How Far Are We? The Triumphs and Trials of Generative Al in
Learning Software Engineering

Rudrajit Choudhuri
Oregon State University
Corvallis, OR, USA
choudhru@oregonstate.edu

Marco Gerosa
Northern Arizona University
Flagstaff, AZ, USA
marco.gerosa@nau.edu

ABSTRACT

Conversational Generative Al (convo-genAl) is revolutionizing Soft-
ware Engineering (SE) as engineers and academics embrace this
technology in their work. However, there is a gap in understanding
the current potential and pitfalls of this technology, specifically in
supporting students in SE tasks. In this work, we evaluate through
a between-subjects study (N=22) the effectiveness of ChatGPT, a
convo-genAl platform, in assisting students in SE tasks. Our study
did not find statistical differences in participants’ productivity or
self-efficacy when using ChatGPT as compared to traditional re-
sources, but we found significantly increased frustration levels.
Our study also revealed 5 distinct faults arising from violations of
Human-Al interaction guidelines, which led to 7 different (negative)
consequences on participants.

CCS CONCEPTS

+ Human-centered computing — Empirical studies in HCIL

KEYWORDS
Empirical Study, Software Engineering, Generative Al, ChatGPT

ACM Reference Format:

Rudrajit Choudhuri, Dylan Liu, Igor Steinmacher, Marco Gerosa, and Anita
Sarma. 2024. How Far Are We? The Triumphs and Trials of Generative Al in
Learning Software Engineering. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering (ICSE °24), April 14-20, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639201

1 INTRODUCTION

The advent of Conversational Generative Al (convo-genAl) is prov-
ing to be a “Gutenberg moment” across education and business,
and software engineering is no exception. Convo-genAl systems
(e.g., ChatGPT [66], Google Bard [42], Meta LLaMA [61]) generate
novel content, be it a haiku or a relevant code snippet, informed
by pre-existing data and minimal input. Additionally, these tools

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3639201

Dylan Liu
Oregon State University
Corvallis, OR, USA
liudy@oregonstate.edu

Igor Steinmacher
Northern Arizona University
Flagstaff, AZ, USA
igor.steinmacher@nau.edu

Anita Sarma
Oregon State University
Corvallis, OR, USA
anita.sarma@oregonstate.edu

provide a conversational interface, enabling users to interact us-
ing natural language to generate outputs fine-tuned to their needs.
Discussions on the use of generative Al (genAl) range from how it
signals the “end of programming” [92, 98] to how it can transform
software engineering for the better [29, 57].

Given the nascency of this innovation, it remains unclear how
it can be leveraged in education, and uncertainty overshadows its
potential benefits. The use of both conversational agents and genAI
has been investigated in the context of Introductory Computer
Science (CS). Prior work on conversational agents has demonstrated
their effectiveness for non-specialists and learners, as they facilitate
dialogue with an "expert" [40, 44, 86, 89]. For example, Loksa et al.
[56] found that high-schoolers in an introductory programming
summer camp benefited when they could seek help by articulating
their problem-solving strategies and their current task state. Further,
the new generation of students prefers talking with chatbots over
talking to a person [2]. Indeed, there has been extensive work on
conversational agents for education [65, 94] focusing on students’
engagement [15, 39], self-directed learning [71], and tutoring [84].
GenAl systems have also been explored in this context [32, 59, 87].
But these studies have either been focused on using genAlI to solve
algorithmic problems [70, 83] (i.e., programming) or on improving
genAl technology and output [52, 93] (i.e., better Al).

Currently, there is a gap in understanding how convo-genAl
systems can be leveraged for learning advanced CS topics, such
as Software Engineering (SE), where the learning objectives in-
clude unique complexities and contextual decision-making involv-
ing subjectivity and multiple trade-offs [72, 73]. In fact, SE educa-
tion extends beyond the confines of classroom education, into the
workplace, where software developers need to learn job-relevant
topics, processes, and tools [13]. Learning in these situations re-
quires contextualized assistance. Given that convo-genAl systems
are capable of providing such assistance, coupled with natural lan-
guage dialogue capabilities, they can be particularly well suited
for SE topics [29], where traditional chatbots have fallen short so
far [35]).

Thus, in this paper, we investigate: (RQ1): How effective is
convo-genAl in helping students in software engineering tasks?
We answered this research question through a between-subjects
user study, where the Experimental group solely used ChatGPT,
while participants in the Control group could use any resource
other than genAI tools. We selected ChatGPT as a representative

ICSE °24, April 14-20, 2024, Lisbon, Portugal

@ Task Design

Meeting with
course instructor

/

Course materials

fifil

Study tasks
(3 tasks)

Hypotheses
formulation

Iterative (re)design of
study tasks based
on team consensus

->
Expenmemal

Consent &

..’ Pre-study questionnaire

22 pammpants \ . ﬂ‘

Consent &
Pre-study questionnaire

(@) Lab Study

Control
group

E @ Selecting Metrics and Instruments

&FE -

Tasks & AAR/AI questions

Choudhuri et al.

E @ Sandboxing

(h

/v | RAARAP —
Metrics Selection atutn o o] |l¢—
" a -
: EQOE |[a—
——— |lo—
'.‘ 3weeks i —

Refinement of study design
& questionnaires based on
feedback

—~ g
o

M

6 sandboxing
sessions
Study Questionnaires

Design

0‘
/ Post-Study \
Quesllonnalre

LOE

i —>RQ1

Statistical Analysis

Submission & Logs BRAEN

@

/ Post-Study
Questionnaire

B

[s
> /Qa — »RQ2

Qualitative Data
Analysis

Figure 1: Overview of the research design

convo-genAl as it was state-of-the-art when writing this paper. We
recruited 22 students enrolled in undergraduate software engineer-
ing courses at our university. Participants in both groups completed
three SE tasks (fixed code functionalities, removed code smells, and
contributed to a GitHub repository). We found no statistical differ-
ences between the two treatments in terms of participants’ task
performance or overall self-efficacy, but using ChatGPT increased
participants’ frustration.

Furthermore, to gain a comprehensive understanding of how
convo-genAl can be effectively used and to inform its future design,
it is essential to identify and evaluate its current pitfalls. This leads
to our second research question: (RQ2): What are the current
pitfalls in convo-genAI? Specifically, we investigated the faults
that ChatGPT currently makes in the context of helping students in
SE tasks, the causes of these faults, and their consequences for the
participants. To answer this question, we employed After-Action
Review for AT (AAR/AI) [33], a recent Al assessment process that
allows end users to gauge Al faults [49] through a set of questions.
The purpose of using AAR/AI was to assess the faults that par-
ticipants in the Experimental group could perceive during their
interaction with ChatGPT and its consequences for the participants.
Qualitative analysis of these responses revealed five fault categories
and seven consequences stemming from these faults.

Additionally, we used Microsoft’s design guidelines for Human-
Al Interaction (HAI) [3] as a lens to assess the ties between these
faults and the violation of specific guidelines. Since these guide-
lines impact how users interact with the tool [53], it is important
to get their perceptions of its violations. Doing so adds the benefit
of participants reflecting on the tool and their interactions, thereby
promoting metacognition [64]. A majority of participants reported
that ChatGPT: (1) did not clearly outline its capabilities and limita-
tions, (2) did not support efficient correction, (3) did not scope itself
when in doubt, and (4) lacked transparency in its decision-making
process. Our analysis revealed that these guideline violations were
the root cause of the faults.

The primary contribution of this paper is an evaluation of the
potential benefits and challenges of providing a convo-genAlI sys-
tem, specifically ChatGPT, to assist in software engineering tasks.
Convo-genAl’s ability to generate contextualized help along with
natural language dialog capabilities can revolutionize software en-
gineering. However, the inconsistency in its behavior and output
pose significant challenges to its use in educational settings. Such
systems, in their current state, can lead to user frustration and cog-
nitive overload, which can be discouraging especially for novices,
undermining their self-efficacy and potentially triggering an early
exit from the field. Future design should thus incorporate the in-
sights related to the current pitfalls and guideline violations to
design for better user interactions. Educators, students, and self-
learning professionals should also be aware of the consequences of
using these tools to acquire new knowledge and skills.

2 METHOD

Our study goal is to understand the effectiveness and limitations
of Conversational Generative Al (convo-genAl) compared to tradi-
tional online resources in helping software engineering students. To
achieve this goal, we conducted a controlled experiment with stu-
dents enrolled in undergraduate-level software engineering courses.
Our study employed a between-subjects design, dividing the partici-
pants into two groups: an Experimental group that exclusively used
ChatGPT (GPT-4); and a Control group that could use any online
resources except genAl tools. We designed tasks based on in-depth
discussions with the course instructor and careful analyses of the
course materials. We measured multiple outcomes to comprehen-
sively understand the effects and limitations of convo-genAl. The
study protocol was refined through sandboxing sessions. After that,
we conducted the experiment, as depicted in Figure 1.

2.1 Task Design
To design appropriate tasks, we first investigated students’ current

backgrounds and the skills they would learn in the course. Three
researchers analyzed the course documentation and had in-depth

How Far Are We? The Triumphs and Trials of Generative Al in Learning Software Engineering

discussions with the instructor about the learning objectives of the
course. From the discussion, we learned that the students had low
to medium familiarity with git and GitHub and that Python was
the programming language used in the course. Furthermore, it was
understood that the students were novices in software engineering
and had a rudimentary understanding of good programming styles,
API usage, and web scraping. We also learned that the students had
not yet been formally introduced to the concept of code smells [38].
We tailored our tasks to align with the topics the instructor em-
phasized as key learning objectives in the course. Specifically, we
focused on four topics: programmatic API usage, debugging, code
quality, and version management, through the following 3 tasks: (1)
fixing code functionalities involving third-party APIs, (2) removing
code smells, and (3) contributing changes to a repository via a pull
request.

