PERIODIC PARTIAL THETA FUNCTIONS AND ¢-HYPERGEOMETRIC

KNOT MULTISUMS AS QUANTUM JACOBI FORMS

AMANDA FOLSOM

ABSTRACT. We prove that general two-variable partial theta functions with periodic coef-
ficients are quantum Jacobi forms, and establish their explicit transformation and analytic
properties. As applications, we also prove that seven infinite families of g-hypergeometric
multisums and related partial theta functions of interest arising from certain knot col-
ored Jones polynomials, Kashaev invariants for torus knots and Virasoro characters, and
“strange” identities, appearing in (separate) works of Bijaoui et al., Hikami, Hikami-Kirillov,
Lovejoy, and Zagier are quantum Jacobi forms.

CONTENTS

Part I. INTRODUCTION, RESULTS SUMMARY, AND PRELIMINARIES (§1-2)

1.

1.1.

2.

2.1.
2.2.

Introduction and results

Results summary and outline of paper

Modular preliminaries

Modular and mock modular (Jacobi) forms
Groups and sets

Part II. QUANTUM PERIODIC PARTIAL JACOBI THETA FUNCTIONS (§3—4)

3.

Periodic partial Jacobi theta functions and Theorem 1

4. Proof of Theorem 1

4.1. A nonholomorphic Jacobi family

4.2. A quantum and mock Jacobi family

4.3. Proof of Proposition 2: transformation properties

4.4. Proof of Proposition 2: quantum properties

4.5. Proof of Theorem 1

Part III. APPLICATIONS TO ¢-HYPERGEOMETRIC MULTISUM KNOT FAMILIES (§5)

5. Quantum Jacobi g-series and knot families

5.1.  On Hikami’s generalization of Zagier’s “strange” identity and Theorem 2

5.2. On Lovejoy’s generalized “strange identities” I and Theorem 3

5.3.  On Lovejoy’s generalized “strange identities” II and Theorem 4

5.4.  On Lovejoy’s generalized “strange identities” III and Theorem 5

5.5. On Lovejoy’s generalized “strange identities” IV and Theorem 6

5.6.  On the Bijaoui et al. Kontsevich-Zagier series for torus knots 7'(3,2") and
Theorem 7

5.7.  On the Hikami-Kirillov Virasoro characters of minimal models M(s,t) and
Kashaev invariants for torus knots T'(s, t) and Theorem 8

Acknowledgements

References

19
19
20
20
21
22
23

24
25

26
26



Part I. INTRODUCTION, RESULTS SUMMARY, AND PRELIMINARIES (§1-2)
1. INTRODUCTION AND RESULTS

Our results in this paper are partially rooted in applications of g-series to topology with
connections to modularity. To explain this by way of example, let T{y3) denote the right-
handed trefoil knot, as seen in Figure 1. The N-colored Jones polynomial Jy (K, ¢) for a knot

QD

FIGURE 1. Right-handed trefoil knot T{y 3

K is a well-studied knot invariant, and it is known (see e.g., [20, 25, 27]) that this invariant
for the aforementioned torus knot may be explicitly given in terms of a (terminating) g-
hypergeometric series as follows:

(1.1) InTesia) =4 ™ (@™ q)n.
n=0

It turns out that this topological g-series also possesses modular properties in the following
sense. A little over a decade ago, Zagier defined the notion of a quantum modular form
(of weight k), a complex function f : Q — C defined on the rationals (as opposed to
the upper-half complex plane as in the case of modular forms) which exhibits modular-like
transformation properties there, up to the addition of smooth error functions in R. That is,
one requires the error to modularity functions

(e i= f(a) = =)o+ ) (20

to satisfy a suitable property in R such as analyticity or continuity, for all v := (¢ 5%) € SLy(Z)
or suitable subgroup. (See [7, 32] and the remainder of this section for more details.) A
fundamental example of such a form given by Zagier is obtained using Kontsevich’s function
(1.2) F(q) ==Y (¢,
n=0

so-called “strange” in part due to the fact that it converges nowhere in C except at roots of
unity ¢ = ¢J. Here and throughout we use the notation (y := >V for roots of unity, and
recall that the g-Pochhammer symbol is defined for n € NgU{oo} by (a; q), := H;L:_Ol (1—aq’)
(taking the empty product to be 1 as usual). Comparing the Kontsevich-Zagier quantum
modular form (1.2) to the N-colored Jones polynomial for 7,3y, one finds (and we credit
Hikami-Lovejoy [24] for this observation) that they agree (up to a constant multiple) at N-th
roots of unity ¢}

(1.3) In(Ti2):CN) = (N E(CN),

thereby connecting these knot invariants, g-hypergeometric series, and quantum modular

forms.
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A key ingredient in Zagier’s proof of the quantum modularity of' F(g) is the following
“strange identity”:
(1.4) 07y (q:q)n " = ——Z (2)q5r,

n=0

where the right-hand side features the holomorphic Eichler integral of the modular Dedekind
n-function n(7) := ¢V [[02,(1—¢") , with ¢ = e>™" 7 € H := {7 € C | 3(7) > 0} the usual
modular variable, and () the Kronecker symbol. Zagier’s (1.4) is referred to as a (strange)
“Identity” (“=") versus an identity (=) due to the fact that it holds only asymptotically as
q tends towards roots of unity radially from within the complex unit disc. In the limit, we
find the left-hand side of (1.4) gives (up to multiplication by ¢'/?*) the value of F(g), while
the Eichler integral, a kind of partial theta function, governs the behavior on the right-hand
side. While it is not modular on H, the right-hand side Eichler integral is shown to possess
quantum modular properties in R, which are passed to F'(q) via the “identity” (1.4).

Zagier’s (1.4) showcases examples of the types of functions which we further study in more
generality in this paper in the context of quantum modular (Jacobi) forms: ¢-hypergeometric
series and partial theta functions, and (via (1.3)) associated knot invariants. On their own,
g-hypergeometric series like Heine’s [18§]

2¢1 <a7b7 ¢ q,xr Z q q)nlﬂ

n:0

have made many appearances and led to numerous (other) applications in mathematics.
Citing Andrews who quotes Sawyer [1] on their predecessors, hypergeometric functions like
2Fi(a,b, ¢;z) = limg 1 261 (¢%, ¢, ¢% ¢, ),

“...there are many functions used by engineers or physicists — the Legendre

polynomials and the Bessel functions, for example — which are particular cases

of the hypergeometric function. In fact, there must be many universities today

where 95 per cent, if not 100 per cent, of the functions studied by physicists,

engineering and even mathematics students are covered by this single symbol

oFi(a,b,c;x).”
Similarly, ¢-hypergeometric series have seen additional prominent applications to areas in-
cluding the theory of partitions at the intersection of combinatorics and number theory;
modular forms, mock modular forms and harmonic Maass forms; g¢-difference equations,
congruences, and summation formulae in number theory; counting vector spaces and differ-
ential operators; understanding torsion in the Bloch group of Q; and much much more (see
e.g. [1,7,9]) — not to mention topology which we are also in part motivated by in this paper.

Holomorphic Eichler integrals such as on the right-hand side of (1.4), and their relatives

partial and false theta functions, have also played significant roles in combinatorics, ¢-series,
modular, mock modular and quantum modular forms, and with applications to other areas
including quantum topology (see [14] and references therein for more). In these directions,
we define and study the following very general class of periodic partial Jacobi theta functions,

1As is standard in this subject, for simplicity we may slightly abuse terminology in this paper and refer
to a function as a modular form or other modular object when in reality it must first be multiplied by a
suitable power of ¢ to transform in the right way.
3



named for their periodic coefficients and their sum over a partial (half) lattice — and also
Theorem 1 in Section 3, which reveals (quantum) Jacobi properties.?

