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NUMERICAL APPROXIMATION OF THE SOLUTION OF AN OBSTACLE

PROBLEM MODELLING THE DISPLACEMENT OF ELLIPTIC MEMBRANE SHELLS

VIA THE PENALTY METHOD

AARON MEIXNER AND PAOLO PIERSANTI

Abstract. In this paper we establish the convergence of a numerical scheme based, on the Finite Element

Method, for a time-independent problem modelling the deformation of a linearly elastic elliptic membrane

shell subjected to remaining confined in a half space. Instead of approximating the original variational
inequalities governing this obstacle problem, we approximate the penalized version of the problem under

consideration. A suitable coupling between the penalty parameter and the mesh size will then lead us to

establish the convergence of the solution of the discrete penalized problem to the solution of the original
variational inequalities.

We also establish the convergence of the Brezis-Sibony scheme for the problem under consideration.

Thanks to this iterative method, we can approximate the solution of the discrete penalized problem without
having to resort to nonlinear optimization tools.

Finally, we present numerical simulations validating our new theoretical results.
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1. Introduction

In this paper we establish the convergence of a numerical scheme, based on the Finite Element Method,
for approximating the solution of a set of variational inequalities modelling the displacement of a linearly
elastic elliptic membrane shell subject to remaining confined in a prescribed half space.

Differently from the numerical scheme presented in [49], where the authors studied the convergence of a
numerical scheme based on the Finite Element Method for approximating the solution of a fourth order set
of variational inequalities modelling the displacement of a shallow shell which, we recall, takes the form of a
Kirchhoff-Love vector field, the solution of the problem we are studying in this paper is a vector field and
the variational inequalities we shall be considering involve all the three components of one such displacement
vector field.

Critical to establishing the convergence of the finite element approximation of the solution of the problem
under consideration is the augmentation of regularity of the solution of the governing variational inequalities.
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This preparatory result improves the standard penalization argument extensively discussed in [42] and lets
us infer how fast the penalized solution converges to the solution of the original variational inequalities.

A similar numerical analysis has been treated by Scholz in the paper [56] where, however, the author
resorted to the very peculiar assumption (∗) on the elliptic operator under consideration. We will replace
this assumption by a more reasonable geometrical assumption, which is exactly the assumption needed to
ensure the “density property” devised by Ciarlet, Mardare & Piersanti in [24, 25]. In addition to this, the
augmentation of regularity argument carried out in [56] is only valid for scalar functions. The fact that the
solution of the variational problem under consideration is a vector field renders this analysis substantially
more complicated than in the scalar case.

Other references about numerical approximations of the solutions of obstacle problems via the Finite Ele-
ment Method are, for instance, the seminal paper by Falk [29], where the author exploited the augmentation
of regularity result established by Brezis and Stampacchia [8]. The scheme there proposed, however, seems
not to be reproducible in the case where the unknown of the variational problem under consideration is a
vector field.

The study of the augmentation of regularity of solutions for boundary value problems modelled via elliptic
equations began between the end of the Fifties and the early Sixties, when Agmon, Douglis & Nirenberg
published the two pioneering papers [1] and [2] about the regularity properties of solutions of elliptic systems
up to the boundary of the integration domain.

The augmentation of regularity for solutions of variational inequalities for scalar functions was first ad-
dressed by Frehse in the early Seventies [30, 31]. In the late Seventies and early Eighties, Caffarelli and his
collaborators published the two papers [9, 10], where they proved that the solution of an obstacle problem
for the biharmonic operator (cf., e.g., Section 6.7 of [17]) could not be too regular. It was recently established
in [47] that the solution of an obstacle problem for linearly elastic shallow shells enjoys higher regularity
properties in the interior of the domain where it is defined. To our best knowledge, the results contained
in [47] constitute the first attempt where the augmented regularity of a vector field solving a set of variational
inequalities is studied.