The tasks were designed to be moderately challenging for the
students. The research team held multiple meetings over two weeks
to define and review the tasks. We then created a small Python pro-
gram and hosted it in a GitHub repository!. We intentionally used a
small program to manage task complexity. Additionally, we disorga-
nized the code structure, added poorly crafted comments, and used
non-intuitive function names to simulate common software engi-
neering challenges. We conducted multiple sandboxing sessions
with participants who had low to medium familiarity with software
engineering, Git, and GitHub to validate the appropriateness and
the level of complexity of these tasks:

Task 1: Participants needed to create their own git branch and
debug code functionalities in their branch (3 subtasks). They were
restricted from modifying some parts of the program or changing
the test instances, ensuring that the only way to pass the validation
was by fixing some code functionalities, as follows: (1) Participants
had to correct the ‘check_palindrome’ function (logical program-
ming exercise) that checked whether a number was a palindrome.
We reversed the logic of this function, creating a bug. (2) Partici-
pants were asked to fix the ‘check_weather’ function (API usage
exercise). The objective of the function was to retrieve weather
data using the NOAA_SDK library? in Python, given specific co-
ordinates. The correct method for this operation is to utilize the
‘points_forecast’ method from the APL. We introduced a bug by
using the ‘get_forecasts’ method, which actually takes the postal
code and country as parameters, and passed latitude and longitude
values instead. (3) Participants were tasked with fixing a function
named ‘check_webpage’ (basic web scraping). The purpose of this
function was to leverage the Selenium library? in Python to capture
all visible elements from a webpage.

Task 2: The second task focused on improving code quality by
identifying and removing code smells. We introduced these code
smells: global variables, unused imports, dead code (commented-
out code), and magic numbers (constants without context).

Task 3: The third task was designed to familiarize students with
the configuration management process by contributing to a reposi-
tory using git/GitHub. Participants were required to commit their
contributions to the remote branch and create a pull request (PR)
to the base branch. To maintain the integrity of the main branch,

1See supplemental [5]: https://zenodo.org/record/8193821
Zhttps://pypi.org/project/noaa-sdk/
3https://pypi.org/project/selenium/

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

we instituted branch protection rules to prevent modifications in
the base branch.
2.2 RQs, Metrics and Instruments

We employed multiple metrics and instruments (Table 1) to under-
stand students’ perceptions of ChatGPT and the effects of interact-
ing with it. In the following sections, we detail each RQ and the
instruments used to answer them.

Table 1: Metrics and instruments and their relation to the RQs

Metrics, instruments, procedures, and

Evaluation | Construct .
literature

Cognitive Load (RQ1) NASA TLX [18, 45, 79]

Students’ . '
perceptions | Perceived faults (RQ2) AA(I;/IA 133, 49], Human-Al interaction
of ChatGPT guidelines [3]

Continuance Post-study questionnaire

Intention (RQ1) Y q

Task performance - Correctness [97], Time to

Effects of | Productivity (RQ1) complete [97]

interacting

with Chat-| Consequences of AT

GPT faults (RQ2) AAR/AI 33, 49]

Self-efficacy (RQ1) Self-efficacy questionnaire [82]

2.2.1 RQI: How effective is convo-genAl in helping students in soft-
ware engineering tasks? Toward answering RQ1, we came up with
three hypotheses and assessed the participants’ intention to con-
tinue using ChatGPT, as detailed below.
H1: Students using ChatGPT for the study tasks perceive lower
cognitive load than students using alternate resources.
Cognitive load is an important factor in designing effective scaf-
folding tools as it influences effective learning and end-user pro-
ductivity [1]. Previous literature has shown that interacting with
conversational agents (chatbots) significantly reduces cognitive
load for end users in certain contexts [1, 18, 79]. Therefore, as a first
step, we evaluated convo-genAI’s impact on participants’ percep-
tion of cognitive load in our context. We hypothesized that students
using ChatGPT for the study tasks (Experimental group) perceive
a lower cognitive load compared to students who use alternate re-
sources (Control group). We used the original NASA Task Load Index
(TLX)[45]—a validated and widely used post-study instrument—for
measuring cognitive load across six dimensions (mental, physical,
and temporal demand, performance, effort, and frustration).
H2: ChatGPT positively impacts students’ productivity.
Schmidhuber et al. [79] revealed that chatbots can positively
impact end users’ productivity (measured in average correctness
and average time required). Therefore, in our context, we hypoth-
esized that ChatGPT positively impacts students’ productivity and
employed the variables from Xu et al’s study [97] that assessed
productivity in terms of task performance: (a) task correctness and
(b) time to completion. However, we excluded (b) since we time-
boxed the tasks (see Section 2.3) and participants in both groups
utilized all of the allotted time for each task. To analyze the task
correctness, two researchers used rubrics for each task—which is a
prevalent approach in computer science education research [20, 24].
The rubrics were collaboratively developed beforehand (and are
detailed in the supplemental [5]). The assessment consisted of num-
ber of tests correctly passed, code smells removed, successfully
committed contributions and pull requests opened (assessed based
on participants’ code submissions and their GitHub log data). We

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Choudhuri et al.

Table 2: AAR/AI steps and our adaptations. The Empirical context column explains how we realized the method in our study. Steps 3 to 6
were “inner loop” questions we repeated for all three tasks.

AAR/AI Steps

AAR/AI in our Empirical context

1. Defining the rules: How are we going to do this eval-
uation? What are the details regarding the situation?

2. Explaining the objectives of the Al agent: What is
the AI’s objective for this situation?

We briefed the participants about the study details and how we were going to do the evaluation. Then we stated: “You
will be given a questionnaire before and after each task. Please be detailed in your responses as that will help us evaluate
ChatGPT’s performance.”

We oriented the participants about the primary objective of ChatGPT by stating, “The primary objective of ChatGPT
will be to assist you by providing contextual, disambiguous, and correct information.”

Inner Loop

3. Reviewing what was supposed to happen: What did
the evaluator intend to happen?

4. Identify what happened: What actually happened?

5. Examine why it happened: Why did things happen
the way they did?

6. Formalize learning (end inner loop): What changes
would you make in the decisions made by the Al to
improve it?

We asked “What do you think should happen when you use ChatGPT for this task?” The participants chose between: It
will (provide (all/some))/(not provide any) useful information I need to complete the task.

The participants did a task, then we asked “What actually happened when you used ChatGPT for this task?” The
participants chose between: It (provided (all/some))/(did not provide any) useful information I need to complete the task.

We asked “Why do you think ChatGPT behaved this way?”

We asked two questions: “To what extent did you modify ChatGPT’s responses for solving the task?” The participants
chose between: Did not modify at all/Modified (slightly/significantly). Then, we asked them to “Briefly explain why?”

End Inner Loop

7. Formalize learning: What went well, what did not

We asked three questions: “What went well?”, “What did not go well?”, “What could be done differently next time?”

go well, what could be done differently next time?

followed blind grading for code solutions (not knowing whether
it came from the Experimental/Control group) to reduce potential
bias.

H3: ChatGPT promotes students’ self-efficacy.

Self-efficacy reflects an individual’s perceived ability to success-
fully accomplish a task and can influence one’s actual ability to
complete a task [8]. Self-efficacy is considered a robust predictor of
achievement [9] and motivation [25]. Recent studies have shown
that conversational tools effectively promote students’ self-efficacy
[26, 68]. Hence, in our context, we hypothesized that ChatGPT pro-
motes students’ self-efficacy. To capture this construct, we adapted
a questionnaire from Steinmacher et al. [82] and aligned it with
the context of our study (see supplemental [5]). We used a 5-point
Likert scale (‘Strongly Disagree’ to ‘Strongly Agree’) and adminis-
tered the questionnaire in a before-after design, which allowed us
to assess the impact of the resources on participants’ self-perceived
efficacy.

Users’ continuance intention: Prior research highlights that the
users’ continuance intention reflects their satisfaction and positive
perception towards the tool [7]. Park and Chung [69] evaluated
continuance intention using a direct likelihood question. Echoing
this method, we assessed the participants’ continuance intention by
presenting them with three statements: (1) Based on this experience,
I plan to use ChatGPT to learn Software Engineering concepts; (2)
Based on this experience, I do not plan to use ChatGPT to solve
similar kinds of tasks; and (3) I would recommend ChatGPT to
my friends if they need assistance with Software Engineering. The
participants were asked to rate their level of agreement for each of
these statements on a 5-point Likert scale (‘Strongly Disagree’ to
‘Strongly Agree’).

2.22 RQ2: What are the current pitfalls in convo-genAl?. To answer
RQ2, we wanted participants from the Experimental group to assess
Al faults. A consistent evaluation of an Al tool requires a standard-
ized assessment process to avoid users adopting ad-hoc approaches,
which can result in variations when evaluating the same AI tool.
Therefore, we employed the After-Action Review for AI (AAR/AI)

instrument [33], a standardized Al assessment process designed to
aid humans in effectively gauging Al faults [49]. Khanna et al. [49]
provided empirical evidence that integrating AAR/AI can aid end
users in uncovering a significantly larger number of faults with
greater precision. AAR/Al is a recent member of the After-Action
Review (AAR) [63] family, devised by the U.S. military in the 1970s
as a facilitated debriefing method. AAR has been used for decades
and has been successfully adapted to different domains [46, 78].