Definition 1. Let r € N, and let ¢; € C be a fizred constant for each 1 < j < r. Further,
let B,a; € N with 0 < o < B for each 1 < j < r, and o;j # oy, for 1 < j # k < r.
Let x : Z — C be a periodic function defined explicitly by x(n) = €; if n = a; (mod B) for
each 1 < 7 <r (and x(n) = 0 otherwise). We define the periodic partial Jacobi theta
function (with respect to x) by

RGeS

Explicit examples of such theta functions and their defining characters x originally appearing
in work of others are studied in Sections 5.1-5.7. For example, from [21, 26] we have the
(one variable) periodic partial theta function

() n?—(2k—2a—1)2

1
2 Z X8k+4(n)q 8(2k+1)

n>0

where ng)ﬂ (n) is the periodic function modulo 8% + 4 given by

1, ifn=2k—2a—1o0r6k+2a+5 (mod 8k +4),
Xé‘;@()— -1, ifn=2k+2a+3or6k—2a+1 (mod8k+4),

0, otherwise.

This (and similar explicit functions and their two variable analogues) is further studied in
Section 5, and expressed in the notation of Definition 1 in the proof of Theorem 2 there.
The residue class a; = 0 (mod () is not encompassed by 1 nor all proofs and motivating
applications offered in Section 5. The reader will find additional general families of one-
variable partial theta functions with periodic coefficients in the interesting recent related
work [19] which we also discuss below.

Before explaining our main results, we recall that Bringmann and the author defined a
formal notion of a quantum Jacobi form and offered the first example (arising from combi-
natorics) in [6]. In words, quantum Jacobi forms take values in C, are defined in Q x Q (as
opposed to C x H in the case of Jacobi forms as developed by Eichler and Zagier [11]), and
exhibit Jacobi transformation properties there, up to the addition of smooth error functions
in R x R. Precisely, we have the following definition.

Definition 2 (Bringmann-Folsom [6]). A weight k € 37 and index m € %Z quantum
Jacobi form is a complez-valued function ¢ on Q x Q such that for ally = (¢ %) € SLy(Z)
and (X, 1) € Z X Z, the functions h, : Q x (Q\ ' (ic0)) — C and g»,) : Qx Q — C defined
by

_ _ —27rimcz2 z CLT—l-b
hy(z;7) = ¢(2;7) — 7 (V) (T + d) Feerrd ¢(c¢+d;c¢+d)’

2Two notes on notation. While the periodic x are dependent on and defined by the additional parameters
{o;},{€;}, r and B, we suppress them in the naming of x for ease of notation. We also choose to define
O, (z; q) with the shorter name periodic partial Jacobi theta functions instead of the more immediately clear
yet longer name partial Jacobi theta functions with periodic coefficients again for ease and convenience.
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Gouw (7)== 0(2;7) — g5 (A, )2 mNTHAD 6 (5 4 AT 4 s 7),

satisfy a “suitable” property of continuity or analyticity in a subset of R x R.

Remarks.

(1) The complex numbers €1(y) and e3((A, ) satisfy |e1(7)| = |e2((A, w))| = 1; in par-
ticular, the () are such as those appearing in the theory of half-integral weight
modular forms.

(2) We may modify the definition to allow modular transformations on appropriate sub-
groups of SLy(Z). We may also restrict the domain to be a suitable subset of Q x Q.

(3) The “suitable” property of continuity or analyticity required is intentionally left some-
what vague in order to mimic Zagier’s definition of a quantum modular form [32].

Quantum modular forms have been well-studied since the time of their definition roughly
10 years ago; they have been shown to be related to the diverse areas of harmonic Maass
forms, partial theta functions, colored Jones polynomials, meromorphic Jacobi forms, and
vertex algebras, among other things (see, e.g., [7] and references therein). We also now know
that the notion of a quantum modular form is related to Ramanujan’s original notion of a
mock theta function (see, e.g., [7, 8, 16]). The subject of quantum Jacobi forms also continues
to develop; the known examples of quantum Jacobi forms to date have been established in
3,4, 6,10, 13, 17], and like quantum modular forms, quantum Jacobi forms have been shown
to emerge in the diverse areas of number theory, combinatorics, topology, and mathematical
physics. In both cases, a comprehensive theory is still lacking, and obtaining explicit and
natural sources of quantum forms is a problem of interest.

1.1. Results summary and outline of paper. The aforementioned subjects have seen a
great deal of research activity: papers such as [8, 13, 15, 19, 24] extend the example in the
previous section into broader frameworks and families of examples, establishing quantum
modular properties of Eichler integrals, partial theta functions, ¢-series, and colored Jones
polynomials. Papers such as [2, 17, 29] examine similar problems from the perspective of
g-hypergeometric series and sums-of-tails identities (noting that such an identity leads to
(1.4)). Our main results in this paper extend these research directions as follows in items

(1) - (4):

(1) In Theorem 1 in Section 3, we show that the general family of periodic partial theta
functions in two variables (see Definition 1)

n2

Oy (x1q) =Y x(n)g>@ 2
n=0

are quantum Jacobi forms, and establish their explicit transformation and analytic proper-
ties. A key component to our proof of this result involves establishing two-variable mock
Jacobi forms in the (Jacobi) domain C x H which are “dual” to partial Jacobi theta func-
tions, and subsequently establishing their suitable and explicit analytic properties in the
“boundary” domain R x R.

We also draw the reader’s attention to interesting related work of Goswami-Osburn in
[19] referenced above, in which they establish one-variable quantum modular properties of

partial theta functions with even or odd periodic coefficients using different methods.
5



(2) As applications to Theorem 1, in a series of five theorems (Theorems 2—-6), we prove that
five rather general infinite families of ¢-hypergeometric multisums and related partial theta
functions of interest are quantum Jacobi forms. One such family we study is this one

k-1

§ : . n24-4n?_ +napito g1 2ni+ 20k 140 Njt1 + Oa,
(1'5) (.qu, q)nkq ! hor et x H oy )
N1y >0 j=1 J q

which is used by Hikami [21] and Lovejoy [26] to establish Hikami’s [21] elegant generalization
of Zagier’s (1.4) given by

(1.6)
k—1 ) N
. n24dn? Angiidetng_ 7’Lj+1+5j7a « 1 (a) n?—(2k—2a-1)"
S (gt T [ 03] LS e
N1y, >0 j=1 J q n>0

Here and throughout, the ¢g-binomial coefficients are defined by

[n] — ¢ (@GDn—k(GDr’ 0<k<n,
e 0, else,

and Xé‘,ﬂr 4 Is a certain periodic function (see Section 5.1). The four additional g-hypergeometric
multisums including (1.5) which we study in Sections 5.1-5.5 appear in recent related work
of Lovejoy [26] on Bailey pairs and “strange” identities, motivated by Hikami’s generalization
of Zagier’s (1.4) in [21], and the important Andrews-Gordon identities, which have implica-
tions in number theory, combinatorics, algebra, and physics.

(3) As another application to Theorem 1, we establish in Theorem 7 in Section 5.6 that
a certain infinite family of g-hypergeometric multisums appearing in work of Bijaoui et al.
[5] in their study of Kontsevich-Zagier series for torus knots 7'(3,2) (¢t > 2), along with a
related family of partial Jacobi theta functions, are quantum Jacobi forms.

FIGURE 2. Torus knots 7'(3,2") (image credited to [5])

(4) As a final application, in Theorem 8 in Section 5.7, we establish that a certain doubly
infinite family of functions appearing in [22] in their study of Kashaev invariants for torus
knots T'(s,t) and Virasoro characters
s,t -1 S (n,m) x2
Chn’,m(T) =10 (T) Xost (k)q45t
k=0
of the minimal models M(s,t) (s,t € N, ged(s,t) = 1), are quantum Jacobi forms. That is,
work of Hikami and Kirillov explains that Kashaev invariants for the torus knots 7'(s,t) co-

incide with Eichler integrals of Virasoro characters for the minimal model M(s, t), leading to
6



new g-identities. E.g., it is well known that the Virasoro character for M(2,2m+1) is related
to the aforementioned Andrews-Gordon identity generalizing the famous Rogers—Ramanujan
identities. Particular attention is paid to the case of s = 3 in [22], where it is shown that
(s,t) = (3,4) gives rise to famous identities of Slater [31]. Our work here establishes the
quantum Jacobi properties of two variable extensions of the general characters for the min-
imal models M(s, ).