Augmentation of regularity for linear problems in elasticity theory was treated, for instance, by Geyomonat
in the seminal paper [34], by Alexandrescu-Iosifescu [4], where the augmentation of regularity for Koiter’s
model is considered, and by Genevey in [33], where the higher regularity of the solution for a variational
problem modelling the displacement of a linearly elastic elliptic membrane shell is established.

To our best knowledge, the only record in the literature treating the augmentation of regularity of the
solution of second order variational inequalities in the case where one such solution is a vector field and
the constraint defining the non-empty, closed, and convex subset of the Sobolev space where the solution
is sought is expressed in terms of all of the three components of the displacement vector field is the recent
paper [45].

This paper is divided into ten sections (including this one). In section 2 we present some background and
notation.

In section 3 we recall the formulation and the properties of a three-dimensional obstacle problem for a
“general” linearly elastic shell. It is worth mentioning that this three-dimensional problem is the starting
point for deriving the variational formulation of the two-dimensional problem, whose solution regularity is
the object of interest of this paper.

In section 4 we scale the original three-dimensional problem over a domain of fixed thickness and we state
the corresponding scaled problem, modelled by a set of variational inequalities. We then recall the result
of the asymptotic analysis conducted in [24, 25], we state the two-dimensional limit problem obtained as a
result of an application of the “density property” and, finally, we de-scale the limit problem by re-introducing
the thickness parameter.

In section 5, we establish the existence and uniqueness of the solution for the de-scaled penalized limit
problem, after recalling the regularity properties of the penalty operator entering the model under consider-
ation.

In section 6, we establish the augmentation of regularity up to the boundary of the de-scaled penalized
problem. As a consequence of this, we are able to prove that the solution of the de-scaled variational
inequalities is actually the weak limit of the sequence of solutions of the de-scaled penalized problems as
the penalty parameter tends to zero with respect to a vector space which is is characterized by a higher
regularity than the one where the search for minimizers of the energy functional was originally performed.
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In section 7 we show that the sequence of solutions of the de-scaled penalized problems converges to the
solution of the de-scaled variational inequalities at a polynomial rate. To obtain this result, the augmentation
of regularity devised in section 6 will be playing a crucial role.

In section 8 we approximate the solution of the de-scaled penalized problem by a Finite Element Method,
the convergence of which shall strongly be hinging on a suitable coupling between the penalty parameter
and the mesh size.

In section 9, we prove that the iterative scheme originally proposed by Brezis and Sibony in the seminal
paper [7] makes possible to approximate the solution of the discrete penalized problem introduced in section 8
without having to resort to nonlinear optimization tools like, for instance, the Primal-Dual Active Set Method
and the Gradient Descent Method.

Finally, in section 10 we present numerical experiments meant to validate our theoretical results.

2. Background and notation

For a complete overview about the classical notions of differential geometry used in this paper, see, e.g. [15]
or [16].

Greek indices, except ε, take their values in the set {1, 2}, while Latin indices, except when they are used
for ordering sequences, take their values in the set {1, 2, 3}, and, unless differently specified, the summation
convention with respect to repeated indices is used jointly with these two rules. As a model of the three-
dimensional “physical” space R3, we take a real three-dimensional affine Euclidean space, i.e., a set in which a
point O ∈ R3 has been chosen as the origin and with which a real three-dimensional Euclidean space, denoted
E3, is associated. We equip E3 with an orthonormal basis consisting of three vectors ei, with components
eij = δij .

The definition of R3 as an affine Euclidean space means that with any point x ∈ R3 is associated an
uniquely determined vector Ox ∈ E3. The origin O ∈ R3 and the orthonormal vectors ei ∈ E3 together
constitute a Cartesian frame in R3 and the three components xi of the vector Ox over the basis formed
by ei are called the Cartesian coordinates of x ∈ R3, or the Cartesian components of Ox ∈ E3. Once a
Cartesian frame has been chosen, any point x ∈ R3 may be thus identified with the vector Ox = xie

i ∈ E3.
As a result, a set in R3 can be identified with a “physical” body in the Euclidean space E3. The Euclidean
inner product and the vector product of u,v ∈ E3 are respectively denoted by u ·v and u∧v; the Euclidean
norm of u ∈ E3 is denoted by |u|. The notation δji designates the Kronecker symbol.

