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Abstract
With the ever improving computing capabil-

ities and storage capacities of mobile devices in 
line with evolving telecommunication network par-
adigms, there has been an explosion of research 
interest toward exploring distributed learning (DL) 
frameworks to realize stringent key performance 
indicators (KPIs) that are expected in next-genera-
tion/6G cellular networks. In conjunction with edge 
computing, federated learning (FL) has emerged as 
the DL architecture of choice in prominent wire-
less applications. This article provides an outline of 
how DL in general and FL-based strategies specifi-
cally can contribute toward realizing part of the 6G 
vision and strike a balance between communication 
and computing constraints. As a practical use case, 
we apply multi-agent reinforcement learning within 
the FL framework to the dynamic spectrum access 
(DSA) problem and present preliminary evaluation 
results. Top contemporary challenges in applying 
DL approaches to 6G networks are also highlighted.

Introduction
The past three decades have witnessed an evolution 
of the telecommunications industry from 2G to 5G, 
each enabling richer user experiences compared 
to its previous generation, backed by increasing-
ly sophisticated advancements in the air interface 
and the core network. Even though commercial 5G 
non-standalone (NSA) networks were first launched 
in 2019, it is fair to say that they have yet to realize 
their full potential across a wide range of applica-
tions ranging from enhanced mobile broadband 
(eMBB) to massive machine-type communications 
(mMTC) and the Internet of Things (IoT) to ultra-re-
liable low-latency communications (URLLC), as 
originally envisioned for 5G. Looking at the journey 
of successive generations of commercial mobile 
networks, every generation has required approxi-
mately a decade of focused research for successful 
large-scale deployment based on that technology. 
With 5G standalone (SA) networks being planned 
for rollout in 2023, it is not unreasonable to expect 
the launch of the first 6G network by 2030. There-
fore, now is the right time to ask the question: What 
will 6G look like?

A Vision for 6G
The answer to what 6G should look like is mul-
tidimensional, and a truly forward-looking vision 
for 6G must consider not only futuristic enabling 
technologies and services, but also exploit the full 

spectrum of emerging value chains and upcoming 
business verticals. The first deployed 6G network 
can be expected to be an evolution of 5G net-
works to some degree, but also to simultaneously 
incorporate radically disruptive technologies for 
realizing use cases that are currently not part of 
5G and which may not be fully realizable with 
existing technologies.

For 6G to be the ubiquitous wireless network of 
choice, it is imperative that it empower mobile net-
work operators to deliver wide-ranging services to 
not just the final consumers (user equipments, UEs), 
but also to the larger enterprise services, which can 
be broadly categorized into the business-to-business 
(B2B) services category, which includes logistics, 
manufacturing, transportation, health, banking, and 
government sectors, among others. While 5G has 
made an effort to serve a subset of such B2B verti-
cals via mMTC and URLLC, a significant effort has to 
be made to define clear key performance indicators 
(KPIs) in 6G for different verticals within the B2B cat-
egory. An always-connected end user, which may 
be a consumer in a business-to-consumer (B2C) ser-
vice or a business (B2B), must be able to access all 
available digital services by harnessing the various 
well-defined capabilities of the ubiquitous 6G net-
work. To this end, we present a sampling of 6G use 
cases in this section. This list is not exhaustive but 
includes a collection of verticals that could be imple-
mented in 6G based on existing KPI specifications 
currently available in part in 5G standards.