The remainder of the paper is structured as follows. Section 2 on modular preliminaries
completes Part I of the paper. Sections 3—4 constitute the paper’s Part II: Quantum periodic
partial Jacobi theta functions, in which we state and prove Theorem 1 by way of intermediate
results including Proposition 2, which extends earlier work in [13] and requires analysis in the
complex Jacobi domain C x H and in R x R in order to (explicitly) establish quantum Jacobi
properties in Q x Q. Finally, in Theorems 2 - 8 in Part III: Applications to g-hypergeometric
multisum knot families (Section 5) we apply Theorem 1 in order to establish the quantum
Jacobi properties of seven infinite families of interest with associated g-hypergeometric knot
sums and minimal model characters appearing in [5, 21, 22, 23, 26], and as described in our
results summaries (2)—(4) above.

2. MODULAR PRELIMINARIES

2.1. Modular and mock modular (Jacobi) forms. In this section we define some
modular-type functions used in the remainder of the paper. We let ¢ = e(7) and w = e(z),
where e(a) := €*™ and begin with the Jacobi theta function of weight 1/2, defined for
z€C,7 € H by

I(z7) = Y i T 2min(ety)

nEZ-‘r%

Lemma 1 (see [28]). For \,u € Z,v = (& B) € SLa(Z), and (z,7) € C x H,

() 9 (z+ A7+ 57 )”“q e (2 ),
(i) v (C’ 7 > CT—l—D)%e%ﬁ(z;T),

-

(iii) ¥(z;7) = —igsw ™= H(l — ") (1 —wg" (1 —w™g),

where for C' > 0 we have that

L (DY ,;(0=0)/2,mi(BDA-C*)+C(A+D))/12 ¢ (Y is odd
. 1 e , if Cis odd,
(2.1) () = \{; (g) miD/4 mi(AC(1—D?)+D(B—C))/12 -fD s odd
7 (5) e e . if D is odd.
We also use the weight-3/2 theta functions defined for 7 € H and A, B € R by
(2.2) ga,B(T) = Z e TH2mivE,

vEA+Z

Lemma 2 (see [30, 33]). With hypotheses as above, we have:
(1) 9a+1,5(7) = 9a5(7),
(it) gap41(1) = g p(T),
(iil) gas(T+1) = eimA(AH)gA,AJrBJr%(T);
7



(iv) gap (—1) = ie?™B(—it)2gp _a(r),
(V) Q—A,_B(T) = _gA,B(T)'

Next we define the level 2 Appell function for 21,2 € C, 7 € H (after Zwegers [7]) by

n (n+1)

(2-3) (217 29;T) = &1 Z 5”_5 7

neL
where &; = e(z;),7 € {1,2}. While A, is not in general modular, it can be completed to a
nonholomorphic Jacobi form As defined by

(2.4) 121\2(21,22; T) =

1
i y ) 1 . 1
As(z1, 22;7T) + 52627””119 (zg + 97 + 5;27) R (221 — 29— JT — 5;27) ,

j=0

where R is defined by

(2.5) R(z;1) = Z {sgn(y) - F ((1/ + A)@)} (—1)7 2w T—2mivz

VG%—FZ

with y := Im(7), A :== % and

E(z) = 2/ e ™ du.
0

Lemma 3 (see [7]). With hypotheses as above, for ni,ng,mi,ms € Z, v = (24) € SLy(Z),
the functions As satisfy:

~

(i) 22(_217 —Z2§7') = —A2(21, 22;7');
(ii) 22(21 + T 4+ my, 2o + NaT + Mo T) = 5%”“”252_"1q”%*’“"%%(zl, 29;T),

(Hl) A2 (cT—i—d’ CT+d’ 77—) (CT + d>€%(_225+221@);{2(217 22; 7').

Lastly, we define the Mordell integral h, defined for z € C, 7 € H, by

miTu?—2mzu

(&
2. h(z;1) = | ———du.
(2:6) (2:7) /R cosh(mu) "

The following result relates the functions h and g4 5 [33].
Lemma 4. For A, B € (—1,1),
/ 9A+%,B+%(Z)dz _ _e—7riA2'r+2m'A(B+%)h(AT — B;7).
0

—i(z+7)
8



2.2. Groups and sets. Here we define a number of subgroups of SLy(Z) and study their
Jacobi action on various subsets of Q x @Q in Lemmas 5 and 6 below. We use the notation
(S) to denote the group generated by the set S. We define the groups

G = ((aha D) (7)), Glim (D). (3550)).
and for § € N
G(B, f5) == (2, 1), (1%°)),
Hy,, = {(&8)€SLy(Z): A,D=1 (mod 254), B,C =0 (mod lrp)},
Hy, ={(45) € Hp,: B=0 (mod 26%)},
where

l 4
f,B = { 2.8 | B’ and 6273 = lcm(2, B) (B € N)

We will later specify pairs (B,u) € Q* which yield subgroups of SLy(Z). Observe that
G(B, fs) is a subgroup of Gy, G, is a subgroup of Gp,, and G(B, fz) is a subgroup of
Hy, ,.

V\?e point out that these groups generalize certain groups appearing in [13] as follows.
When 4 | § as is required in [13], we have that s 3 = f3 = 5, and G(B, f3) = G(B,5) = Gp.1.
In this case, this group also equals the group G4 defined in [13]. Further, when 4 | 5 the
group Hy, , = Hg above agrees with the group Hp of the same name in [13].

Next we define the several subsets of Q x Q. Here and throughout, unless otherwise

indicated, we assume all fractions ¢/d in Q are reduced, meaning that ¢ € Z and d € N, with
ged(e,d) = 1. We define

)

b|k, kiseven, and if Kk =0 (mod 2Bu)
e . a h . 9 ) )
Qb= {(b’ﬁ) €QxQ: then h # +1 (mod 4B3/u) }

Y

b|k, kisodd, and if k=0 (mod 2Bu)
o a h . ) ) )
Bu - {(3’ x) €QxQ: then h # +1 (mod 4B3/u) }

;o (2,1) € Q x Q: b | k, and either x is odd, or 4 | k and x/b is even,
Bu Vb7 x " andif k=0 (mod 2Bu), then h # +1 (mod 4B3/u) |’

and

g a h 1
Qa?ﬁ’u::{(%7%)€QxQ: HlSGVGH,HmEZS.t. %—{—E(%—i—i—i—Zm)EZ, }

and if k =0 (mod 2Bu), then h # +1 (mod 4/3°/u)

Finally, dependent on periodic y as in Definition 1, and using groups and sets above, we
further define

r

GX = ﬂ g(ﬁ;: fﬁ;)a H;( = m Héz,a’.’
j=1

j=1 !

9



and
T
Qx = () Qut 7.1,
j=1

where

(2.7) o = aj/ged(ay, B), and B = B/ged(ay, B).

We now establish the closure of the sets above under the Jacobi action of some of the specific
groups above, as needed later to establish quantum Jacobi properties of the many families
being studied in this paper.

Lemma 5. Let f,u € N with =0 (mod u). Then Q. is closed under the Jacobi action
of Gy X (4Z x 27).

Proof. We begin by considering the modular Jacobi action

ya T
(25u1) (2:7) 1= <2ﬁur+ 1" 28ur + 1)

under the first generator, where we take (z,7) = (%,2) € Q, 3.. Then we have that

T h h

2But + 1 B 2Buh +r K’

where h' := sgn(2puh + k)h and £’ := |28uh + k|. Note that h'/k’ is reduced because h/k
is. In particular, ¥’ # 0, for otherwise k = —2fuh, and since ged(h, k) = 1 we have h = +1,
contradicting the third condition defining Q, 3,. Moreover, we have that

z aK a

20ur +1  b(2Buh+ k) "V’
where the integers @’ and b are defined to be such that their fraction a'/b" is reduced and
equal to m
We now verify that (a'/0',h'/K') is in Q4 5.,. We have that &’ is even because x is. Next,
since (a/b, h/K) € Qq pu, there exist integers m and x such that a/(2b) + (h/k)(a/B+1/2+
2m) = x. We let £ := m + Pux. Then

' B 1 h 1
i+;<9+—+2£) — 45 (ﬁ+g(9+—+2m+2ﬁw))

20 5 2 Kk \ 2b g 2
_ R 2Buxh
K K’
=+

which is an integer, so we have verified the second condition defining Q,, g, for (a'/b', h'/K').