Given an open subset Ω of Rn, where n ≥ 1, we denote the usual Lebesgue and Sobolev spaces by
L2(Ω), L1

loc(Ω), H
1(Ω), H1

0 (Ω), H
1
loc(Ω), and the notation D(Ω) designates the space of all functions that

are infinitely differentiable over Ω and have compact supports in Ω. We denote ∥ · ∥X the norm in a normed
vector space X. Spaces of vector-valued functions are written in boldface. The Euclidean norm of any point
x ∈ Ω is denoted by |x|.

The boundary Γ of an open subset Ω in Rn is said to be Lipschitz-continuous if the following conditions
are satisfied (cf., e.g., Section 1.18 of [17]): Given an integer s ≥ 1, there exist constants α1 > 0 and L > 0,
a finite number of local coordinate systems, with coordinates

ϕ′
r = (ϕr

1, . . . , ϕ
r
n−1) ∈ Rn−1 and ϕr = ϕr

n, 1 ≤ r ≤ s,

sets

ω̃r := {ϕr ∈ Rn−1; |ϕr| < α1}, 1 ≤ r ≤ s,

and corresponding functions

θ̃r : ω̃r → R, 1 ≤ r ≤ s,

such that

Γ =

s⋃︂
r=1

{(ϕ′
r, ϕr);ϕ

′
r ∈ ω̃r and ϕr = θ̃r(ϕ

′
r)},

and

|θ̃r(ϕ′
r)− θ̃r(υ

′
r)| ≤ L|ϕ′

r − υ′
r|, for all ϕ′

r,υ
′
r ∈ ω̃r, and all 1 ≤ r ≤ s.

We observe that the second last formula takes into account overlapping local charts, while the last set of
inequalities expresses the Lipschitz continuity of the mappings θ̃r.
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An open set Ω is said to be locally on the same side of its boundary Γ if, in addition, there exists a
constant α2 > 0 such that

{(ϕ′
r, ϕr);ϕ

′
r ∈ ω̃r and θ̃r(ϕ

′
r) < ϕr < θ̃r(ϕ

′
r) + α2} ⊂ Ω, for all 1 ≤ r ≤ s,

{(ϕ′
r, ϕr);ϕ

′
r ∈ ω̃r and θ̃r(ϕ

′
r)− α2 < ϕr < θ̃r(ϕ

′
r)} ⊂ Rn \ Ω, for all 1 ≤ r ≤ s.

A domain in Rn is a bounded and connected open subset Ω of Rn, whose boundary ∂Ω is Lipschitz-
continuous, the set Ω being locally on a single side of ∂Ω.

Let ω be a domain in R2 with boundary γ := ∂ω, and let ω1 ⊂ ω. The special notation ω1 ⊂⊂ ω means
that ω1 ⊂ ω and dist(γ, ∂ω1) := min{|x − y|;x ∈ γ and y ∈ ∂ω1} > 0. Let y = (yα) denote a generic point
in ω, and let ∂α := ∂/∂yα. A mapping θ ∈ C1(ω;E3) is said to be an immersion if the two vectors

aα(y) := ∂αθ(y)

are linearly independent at each point y ∈ ω. Then the set θ(ω) is a surface in E3, equipped with y1, y2 as
its curvilinear coordinates. Given any point y ∈ ω, the linear combinations of the vectors aα(y) span the
tangent plane to the surface θ(ω) at the point θ(y), the unit vector

a3(y) :=
a1(y) ∧ a2(y)

|a1(y) ∧ a2(y)|
is orthogonal to θ(ω) at the point θ(y), the three vectors ai(y) form the covariant basis at the point θ(y),
and the three vectors aj(y) defined by the relations

aj(y) ·ai(y) = δji

form the contravariant basis at θ(y); note that the vectors aβ(y) also span the tangent plane to θ(ω) at
θ(y) and that a3(y) = a3(y).

