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ABSTRACT

With the ever improving computing capabil-
ities and storage capacities of mobile devices in
line with evolving telecommunication network par-
adigms, there has been an explosion of research
interest toward exploring distributed learning (DL)
frameworks to realize stringent key performance
indicators (KPlIs) that are expected in next-genera-
tion/6G cellular networks. In conjunction with edge
computing, federated learning (FL) has emerged as
the DL architecture of choice in prominent wire-
less applications. This article provides an outline of
how DL in general and FL-based strategies specifi-
cally can contribute toward realizing part of the 6G
vision and strike a balance between communication
and computing constraints. As a practical use case,
we apply multi-agent reinforcement learning within
the FL framework to the dynamic spectrum access
(DSA) problem and present preliminary evaluation
results. Top contemporary challenges in applying
DL approaches to 6G networks are also highlighted.

INTRODUCTION

The past three decades have witnessed an evolution
of the telecommunications industry from 2G to 5G,
each enabling richer user experiences compared
to its previous generation, backed by increasing-
ly sophisticated advancements in the air interface
and the core network. Even though commercial 5G
non-standalone (NSA) networks were first launched
in 2019, it is fair to say that they have yet to realize
their full potential across a wide range of applica-
tions ranging from enhanced mobile broadband
(eMBB) to massive machine-type communications
(mMTC) and the Internet of Things (loT) to ultra-re-
liable low-latency communications (URLLC), as
originally envisioned for 5G. Looking at the journey
of successive generations of commercial mobile
networks, every generation has required approxi-
mately a decade of focused research for successful
large-scale deployment based on that technology.
With 5G standalone (SA) networks being planned
for rollout in 2023, it is not unreasonable to expect
the launch of the first 6G network by 2030. There-
fore, now is the right time to ask the question: What
will 6G look like?

A VisIon FoR 66

The answer to what 6G should look like is mul-
tidimensional, and a truly forward-looking vision
for 6G must consider not only futuristic enabling
technologies and services, but also exploit the full

spectrum of emerging value chains and upcoming
business verticals. The first deployed 6G network
can be expected to be an evolution of 5G net-
works to some degree, but also to simultaneously
incorporate radically disruptive technologies for
realizing use cases that are currently not part of
5G and which may not be fully realizable with
existing technologies.

For 6G to be the ubiquitous wireless network of
choice, it is imperative that it empower mobile net-
work operators to deliver wide-ranging services to
not just the final consumers (user equipments, UEs),
but also to the larger enterprise services, which can
be broadly categorized into the business-to-business
(B2B) services category, which includes logistics,
manufacturing, transportation, health, banking, and
government sectors, among others. While 5G has
made an effort to serve a subset of such B2B verti-
cals via mMTC and URLLC, a significant effort has to
be made to define clear key performance indicators
(KPIs) in 6G for different verticals within the B2B cat-
egory. An always-connected end user, which may
be a consumer in a business-to-consumer (B2C) ser-
vice or a business (B2B), must be able to access all
available digital services by harnessing the various
well-defined capabilities of the ubiquitous 6G net-
work. To this end, we present a sampling of 6G use
cases in this section. This list is not exhaustive but
includes a collection of verticals that could be imple-
mented in 6G based on existing KPI specifications
currently available in part in 5G standards.

MANUFACTURING

Heavy industry, especially the manufacturing sec-
tor, relies on high-precision equipment that often
has to function in cooperation with each other, for
example, robotics in the automobile or the parts
manufacturing industry. In the 6G vision of the
connected industrial floor, it is expected that mul-
tiple radio access technologies (RATs), together
with time-sensitive networking, will deliver the reli-
ability and latency performance that would sup-
port various industrial applications. A preliminary
version of this is espoused as part of the Industry
4.0 vision; however, 5G New Radio (NR) stan-
dards aimed at Industry 4.0 are not sufficient to
realize the expanded use cases of the next-genera-
tion industrial floor. As an example, automated and
real-time monitoring of critical infrastructure such
as power grids and energy supply lines demands
URLLC links involving dual mobility of robots and
human workers.
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HEALTHCARE