Finally, Suppose ' = 0 (mod 28u). Then xk = 0 (mod 28u) so that h # +1 (mod 45%/u).

Since h' = h, we find that the third condition defining Q, g, is satisfied for (a’/V', h'/K').
As for the modular Jacobi action of the second generator on (z,7) = (%,2) € Q, 5., we

find that
2fu a h+25%k/u a
(570/) - (2.7) 1= (=7 +28%/u) = <5—> = (ya —> ,
10
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where o’ := a,b = b,/ := h + 28%k/u, and k' := k. The fractions o’/ and I'/K' are
reduced because a/b and h/k are, and k' = k is even. We take m and z as in the argument
above, and find that

a KN fa 1 9 a 1
%—F;(Eﬁ-g—'—%ﬂ) =+ 20 H/U<E+§+2m)

=2+ 25 (20 + B+ 48m)

which is an integer, verifying the second condition defining Q, s, for (a’/b', h'/k"). To verify
the third condition, if " = 0 (mod 28u) then h # +1 (mod 43%/u) since k' = k. For the
sake of contradiction, suppose /' = +1 (mod 433 /u). Then h+28%x/u = £1 (mod 4/ /u).
But 26%k/u = 0 (mod 433 /u) because, again, k = £’ and ' = 0 (mod 2Bu). This implies
that h = +1 (mod 433 /u) which is a contradiction.

That the set is closed under the Jacobi elliptic action, e.g. that (z+ A7+ p,7) is in Q, 4,
for (\, p) € (4Z x 27), where (z,7) = (a/b,h/k) € Qu p.u, is similarly checked explicitly, and
omitted here for brevity’s sake. (For a similar proof, see part 2 of the proof of [13, Lemma
11].) O

Lemma 6. Let B,u € N with 2B*> = 0 (mod u). Then Q%,,Q%.,, Qpu, Qp,, are closed
under the Jacobi action of Gg., X (2Z X Z).

Proof. Similar to the proof of Lemma 5 and first considering the Jacobi modular action,
under the first generator, we find that (a/b,h/k) € Q x Q maps to

ark /b h _fad W
k' "2Buh+r/) \V K )’

where b’ := £h k' := £(2Buh + k), and @’ and b are integers such that a'/b' = a(k/b)/K/,
and a'/b" is reduced. We have that h'/k’ is also reduced, and in particular, that ' # 0
as in the proof of Lemma 5. For each of the groups Q% ,, Q% ., QBu; Qp,, because b | k,
we specifically have that +b'g = ' and +da'g = a(k/b), where g := ged(a(k/b), k). Thus,
b | k' as wanted. Moreover, the parity of £’ is dictated by the parity of k. For the last
condition defining the sets of pairs of rationals in question, if we suppose for contradiction’s
sake that x = 0 (mod 2Bu) and i/ = 1 (mod 4B3/u), then k = 0 (mod 2Bu) and h = +1
(mod 4B°/u), a contradiction. This establishes closure of Q% ,,Q%,, and Qp , under the
first generator. To finish closure of Q% , under this generator, there are two scenarios to
check: if k is odd, then as just mentioned ' is odd; if 4 | k then /b is even, and if it is
additionally the case that 4 | £’ (a situation that only occurs when 2 | Bu) then 2 | +g = «//V/
as wanted.
Under the second generator, (a/b,h/k) € Q x Q maps to

a h+2(B*/u)k _ (d I
b’ K N\ R )

where I/ := h + 2(B?/u)k, k' := k,a’ := a,b' := b. The conditions prescribed to b and  in
the definitions of the sets in question are thus obviously preserved by & and ' (noting that
h' /K" and a' /b as just defined are reduced). If it is the case that x' = 0 (mod 2Bu), then
k=0 (mod 2Bu) so that h # +1 (mod 4B3/u). Then i/ = h+2(B*/u)x = h (mod 4B3/u)
(since K =0 (mod 2Bu)). Thus, ' # +1 (mod 4B3/u) (because h # +1 (mod 4B3/u)) as
wanted.

11



To check closure under the prescribed Jacobi elliptic action, we seek to show that for pairs
(a/b,h/kK) of rationals in the sets in question that

94_)\@4_ E — Z/E
b T ) T\ v

is also in the appropriate set of pairs of rationals for any (\, ) € 2Z x Z. Here, we have
that h' := h,r’ := k, and the integers ¢’ and b are defined such that a’/b’ is reduced and
equal to ¢ + A% + 4. Since b | k we may rewrite o/’ as the ratio of integers

a(k/b) + Ah + pk

/ﬁ: Y
implying that b (in reduced form) satisfies & | k = £’ as wanted. The parity of £ is obviously
given by the parity of x. In the case of QY , in which 4 | x, then 4 | " and /b is even. Since
A is also even, we have that 2 | ged(a(k/b) + Ah + pk, k) and hence /b is even as wanted.
Finally, we suppose that ' = 0 (mod 2Bu). Then x = 0 (mod 2Bu) and hence h # +1
(mod 4B3/u). Because h = I/, we see that the last condition defining the sets of pairs of
rationals in question for (a’/V/, h'/K’) is also satisfied. O

Part II. QUANTUM PERIODIC PARTIAL JACOBI THETA FUNCTIONS (§3—4)
3. PERIODIC PARTIAL JACOBI THETA FUNCTIONS AND THEOREM 1

Recall from Definition 1 the periodic partial Jacobi theta functions
[e’s) n2 .
Oy(x1q) ==Y _ x(n)g>@ .
n=0

We let (z,7) € C x H, and define O, on this domain by
Ox(z:7) = Oy (e(2); e(7)).
We recall G, and @, from Section 2.2, and define the character

(3.1) o= ().

Throughout the paper, we write the (Nebentypus) characters appearing in modular-type
transformation results as dependent on the parameters A, B,C' and/or D from a matrix
(A B) in the relevant modular group. e.g. in (3.1) and Theorem 1, the character xc¢ p is
defined using matrices (4 8) € G,.

Our first main theorem is as follows.

Theorem 1. With notation and hypotheses as above, the periodic partial Jacobi theta func-
tions éx(z; T) are quantum Jacobi forms of weight 1/2, index —1/8, on Q)y,, with Jacobi group
Gy X (4Z x 2Z), and character xc.p. Moreover, under the same assumptions, éx(z; —T) is
a mock Jacobi form of weight 1/2 and index —1/8, with Jacobi group H x (4Z x 2Z), and
character xc,p-

Remarks. (1) Further explicit transformation and analytic properties of these functions may
be deduced from Proposition 2 and the proof of this result.

(2) Quantum modular properties of these and related functions when viewed as one-variable
12



functions of 7 for fixed z = a/b are studied in [8, 16]. We also refer the reader to interesting
related work of Goswami-Osburn in [19] (also noted in Section 1.1), in which they establish
one-variable quantum modular properties of partial theta functions with even or odd periodic
coefficients using different methods.

4. PROOF OF THEOREM 1

To prove Theorem 1 we extend some results and methods from our prior work [13]; these
are stated as Propositions 1 - 3 below. Analogous results and definitions in [13] require 4 | 8
and ged(a, B) = 1, while here this is not necessarily the case, and a number of nontrivial
technical modifications are required to prove our results here. (E.g. it’s not in general true
that 4 | # in Theorem 6 nor that ged(a, ) = 1 in Theorem 5, etc. and hence we have
established and proved Theorem 1 and related results accordingly.) For consistency and
convenience, we will often reuse notation from [13] in this section, and point out that the
functions of the same name there agree with the ones here when 4 | 8, but not necessarily
in general.