The AAR/AI steps are derived from the “DEBRIEF” adaption by
Sawyer and Deering [78]. There are 7 steps: Defining the rules,
Explaining the objectives of the Al agent, Benchmarking the per-
formance of the agent, Reviewing what was supposed to happen,
Identifying what actually happened, Examining why, and finally
Formalizing learning. AAR/Al is highly adaptable as it offers flexi-
bility within each step of its process, accommodating customization
to suit the specific needs of Al assessment in different domains. We
adapted the AAR/AI steps as follows (Table 2):

Defining the rules and explaining the objectives: Each session
started with the researcher providing an overview of the interfaces
that the participants would use (Git/GitHub, Visual Studio Code)
and the study tasks. We then told them the purpose of the assess-
ment: ChatGPT was expected to deliver contextual, unambiguous,
and accurate information (Steps 1-2, Table 2).

The inner loop: What & Why: Following task explanations
and before each task initiation, participants answered, “What do
you think should happen when you use ChatGPT for this task?”
After each task, they responded to: “What actually happened when
you used ChatGPT for this task?”, “Why do you think ChatGPT
behaved this way?” and “To what extent did you modify ChatGPT’s
responses for solving the task? Briefly explain why.” (Steps 3-6,
Table 2). The inner loop was repeated for all three tasks. The time
to answer these questions was not counted towards task completion.

Formalizing learning: Once all tasks were completed, we asked
the participants: "What went well?", "What did not go well?", and
"What could be done differently next time?" (Step 7, Table 2).

How Far Are We? The Triumphs and Trials of Generative Al in Learning Software Engineering

To inform future design, assessing why the faults occur is im-
portant. Human-Al interaction guidelines inform Al system design
and operation and can be used to understand where Al systems
fail. Wright et al’s [95] exploration of guidelines from three large
tech companies (Apple, Google, and Microsoft) offered over 200
guidelines, ranging from initial considerations of Al to the curation
of the models, the deployment of the Al-powered system, and the
human-AI interface. Notably, Wright et al. found that while both
Apple’s [6] and Google’s [43] guidelines were created with the de-
veloper in mind, Microsoft’s guidelines [3] were designed with a
keen focus on the user.

Therefore, we used Microsoft’s guidelines [3] as our lens to ex-
amine whether ChatGPT’s faults stemmed from potential guideline
violations (the causes). Following this, we analyzed the effect of
these faults on the participants (the consequences). We adapted the
general recommendations to our context, and participants rated a
set of statements using a 5-point Likert scale (‘Strongly Disagree’
to ‘Strongly Agree’). These adaptations were made after team dis-
cussions and were refined during our sandboxing sessions.

2.3 Sandboxing

We conducted 6 sandbox sessions with CS students. We conducted
the first two sessions via Zoom, and it became apparent that this
setup posed several challenges (long setup times, limitations in
our ability to control the environment, and difficulties in library
installations). We decided to transition to an in-person lab setting.
The sessions were planned to take 2 hours, but due to participant
fatigue, we adjusted them to last 80 minutes and time-boxed the
tasks: Task 1 was allotted 20 minutes, and tasks 2 and 3 had 10
minutes each. This change facilitated on-time conclusions and time
for briefing and questionnaires (40 minutes).

Our sandboxing also revealed difficulties with the AAR/AI pro-
cess: participants found it burdensome, resulting in sparse responses.
Echoing a similar concern raised by Dodge et al. [33], we revised

steps 3, 4, and 6—employing a mix of open and closed-ended questions—

and adjusted the wording of the questions to improve their clarity.
Additionally, we reverse-coded some items with negative conno-
tations (low scores indicating agreement) in the Human-Al inter-
action guideline statements to counter acquiescence bias [10], a
tendency where participants agree with statements regardless of
their content or due to laziness, indifference, or automatic accom-
modation to a response pattern. Lastly, all the researchers agreed
to omit Guideline 3 (time services based on context) due to its ir-
relevance in our context (ChatGPT remains idle unless prompted).
Guideline 18 (notify users about changes) was also dropped, given
its lack of applicability, as there were no major ChatGPT updates
during the study’s timeline (May 15 - June 2, 2023).

2.4 Lab Study

We conducted the lab studies over a period of three weeks.
Recruitment: We recruited undergraduate CS students who were
at least 18 years of age and enrolled in software engineering courses
at the university. We visited the classes in person and briefed them
about the study. We asked those participants interested in the study
to answer a survey about their demographic information (age, gen-
der, academic level), resources they used for software engineering

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

(GitHub, ChatGPT), and their experience in programming and soft-
ware engineering. A total of 41 people responded to the survey.

Participants: After filtering out the incomplete responses, we
invited 39 people, asking about their availability. We received 30
responses, but only 24 participants showed up for the study. We later
discarded the data from 2 participants as their files were corrupted
due to a fault in the machines. Out of the final 22 participants,
13 self-identified as men and 9 as women. We randomly assigned
each participant to one of the two groups while allowing an even
distribution of demographics and number of participants in each
group. Participant IDs were assigned with the format ‘PT-X’ or
‘PC-X’ for the Experimental and Control groups, respectively. The
participants’ demographics are summarized in Table 3. As a token
of appreciation, students received a $20 Amazon gift card.

Table 3: Participant demographics.

Experimental | Control | Total
Man 6 7 13
Woman 5 4 9
Sophomore 2 1 3
Junior 5 5 10
Senior 4 5 9
Enrolled in SE Courses 3 4 7
Enrolled in SE Courses + Worked on SE 8 7 15
Projects
Total 11 11 22

Study Protocol: All studies were in lab sessions at the University
lab with up to 3 participants at a time, following the university IRB
protocol. The study proceeded as follows: the participants agreed
to an IRB-approved informed consent and were briefed about the
different stages of the study, then filled out the pre-study question-
naire, performed the three tasks in the study (the Experimental
group was also asked to fill out the AAR/AI questions before and
after each task), and finally filled out the post-study questionnaire.
The sessions were recorded with participants’ consent and lasted
around 80 minutes each. Before and after each study session, the
browser histories and git branches were deleted to prevent unwar-
ranted advantages and ensure all participants could start the session
with the same information.

3 RESULTS

In the following, we present our findings of participant experiences
with and without ChatGPT in the context of performing SE tasks.

3.1 ROQ1: Effectiveness

To address RQ1 (effectiveness of students using ChatGPT for SE
tasks), we tested our hypotheses (Section 2.2) using the Mann-
Whitney U test [60].4 The results are shown on Table 4.

To assess H1 (Cognitive Load), we examined the answers to TLX
questions. As shown in Table 4, frustration levels among partic-
ipants using ChatGPT were significantly higher than among
those from the Control group (U=101, p=0.008"**), with a large
effect size (5=0.669). Previous studies in Human-Robot Interaction
highlight that end-user frustration is often induced by erroneous
behavior in automated systems [91]. Our study corroborated similar

“We performed Shapiro-Wilk’s test [80] for normality and Levene’s test [19] for equal
variances to determine the suitability of parametric tests. Since not all metrics met the
assumptions for parametric tests, we used non-parametric tests for all hypotheses for
consistency.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Choudhuri et al.

Table 4: Statistical results for cognitive load (NASA TLX) and task productivity (correctness).

NASA TLX Task Correctness
Mental Physical Temporal Performance Effort Frustration | Task1 Task2 Task3 Overall

Estimate 47 51.5 64.5 455 45.5 101 40 86 71.5 71
p-value 0.388 0.557 0.817 0.339 0.337 0.008"** 0.16 0.078 0.303 0.507
Cliff’s delta(5) -0.223 -0.149 0.066 -0.248 -0.248 0.669 -0.339 0.421 0.182 0.174
Median values for each group

Experimental 15 1 15 9 14 14 1 1 2 4
Control 14 3 15 12 14 9 2 0 2 4

The estimates, p-values, and Cliff’s delta (effect size) are with respect to Mann Whitney U-test. The highlighted columns are statistically significant. Negative & suggests that the variable tends to have
higher values in the Control group. We consider |§| < [0, 0.15) to be no effect, |§| € [0.15, 0.33) to be small, || € [0.33, 0.47) to be medium, and |S| > 0.47 to be large, by convention [75].

patterns, highlighting an association between heightened frustra-
tion levels and faults in ChatGPT’s behavior and responses. Several
study participants clearly illustrated this. PT-3 conveyed, “[Chat-
GPT] was fighting me a lot about the whole NOAA thing [Task 1, test
case 2].” Similar challenges were echoed by PT-7, who mentioned
that “[ChatGPT] misinterpreted my questions, was REALLY slow, and
didn’t account for errors.” Meanwhile, PT-1 articulated mistrust, T
could not rely on [ChatGPT] to tell me when functions exist or not”. Al-
though the other factors were not statistically significant (and had
small or negligible effect sizes), the participants using ChatGPT re-
ported a slightly higher Mental demand (Med=15) compared to the
Control group (Med=14) and perceived lower levels of Performance
(Med=9) compared to others (Med=12). Still, Physical demand was
rated very low for both groups, and there was no difference in Tem-
poral nor Effort dimensions between the groups. Overall, HI is not
supported: the Experimental group had no significant advantages
over the Control group across the cognitive load dimensions.

With respect to H2 (productivity), we could not find statistical
differences in overall productivity (in terms of task correctness)
between the two groups (Table 4). We observed a medium effect size
pointing that participants using ChatGPT had lower productivity
in terms of fixing code functionalities (Task 1: §=-0.339) and higher
productivity in terms of removing code smells (Task 2: §=0.421).
From these findings, it can be noted that although there were some
variations in task-specific productivity, we could not find an
impact on productivity for the participants using ChatGPT
(H2 is not supported).

