D, so for each velocity v ∈ Jλ we initialize at times where

t ≈ λN , using (5.63), and propagate the bound using the asymptotic equation(5.58).
□
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