4.1. A nonholomorphic Jacobi family. To prove Theorem 1, we will use, among other

things, the level 2 Appell function A, defined in (2.3) as well as its completed version A,
from (2.4), and define for integers o and [ satisfying 0 < a < f

_402452 o
Boster) e (55 )~ (5 4 G- G,

o) —4024p? [ —
Baﬂ(z§7) =€ (g_;) q %% Ay <72 + gT — %, —T; 27) .

In Proposition 1 below, we establish the Jacobi transformation properties of Eaﬁ, which

and

are ultimately deduced from those of the completed Appell function A,. The proof of this
proposition is similar to the proof of [13, Prop. 1] which it extends, so we refer the reader
there for details. In particular, we point out that ny,my, ne, my defined after [13, (4.1)] are
still integers given the new conditions on A, B, C, D and «, 3 here.

Proposition 1. The function Eaﬁ(z; T) is a nonholomorphic Jacobi form of weight 1, index
B —ABa?

—1/8, group Hy,, and character G 252

4.2. A quantum and mock Jacobi family. We next establish quantum and mock Jacobi
properties of the functions

o
2

Cap(z;7) = q2w

gl

f:q’f (whe?)",

n=0

where «, 5 are integers satisfying 0 < o < 3, extending our work in [13]. To state (part (2)
of) the result, we define the additional character

a2 C
Ypepla,B) = 817DC25 Bre <5) :
13



Proposition 2. The following are true.

(1) The function C,5(2;7) is a quantum Jacobi form on Qup1 of weight 1/2, index —1/8,
group G(B, fs), and character xc,p.

In particular, for any €453 > 0 Satisfyz'ng = < €ap <3 5 Loifze (w2, L -2 — f%eaﬁ),
we have that

4.1) C 5(,2'7)—(—2ng+1)’%)(1 e 2 Cap ° ; ’
a,p\%; Hetm\8(=2fpm +1)) T\ =2fpT + 1" —2fs7 + 1

-1 / > g_f+i . (l + z't) .

—Ht — 47)

and the difference in (4.1) extends to a C* function on

R\ (3Z— & +{0.3. % 5 £ eap})) x R\ {5}).

(2) The function Cop(2; —7) is a mock Jacobi form of weight 1/2, index —1/8, group Hy, ,,
and character Yp cop(a, B).

4.3. Proof of Proposition 2: transformation properties. Towards the proof of Propo-
sition 2, we establish various technical lemmas and key transformation properties of C, g in
this section. We note that part (1) of the proposition will be proved assuming part (2) (see
the proof of Proposition 3 below and the end of this section (Sec. 4.3)). To this end, we
define

1
ri(z;7) =rrap(z7) =R <—Z yord (IF 1)1 — 5 47’) ,

B
and
" " z 2T T 1
- = —1Fl)—— — =
Ry P I 161 ) Ry i S
1 2«
zfzzf(a,ﬁ,zx):25—77+(1$1)7'+z,
-1 f
Tl:Tl(ﬂ’T)::E_Eﬁ'

(As noted above, here and throughout this section we reuse notation from [13] for consistency
and convenience; functions of the same name there agree with the ones here when 4 | 5, but
not necessarily in general.)

In Lemma 7 we establish Jacobi-type transformation properties of r4(z; 7). Its proof is
similar to the proof of [13, Lemma 13| which it generalizes, so we omit its proof for brevity’s
sake.

Lemma 7. We have that

z T
+ (QfBT n 1; ot 1) = a4 (z; T)h(zfcﬁ; 1) — be(z; T)h(Z;:; AT) + by (z;T)re(z;7),
14



where

ax(z:7) = v "ime (%) |

bl 7) i s ) ()AL e (=2 >2) |

T

We now determine the Jacobi transformation properties of the function C, g(z T) under

the group G(f, f5). A direct calculation reveals invariance under the generator ((1) f ) using

its definition. For transformation properties under the other generator (2}5 (1)), we define

fe(z7) = frap(z7) = %6 ((%) (_g + % - %)) )

and establish the following key proposition, used to establish Proposition 2 part (1).

Proposition 3. We have that

Cop(z—7) — (2f57 + 1) 725} 4e _ 22 C, e
a,8(%; 8 X2f 1\ 82 fsr + 1)) P\ 2 or + 1 2f57 + 1

5,

=L ) () <4(2ﬁ;+ D 2/3(2;"); + 1))
e (T(—4a2 +5°) | JaoT 4 5 @fT + 1))2>

852(2fsT + 1) 4(2fsT + 1)
z T
4.2 ; cTVh(zEm ) — by (2 7)h(25:47))
(42 <X (W+ g ) (DGR ) — b 40)
and for z € (— 35 B —|— - = ), the right hand side of equation (4.2) equals
_ Z g_f 3L, 2 4+t
(4.3) 1/ c9-gp . ( >dt.
+2t—i—47')

Proof of Proposition 3. We modify the proof of [13, Proposition 3], and point out that it is
not a simple change of variable in § throughout — some dependence on 3 in [13] arises from
the functions C, s and remains intact here, while some dependence on (3 arises from the
groups Gg and Hpg there, which are generalized here to G(8, fs) and Hy, ,. We divide the
proof into two parts.

Part 1. From Proposition 2 (2), using [13, Proposition 1, Proposition 2] for suitable v =
(4 B), we have that

1 Cz? z
. _ —5.4—1 s .
Caplzi=r) = (OT+ D) #0pcple fe <8(C’T n D)> Cos (C'T YD W)

~_ 1 Cz? ~_ z
(44) = —Ca’ﬁ(z, T) + (CT + D) 2¢B}C,D(a’ 5)6 (m) Ca,ﬁ (m,’}ﬂ') s
15



where 5;75(2; T) = q_%T_l(T)B;ﬂ(z; 7), with

B;ﬁ(Z;T)
i (az) zw?is? ! z  ar T
—§e<%)q 86 T(T)kgoe(k(—§+?—§)>R(—z+27’(B—k)——,47')
and
(4.5) T(1) == 9(—7 + 5;47).

We have used that 9(z + 1;
With respect to v = 2]1”5

) = —9(z;7), and that ¥(z; 7) is an odd function in z.
), we find that

—O 3

_ . _ 2f522 _ z )
(40 Bosin) =t e () o (g 107)

az\ zwlep? _ f52* az
(55) 7% -0 ()< (wmen)

o ) (1)

7rif,8(77'+%(2f57'+1))2

=T(r)

1 13 1s z
% (2 1)2 2(2fg7+1) -t .
(Bfpr 1) ‘e U(Qfm%—l’W)]’
where
o(z7) =) felzT)re(z7).
+
We rewrite the term in brackets [ - | in (4.6) in terms of fi and ry, and apply Lemma 7, to
obtain
(4.7)

e (g-;) q_4§6;5 Zfi(Z;T)’l“i(Z;T)
-

_ -1/ 10 fp7" az T —4a2+52>
(2fpr +1)77% ((fi 1)) ¢ (4(2f57 T 1)) € (25(2fﬁr T 1)) ¢ (2f57 11 832
(4.8)

B(—T+22fsm+1))*\ _73_ fs - . |
e< 4<2;57+1) )q o Zi:fi (Qfm—l—l’?fm—irl) be (2 7) 7e(z7)

_ -1/ 10 fp7" az T —4a2+52>
(2fr +1)77% ((Lﬁ 1)) ¢ (4(2f57 T 1)) € (2/3(21"57 T 1)) ¢ (2f57 1 832
(4.9)

fo(=m+32fsm+1))*\ _7_ 5 o7 |
e( 4(2;[574_1) )q s zi:fi (2fﬁ7+1,2fﬁ7+1>Gi(z,T),
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where
(4.10) Gi(2;7) = Giap(z;7) = ax(z;7)h(ziT; 1) — ba(z;7)h(25; 47).
Observe that lines (4.7) and (4.8) both involve the function r4(z; 7). Using that

(47 -6""

and after a long explicit calculation, we find that these two lines (appearing in the the large
expression in (4.7), (4.8), and (4.9)) completely cancel with each other. That is, we have
shown that the term in brackets | - | in (4.6) equals the expression in (4.9). This, along with
the fact that ¥5 o p(a, 8) = xo.p when B =0 (mod 2/?), yields (4.2) in Proposition 3.