Manufacturing
Heavy industry, especially the manufacturing sec-
tor, relies on high-precision equipment that often 
has to function in cooperation with each other, for 
example, robotics in the automobile or the parts 
manufacturing industry. In the 6G vision of the 
connected industrial floor, it is expected that mul-
tiple radio access technologies (RATs), together 
with time-sensitive networking, will deliver the reli-
ability and latency performance that would sup-
port various industrial applications. A preliminary 
version of this is espoused as part of the Industry 
4.0 vision; however, 5G New Radio (NR) stan-
dards aimed at Industry 4.0 are not sufficient to 
realize the expanded use cases of the next-genera-
tion industrial floor. As an example, automated and 
real-time monitoring of critical infrastructure such 
as power grids and energy supply lines demands 
URLLC links involving dual mobility of robots and 
human workers.
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The COVID-19 pandemic has demonstrated the 
importance of healthcare services being delivered 
directly to the patient at their homes, and the need 
for such services to be supported in 6G. Transi-
tioning to home care also reduces operational 
and administrative costs for hospitals and caters 
better to high-risk patients with potential mobility 
impairments. Remote patient monitoring can be 
enhanced using augmented reality (AR) and virtual 
reality (VR). High data rate and extremely high-reli-
ability links with latency requirements of less than a 
millisecond will be requred for robot-assisted tele-
surgery. Another key enabling technology to make 
telemedicine possible would be real-time tactile 
feedback, which has not been achieved yet. How-
ever, 6G, which will likely ensure higher spectrum 
usage together with edge-assisted distributed learn-
ing techniques, can potentially deliver the stringent 
KPIs needed in telemedicine.

Public Services and Safety
Public safety (PS) operations are critical in dispens-
ing critical and, in some cases, life-saving informa-
tion to citizens from government agencies. First 
responders are the most important component in 
the complete chain of command and traditional-
ly have relied on unreliable voice-only links. How-
ever, upgraded capabilities such as high-definition 
real-time streaming video from body cameras and 
real-time access to sensor data including ther-
mal sensors will enhance the capabilities of first 
responders for improved crisis mitigation. Device-
to-device (D2D) communications, including remote 
robot control for applications such as bomb defusal 
and operating robots in incident locations unsuit-
able for humans, will also require KPIs that are cur-
rently not met by 5G. In order to meet these in 6G, 
there must be a focus on improved coverage and 
the ability to support a large number of connec-
tions in a dense environment. The PS networking 
infrastructure in 6G must also include KPIs that 
ensure efficient usage of battery-operated end-user 
devices when receiving PS messages.

Communication and Computing Trade-off in 6G
Early works that played a key part in the ideation 
of 5G emphasized the need to transition toward 
a software-centric approach starting from the net-
work core to the air interface. Software-defined 
networking (SDN), which marks a shift from the 
traditional hardware-centric approach along with 
network function virtualization (NFV), will contin-
ue to be the primary enabler in 6G networks too, 
as they have been in 5G. In parallel, the overall 
mobile edge computing (MEC) paradigm advo-
cates for the re-structuring of radio access network 
(RAN) and core network functions by transfer-
ring some of the base station (BS) functionality 
upstream to the cloud and transferring some of the 
core network functionality downstream. This cre-
ates a clearly identifiable “edge” or “fog” domain 
between the BS and the end device.

Although cloud computing [1] has brought rich-
er and more complex applications to end users 
by harnessing the power of the remote cloud 
server, extremely sensitive latency requirements 
specified for use cases in 5G and potentially in 6G 
have demanded an alternate approach. Due to 

the complex traffic distributions in modern wire-
less networks, the network architecture is becom-
ing increasingly heterogeneous. There are multiple 
types of network access nodes providing reliable 
and seamless connectivity for mobile users such 
as a macro BS, a small cell BS, and a WiFi access 
point (AP), to name a few. These network access 
nodes support edge computing at network edges 
with low transmission latency. Due to the different 
characteristics of network access nodes such as 
coverage ability and transmit power, the design of 
the coexistence of heterogeneous MEC networks 
has attracted increasing attention [2]. The cooper-
ative computational offloading between multiple 
network access nodes needs to be well designed.

Under such a heterogeneous network architec-
ture, intelligent task allocation and resource alloca-
tion among different network nodes can significantly 
improve system performance. On one hand, coop-
eration between the edge and the cloud can be 
achieved to enhance the quality of service (QoS) 
of IoT tasks further. Specifically, cloud servers can 
process tasks that require intensive computation, 
while edge servers can process tasks that work with 
a small data size or have a low latency requirement. 
On the other hand, intelligent task allocation among 
edge servers can effectively offload tasks from over-
loaded edge servers to underutilized ones, and thus 
reduce the execution delay of tasks [2].