To assess how the allotted resources influenced participants’
self-efficacy (H3), we analyzed the pre- and post-study response
variations. The Wilcoxon-signed rank test did not show a statisti-
cally significant difference comparing the total self-efficacy score
before and after (p(Experimental) = 0.214, p(Control) = 0.7).

Figure 2 shows the distribution of self-efficacy scores per ques-
tion. We only noticed differences in terms of distributions and
median shifts (comparing before/after for the groups) for Q2 and
Q4. Overall, we observed a decrease in the Q2 scores (related to
understanding Python code) for those who used ChatGPT, while
the distribution remained the same for those who did not use it. For
Q4 (related to the removal of code smells), the score for the group
using ChatGPT increased after the task, while the median for the
Control group remained the same (with a noticeable shift of the
distribution towards negative scores). These trends align with the
task-specific productivity findings (H2) observed with ChatGPT.
For the other items, there were no differences when comparing the
groups. We observed similar distributions and median shifts for

the git/GitHub items (Q1, Q5, Q6) as well as for Q3 (fixing code
functionalities)—comparing before and after for Experimental and
Control groups. In summary, although ChatGPT influenced stu-
dents’ self-efficacy for certain items, overall, it did not positively
influence students’ self-efficacy (H3 is not supported).

IS

w

Self Efficacy

~N

Q1l: create a Q2: Q3: fix code Q4: remove Q5: commit Q6: open PR
new branch understand functionaliti code smells changes to a using the
Python code es in Python from Python git branch github
code interface

Pre Study (Treatment) ~ WM Post Study (Treatment) Pre Study (Control) W Post Study (Control)

Figure 2: Self-efficacy results (box plots) per question. Medians are
highlighted using black dots.

Furthermore, participants’ continued intention to use ChatGPT
(part of the post-study questionnaire—Table 1) received mixed re-
sponses (Figure 3). One respondent was undecided throughout
(9.1%). The remaining participants were equally divided in their
opinion about using ChatGPT and recommending it to friends need-
ing assistance with software engineering. Five participants (45.5%)
showed positive responses, and the other 5 (45.5%) provided nega-
tive responses, indicating a polarized view among students. Despite
a segment expressing readiness to leverage the tool, an equal frac-
tion expressed notable resistance: ‘T would have liked to be able to
ask someone knowledgeable in Python about [task 1] (PT-11)".

100
-
27.3%

7% 27.3%
18.2%
£ 50 9.1% 9.1% 9.1%
o
8 36.4% 27.3% 36.4%
§
e
g 25
18.2%
9.1% 9.1%
0
...plan to use ChatGPT ...do not plan to use ...would recommend to
to learn Software ChatGPT to solve my friend if they need
Engineering concepts similar kind of tasks assistance with
Software Engineering
Statement
B Strongly Agree Agree Undecided Disagree [l Strongly Disagree

Figure 3: Continuance intention towards using ChatGPT (%)

How Far Are We? The Triumphs and Trials of Generative Al in Learning Software Engineering

3.2 ROQ2: Pitfalls

This section presents the results for RQ2, i.e., the faults made by
ChatGPT, their causes, and consequences within the context of
assisting students in SE. Three authors qualitatively analyzed (open
coding) the AAR/AI responses and identified ChatGPT’s faults
and their consequences on the participants. The coding was done
collaboratively, with the authors engaging in iterative discussions
(over 2 weeks) to reach a consensus on the final codes.

3.2.1 Faults made by ChatGPT. The faults made by ChatGPT in the
context of assisting students in SE were grouped into 5 categories:
(F1) Limited advice on niche topics, (F2) Inability to comprehend
the problem, (F3) Incomplete assistance, (F4) Hallucination, and
(F5) Wrong guidance.

F1: Limited advice on niche topics [PT-1, 5, 9]. ChatGPT
struggled to provide expert advice on topics specific to a niche
(e.g., a domain, a library, or a concept). For instance, PT-1 explains:
“ChatGPT only was helpful with general info, like git commands or
logic issues. It wasn’t helpful with niche specifics, like discerning
between functions to use in a Python library”. According to our
participants, “for anything that wasn’t super standard, ChatGPT
struggled to easily give useful answers. (PT-1)” and thus “having
it define or explain ambiguous concepts did not help much (PT-5)”.
Moreover, ChatGPT provided limited advice regarding Python code
functionalities (PT-1, 5, 9). This could be a reason for the observed
decrease in Task-1 specific productivity for participants using
ChatGPT for the study tasks. PT-9 said, “ChatGPT did not have as
much knowledge about the NOAA python library, and confidently
told me incorrect ways to fix’ my code.”

F2: Inability to comprehend the problem [PT-1, 5-8, 10].
ChatGPT could not always understand the participants’ goals and
the problems they were facing. Participants revealed that “it incor-
rectly identified nonproblems as problems and missed actual problems
(PT-1)” and did not “know the exact thing you want it to do despite
giving it context (PT-6)”. Before starting Task-1, 6 out of 11 partici-
pants (54%) responded that ChatGPT would provide all the required
information. However, after completing the task, all participants
marked that it only provided some information. This mismatch
in expectations significantly increased the participants’ frus-
tration levels. PT-7 emphasized, “[ChatGPT] misinterpreted my
questions at times, was REALLY slow, and did not account for errors
in code it provided me”.

F3: Incomplete assistance [PT-1-3, 6-9, 11]. ChatGPT some-
times provided incomplete and partially correct assistance even
when it was able to grasp the problem. PT-11 pointed out, ‘T did ask
ChatGPT questions about completing the task, but it did not give me
answers on how to solve the whole task”. Additionally, participants
discovered that “[ChatGPT] knows some things and can help give you
advice on those things, but it won’t immediately give you the correct
answer (PT-6)”. They also pointed out that, “Some code provided by
ChatGPT was correct, while some were incorrect and required modify-
ing (PT-9)”. This Al behavior likely affected participants’ mental
workload. As noted by PT-11, ‘T could not figure out how to fix the
import problem, and ChatGPT’s suggestions didn’t work”.

F4: Hallucination [PT-4, 9, 11]. ChatGPT tends to hallucinate,
creating false answers when it does not know the correct solution.
Participants pointed out multiple instances of this. PT-4 stated that

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

when ChatGPT “did not have access to the documentation for the
packages. .. it hallucinated answers” and that it “made up parameters
for functions that were unfamiliar”. Similarly, PT-11 noted that “it
did hallucinate sometimes, said there was a way to use a function
in the noaa-sdk that was not possible”. Additionally, there were
instances of confirmation bias (when the Al conforms to the users’
statements/requests, regardless of the actual accuracy/feasibility).
PT-4 highlighted that ChatGPT “was biased towards a ‘yes, there are
code smells’ response...When they don’t exist, it hallucinates them.”

F5: Wrong guidance [PT-2-4, 7-11]. In addition to hallucinating,
there were other instances where ChatGPT gave wrong guidance, or
“incorrect ways to fix [problems] (PT-9)”. For example, when it could
not comprehend the problem (F2) participant (PT-8) was facing, it
gave a piece of incorrect advice: ‘Tt couldn’t figure out test case 3
and kept telling me to check my drivers...without realizing there were
missing imports (PT-8)”. ChatGPT often “did not account for errors
in [solutions] it provided (PT-7)”. It also suggested “incorrect ways
to fix [problems] (PT-9)” when it had limited knowledge on a topic
(F1) and hence some of its solutions appeared “evidently wrong or
unnecessary (PT-10)”.

In summary, we observed that Experimental group participants’
mental load and frustration increased when ChatGPT was unable
to comprehend the problem (F2) or provided incomplete assistance
(F3). Additionally, they perceived equal effort as the Control group
participants, frequently tasked with identifying and resolving errors
when ChatGPT hallucinated (F4) or provided wrong guidance (F5).

3.2.2 Causes of these faults and their consequences. For each of
these faults, we examined why they occurred and the consequences
they had on the participants (Figure 5). As mentioned in Section 2.2,
participants rated Human-AI (HAI) guideline statements specific
to ChatGPT interactions at the end of the experiment, which was
used to assess guideline violations. We manually triangulated the
response scores with open-ended text responses and found no dis-
crepancies.

G1: Make clear what the
system can do

G2: Make clear how well the
system can do what it can do|
G4: Show contextually,

relevant information

G5: Match relevant social

norms

G6: Mitigate social biases

G7: Support efficient

invocation

G8: Support efficient

dismissal

G9: Support efficient

correction

G10: Scope services when in

doubt

G11: Make clear why the

system did what it did

G12: Remember recent i

interactions

G13: Learn from user|

behavior|

G14: Update and adapt

cautiously

G15: Encourage granular|

feedback

G16: Convey the consequences, ﬂ —
of user actions|

a5% 18% 27%

73% 9% 18%

27% 18% 55%

a5% 18%

G17: Provide global controls ECNo% 27% 27%

B Strong Violation Violation Neutral Abidance WEM Strong Abidance

Figure 4: Human-AlI Interaction guideline violations reported by
participants; those found by more than 50% are in bold.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

F1: Limited adviceon\

niche specifics 1

|
F2: Inability to |
comprehend problem = |
1|
F3: Incomplete | |
assistance | |

|
|
— 1

F4: Hallucination <-|

v |

|
<—J|
(e

Choudhuri et al.