Part 2. In order to establish (4.3) in Proposition 3, we study Gi(z;7) (see (4.10)) and
re-write
zfﬁ = Q97| — bic, zéﬁ =a A — a

where as = as(2) 1= —3 — 2, b7 = by (a, B; 2) := % + 35 — L(1F1), and af = af(a,B) :=
—_Oé+ (1:':1)
28 1
Lemma 8. For «, 3, and aic as above, we have
(i) af € (—3,0) and a; € (0,3).

Further, let € = €43 > 0 satisfy

-«

T <e< o,
B p

and suppose

c I6; ( a 1l « )
— ==, — = —€].
fs\ B> B pB?

Then under these additional hypotheses, we have that

(i) b7 € (0,1 — L) (0,2), and by € (-1, -L) c (-3,0),

’ 2 ’ 2 2 27

1 1,1 B 11
(iii) —ap € <§—ﬁ,§+ﬁ—%—ﬁ> c (41).
Proof of Lemma 8. We omit the detailed proof for brevity’s sake, as it is similar to the one

given in [13], and makes particular use of the new definition above of bf and the new range
for z. O

To continue the proof of (4.3) we have, with € and z as in Lemma 8, using Lemma 4, that

2 ga bi—i-()
4.11) h(zfm;m) = h(agm — b T :—e(%_a bi+l> Jartbi+3\ ")
( ) hamin) (azn 1) 2 2(b3 2) 0 —i(u+ 1)

+ 247_ 100 Go* 41 apt (U)
4.12) h(zE;471) = h(aT4r — ag; 47 :—e(%—a + ) Ty
(112) (s 47) = h(afdr - i dr) et ) [

We make the change of variable u = f3/2 —1/p in the integral in (4.11); the right hand side
of (4.11) is thus equal to

i
a3T ay(bE + 1) : ga2+1 bits (_6 _ l) Viprdp
_6 [ —
2 \/ Y41 +p) P
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2r I8 (ay + (ag+ 3
(4.13) :_Q(GQT_@(W%))@(_A +22>< +2>>

1
y /0 Jartd 8 (@ Lyt 41172 ( P) Vaprdp
V(=) (=147 + p) p?

I
We have also used that

nA(A+1
gap(T+n)=ce (—%) 9A,nA+B+g(T)

for n € Ny, which we deduce from Lemma 2. We have

fﬁ( 1) + Is +, L s
b I8 _ 448
Fle+sz)+h +2+4 o +5+ T

and obtain that (4.13) is equal to
1
. (a%ﬁ %‘3 (aq + )(as + 2) 0 Japr1, 7a1i+1+fﬁ (__> VAaprdp
—e| —5— — axf
2 \/ )47 + p) p?

:e(agﬁ (%ﬁag%— a2+%)> 4_7',_,%
1
2

__2

2

1 0 Gut i1, (p)
xe((a2+—>< af + = + )) Zoitgarts VU
2 V—i(41 + p)
using further properties from Lemma 2. We further simplify and obtain

ax(z; T)h(ZitTl; 1)

4T f 1EES) 1 z 22 O Gutil gyl ()
114) = sz (g nw) | T
( ) i( ) ( ) C45C1 39r  8r 87 % —i(47'+p) P

We also have using (4.12) and simplifying that

S1F1 1
b (s 4) = as (i) DR e (- - 2 - 2 ) v

10 galJr a2+ (U)

0 \/—z u+47'

We simplify the constants in (4.14) and (4.15) to obtain

-1 i 1 2\ g1 g (1)
Gj:(Z;T):C41 5 ai(z T) 47—(4,36 (———i_z_) / %du
T 2

—i(u +47)

(4.15) X

118 _(-E)\2 1 2 ico g_ o s (u)
:C41 4C§H\/E\/1+2f/57'e (_(212) 7'1){266 (__32 2z )/ LR du
T

# —i(u + 471)



Finally, we conclude after some further simplifications that (4.9) equals

LD 9-g 43, i ; S 9-g+25 -2 <E + Zt)

—1
_q pu—
2 7 vV —i(u +47) 0 \/—Z(%+Zt+47’)

Here, we integrate from 2/ fs — 2/ f3 + ioo then 2/ fz +ico — ico (the latter vanishes), and
then make the change of variable u = 2/ fg + it where ¢ runs from 0 — co. We multiply by

dt.

00l
OO

—q% to obtain (4.3) in Proposition 3. This completes the proof of Proposition 3. 0

Next, to prove Proposition 2 (2) we modify the proof of [13, Theorem 1 (2)] and use [13,
Proposition 2], which holds under the relaxed hypotheses given here, along with Proposition
1 below. Another ingredient of the proof of (2) requires for (& 5) € Hy, , that

e(A8)e (ch) PG 489" — yp o pla, B)

(where we recall () from Lemma 1). We verify this by direct calculation using definitions
of characters and congruence conditions on A, B, C, D, and note that the results analogous
o [13, (5.6), (5.7)] here are established a bit differently given our hypotheses. We refer the
reader to [13] for additional explicit details for brevity’s sake.

4.4. Proof of Proposition 2: quantum properties. That C, g is defined on (), 1 follows
as explained in [13, (5.5), Proposition 2 and its proof, see also Theorem 2]. That Q.1 is
closed under G(5, fz) X (4Z x 2Z) follows from Lemma 5 and the fact that G(f, fz) is a
subgroup of Gg;. The C* properties and the Jacobi elliptic transformation properties
follow as in Section 5.2.2 and 5.2.3 of [13].

This completes the proof of Proposition 2. [l

4.5. Proof of Theorem 1. Using the results above we are ready to prove Theorem 1. First,
we write
(4.16)

n2 n2

R S S X

n>0

(e P

_J > ﬁ-‘rnﬁ n
128 E q2 B x2.
n=0

m‘“ N

n=q; (mod B)
With x = e(z) and ¢ = e(7), (2,7) € C x H, we have that (4.16) equals

(4.17) > 6Ca g (%),
=1

where we recall o; and 3} from (2.7). Theorem 1 now follows from Proposition 2.

Part III. APPLICATIONS TO ¢-HYPERGEOMETRIC MULTISUM KNOT FAMILIES (§5)
5. QUANTUM JACOBI ¢-SERIES AND KNOT FAMILIES

In this section we use Theorem 1 to establish the quantum Jacobi properties of several
g-hypergeometric multisum and partial theta families of interest arising from knot colored
Jones polynomials, Kashaev invariants for torus knots and Virasoro characters, and “strange”
identities, appearing in work of Bijaoui et al. [5], Hikami [21], Hikami-Kirillov [22, 23],
Lovejoy [26], and Zagier [32]. This also adds to related work in [13, 17].
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5.1. On Hikami’s generalization of Zagier’s “strange” identity and Theorem 2.
We define the functions

o0

Ta(lk)(% q) == Z(_1)nx(2k+1)nq("-’2_1)+(a+1)n2+(k’—a—1)(n2+n)(1 . x2(a+1)q(a+1)(2n+1))

Y

n=0

k—1
H(l,z,(:r;' q) = (1—x) E (xq; q)n q"%+“'+"i_1+ﬂa+1+---+nk71x2n1+---+2nk71+nk H [ njr1 + 0 ]
a ) . ) k
b n
ni,...,ng >0 j=1 J q

appearing in work of Hikami [21] and Lovejoy [26, p1029], defined for k € Nand 0 < a < k—1.
These functions are used (in [21] and [26]) to establish Hikami’s generalization (1.6) of
Zagier’s “strange identity” (1.4), which is used to establish quantum modularity of F'(q)
(and related to the colored Jones polynomials Jx(T(23);¢) for the T'(2,3) torus knots via
(1.3)). We define modest normalizations of these functions with (z,q) = (e(z),e(7)) by

~(1) (2k—2a—1)%  9p_2q_1 (1)
a,

Toi(z7)i=q 50 x= 2T, (75 q),
_ @k—2a-1% 9 94
Hé,liz(z;T) =g SCRD ‘T%Hé,llz(ﬂ 9),

and establish their quantum Jacobi properties.