Distributed Learning for 6G
Due to the dispersed and occasionally sparse 
nature of cellular wireless networks consisting of 
possibly heterogeneous end devices, the distribut-
ed learning (DL) paradigm has emerged as being 
vital in applying machine learning (ML) approach-
es to wireless network problems in general. The 
factors that make DL fit for application to wireless 
networks are multi-fold:
•	 As mobile and IoT devices become computa-

tionally more capable with higher storage capac-
ities, they will also generate exponentially large 
amounts of local user data and contextual sens-
ing data originating from diverse applications.

•	 Due to constraints of sending large amounts of 
data from end devices over bandwidth-limited 
wireless channels to server nodes and due to 
user data privacy concerns, it is not optimum to 
send local data to the server node (aggregator) 
in every training round.

Therefore, it is beneficial for the end devices to 
generate and store locally generated data on-de-
vice and only transfer the model parameter 
updates obtained from local training to the cen-
tral server, which could be used to update a glob-
al ML model. This is referred to as the “parameter 
server” architecture, which can be categorized as 
a centralized multi-node distributed ML approach. 
Federated learning (FL) is one of the most popular 
parameter server architecture variants and makes 
up the vast majority of distributed ML research 
in wireless communication systems. There are 
other decentralized DL approaches including 
MapReduce [3], AllReduce, and All-to-All, among 
others. However, they are not widely applied to 
wireless networks due to practical bandwidth and 
latency constraints, and hence our focus in this 
article will be on the FL architecture and its asso-
ciated algorithms that can be applied to wireless 
networked systems.

The COVID-19 pan-
demic has demon-
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FL lends itself particularly well to application in 
large-scale wireless networks such as cellular systems 
[4]. In particular, FL addresses the privacy concerns of 
heterogeneous users that are not well addressed in 
more conventional DL architectures that may involve 
sharing of local user data with the central server or 
with each other. Additionally, since FL only requires 
sharing of parameter updates from the participating 
devices to the aggregator and not the local data itself, 
FL reduces the overall communication overhead [4] 
and can tackle wireless channel uncertainties more 
effectively, thereby improving reliability.

Federated Learning Preliminaries
A traditional cloud-only-based ML approach off-
loads data sensed at end devices to the remote 
cloud server for centralized training in order to train 
a common model for future inference. However, 
the training time in the cloud may be impractical 
due to the large volume of the sensed data that 
needs to be utilized in the training process, and in 
part due to the training computational complexity 
of the ML model being significantly large. Mean-
while, as the cloud server may be physically distant 
from the end devices, these devices may suffer from 
large communication delays. To solve this problem, 
FL facilitated by MEC can be a promising approach 
to shift from a centralized training paradigm to a 
more practical decentralized training one. Federat-
ed learning [5] enables aggregation of the ML mod-
els on different end devices, which are trained using 
their local datasets and cooperatively learning the 
global model. Specifically, at the beginning of each 
round, the server sends the current global model to 
each participating end device. The end devices (cli-
ents) then train their individual local models based 
on their own limited datasets and transfer back the 
model parameter updates at the end of each train-
ing round to an aggregator at the server. This can 
be repeated for as many training rounds as neces-
sary for the global model to achieve the desired 
accuracy. FL distinguishes itself from other distribut-
ed learning schemes by certain unique factors. First, 
the assumption that the data samples sensed at the 
different end devices are realizations of indepen-
dent and identically distributed (i.i.d.) random vari-
ables may not hold in FL, since the local dataset of a 
single user’s end device may not be representative 
of the overall population distribution. Second, the 
local datasets generated across federated learners 
may differ greatly in size, causing an imbalanced dis-
tribution. This imbalance in dataset sizes is primarily 
due to the different types of IoT devices (e.g., smart-
phone or vehicle) and different application scenari-
os (e.g., a maps application on a smartphone may 
generate more data for an active city user than for 
a less active rural user). Third, in the FL setting, the 
total amount of sensed data samples contributing 
toward learning the global model at the edge server 
is much larger than that available for local training 
at each user. Finally, most federated learners are 
mobile devices (smartphones, wearables, drones, 
vehicles, etc.) with possibly unreliable wireless con-
nectivity to the FL edge server. This implies that the 
aggregator may have to support offline learners or 
learners with slow connectivity, especially in the 
cellular uplink scenario. In the context of these dif-
ferentiating factors, FL provides clear advantages 
in wireless applications that may not be available in 
other decentralized ML approaches.