The COVID-19 pandemic has demonstrated the
importance of healthcare services being delivered
directly to the patient at their homes, and the need
for such services to be supported in 6G. Transi-
tioning to home care also reduces operational
and administrative costs for hospitals and caters
better to high-risk patients with potential mobility
impairments. Remote patient monitoring can be
enhanced using augmented reality (AR) and virtual
reality (VR). High data rate and extremely high-reli-
ability links with latency requirements of less than a
millisecond will be requred for robot-assisted tele-
surgery. Another key enabling technology to make
telemedicine possible would be real-time tactile
feedback, which has not been achieved yet. How-
ever, 6G, which will likely ensure higher spectrum
usage together with edge-assisted distributed learn-
ing techniques, can potentially deliver the stringent
KPIs needed in telemedicine.

PUBLIC SERVICES AND SAFETY

Public safety (PS) operations are critical in dispens-
ing critical and, in some cases, life-saving informa-
tion to citizens from government agencies. First
responders are the most important component in
the complete chain of command and traditional-
ly have relied on unreliable voice-only links. How-
ever, upgraded capabilities such as high-definition
real-time streaming video from body cameras and
real-time access to sensor data including ther-
mal sensors will enhance the capabilities of first
responders for improved crisis mitigation. Device-
to-device (D2D) communications, including remote
robot control for applications such as bomb defusal
and operating robots in incident locations unsuit-
able for humans, will also require KPIs that are cur-
rently not met by 5G. In order to meet these in 6G,
there must be a focus on improved coverage and
the ability to support a large number of connec-
tions in a dense environment. The PS networking
infrastructure in 6G must also include KPIs that
ensure efficient usage of battery-operated end-user
devices when receiving PS messages.

COMMUNICATION AND COMPUTING TRADE-OFF IN 6G

Early works that played a key part in the ideation
of 5G emphasized the need to transition toward
a software-centric approach starting from the net-
work core to the air interface. Software-defined
networking (SDN), which marks a shift from the
traditional hardware-centric approach along with
network function virtualization (NFV), will contin-
ue to be the primary enabler in 6G networks too,
as they have been in 5G. In parallel, the overall
mobile edge computing (MEC) paradigm advo-
cates for the re-structuring of radio access network
(RAN) and core network functions by transfer-
ring some of the base station (BS) functionality
upstream to the cloud and transferring some of the
core network functionality downstream. This cre-
ates a clearly identifiable “edge” or “fog” domain
between the BS and the end device.

Although cloud computing [1] has brought rich-
er and more complex applications to end users
by harnessing the power of the remote cloud
server, extremely sensitive latency requirements
specified for use cases in 5G and potentially in 6G
have demanded an alternate approach. Due to

the complex traffic distributions in modern wire-
less networks, the network architecture is becom-
ing increasingly heterogeneous. There are multiple
types of network access nodes providing reliable
and seamless connectivity for mobile users such
as a macro BS, a small cell BS, and a WiFi access
point (AP), to name a few. These network access
nodes support edge computing at network edges
with low transmission latency. Due to the different
characteristics of network access nodes such as
coverage ability and transmit power, the design of
the coexistence of heterogeneous MEC networks
has attracted increasing attention [2]. The cooper-
ative computational offloading between multiple
network access nodes needs to be well designed.

Under such a heterogeneous network architec-
ture, intelligent task allocation and resource alloca-
tion among different network nodes can significantly
improve system performance. On one hand, coop-
eration between the edge and the cloud can be
achieved to enhance the quality of service (QoS)
of 10T tasks further. Specifically, cloud servers can
process tasks that require intensive computation,
while edge servers can process tasks that work with
a small data size or have a low latency requirement.
On the other hand, intelligent task allocation among
edge servers can effectively offload tasks from over-
loaded edge servers to underutilized ones, and thus
reduce the execution delay of tasks [2].

DISTRIBUTED LEARNING FOR 66

Due to the dispersed and occasionally sparse
nature of cellular wireless networks consisting of
possibly heterogeneous end devices, the distribut-
ed learning (DL) paradigm has emerged as being
vital in applying machine learning (ML) approach-
es to wireless network problems in general. The
factors that make DL fit for application to wireless
networks are multi-fold:

+ As mobile and loT devices become computa-
tionally more capable with higher storage capac-
ities, they will also generate exponentially large
amounts of local user data and contextual sens-
ing data originating from diverse applications.