C1: Uncertainty about

correctness _ﬁjl
C2: Uncertainty about |
how to apply 1 | I
= C3: ChatGPT was not 1 | | l
l so helpful | | |
| |
l =i
|
I C5: Participants used \<J 3 |
| their own experience /<~ |
l =
|

C6: Participants cherry
i 3 - —
picked solutions
C7: Participants
modified responses

Figure 5: The (a) causes and (b) consequences of ChatGPT’s faults: Violation of Human-AlI Interaction guidelines (G1, G2, ...) led to faults (F1,
F2, ...). Faults had a cascading effect: one led to another and further led to consequences (C1, C2, ...) for participants. Some of these consequences

led to other consequences.

Causes: All participants identified violations of Guideline 2
(G2: Make clear how well the system can do what it can do) and
Guideline 10 (G10: Scope services when in doubt). Additionally, 8
out of 11 participants (~73%) found violations in Guideline 11 (G11:
Make clear why the system did what it did) [PT-1-3, 5-7, 10-11], and
6 out of 11 participants (~54.5%) found violations in Guideline 1 (G1:
Make clear what the system can do) [PT-1, 2, 4-6, 11] and Guideline
9 (G9: Support efficient correction) [PT-2-4, 7, 8, 11] (Figure 4). For
each participant, we then mapped the faults (reported in AAR/AI)
to the guideline violations they reported.

ChatGPT was perceived as offering limited advice on niche top-
ics (F1), being unable to comprehend problems (F2), and providing
incomplete assistance (F3), as no appropriate expectation of quality
was set. Microsoft’s HAI Guidelines 1 and 2 focus on clarifying ex-
pectations to prevent mismatches between users and Al, as demon-
strated in prior literature [53]. Thus, it is likely that these faults
resulted from ChatGPT’s initial shortcomings in clearly stating its
capabilities (G1 violation) and inadequately indicating how often it
might make mistakes in its responses (G2 violation). There were
instances when ChatGPT did not support efficient correction (G9
violation), making it difficult to refine its responses when it was
incorrect: ‘Tt was fighting me a lot...(PT-3)”. Furthermore, ChatGPT
also provided ambiguous/wrong information without conveying
its uncertainty (G10 violation) and made it hard to gain an explana-
tion regarding its decision-making process (G11 violation), likely
resulting in hallucination (F4) and wrong guidance (F5).

Cascading faults: We also found that these faults had a cascad-
ing effect, where one fault led to another (green arrows in Figure 5).
For instance, when ChatGPT struggled with niche specifics (F1)
or was unable to comprehend problem (F2), it hallucinated (F4)
and provided wrong guidance (F5): “ChatGPT did not have as much
knowledge ... and confidently told me incorrect ways to fix‘ my code.
(PT-9),” “kept telling me to check my drivers... without it realizing
there were missing imports. (PT-8).”

Consequences: From the AAR/AI responses, we identified 7
consequences for participants that arise due to ChatGPT’s faults
and grouped them into 3 categories: Uncertainty (uncertainty about
correctness, uncertainty about how to apply), Reflections (ChatGPT
was not so helpful, self-doubt), Actions (participants used their own
experience, cherry-picked solutions, and modified the responses).

Participants grappled with how to apply ChatGPT’s responses

because of uncertainty and questioned its correctness:

C1: Uncertainty about correctness [PT-1, 2, 6, 10]. Participants
were uncertain about the correctness of the responses provided
by ChatGPT. For example, PT-1 stated, ‘T could not rely on it to
tell me when functions exist or not”. PT-2 expressed skepticism,
stating, ‘T don’t think it provided fully correct data, so I am inclined
to pick parts only”. This was related to the wrong guidance (F5)
provided by ChatGPT, as per PT-10: “Some answers look[ed] evidently
wrong or unnecessary. It is important to modify the code based on my
experience.”

C2: Uncertainty about how to apply [PT-1-3]. Participants
were confused about how to apply/use the information provided by
ChatGPT. As PT-1 expressed, ‘T didn’t use ChatGPT’s responses since
I 'wasn’t sure how to apply them”. We noticed that this consequence
stemmed from two faults: incomplete assistance (F3)— “got confused
over suggestions w/ the weather library... correction that wasn’t made
obvious to me for palindrome (PT-2)”—and wrong guidance (F5)—
“I'm not super sure why this didn’t work. It was fighting me a lot about
the whole NOAA thing (PT-3).”

Participants’ reflection (C3, C4) revealed that they found ChatGPT
not so helpful and occasionally doubted themselves:

C3: ChatGPT was not so helpful [PT-1, 5, 10, 11]. We found
instances where participants thought that ChatGPT was not so help-
ful. This was because ChatGPT provided limited advice on niche
topics (F1), with PT-5 noting “having [ChatGPT] define or explain
ambiguous concepts did not help much”. Other reasons included
it providing incomplete assistance (F3), “.. ChatGPT’s suggestions
didn’t work (PT-11)” and wrong guidance (F5): “The suggestions...are
not so helpful. It clearly gave wrong guidance (PT-10)”.

C4: Self-doubt [PT-2, 4]. Participants doubted themselves, sus-
pecting that they might be at fault. For instance, PT-2 shared, ‘T got
confused over suggestions with the weather library, likely I should
have provided the full error... And I also may have asked something
wrong? correction wasn’t made obvious to me (PT-2)”. This surfaced
when ChatGPT delivered incomplete assistance (F3), leaving partic-
ipants uncertain about how to apply the suggested solutions.

Participants reported that they had to undertake actions (C5, C6,
C7) to tackle portions of tasks on their own (no reliance), cherry-
pick from provided solutions and modify responses provided by
ChatGPT (partial reliance):

C5: Participants used their own experience [PT-1, 4, 7, 10].

How Far Are We? The Triumphs and Trials of Generative Al in Learning Software Engineering

Participants had to use their own experience to tackle certain as-
pects of the tasks, particularly when ChatGPT was unable to com-
prehend their problem (F2) and thus was perceived to be not so
helpful: “Everything else I had to do on my own because ChatGPT
didn’t comprehend enough to help (PT-1)”. Participants devised their
own solutions when they were uncertain of the correctness of
ChatGPT’s suggestions, attributed to its tendency to provide wrong
guidance (F5): “Some answers look[ed] evidently wrong or unnec-
essary. It is important to modify the code based on my experience
(PT-10)".

Cé6: Participants cherry-picked solutions [PT-2, 3, 5]. Partic-
ipants picked parts of solutions provided by ChatGPT that seemed
correct: “Some of the things I didn’t necessarily agree w/ but some of it
was valid, so I picked & chose what I liked (PT-3)”. When uncertain
about correctness, participants were “inclined to pick parts only
(PT-2)".

C7: Participants modified the responses [PT-6, 7, 9, 10]. Par-
ticipants modified the responses provided by ChatGPT to come up
with the correct solution. PT-7 noted, ‘T used its responses in tandem
so I kind of combined them. When it wasn’t right I did it myself”. This
consequence stemmed from ChatGPT’s incomplete assistance (F3)
and also wrong guidance (F5): “Some code provided by ChatGPT was
correct, while some was incorrect and required modifying it (PT-9)”.

4 DISCUSSION: RECOMMENDATION

It is necessary to customize Generative Al as an effective scaf-
folding learning agent for software engineering. While genAl
tools have proven effective in providing quick solutions to user
queries, this approach conflicts with the traditional goals of edu-
cation. Directly giving away answers can diminish the need for
critical thinking and impact learning, potentially leading to reduced
self-efficacy [30] and motivation [25]. In our study, we observed
that participants’ self-efficacy decreased in certain cases, like un-
derstanding Python code (see Sect. 3.1, Fig. 2). This decline may
be attributed to students viewing these tools as advanced search
engines that offer ready-made solutions, a practice that instructors
fear could impede genuine learning [51].

Hence, future research should investigate how genAl can be
tailored and optimized as an effective scaffolding learning agent.
To be effective, a scaffolding agent must correctly interpret the
students’ intentions, an aspect where genAl shows promising re-
sults. Nonetheless, more work is necessary to understand the ex-
pectations of students and instructors and how students express
their expectations and engage in dialogue with the agent. These
insights can help design agents that grasp students’ intentions and
adapt their interactions to enhance pedagogical outcomes. Further
research can also explore how genAl can be leveraged for personal-
ized student assistance, using techniques like the ‘persona prompt
pattern’ [93] to adjust content based on expertise levels. Moreover,
future research should consider incorporating pedagogical scaffolds
(templates, heuristics, or human intervention) into Al-generated
content to clarify the AI's problem-solving process and handle
underperforming scenarios.

Recommendations for future Generative Al design: Participants
using ChatGPT in our study considered that it violated 5 out of the
18 HAI guidelines. These participants also perceived lower perfor-
mance levels and uncertainty, which led to self-doubt and possibly

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

lowered their self-efficacy: ‘T got confused over suggestions...I may
have asked something wrong. (PT-2)”, “I'm not super sure why this
didn’t work (PT-3)”. When participants were uncertain, they had
to use their own experience (C5) in addition to cherry-picking so-
lutions (C6) and modifying ChatGPT’s responses (C7) to fit their
context. These likely added to the participants’ mental workload
and possibly explain why we could not observe a positive impact
on task productivity.