Case Study: FL for Dynamic Spectrum Access

In this section, we consider dynamic spectrum 
access (DSA) as a special application in which FL 
can be applied for superior performance. First, we 
introduce some preliminaries on DSA. To efficiently 
utilize spectrum resources, two types of spectrum 
management mechanisms can be utilized: static 
and dynamic. Static spectrum sharing groups and 
reorders all spectrum resources to assign the same 
portion back to service providers (SPs). The licensed 
SPs schedule these spectrum resources to their sub-
scribers accordingly. On the other hand, in DSA, 
the spectrum resources are dynamically allocated to 
both licensed SPs and unlicensed SPs with and with-
out a quality of service (QoS) guarantee, respective-
ly. This provides an efficient way of utilizing available 
radio resources and alleviating spectrum shortages 
without adding new spectrum resources for unli-
censed SPs. Licensed users and unlicensed users are 
referred to as primary users (PUs) and secondary 
users (SUs), respectively, henceforth in this article.

ML methods have been used previously in DSA 
applications to allocate spectrum resources more 
effectively. For example, deep reinforcement learn-
ing (DRL) was introduced in [6] as a natural tool 
for DSA and sharing. Specifically, the DRL agent 
takes an action based on an observation of the 
environment, receives a reward from the environ-
ment depending on the action taken, and then 
transitions into a new state. The goal of the DRL 
agent is to find a policy that optimizes the cumula-
tive reward. The DRL framework considered in this 
work is multi-agent reinforcement learning (MARL). 
Here, multiple agents are involved in the system, 
thereby transforming this into an optimization 
problem that incorporates the policies of all agents 
involved. The individual actions, rewards, and states 
of every agent impact those of every other agent 
[7]. MARL allows these agents to communicate 
with the server and process their distributed tasks 
in parallel once the agents receive them. For exam-
ple, agents can share their experiences with each 
other to boost their learning convergence. Fur-
thermore, a MARL system allows the addition of 
new agents into the system and replacing inactive 
agents. However, MARL suffers from a prohibitive 
computational time due to its exponential com-
plexity, which is a function of the problem’s dimen-
sionality. It is also affected by the environment’s 
non-stationarity as well as the exploration and 
exploitation trade-off [7]. To mitigate these issues, 
solutions including the deep Q-network (DQN) 
[8], its reservoir computing (RC) version known as 
the deep echo state Q-network (DEQN) proposed 
in [9], and so on, have been proposed. In what 
follows, we describe how MARL-enabled FL can be 
configured to tackle the DSA problem.

Outline: Existing MARL algorithms assume that 
a joint reward is received by all agents, or that each 
agent receives an individual reward but shares it 
with other agents. However, this assumption may 
not be practical in certain real-world applications 
since agents may not share their observations and 
received rewards due to data privacy and securi-
ty concerns. In the MARL-enabled FL system being 
considered, the agents do not share their local 
observations and rewards with other agents, but 
update their policies to maximize their individual 
long-term local rewards. The objective of this system 

A traditional cloud-on-
ly-based ML approach 
offloads data sensed 
at end devices to the 
remote cloud server 
for centralized train-
ing in order to train 
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for future inference. 
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is to optimize the joint long-term reward, expressed 
as the sum of each agent’s long-term local reward. 
The architecture of FL in a MARL setting is depicted 
in Fig. 1, where qk represents the model parameters 
in communication round k and  q(n)

k represents 
the model parameter updates in round k sent by 
user n to the server. We select the signal-to-inter-
ference-plus-noise ratio (SINR) as our quality metric 
[9], which takes into account all the factors affecting 
the SUs in the network, such as the receiver thermal 
noise, the BS transmission power, and the interfer-
ence between potentially simultaneously transmit-
ting BS-user pairs. The user throughput is used as 
each user or agent’s local reward function. Since 
MARL enables user interaction with the environment 
and training a shared model for maximizing a long-
term reward, it aligns well with the FL idea of using 
a shared global model among all users. This also 
presents an example of how FL can be applied to 
accommodate a large number of SUs in the public 
services and safety use case for 6G outlined earlier.