+ Due to constraints of sending large amounts of
data from end devices over bandwidth-limited
wireless channels to server nodes and due to
user data privacy concerns, it is not optimum to
send local data to the server node (aggregator)
in every training round.

Therefore, it is beneficial for the end devices to
generate and store locally generated data on-de-
vice and only transfer the model parameter
updates obtained from local training to the cen-
tral server, which could be used to update a glob-
al ML model. This is referred to as the “parameter
server” architecture, which can be categorized as
a centralized multi-node distributed ML approach.
Federated learning (FL) is one of the most popular
parameter server architecture variants and makes
up the vast majority of distributed ML research
in wireless communication systems. There are
other decentralized DL approaches including
MapReduce [3], AllReduce, and All-to-All, among
others. However, they are not widely applied to
wireless networks due to practical bandwidth and
latency constraints, and hence our focus in this
article will be on the FL architecture and its asso-
ciated algorithms that can be applied to wireless
networked systems.

The COVID-19 pan-
demic has demon-
strated the importance
of healthcare services
being delivered directly
to the patient at their
homes, and the need
for such services to be
supported in 6G.
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A traditional cloud-on-
ly-based ML approach
offloads data sensed
at end devices to the
remote cloud server
for centralized train-
ing in order to train

a common model

for future inference.
However, the training
time in the cloud may
be impractical due to
the large volume of
the sensed data that
needs to be utilized in
the training process,
and in part due to the
training computational
complexity of the ML
model being significant-
ly large.

FL lends itself particularly well to application in
large-scale wireless networks such as cellular systems
[4]. In particular, FL addresses the privacy concerns of
heterogeneous users that are not well addressed in
more conventional DL architectures that may involve
sharing of local user data with the central server or
with each other. Additionally, since FL only requires
sharing of parameter updates from the participating
devices to the aggregator and not the local data itself,
FL reduces the overall communication overhead [4]
and can tackle wireless channel uncertainties more
effectively, thereby improving reliability.

FEDERATED LEARNING PRELIMINARIES

A traditional cloud-only-based ML approach off-
loads data sensed at end devices to the remote
cloud server for centralized training in order to train
a common model for future inference. However,
the training time in the cloud may be impractical
due to the large volume of the sensed data that
needs to be utilized in the training process, and in
part due to the training computational complexity
of the ML model being significantly large. Mean-
while, as the cloud server may be physically distant
from the end devices, these devices may suffer from
large communication delays. To solve this problem,
FL facilitated by MEC can be a promising approach
to shift from a centralized training paradigm to a
more practical decentralized training one. Federat-
ed learning [5] enables aggregation of the ML mod-
els on different end devices, which are trained using
their local datasets and cooperatively learning the
global model. Specifically, at the beginning of each
round, the server sends the current global model to
each participating end device. The end devices (cli-
ents) then train their individual local models based
on their own limited datasets and transfer back the
model parameter updates at the end of each train-
ing round to an aggregator at the server. This can
be repeated for as many training rounds as neces-
sary for the global model to achieve the desired
accuracy. FL distinguishes itself from other distribut-
ed learning schemes by certain unique factors. First,
the assumption that the data samples sensed at the
different end devices are realizations of indepen-
dent and identically distributed (i.i.d.) random vari-
ables may not hold in FL, since the local dataset of a
single user’s end device may not be representative
of the overall population distribution. Second, the
local datasets generated across federated learners
may differ greatly in size, causing an imbalanced dis-
tribution. This imbalance in dataset sizes is primarily
due to the different types of loT devices (e.g., smart-
phone or vehicle) and different application scenari-
os (e.g., a maps application on a smartphone may
generate more data for an active city user than for
a less active rural user). Third, in the FL setting, the
total amount of sensed data samples contributing
toward learning the global model at the edge server
is much larger than that available for local training
at each user. Finally, most federated learners are
mobile devices (smartphones, wearables, drones,
vehicles, etc.) with possibly unreliable wireless con-
nectivity to the FL edge server. This implies that the
aggregator may have to support offline learners or
learners with slow connectivity, especially in the
cellular uplink scenario. In the context of these dif-
ferentiating factors, FL provides clear advantages
in wireless applications that may not be available in
other decentralized ML approaches.