Prior literature highlights that implementing Microsoft’s HAI
Guidelines has substantiated effects on users, including increased
trust, decreased suspicion along with them feeling more in control, less
inadequate, more productive, secure, and less uncertain [53]. Based
on this, we suggest that an iterative participatory approach [81]
should be followed in the future design of genAl systems to ensure
that the systems adhere to the HAI guidelines it currently violates:
clearly stating capabilities (G1) and limitations (G2), supporting
efficient correction (G9), scoping services when in doubt (G10), and
maintaining transparency in the decision-making process (G11).
Furthermore, Wang et al. [90] recently identified specific design
strategies for genAl systems based on their design probe study.
They found that communicating Al performance via usage statistics,
offering indicators of model mechanisms to support evaluation, and
allowing users to configure Al by adjusting preferences helped set
proper expectations and inform appropriate usage of Al tools. We
speculate that incorporating these design practices and strategies
can also mitigate the observed negative consequences on students
and significantly foster appropriate levels of trust [47] in genAl-
based scaffolding tools.

Building Inclusive Technology: Like any other tool, Al systems
can embed cognitive biases [88] arising from a lack of support for
cognitive diversity [67]. In our study, we found considerable dispari-
ties in perceived violations of the HAI guidelines on disaggregating
participants’ data based on their gender. All women reported a
violation of Guideline 11, perceiving ChatGPT’s decision-making
process as hard to explain, whereas only 3 out of 6 men reported
this violation. This could be because women tend to favor com-
prehensive information-processing style [62] and ChatGPT lacked
transparency in its decision-making process. Individuals with this
information processing style tend to seek out all the information
needed before starting a task, whereas those who are selective in-
formation processors take the first piece of actionable advice and
work on it. Similarly, a majority of men marked that ChatGPT did
not personalize their experience by learning from their actions over
time (4 out of 6 men perceived Guideline 13 violation) and did not
allow for global customization of its behavior (5 out of 6 men per-
ceived Guideline 17 violation). In contrast, no women found these
guidelines to be in violation. This disparity was likely because of
the limited tinkering allowed around its interface and technology.

Gender HCI research [11, 76] has found that tools often lack
support for diverse cognitive styles. As a result, individuals whose
styles are not accommodated face cognitive bias bugs—an additional
cognitive tax they pay when they use the tool. Further, individual
differences in how people solve problems and use software cluster
by gender [23]; i.e., some styles are favored more by men than
women, and vice-versa. Research spanning a decade has identified
that women are often more risk-averse than men [27] and prefer
process-oriented learning and are thus less likely to tinker [12, 21].

ICSE °24, April 14-20, 2024, Lisbon, Portugal

This implies that if future Al tools are not inclusive of cognitive
styles, they will not be inclusive of gender. Previous research has
also reported that user interactions and experiences with Al systems
are significantly diverse for diverse users [4]. Indeed, the current
genAl systems have faced criticism for their potential negative im-
pacts on equity [14, 55]. In future research, it would be valuable to
explore how uncertainty, similar to what we identified in our study,
may be associated with cognitive styles. Understanding these con-
nections could pave the way for implementing specific strategies
that effectively address and mitigate the impact of uncertainty in
the context of Al-assisted learning. To achieve this, the GenderMag
method [23] can be applied for evaluating Al systems throughout
their iterative design cycles. Past work has shown that fixing is-
sues found from using GenderMag-based processes creates more
inclusive tools and environments [22, 23, 67, 76].

5 RELATED WORK

Chatbots have been popular in educational settings [50, 65, 94]. In
software engineering education, chatbots have been proposed as
a way to support students outside of the classroom [16]: offering
expert advice in problem-solving activities [87] and accompanying
students in their capstone projects [41]. However, these chatbots
are often confined to queries anticipated by educators [34], thereby
serving as a programmed search feature for frequent queries.

Generative Al models have demonstrated an impressive ability
to solve a large number of computation problems from natural lan-
guage prompts [28], and are now being used for programming tasks
[54, 96]. Recent literature highlights how these models outperform
most students on typical CS1 and CS2 exam problems [36, 37], han-
dle variations in problem-wording [36], and even surpass human
performance on programming competitions [54]. Researchers have
further explored how these models can be used to enhance learning
computer science. Sarsa et al. [77] used genAl to create coding
exercises and explanations, both of which can be used to provide
practice and guidance to students. Another study combined Codex
with learnersourcing (crowdsourcing for learners) to create and
validate exercises that are engaging for learners [32].

Generative models have also been used to aid instructors by
automating content creation for interactive course materials [58,
59]. Further, Denny et al. [31] showed that prompt engineering is
effective in improving Al responses and thus could give instructors
more control to improve the relevancy of generated materials.

Another line of research evaluates the impact of genAlI tools on
students. Prather et al. [74] studied students’ initial impressions
of using Copilot for CS1 programming tasks. In a different study,
Kazemitabaar et al. [48] conducted an experiment comparing pre-
college students learning Python with and without Codex’s help.
Their findings indicated that Codex users improved their coding
skills more than their counterparts, though both groups achieved
similar conceptual comprehension. However, Bird et al. noted that
while Codex (Copilot) expedited code writing, it compromised learn-
ers’ code comprehension [17]. Moreover, Vaithilingam et al. [85]
reported that despite the initial user interest in genAlI, these tools
did not enhance users’ task efficiency (time) or accuracy.

Our work complements these, as it looks specifically into sup-
porting students in software engineering.

Choudhuri et al.

6 THREATS TO VALIDITY

Construct Validity: We used instruments from the literature [3, 45,
49, 82, 97] to measure our constructs as much as possible since they
had already been used and validated in other contexts. We assessed
the instruments adapted to our context with sandbox sessions and
refined the instruments and research protocol until the team was
confident of the instruments’ reliability. Nevertheless, despite our
efforts, we acknowledge that questions might be misinterpreted
and can lead to incorrect measurements.

Internal Validity: We acknowledge that our study, like oth-
ers, can have self-selection bias, where participants interested in
the topic of the study were motivated to participate. Participant
exhaustion and distraction might have also affected the study re-
sults. We mitigated this threat by limiting the length of sessions (80
minutes) and time-boxing the tasks. However, this could mean that
participants did not have enough time to complete the tasks. Since
participant interaction was the primary focus and time-boxing
was applied to both treatments, this does not impact the validity
of between-group comparisons. Another potential threat is task
selection, where study tasks can be too easy or too complicated
for our target population. We mitigated this risk by designing the
tasks based on the instructor’s insights and course materials and
sandboxing them with participants of varying expertise. Further,
participants assessed the ChatGPT interactions—our investigation
focus—to identify faults and guideline violations, which makes the
findings dependent on their capabilities. We believe this is not a
problem since participants had prior experience with ChatGPT and
Python (an average of 3.75 years), and thus had the needed experi-
ence to assess their interactions with ChatGPT. Past works [33, 49]
that employed similar instruments have recruited participants with
at least 10 hours of experience, which puts us in line with them.
Finally, desirability bias may have an impact because participants
may have favored ChatGPT due to its hype. To mitigate this threat,
we adapted neutral and non-judgmental language to frame the
questions and explain the experiment and analyzed data cautiously,
acknowledging the potential presence of desirability bias when
interpreting the results.

Reliability: Interpreting qualitative data can be challenging and
potentially affect the study’s validity. To ensure consistency, we
employed robust techniques from existing literature and continually
compared our analysis with established codes. Additionally, we held
frequent meetings to discuss and refine the codes and categories
until we reached a unanimous agreement.

External Validity: We structured our tasks in Python, which
was used in the software engineering courses and students were
most familiar with it. Therefore, we trade off generalizability for
depth in our context, and our findings might not necessarily gener-
alize to other programming languages, universities, convo-genAl
systems, and work contexts. Further, different interaction styles
with ChatGPT can lead to different outcomes, and the participants
in the study might not have represented all styles. The relatively
small sample size of 22 participants is also a threat to the gen-
eralizability of the study. We mitigated this threat by recruiting
participants from multiple software engineering classes and evenly
distributing them in each group based on their demographics.

How Far Are We? The Triumphs and Trials of Generative Al in Learning Software Engineering

7 CONCLUSION

Our work comprehensively evaluates convo-genAlI’s potential and
pitfalls in supporting software engineering tasks. Our analysis did
not reveal any statistical differences in participants’ productivity
or self-efficacy in using ChatGPT for the study tasks compared
to traditional resources. ChatGPT, in its current state, increased
participants’ frustration levels, led to uncertainty, and in some cases
induced self-doubt, due to the lack of transparency and clarity in its
behavior and communication. This highlights the need for caution;
while it provides good answers in straightforward cases, it tends to
give incorrect or confusing responses in more complex scenarios.
“For anything that wasn’t super standard, ChatGPT struggled to easily
give useful answers (PT-1)"—Expert developers can navigate this,
finding value in the AI responses, but novices might struggle or
learn incorrect practices.

Our findings provide foundational insights for future convo-
genAl design towards enhanced human-Al interaction, subsequently
informing the current consequences of using such tools for ac-
quiring new knowledge and skills. We foresee that with careful
co-design, genAl holds immense potential in helping novices learn
software engineering. We plan to use the insights from this study
to implement and evaluate genAl-embedded pedagogical tools that
foster critical thinking and support learning.

ACKNOWLEDGMENTS

We thank Samarendra Hedaoo for his insights in the meetings about
the SE course. We thank all participants who took part in the study
for their time and effort. We thank members of the EPIC lab at the
university: Amreeta Chatterjee, Emily Garcia, Mariam Guizani, Zix-
uan Feng, and Bianca Trinkenreich, among others, for their support
and valuable feedback, and Andrew Anderson for his early insights.
This work was partially supported by the National Science Foun-
dation under Grant Numbers: 2235601, 2236198, 2247929, 2303042,
and 2303043. Any opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

[1] Suhni Abbasi, Hameedullah Kazi, and Nazish Nawaz Hussaini. 2019. Effect of

chatbot systems on students learning outcomes. Sylwan 163, 10 (2019).