Theorem 2. The functions ﬁ[éllz(z, T) and félk)(z, 7) are quantum Jacobi forms of weight of
weight 1/2 and index —k — % on Qgraskra C QxQ, with Jacobi group G4 ska X (4Z X 7)
and character Xc/(sk+4),0-

Proof. We define the periodic function x as in Definition 1 with r = 4,

% —2a—1, j=1,
1 =12 Jek+2a+5 j=2
STV j=34 YT Y2k+2a43, j=3

6k—2a+1, j=4,

and 5 := 4(2k+1). By way of [26, Proof of (5) p1029], we find that I:fél,g(z, T) = félk)(z, T) =
éX(BZ;BT), where y and 3 are as above. In this case, we have that 4 | 3} and o’ # 8} for
each 1 < j < 4. Thus, we have by Theorem 1 that éx(z; 7) transforms with weight 1/2 and
index —1/8 under Ggjia1 X (4Z x 27Z), noting that Gsgr41 is a subgroup in the intersection
Ni_1G (6}, fe) = ﬂ;*:ng;_J. With this, it is not difficult to verify that O, (8z; A7) transforms
appropriately on Ggyi4sc+4 X (4Z x Z) with weight 1/2 and index —k —1/2. Finally, a direct
calculation reveals that H él,z(z,T) is defined on the subset Qgiiagrra C Q x Q, which is

closed under the Jacobi action of Ggjiagk+4 X (4Z x Z) by Lemma 6, and can be expressed
as an explicit polynomial in roots of unity there. This completes the proof. O

5.2. On Lovejoy’s generalized “strange identities” I and Theorem 3. Using the
machinery of Bailey pairs, Lovejoy establishes several other multisum “strange” identities

including Hikami’s generalization of Zagier’s studied in the previous subsection. In this
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and the following three subsections, we establish the quantum Jacobi properties of these
functions. To begin, we define the functions

Tfk) (75q) == Z(—1)”ka”qgk”QJf(?k—?a—l)n(l _ gkl gat)Eni)y
n=0

H)(23q)
(6% ¢%)n, ™
=(1—-12x) Z -

+2ni_l+2na+1+'“+2nk,1 x2n1+---+2nk,1+nk k

1
n+1—|—
IR

J=1

(=245 ¢*)ny 1600

as appearing in [26, p1037-1038], defined for £ € N and 0 < a < k — 1. These functions are
used by Lovejoy to establish further interesting “strange” identities similar to Hikami’s gener-
alization (1.6) of Zagier’s (1.4). We normalize the functions (again with (z,q) = (e(2),e(7)))
by

(2k—2a—1)2  2k— 2a 1
a

To(zm)=a % 2 2 L9,

(2k—2a—1)% 2k 20-1 1(2)

H2(zi1)=q = H)(z59).

Theorem 3. The functions ﬁﬁz(z, T) and ifzk)(z, T) are quantum Jacobi forms of weight of
weight 1/2 and index —k/2 on Qg 15, C Q x Q, with Jacobi group Ggyex X (8Z X Z), and
character xc/i6k,D-

Proof. The proof is similar to the proof of Theorem 2 above. We define the periodic function
X as in Definition 1 with r =4,

2k —2a—1, j=1,
1, j=12, 6k +2a+1, j=2,

€; 1 — o =
! -1, j =34, ! 2k +2a+1, j=3,
6k —2a—1, j=4,

and 8 := 8k. With this y and (3, from [26, Proof of (11) p1037-1038], we have that
Hff,z(z;T) = Ta(?k)(z;T) = 0,(62;207). In this case, we have that 4 | 8 and o} # (] for
each 1 < j < 4. Thus, we have by Theorem 1 that ©,(z;7) transforms with weight 1/2
and index —1/8 under Gy X (4Z x 2Z), noting that Ggy ;1 is a subgroup in the intersection
N16( i fe) = ﬂ?zlG%l. With this, it is not difficult to verify that ©,(8z;267) trans-
forms appropriately on Gsy 16r X (4Z < Z) with weight 1/2 and index —k/2. Finally, a direct
calculation reveals that H (52,2(2, 7) is defined on the subset Qg 15, C Q x Q, which is closed

under the Jacobi action of Ggy i X (8Z x Z) by Lemma 6, and can be expressed as an
explicit rational function in roots of unity there. This completes the proof. OJ

5.3. On Lovejoy’s generalized “strange identities” II and Theorem 4. We define

the functions
oo

Tég)(x; q) == Z(_l)nxmcnqkn%r(kfl)n(l . x2q(2n+1))7

n=0
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B (wq)=(1-2) > (20 )n,q

iR b g 2 e 2ng gy KT {
~ 0 (—zq; q)n,

[

Nj+1 }
j=1 i1
(k € N), another family along with those in the previous two subsections studied by Lovejoy
[26, p1032] in his work on Bailey pairs and “strange identities”. Define a normalization of
these functions (again with (x,q) = (e(z),e(7))) by

~ (k=1)2

RO i) = T )

(k=1)2

ﬁ,gg)(z;T) =q xkilH,gg)(x;q).

Theorem 4. For integers k > 2, the functions f[,i‘”’)(z; T) and TVS)(Z; T) are quantum Jacobi
forms of weight of weight 1/2 and index —k on Qf} sor, with Jacobi group G;k,Szk X (4Z X 7Z),
and character xc/sk,p-

Remark. The quantum and mock Jacobi properties of the functions in this theorem in the
case k = 1 are given by [17, Theorem 1.4]. (Note that the functions Hy(z;¢) in [17, (1.7)]) and

01(x;q) in [17, (1.4)] are the same as (1 — a:)*leg)(x;q) and T'¥ (z; q) here (respectively).)

Proof. The proof is similar to the prior two proofs. We let r = 4, and define the periodic y
as in Definition 1 by

k_la .]:17

L, =12, 3k+1, j=2,

T L =34 YT k41 j=3
-1, J=94 +a J =9,
3k—1, j=4,

and § := 4k. Using [26, Proof of (8) pl032] we find that ﬁ[,g?’)(z;r) = ﬁgg)(zm) =
©,(282;267). The result now follows using Theorem 1 as in the proofs of Theorems 2
and 3 above. O

5.4. On Lovejoy’s generalized “strange identities” III and Theorem 5. To add to
the group of functions studied in Sections 5.1-5.3, we define the functions

TI£4) (x; q) — f:(—l)”(l . xq2n+1)x(?k—l)nq(Qk—1)n2+(2k—2)n7
n=0
1 (w:q)
—(1—2) Z (zq?; q2)nkq2n%+2n1+.‘.+2n%_1iﬁ-2nk1x2n1+...+2nk1+nk(q; @), lﬁ {njfl }
N1yeeeyp >0 (—HI, Q)2n1+1 e n; 2

appearing in [26, p1034], defined for k& € N. Define a normalization of these functions (again
with (z,q) = (e(2),())) by
(k—1)2

f,g4)(z;7') =g 2kt :Ek_lT,yl)(x; q),

_ (k=)
H,i“)(z;T) = q%xk_lff;g@(WQ)'
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Theorem 5. For integers k > 2, the functions ﬁ[,g‘l)(z; T) and Tv,g4)(z; T) are quantum Jacobi
forms of weight of weight 1/2 and index —k/2 + 1/4 on Qg 4 sup_30, with Jacobi group
Gék74764k732 X (8Z x Z), and character Xc/(6k—s),D-

Remark. The quantum and mock Jacobi properties of the functions in this theorem in the
case k = 1 may be deduced from [17, Theorem 1.4]. Note that the function 6, (x2;¢) in [17,
(1.4)] is the same as T\ (z; ¢) here, and by virtue of [12, (14.31)] and Lovejoy’s identity at
the bottom of p. 1034 in [26] for k = 1, we find that (1 — z2)H,(z2;¢) in [17, (1.7)] equals
H1(4) (x;q) here.