CASE Stupy: FL FoR DYNAMIC SPECTRUM ACCESS

In this section, we consider dynamic spectrum
access (DSA) as a special application in which FL
can be applied for superior performance. First, we
introduce some preliminaries on DSA. To efficiently
utilize spectrum resources, two types of spectrum
management mechanisms can be utilized: static
and dynamic. Static spectrum sharing groups and
reorders all spectrum resources to assign the same
portion back to service providers (SPs). The licensed
SPs schedule these spectrum resources to their sub-
scribers accordingly. On the other hand, in DSA,
the spectrum resources are dynamically allocated to
both licensed SPs and unlicensed SPs with and with-
out a quality of service (QoS) guarantee, respective-
ly. This provides an efficient way of utilizing available
radio resources and alleviating spectrum shortages
without adding new spectrum resources for unli-
censed SPs. Licensed users and unlicensed users are
referred to as primary users (PUs) and secondary
users (SUs), respectively, henceforth in this article.

ML methods have been used previously in DSA
applications to allocate spectrum resources more
effectively. For example, deep reinforcement learn-
ing (DRL) was introduced in [6] as a natural tool
for DSA and sharing. Specifically, the DRL agent
takes an action based on an observation of the
environment, receives a reward from the environ-
ment depending on the action taken, and then
transitions into a new state. The goal of the DRL
agent is to find a policy that optimizes the cumula-
tive reward. The DRL framework considered in this
work is multi-agent reinforcement learning (MARL).
Here, multiple agents are involved in the system,
thereby transforming this into an optimization
problem that incorporates the policies of all agents
involved. The individual actions, rewards, and states
of every agent impact those of every other agent
[7]. MARL allows these agents to communicate
with the server and process their distributed tasks
in parallel once the agents receive them. For exam-
ple, agents can share their experiences with each
other to boost their learning convergence. Fur-
thermore, a MARL system allows the addition of
new agents into the system and replacing inactive
agents. However, MARL suffers from a prohibitive
computational time due to its exponential com-
plexity, which is a function of the problem’s dimen-
sionality. It is also affected by the environment’s
non-stationarity as well as the exploration and
exploitation trade-off [7]. To mitigate these issues,
solutions including the deep Q-network (DQN)
[8], its reservoir computing (RC) version known as
the deep echo state Q-network (DEQN) proposed
in [9], and so on, have been proposed. In what
follows, we describe how MARL-enabled FL can be
configured to tackle the DSA problem.

Outline: Existing MARL algorithms assume that
a joint reward is received by all agents, or that each
agent receives an individual reward but shares it
with other agents. However, this assumption may
not be practical in certain real-world applications
since agents may not share their observations and
received rewards due to data privacy and securi-
ty concerns. In the MARL-enabled FL system being
considered, the agents do not share their local
observations and rewards with other agents, but
update their policies to maximize their individual
long-term local rewards. The objective of this system

114

IEEE Wireless Communications « February 2023



_Environment _
o ’ 0
% Observation 6‘99/1,

S o ¥ N2 S
//’ \\A/o -~ =~ \A//’ N
e N 7/ N 7/ N

Local State 1 /\ [ Local State 2 /\ [ Local State N /\
) I‘[—' I‘[—’ I\I—'
oca . Loca . Loca .
Reward | | Action o Reward | | Action o ___Reward| Action
. Agentl | . Agent2 _ | | . AgentN _
| N l l
[} } }
} | }
[} } [}

o 0] ! ] O ! ! o O
Private Data : Private Data : : Private Data
Po:icy | Poiicy HIRA PoEcv
! : (1) : (2) : (N) !
| 1'VO | 1 VO 1 VO |
[} } k [} e | k } k [}
| | 1 Jk+1 | | |
1 p ) A v |
| Server |
l l
| |
| |
: g :
| |
} . }

L Policy 0 !

! k+1 . k+1 !