Spectrum Access Policy: We model an SU’s 
spectrum access strategy to utilize the spectrum 
resources efficiently as follows. There are N SUs 
and M channels with (N > M), so each SU can only 
access one channel at a specific time. To avoid 
interference from unlicensed users, SUs are not 
allowed to transmit on a particular channel when 
a PU is occupying that channel. However, an SU 
may interfere with another SU. The channel access 
activity of the PUs is modeled as a Markov pro-
cess. To collaboratively avoid interference among 
SUs, we apply the previously outlined spectrum 
access framework to SUs.

We use a decentralized policy gradient method 
in our MARL system to optimize the joint reward. 
An initialized policy network is first distributed to 
all agents. The policy network, which is implement-
ed as a neural network at each agent, is updated 
based on its own observation of the environment. 
In each communication cycle, the agent empties its 
buffer, observes the environment, takes an action 
based on its policy, and receives a reward from the 
environment. After repeating the aforementioned 
steps for a sufficient number of iterations, each 
agent learns an updated local model. The updated 
local models are shared with and aggregated at a 
central server to update the global model.

User Participation: Selecting the appropriate 
number of users in each communication cycle of 
the FL training process is critical for accelerating 
convergence. To this end, we consider perform-
ing partial user participation during each round 
of aggregation in the FL algorithm. For a given 
number of participating users, we assume that the 
probability of a particular user being selected for 
participation in a specific training round is uniform. 
Only the local model weights of the participating 
devices are aggregated at the central server, and 
only the participating devices in each aggregation 
cycle receive a model update under the proposed 
framework. Therefore, the RL agent deployed at 
each SU does not need to know about or depend 
on data samples from other SUs.

Simulation Results: In our simulation setup, 
we randomly place eight BS-UE pairs in a 400 m  
400 m area and configure four different frequency 
bands as the available communication channels. 

FIGURE 1. Multi-agent reinforcement learning (MARL) in a federated learning framework.
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We only consider downlink, that is, communication 
from the eight BSs to their respective UEs. These 
eight BSs act as the SU transmitters (SU Txs), and 
the eight UEs act as the SU receivers (SU Rxs). 
The probability of each of the four channels being 
occupied by a PU is set to 20 percent. At each 
time step t, the policy maps an agent’s observa-
tion to its action such that the agent chooses to 
access one of the four channels or remain idle, 
after which it receives a reward. The observation 
consists of the averaged historical throughput up 
to the previous time step and the throughput in the 
previous time step on all channels. We compare 
our MARL-enabled FL with a traditional distributed 
learning approach, both deploying an RL agent 
that uses a two-layer feedforward neural network 
as its kernel. In the traditional DL setting, each SU 
Tx receives a model from the central server and 
starts updating its local model such that its local 
reward is maximized, without any further commu-
nication with the central server or with other SU 
Txs. On the other hand, MARL-enabled FL can 
provide better overall performance at the system 
level since it enables indirect cooperation among 
SU Txs via periodic aggregation of their individual 
local models at the central server. With traditional 
DL, the users compete with each other for limited 
resources without cooperation. The users can take 
one of five actions, namely [0, 1, 2, 3, 4], where 0 
indicates no channel access while any index from 1 
to 4 represents accessing one of the four available 
channels. The local model at each agent is trained 
after 50 time steps, which is defined as one epi-
sode. The global model in FL is aggregated after 

every fourth episode. This periodic model aggre-
gation and update helps with the long-term sum of 
rewards, which is correlated with the user through-
put. In other words, model aggregation allows 
users to “peek” into the environment of other users 
and enables user collaboration.

Figure 2 shows that MARL-enabled FL results in 
a higher (local) reward averaged across users and 
thus a higher joint reward as compared to DL, also 
implying a higher overall user throughput, although 
FL requires a greater number of communication 
rounds between the SU Txs and the central server 
compared to conventional DL. This points toward 
a trade-off between the communication overhead 
and the achievable system throughput using DL/
FL methods. Figure 3 investigates the FL framework 
for varying numbers of participating users U (< N) 
in every aggregation round, that is, every fourth epi-
sode. It shows that the greater the number of par-
ticipating users, the higher the average user reward 
and thereby the system throughput. Meanwhile, this 
partial participation mechanism allows the frame-
work to be more flexible in choosing users with 
better channel conditions, more relaxed energy con-
straints, and sufficient computational resources. The 
complete set of parameters used in our simulation 
is summarized in Table 1. The total number of epi-
sodes in the MARL algorithm is set to 50,000.