Proof. The proof is similar to the prior three proofs. We define y as in Definition 1 with
r =4,

2% —2, j=1,
17 j:1727 6k—27 ]:27
€j 1= : o = :

_17 J = 3747 2k7 J = 37

6k —4, j =4,
and 8 := 8k — 4. From [26, Proof of (9) pl034] we find that ]:vl,i4)(z;7') = 7:,54)(2;7') =
©,(8z;2P7). The result now follows using Theorem 1 as in the proofs of Theorems 2-4
above. U

5.5. On Lovejoy’s generalized “strange identities” IV and Theorem 6. Similar to
the families studied in Sections 5.1-5.4, we define

T(5]2 (l’, q) — Zx(2k71)nq(n;1)+an2+(k—a—1)(n2+n)(1 + x2a a(2n+1)),

n=0

HiMwiq) = (1 =) Y (gq)n, gttt imong2ntine o

k—1
(—1; Q)n1+6a,o l Njt1 + 0ja }
1 q

(2245 4®)ny+6..0 n;

Jj=

appearing in [26, p1041], defined for £ € N, 0 < a < k — 1. Define a normalization of these
functions (again with (z,q) = (e(2),e(7))) by

~ (2k—2a—1)2 o
Tol(zm)=q @0 a2 T (w5q),

a,

(2k—2a—1)? 95 941 (5)
a

3 em) =g e ),

Theorem 6. The functions ﬁ[(slz(z; T) and ffk)(z, T) are quantum Jacobi forms of weight of

weight 1/2 and index —k +1/2 on Qir_o0k_1, With Jacobi group Ga g1 X (2Z X Z), and
character xcj(2k—1),p-
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Proof. The proof is similar to the prior four proofs. We again define a periodic function y
as in Definition 1 with r =2, ¢; :=1for 1 < j < 2,

f2k—2a-1, j=1,
T 2%k +2a—1, j=2,

and = 4k — 2. In [26, (12)], the parameter given corresponding to as is —(2k — 2a — 1).
Above we define instead oy := 2k+2a — 1, which is congruent to —(2k —2a—1) mod 4k —2,
and satisfies 0 < ap < = 4k — 2. From [26, Proof of (13) p1041], we find with x and /3 as
just defined that ﬁf,z(z, T) = T:E“r’k) (z;7)=(1+ 5a70)éx(ﬁ2; 57). The result now follows using
Theorem 1 as in the proofs of Theorems 2-5 above. O

5.6. On the Bijaoui et al. Kontsevich-Zagier series for torus knots 7'(3,2') and
Theorem 7. In this section we establish quantum Jacobi properties of g-hypergeometric
and partial theta families studied by Bijaoui et al. related to Kontsevich-Zagier series for
torus knots T'(3,2") (¢t > 2) (see also [19]). Specifically, we consider the series from [5, p6]
defined for t > 2:

n _(2t+1_3)2 _(2t+1_3)

T(ﬁ) x q th 3.2t +2 q;n 2 ,

where x; is a periodic function deﬁned as in Definition 1 with r =4, 8 := 3 -2 and

2t+1_37 ]:17
1, j=12, 3+2H2 =2,

€; 1= (e
! -1, j=3,4, ’ 21 +3, j=3,
2t+2_37 j:47

as well as the ¢-hypergeometric series from [5, RHS of (2.9)]

H{O (23q) :=(=1)"Og " OO N (), 12"

n=0

—a+Z P e mO=1 (1)
2

(t)—1 .
X § (—IIJ) ?:1 Jéq m(t) t20=1
32’"“) IM:1 (mod m(t))

m(t)—

XZ H [n+[€<k)]

Define a normalization of these functions (again with ¢ = e(7),x = e(z)) by

q

" @t 32 (ot+1_g)

107 = g T 0T T i),

(2t+1_3)2 (2t+1_3)

HO(zr) =g s a2 H(x;q).

Theorem 7. The functions ]ivlt(G)(z; T) and ﬁ(G)(z; T) are quantum Jacobi forms of weight of
weight 1/2 and index —3 - 2' /4 on Qs.qr+1 3.ot+1, with Jacobi group Gzar 3o+ X (4Z X Z),

and character Xcj(z.2t+1)-
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Proof. By [5, Proposition 2.3], we have that ﬁfﬁ)(z;T) = ﬁ(m(z;T) = éXt(ﬁz;BT), where
B = 3.2 The result now follows using Theorem 1 as in the proofs of Theorems 2-6. [

5.7. On the Hikami-Kirillov Virasoro characters of minimal models M(s,t) and
Kashaev invariants for torus knots 7'(s,t) and Theorem 8. Consider the function in
the identity in [22, (5.5)], defined for positive s, t satisfying ged(s,t) =1 and 0 <n < 5,0 <
m < t. Denote the partial Jacobi theta function appearing there by

2
( (TL m —(nt—ms) k—|nt—ms]|
Ts,t,nm Z; q E X2st dst T 2 ’

where ngl;m) is a periodic function defined by

(nm)(k) — {L k=a; or ap (mod 2st),

Xast _1’ k= &3 or 624 (mOd QSt)a
where
nt —ms, J=1
N 2st — (nt - m5>7 J=2,
;=
J nt + ms, J=3,

2st — (nt +ms), j=4.
Define a normalization of this function (again with (z,q) = (e(2),e(7))) by
~ (n 7ms)2 Int—ms| ms|
Thm(zm) =g w0 a3 T (w5q).

For specific choices of s,t,n, m, corresponding to Virasoro characters of minimal models
M(s,t), associated g-hypergeometric sums are given in [22]; in particular, Hikami-Kirillov
consider the g-series identities associated with (the Eichler integral of) the minimal model
M(3,t) in [22, Section 5], and also establish that the case of t = 4 for M(3,4) is associated
to Slater’s famous identities [31]. For example, from [22, Proposition 8] (which pertains to
the case (s,t) — (3,2t)) we have that

t—1 0o
|2t—6a—3|—1 (7)

[2t—6a—3]-1 1
(5.1) )" g T T550 0041 (73 9) = X12(2t + 3) Z(x, ")kt
a:O k=0
where (;(a) := (t — 3a — 1)(t — 3a — 2)/(6t), and x12(-) := (12) is defined by the Kronecker
symbol. See also [23]. We remark that the quantum Jacobi properties of the function
Z(@ Qrna”
k=0
appearing on the right-hand side of (5.1) may be deduced from [13, Theorem 4, ¢t = 1 case].
We therefore focus here on establishing quantum Jacobi properties for the more general

japs '
s,(,t?n,m(z; 7) series as follows.

Theorem 8. For any positive, relatively prime, integers s and t, and all integers n and m

such that 0 <n < s and 0 < m < t, the functions Ts(t)nm(z; T) are quantum Jacobi forms of

weight 1/2 and index —st/4 on Q wm), with Jacobi group Glousa X (47 X 7), and character
2st ’

XC/2st,D-
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Proof. First we observe that a; # 0 (mod 2st) for each j because of the hypotheses on s, ¢, n
and m. Thus, for each 1 < j < 4 we may define «; satisfying a; = @; (mod ) where
B :=2st, and also 0 < a; < 8. We further define

L g=12
€5 = .
_17 J = 37 47
and hence have that xg;;m) defining Ts(?nm may be written as in Definition 1 with hypotheses
imposed there. With this, we define o/ and 3} as usual, and find that i,(?nm(z,T) =
@X(n,m> (Bz; BT). The result now follows as in the proofs of Theorems 2-7 above. O
2st
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