R Federated Learning  |--------- -

FIGURE 1. Multi-agent reinforcement learning (MARL) in a federated learning framework.

is to optimize the joint long-term reward, expressed
as the sum of each agent’s long-term local reward.
The architecture of FL in a MARL setting is depicted
in Fig. 1, where 8y represents the model parameters
in communication round k and V 6(”)k represents
the model parameter updates in round k sent by
user n to the server. We select the signal-to-inter-
ference-plus-noise ratio (SINR) as our quality metric
[9], which takes into account all the factors affecting
the SUs in the network, such as the receiver thermal
noise, the BS transmission power, and the interfer-
ence between potentially simultaneously transmit-
ting BS-user pairs. The user throughput is used as
each user or agent’s local reward function. Since
MARL enables user interaction with the environment
and training a shared model for maximizing a long-
term reward, it aligns well with the FL idea of using
a shared global model among all users. This also
presents an example of how FL can be applied to
accommodate a large number of SUs in the public
services and safety use case for 6G outlined earlier.

Spectrum Access Policy: We model an SU’s
spectrum access strategy to utilize the spectrum
resources efficiently as follows. There are N SUs
and M channels with (N > M), so each SU can only
access one channel at a specific time. To avoid
interference from unlicensed users, SUs are not
allowed to transmit on a particular channel when
a PU is occupying that channel. However, an SU
may interfere with another SU. The channel access
activity of the PUs is modeled as a Markov pro-
cess. To collaboratively avoid interference among
SUs, we apply the previously outlined spectrum
access framework to SUs.

We use a decentralized policy gradient method
in our MARL system to optimize the joint reward.
An initialized policy network is first distributed to
all agents. The policy network, which is implement-
ed as a neural network at each agent, is updated
based on its own observation of the environment.
In each communication cycle, the agent empties its
buffer, observes the environment, takes an action
based on its policy, and receives a reward from the
environment. After repeating the aforementioned
steps for a sufficient number of iterations, each
agent learns an updated local model. The updated
local models are shared with and aggregated at a
central server to update the global model.

User Participation: Selecting the appropriate
number of users in each communication cycle of
the FL training process is critical for accelerating
convergence. To this end, we consider perform-
ing partial user participation during each round
of aggregation in the FL algorithm. For a given
number of participating users, we assume that the
probability of a particular user being selected for
participation in a specific training round is uniform.
Only the local model weights of the participating
devices are aggregated at the central server, and
only the participating devices in each aggregation
cycle receive a model update under the proposed
framework. Therefore, the RL agent deployed at
each SU does not need to know about or depend
on data samples from other SUs.

Simulation Results: In our simulation setup,
we randomly place eight BS-UE pairs in a 400 m x
400 m area and configure four different frequency
bands as the available communication channels.
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We only consider downlink, that is, communication
from the eight BSs to their respective UEs. These
eight BSs act as the SU transmitters (SU Txs), and
the eight UEs act as the SU receivers (SU Rxs).
The probability of each of the four channels being
occupied by a PU is set to 20 percent. At each
time step t, the policy maps an agent’s observa-
tion to its action such that the agent chooses to
access one of the four channels or remain idle,
after which it receives a reward. The observation
consists of the averaged historical throughput up
to the previous time step and the throughput in the
previous time step on all channels. We compare
our MARL-enabled FL with a traditional distributed
learning approach, both deploying an RL agent
that uses a two-layer feedforward neural network
as its kernel. In the traditional DL setting, each SU
Tx receives a model from the central server and
starts updating its local model such that its local
reward is maximized, without any further commu-
nication with the central server or with other SU
Txs. On the other hand, MARL-enabled FL can
provide better overall performance at the system
level since it enables indirect cooperation among
SU Txs via periodic aggregation of their individual
local models at the central server. With traditional
DL, the users compete with each other for limited
resources without cooperation. The users can take
one of five actions, namely [0, 1, 2, 3, 4], where 0
indicates no channel access while any index from 1
to 4 represents accessing one of the four available
channels. The local model at each agent is trained
after 50 time steps, which is defined as one epi-
sode. The global model in FL is aggregated after

every fourth episode. This periodic model aggre-
gation and update helps with the long-term sum of
rewards, which is correlated with the user through-
put. In other words, model aggregation allows
users to “peek” into the environment of other users
and enables user collaboration.