Larry Alton. 2017. Phone calls, texts or email? Here’s how millenni-

als prefer to communicate. Forbes. com. Available at: https://www. forbes.

com/sites/larryalton/2017/05/11/how-do-millennials-prefer-to-communicate (2017).

[3] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi,
Penny Collisson, Jina Suh, Shamsi Igbal, Paul N Bennett, Kori Inkpen, et al. 2019.
Guidelines for human-AT interaction. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1-13.

[4] Andrew Anderson, Tianyi Li, Mihaela Vorvoreanu, and Margaret Burnett. 2021.
Diverse Humans and Human-AI Interaction: What Cognitive Style Disaggrega-
tion Reveals. arXiv preprint arXiv:2108.00588 (2021).

[5] Anonymous. 2023. Supplemental Material for ChatGPT User Study .
//doi.org/10.5281/zenodo.8193821

[6] Apple. 2023. Human interface guidelines for machine learning. https://developer.
apple.com/design/human- interface- guidelines/machine-learning/.

[7] Muhammad Ashfagq, Jiang Yun, Shubin Yu, and Sandra Maria Correia Loureiro.

2020. I, Chatbot: Modeling the determinants of users’ satisfaction and continuance

intention of Al-powered service agents. Telematics and Informatics 54 (2020),

101473.

Albert Bandura. 1986. The explanatory and predictive scope of self-efficacy

theory. Journal of Social and Clinical Psychology 4, 3 (1986), 359-373.

Albert Bandura. 1993. Perceived self-efficacy in cognitive development and

functioning. Educational Psychologist 28, 2 (1993), 117-148.

[10] Hans Baumgartner and Jan-Benedict EM Steenkamp. 2001. Response styles in

[2

https:

8

=
o)

[11

[12

(13

[15

[16

[19

[20

[21

~
&,

[23

[24

[25

[26

[27]

(28]

[29

[30

[31

[32

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

marketing research: A cross-national investigation. Journal of Marketing Research
38,2 (2001), 143-156.

Laura Beckwith, Margaret Burnett, Valentina Grigoreanu, and Susan Wiedenbeck.
2006. Gender HCI: What about the software? Computer 39, 11 (2006), 97-101.
Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph
Lawrance, Alan Blackwell, and Curtis Cook. 2006. Tinkering and gender in
end-user programmers’ debugging. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 231-240.

Andrew Begel and Beth Simon. 2008. Novice software developers, all over again.
In Proceedings of the Fourth International Workshop on Computing Education
Research. 3-14.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the dangers of stochastic parrots: Can language models
be too big?. In Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency. 610-623.

Patrick Bii. 2013. Chatbot technology: A possible means of unlocking student
potential to learn how to learn. Educational Research 4, 2 (2013), 218-221.
Mikas Binkis, Ramunas Kubilitinas, Rima Sturiené, Tatjana Dulinskiené, Tomas
Blazauskas, and Vitalija Jakstiené. 2021. Rule-Based Chatbot Integration into
Software Engineering Course. In Information and Software Technologies: 27th
International Conference, ICIST 2021, Kaunas, Lithuania, October 14-16, 2021,
Proceedings 27. Springer, 367-377.

Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2022. Taking Flight with
Copilot: Early insights and opportunities of Al-powered pair-programming tools.
Queue 20, 6 (2022), 35-57.

Florian Brachten, Felix Brinker, Nicholas R] Frick, Bjorn Ross, and Stefan Stieglitz.
2020. On the ability of virtual agents to decrease cognitive load: an experimental
study. Information Systems and e-Business Management 18 (2020), 187-207.
Morton B Brown and Alan B Forsythe. 1974. Robust tests for the equality of
variances. J. Amer. Statist. Assoc. 69, 346 (1974), 364-367.

Khalid Abdulmohsen Buragga, Abdul Raouf Khan, Noor Zaman, et al. 2013.
Rubric based assessment plan implementation for Computer Science program:
A practical approach. In Proceedings of 2013 IEEE International Conference on
Teaching, Assessment and Learning for Engineering (TALE). IEEE, 551-555.
Margaret Burnett, Scott D Fleming, Shamsi Igbal, Gina Venolia, Vidya Rajaram,
Umer Farooq, Valentina Grigoreanu, and Mary Czerwinski. 2010. Gender dif-
ferences and programming environments: across programming populations. In
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. 1-10.

Margaret Burnett, Anicia Peters, Charles Hill, and Noha Elarief. 2016. Finding
Gender-Inclusiveness Software Issues with GenderMag: A Field Investigation. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery,
2586-2598. https://doi.org/10.1145/2858036.2858274

Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-
with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A
Method for Evaluating Software’s Gender Inclusiveness. Interacting with Com-
puters 28, 6 (10 2016), 760-787. https://doi.org/10.1093/iwc/iwv046

Veronica Cateté and Tiffany Barnes. 2017. Application of the Delphi method
in computer science principles rubric creation. In Proceedings of the 2017 ACM
conference on innovation and technology in computer science education. 164-169.
Chiung-Sui Chang, Eric Zhi-Feng Liu, Hung-Yen Sung, Chun-Hung Lin, Nian-
Shing Chen, and Shan-Shan Cheng. 2014. Effects of online college student’s
Internet self-efficacy on learning motivation and performance. Innovations in
Education and Teaching International 51, 4 (2014), 366-377.

Ching-Yi Chang, Gwo-Jen Hwang, and Meei-Ling Gau. 2022. Promoting students’
learning achievement and self-efficacy: A mobile chatbot approach for nursing
training. British Journal of Educational Technology 53, 1 (2022), 171-188.

Gary Charness and Uri Gneezy. 2012. Strong evidence for gender differences in
risk taking. Journal of Economic Behavior & Organization 83, 1 (2012), 50-58.
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Marian Daun and Jennifer Brings. 2023. How ChatGPT Will Change Software
Engineering Education. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1. 110-116.

Marzieh Dehghani, Hamideh Pakmehr, Asma Malekzadeh, et al. 2011. Relation-
ship between students’ critical thinking and self-efficacy beliefs in Ferdowsi
University of Mashhad, Iran. Procedia-Social and Behavioral Sciences 15 (2011),
2952-2955.

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with copilot:
Exploring prompt engineering for solving cs1 problems using natural language. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1.1136-1142.

Paul Denny, Sami Sarsa, Arto Hellas, and Juho Leinonen. 2022. Robosourcing
Educational Resources-Leveraging Large Language Models for Learnersourcing.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

[33]

[34]

[35

[36]

[37]

[38

[39]

[40]

[41]

[42
[43]
[44]

[48

[49

[50

[51]

[52]

[53

o
it

[55

[56]

arXiv preprint arXiv:2211.04715 (2022).

Jonathan Dodge, Roli Khanna, Jed Irvine, Kin-Ho Lam, Theresa Mai, Zhengxian
Lin, Nicholas Kiddle, Evan Newman, Andrew Anderson, Sai Raja, et al. 2021.
After-action review for Al (AAR/AI). ACM Transactions on Interactive Intelligent
Systems (TiiS) 11, 3-4 (2021), 1-35.

Juan Carlos Farah, Basile Spaenlehauer, Vandit Sharma, Maria Jesus Rodriguez-
Triana, Sandy Ingram, and Denis Gillet. 2022. Impersonating chatbots in a code
review exercise to teach software engineering best practices. In 2022 IEEE Global
Engineering Education Conference (EDUCON). IEEE, 1634-1642.

Umer Farooq and Jonathan Grudin. 2016. Human-computer integration. Interac-
tions 23, 6 (2016), 26-32.

James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian
Computing Education Conference. 10-19.

James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A Becker. 2023. My Al Wants to Know if This Will
Be on the Exam: Testing OpenAI's Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference. 97-104.
Martin Fowler. 1997. Refactoring: Improving the design of existing code. In 11th
European Conference. Jyviskyld, Finland.

Luke K Fryer, Mary Ainley, Andrew Thompson, Aaron Gibson, and Zelinda
Sherlock. 2017. Stimulating and sustaining interest in a language course: An
experimental comparison of Chatbot and Human task partners. Computers in
Human Behavior 75 (2017), 461-468.

Emily Arteaga Garcia, Jodo Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor
Steinmacher, and Anita Sarma. 2023. How to Support ML End-User Programmers
through a Conversational Agent. In 2024 IEEE/ACM 46th International Conference
on Software Engineering (ICSE). IEEE Computer Society, 618—629.

Luis A Gonzalez, Andres Neyem, Ignacio Contreras-McKay, and Danilo Molina.
2022. Improving learning experiences in software engineering capstone courses
using artificial intelligence virtual assistants. Computer Applications in Engineer-
ing Education 30, 5 (2022), 1370-1389.

Google. 2023. Bard. https://bard.google.com/.

Google. 2023. People+ai guidebook. https://pair.withgoogle.com/guidebook/.
Jonathan Grudin and Richard Jacques. 2019. Chatbots, humbots, and the quest
for artificial general intelligence. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. 1-11.

Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139-183.

Andrew W Ishak and Elizabeth A Williams. 2017. Slides in the tray: How fire
crews enable members to borrow experiences. Small Group Research 48, 3 (2017),
336-364.

Brittany Johnson, Christian Bird, Denae Ford, Nicole Forsgren, and Thomas
Zimmermann. 2023. Make Your Tools Sparkle with Trust: The PICSE Framework
for Trust in Software Tools. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 409-419.
Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara] Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. 1-23.