Top Challenges for Distributed Learning in 6G
The intricate balance between the remote cloud 
server and the edge node while providing end 
users with high QoS that requires heavy compu-
tation in addition to adherence to extremely low 
latencies will remain a key challenge in most 6G 
use cases, one which DL and especially FL can 
potentially address. In this section, we provide a 
brief sampling of other related open problems 
that implementation of DL and specifically FL 
strategies for 6G will likely encounter.

Generalization
One of the most prominent features in a distribut-
ed wireless network with a potentially large num-
ber of heterogeneous devices is the possibility of 
mobility of these devices, to the extent that suf-
ficiently high-speed mobility for even a subset of 
devices may render the training and testing data 
distributions to be significantly different. While 
approaches such as domain adaptation can be 
used to improve the inference performance in the 
presence of such a training-test mismatch, imple-
menting it on a large scale with acceptable on-de-
vice computational complexity is still an open 
problem. This applies not just to FL but to any DL 
approach in which statistically distinct training and 
test datasets are a possibility.

Privacy Issues in FL
Maintaining the maximum possible number of 
participating devices in the FL training process is 
always a problem, especially in an unreliable wire-
less environment. Furthermore, to save energy, 
battery-powered IoT devices incorporate strate-
gies suited to DL (e.g., opting out of certain train-
ing rounds). Although the assurance of local user 
data privacy is a standout feature of FL, malicious 
actors may still be able to glean critical system 
information from model changes [10]. Although 
newer methods such as secure multiparty com-

FIGURE 2. Averaged user reward in federated learning (FL) vs. conventional 
distributed learning (DL).

FIGURE 3. Averaged user reward vs. number of participating users.
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putation (SMC) [11], differential privacy [12], and 
secure aggregation [5] seek to improve the pri-
vacy of FL, these approaches generally sacrifice 
inference performance for privacy. Understanding 
and balancing these costs is a significant difficulty 
in implementing private FL systems, both theoreti-
cally and practically [13].

Asynchronous FL Optimization
Although the synchronous FL model provides bet-
ter convergence guarantees, it is sensitive to the 
Straggler effect [14]. The asynchronous FL model 
is more suitable in practice, especially when end 
devices differ in terms of hardware, network con-
nection reliability, and battery capacity, resulting 
in substantial heterogeneity in system parameters 
throughout the network [13]. There needs to be 
a theoretical investigation into the convergence 
bounds of popular algorithms such as stochastic 
gradient descent (SGD) that can be suited for dif-
ferent applications. Most existing studies analyzing 
FL have been for the i.i.d. assumption of local user 
data. Some works, such as [15], have studied the 
non-i.i.d. case with asynchronous communication 
reduction methods under privacy. However, exten-
sive theoretical and application-oriented analysis of 
non-i.i.d. data-based FL remains to be explored.

Conclusion
In this article, a forward-looking vision for 6G net-
works is outlined, highlighting specific use cases 
that extend or renew those introduced in 5G NR. 
Due to the constraints inherent in wireless net-
works and performance specifications, which will 
be especially stringent in 6G, distributed learning 
(DL) as a paradigm could play an important role in 
realizing novel applications. As a specific example, 
we apply federated learning (FL) with multi-agent 
reinforcement learning (MARL) to the dynamic 
spectrum access problem and demonstrate prom-
ising results through simulations. MARL-enabled FL 
is a good fit for 6G use cases that would rely on 
cooperation of large numbers of distributed users. 
A relevant sampling of challenges and potential 
future directions for applying DL and FL approach-
es in 6G networks are also presented.
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TABLE 1. Simulation parameters.

Parameter Value

Channel bandwidth 10 MHz

Path loss model 41 + 22.7log10(d[m]) dB

Small-scale fading Rician distribution

Line-of-Sight path coefficient 5

Noise spectral density – 174 (dBm/Hz)

Total episodes explored 50000

Time steps per episode 50

Local learning rate 0.01

Decay factor 0.9
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