Figure 2 shows that MARL-enabled FL results in
a higher (local) reward averaged across users and
thus a higher joint reward as compared to DL, also
implying a higher overall user throughput, although
FL requires a greater number of communication
rounds between the SU Txs and the central server
compared to conventional DL. This points toward
a trade-off between the communication overhead
and the achievable system throughput using DL/
FL methods. Figure 3 investigates the FL framework
for varying numbers of participating users U (< N)
in every aggregation round, that is, every fourth epi-
sode. It shows that the greater the number of par-
ticipating users, the higher the average user reward
and thereby the system throughput. Meanwhile, this
partial participation mechanism allows the frame-
work to be more flexible in choosing users with
better channel conditions, more relaxed energy con-
straints, and sufficient computational resources. The
complete set of parameters used in our simulation
is summarized in Table 1. The total number of epi-
sodes in the MARL algorithm is set to 50,000.

TOP CHALLENGES FOR DISTRIBUTED LEARNING IN 6G

The intricate balance between the remote cloud
server and the edge node while providing end
users with high QoS that requires heavy compu-
tation in addition to adherence to extremely low
latencies will remain a key challenge in most 6G
use cases, one which DL and especially FL can
potentially address. In this section, we provide a
brief sampling of other related open problems
that implementation of DL and specifically FL
strategies for 6G will likely encounter.

(GENERALIZATION

One of the most prominent features in a distribut-
ed wireless network with a potentially large num-
ber of heterogeneous devices is the possibility of
mobility of these devices, to the extent that suf-
ficiently high-speed mobility for even a subset of
devices may render the training and testing data
distributions to be significantly different. While
approaches such as domain adaptation can be
used to improve the inference performance in the
presence of such a training-test mismatch, imple-
menting it on a large scale with acceptable on-de-
vice computational complexity is still an open
problem. This applies not just to FL but to any DL
approach in which statistically distinct training and
test datasets are a possibility.

PRIVACY ISSUES IN FL

Maintaining the maximum possible number of
participating devices in the FL training process is
always a problem, especially in an unreliable wire-
less environment. Furthermore, to save energy,
battery-powered loT devices incorporate strate-
gies suited to DL (e.g., opting out of certain train-
ing rounds). Although the assurance of local user
data privacy is a standout feature of FL, malicious
actors may still be able to glean critical system
information from model changes [10]. Although
newer methods such as secure multiparty com-
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putation (SMC) [11], differential privacy [12], and
secure aggregation [5] seek to improve the pri-
vacy of FL, these approaches generally sacrifice
inference performance for privacy. Understanding
and balancing these costs is a significant difficulty
in implementing private FL systems, both theoreti-
cally and practically [13].

ASYNCHRONOUS FL OPTIMIZATION

Although the synchronous FL model provides bet-
ter convergence guarantees, it is sensitive to the
Straggler effect [14]. The asynchronous FL model
is more suitable in practice, especially when end
devices differ in terms of hardware, network con-
nection reliability, and battery capacity, resulting
in substantial heterogeneity in system parameters
throughout the network [13]. There needs to be
a theoretical investigation into the convergence
bounds of popular algorithms such as stochastic
gradient descent (SGD) that can be suited for dif-
ferent applications. Most existing studies analyzing
FL have been for the i.i.d. assumption of local user
data. Some works, such as [15], have studied the
non-i.i.d. case with asynchronous communication
reduction methods under privacy. However, exten-
sive theoretical and application-oriented analysis of
non-i.i.d. data-based FL remains to be explored.

CONCLUSION

In this article, a forward-looking vision for 6G net-
works is outlined, highlighting specific use cases
that extend or renew those introduced in 5G NR.
Due to the constraints inherent in wireless net-
works and performance specifications, which will
be especially stringent in 6G, distributed learning
(DL) as a paradigm could play an important role in
realizing novel applications. As a specific example,
we apply federated learning (FL) with multi-agent
reinforcement learning (MARL) to the dynamic
spectrum access problem and demonstrate prom-
ising results through simulations. MARL-enabled FL
is a good fit for 6G use cases that would rely on
cooperation of large numbers of distributed users.
A relevant sampling of challenges and potential
future directions for applying DL and FL approach-
es in 6G networks are also presented.
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