Roli Khanna, Jonathan Dodge, Andrew Anderson, Rupika Dikkala, Jed Irvine,
Zeyad Shureih, Kin-ho Lam, Caleb R Matthews, Zhengxian Lin, Minsuk Kahng,
etal. 2022. Finding AI's faults with AAR/AI: An empirical study. ACM Transactions
on Interactive Intelligent Systems (TiiS) 12, 1 (2022), 1-33.

Mohammad Amin Kuhail, Nazik Alturki, Salwa Alramlawi, and Kholood Alhejori.
2023. Interacting with educational chatbots: A systematic review. Education and
Information Technologies 28, 1 (2023), 973-1018.

Sam Lau and Philip J Guo. 2023. From" Ban It Till We Understand It" to" Resistance
is Futile": How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools such as ChatGPT and
GitHub Copilot. (2023).

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 2023. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language
models. arXiv preprint arXiv:2301.12597 (2023).

Tianyi Li, Mihaela Vorvoreanu, Derek DeBellis, and Saleema Amershi. 2022.
Assessing Human-Al Interaction Early through Factorial Surveys: A Study on the
Guidelines for Human-Al Interaction. ACM Transactions on Computer-Human
Interaction (2022).

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.
Competition-level code generation with alphacode. Science 378, 6624 (2022),
1092-1097.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov.
2021. Towards understanding and mitigating social biases in language models.
In International Conference on Machine Learning. PMLR, 6565-6576.

Dastyni Loksa, Amy J Ko, Will Jernigan, Alannah Oleson, Christopher] Mendez,

[57

[58

[70

(71]

[72

[74

[75

[76

[78

[79]

Choudhuri et al.

and Margaret M Burnett. 2016. Programming, problem solving, and self-
awareness: Effects of explicit guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. 1449-1461.

Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming
Nie, and Yang Liu. 2023. The Scope of ChatGPT in Software Engineering: A
Thorough Investigation. arXiv preprint arXiv:2305.12138 (2023).

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from using code
explanations generated by large language models in a web software development
e-book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1. 931-937.

Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng
Huang. 2022. Generating diverse code explanations using the gpt-3 large language
model. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 2. 37-39.

Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1-1.

Meta. 2023. Llamaz2. https://ai.meta.com/llama/.

Joan Meyers-Levy and Barbara Loken. 2015. Revisiting gender differences: What
we know and what lies ahead. Journal of Consumer Psychology 25, 1 (2015),
129-149.

John E Morrison and Larry L Meliza. 1999. Foundations of the after action review
process. Technical Report. Institute for Defense Analyses Alexandria Va.
Thomas O Nelson and Louis Narens. 1994. Why investigate metacognition.
Metacognition: Knowing about knowing 13 (1994), 1-25.

Chinedu Wilfred Okonkwo and Abejide Ade-Ibijola. 2021. Chatbots applications
in education: A systematic review. Computers and Education: Artificial Intelligence
2 (2021), 100033.

OpenAl 2023. GPT-4. https://openai.com/product/gpt-4.

Hema Susmita Padala, Christopher Mendez, Felipe Fronchetti, Igor Steinmacher,
Zoe Steine-Hanson, Claudia Hilderbrand, Amber Horvath, Charles Hill, Logan
Simpson, Margaret Burnett, et al. 2020. How gender-biased tools shape newcomer
experiences in oss projects. IEEE Transactions on Software Engineering 48, 1 (2020),
241-259.

Doeun Park, Myounglee Choo, Bohyun Jin, Un Sun Chung, Jinwoo Kim, Junghan
Lee, and Yee-Jin Shin. 2023. Utilizing a Conversational Agent to Promote Self-
efficacy in Children: A Pilot Study on Low Cognitive Ability Children with
Attention Deficit Hyperactivity Disorder. In Extended Abstracts of the 2023 CHI
Conference on Human Factors in Computing Systems. 1-7.

MY Park and KH Chung. 2011. The antecedents and consequences of user
satisfaction in virtual community: Focused on college students. Korean Research
Academy of Distribution and Management Review 14, 1 (2011), 77-99.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. 2023. The impact
of ai on developer productivity: Evidence from github copilot. arXiv preprint
arXiv:2302.06590 (2023).

Juanan Pereira. 2016. Leveraging chatbots to improve self-guided learning
through conversational quizzes. In Proceedings of the Fourth International Confer-
ence on Technological Ecosystems for Enhancing Multiculturality. 911-918.
Gustavo Pinto, Clarice Ferreira, Cleice Souza, Igor Steinmacher, and Paulo
Meirelles. 2019. Training software engineers using open-source software: the
students’ perspective. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE,
147-157.

G. Pinto, F. Figueira Filho, I. Steinmacher, and M. A. Gerosa. 2017. Training
Software Engineers Using Open-Source Software: The Professors’ Perspective. In
The 30th IEEE Conference on Software Engineering Education and Training. 1-5.
James Prather, Brent N Reeves, Paul Denny, Brett A Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2023. " It’s Weird That it Knows What I Want": Usability and Interactions
with Copilot for Novice Programmers. arXiv preprint arXiv:2304.02491 (2023).
Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. 2006. Exploring methods for evaluating group differences on the NSSE
and other surveys: Are the t-test and Cohen’sd indices the most appropriate
choices. In Annual meeting of the Southern Association for Institutional Research.
Citeseer, 1-51.

Italo Santos, Jodo Felipe Pimentel, Igor Wiese, Igor Steinmacher, Anita Sarma,
and Marco Aurélio Gerosa. 2023. Designing for Cognitive Diversity: Improving
the GitHub Experience for Newcomers. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS).
IEEE, 12 pages.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27-43.

Taylor Lee Sawyer and Shad Deering. 2013. Adaptation of the US Army’s after-
action review for simulation debriefing in healthcare. Simulation in Healthcare 8,
6 (2013), 388-397.

Johanna Schmidhuber, Stephan Schlégl, and Christian Ploder. 2021. Cognitive

How Far Are We? The Triumphs and Trials of Generative Al in Learning Software Engineering

Load and Productivity Implications in Human-Chatbot Interaction. In 2021 IEEE
2nd International Conference on Human-Machine Systems (ICHMS). IEEE, 1-6.
Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of variance test
for normality (complete samples). Biometrika 52, 3/4 (1965), 591-611.

[81] Jesper Simonsen and Morten Hertzum. 2010. Iterative participatory design.

Design research: Synergies from interdisciplinary perspectives 1 (2010), 16-32.
Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming open source project entry barriers with a portal
for newcomers. In Proceedings of the 38th International Conference on Software
Engineering. 273-284.

[83] Jiao Sun, Q Vera Liao, Michael Muller, Mayank Agarwal, Stephanie Houde, Kartik

Talamadupula, and Justin D Weisz. 2022. Investigating explainability of generative
Al for code through scenario-based design. In 27th International Conference on
Intelligent User Interfaces. 212-228.

Silvia Tamayo-Moreno and Diana Pérez-Marin. 2017. Designing and evaluating
pedagogic conversational agents to teach children. International Journal of
Educational and Pedagogical Sciences 11, 3 (2017), 521-526.

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs.
experience: Evaluating the usability of code generation tools powered by large
language models. In CHI Conference on Human Factors in Computing Systems
extended abstracts. 1-7.

Stefano Valtolina, Barbara Rita Barricelli, and Serena Di Gaetano. 2020. Com-
municability of traditional interfaces VS chatbots in healthcare and smart home
domains. Behaviour & Information Technology 39, 1 (2020), 108-132.

Matthew Verleger and James Pembridge. 2018. A pilot study integrating an
Al-driven chatbot in an introductory programming course. In 2018 IEEE Frontiers
in Education conference (FIE). IEEE, 1-4.

Ari Ezra Waldman. 2020. Cognitive biases, dark patterns, and the ‘privacy
paradox’. Current opinion in psychology 31 (2020), 105-109.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

MS Walgama and B Hettige. 2017. Chatbots: The next generation in computer
interfacing—-A Review. (2017).

Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas Zimmermann. 2023.
Investigating and Designing for Trust in Al-powered Code Generation Tools.
arXiv preprint arXiv:2305.11248 (2023).

Alexandra Weidemann and Nele Rufiwinkel. 2021. The Role of Frustration
in Human-Robot Interaction-What Is Needed for a Successful Collaboration?
Frontiers in Psychology (2021), 707.

Matt Welsh. 2022. The End of Programming. Commun. ACM 66, 1 (2022), 34-35.
Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

Sebastian Wollny, Jan Schneider, Daniele Di Mitri, Joshua Weidlich, Marc Rit-
tberger, and Hendrik Drachsler. 2021. Are we there yet?-A systematic literature
review on chatbots in education. Frontiers in Artificial Intelligence 4 (2021),
654924.

Austin P Wright, Zijie] Wang, Haekyu Park, Grace Guo, Fabian Sperrle, Men-
natallah El-Assady, Alex Endert, Daniel Keim, and Duen Horng Chau. 2020. A
comparative analysis of industry human-Al interaction guidelines. arXiv preprint
arXiv:2010.11761 (2020).

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1-10.

Frank F Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE code generation
from natural language: Promise and challenges. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 2 (2022), 1-47.

Daniel M Yellin. 2023. The Premature Obituary of Programming. Commun. ACM
66, 2 (2023), 41-44.

	Abstract
	1 Introduction
	2 Method
	2.1 Task Design
	2.2 RQs, Metrics and Instruments
	2.3 Sandboxing
	2.4 Lab Study

	3 Results
	3.1 RQ1: Effectiveness
	3.2 RQ2: Pitfalls

	4 Discussion: Recommendation
	5 Related Work
	6 Threats to Validity
	7 Conclusion
	Acknowledgments
	References