The first fundamental form of the surface θ(ω) is then defined by means of its covariant components

aαβ := aα ·aβ = aβα ∈ C0(ω),

or by means of its contravariant components

aαβ := aα ·aβ = aβα ∈ C0(ω).

Note that the symmetric matrix field (aαβ) is then the inverse of the positive-definite matrix field (aαβ),
that aβ = aαβaα and aα = aαβa

β , and that the area element along θ(ω) is given at each point θ(y), y ∈ ω,

by
√︁
a(y) dy, where

a := det(aαβ) ∈ C0(ω),

and satisfies a0 ≤ a(y) ≤ a1, for all y ∈ ω for some a0, a1 > 0.
Given an immersion θ ∈ C2(ω;E3), the second fundamental form of the surface θ(ω) is defined by means

of its covariant components

bαβ := ∂αaβ ·a3 = −aβ · ∂αa3 = bβα ∈ C0(ω),

or by means of its mixed components
bβα := aβσbασ ∈ C0(ω),

and the Christoffel symbols associated with the immersion θ are defined by

Γσ
αβ := ∂αaβ ·aσ = Γσ

βα ∈ C0(ω).

The Gaussian curvature at each point θ(y), y ∈ ω, of the surface θ(ω) is defined by

K(y) :=
det(bαβ(y))

det(aαβ(y))
= det

(︁
bβα(y)

)︁
.

Observe that the denominator in the above relation does not vanish since θ is assumed to be an immersion.
Note that the Gaussian curvature K(y) at the point θ(y) is also equal to the product of the two principal
curvatures at this point.

Given an immersion θ ∈ C2(ω;E3) and a vector field η = (ηi) ∈ C1(ω;R3), the vector field

η̃ := ηia
i

may be viewed as the displacement field of the surface θ(ω), thus defined by means of its covariant components
ηi over the vectors ai of the contravariant bases along the surface. If the norms ∥ηi∥C1(ω) are small enough,
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the mapping (θ + ηia
i) ∈ C1(ω;E3) is also an immersion, so that the set (θ + ηia

i)(ω) is again a surface in
E3, equipped with the same curvilinear coordinates as those of the surface θ(ω) and is called the deformed
surface corresponding to the displacement field η̃ = ηia

i.
It is thus possible to define the first fundamental form of the deformed surface in terms of its covariant

components by

aαβ(η) :=(aα + ∂αη̃) · (aβ + ∂βη̃)

=aαβ + aα · ∂βη̃ + ∂αη̃ ·aβ + ∂αη̃ · ∂βη̃.

The linear part with respect to η̃ in the difference (aαβ(η) − aαβ)/2 is called the linearized change of
metric, or strain, tensor associated with the displacement field ηia

i, the covariant components of which are
thus defined by

γαβ(η) :=
1

2
(aα · ∂βη̃ + ∂αη̃ ·aβ) =

1

2
(∂βηα + ∂αηβ)− Γσ

αβησ − bαβη3 = γβα(η).

In this paper, we shall consider a specific class of surfaces, according to the following definition: Let ω be
a domain in R2. Then a surface θ(ω) defined by means of an immersion θ ∈ C2(ω;E3) is said to be elliptic
if its Gaussian curvature K is everywhere strictly positive in ω, or equivalently, if there exists a constant K0

such that:
0 < K0 ≤ K(y), for all y ∈ ω.

It turns out that, when an elliptic surface is subjected to a displacement field ηia
i whose tangential

covariant components ηα vanish on the entire boundary of the domain ω, the following inequality holds.
Note that the components of the displacement fields and linearized change of metric tensors appearing in
the next theorem are no longer assumed to be continuously differentiable functions; they are instead to be
understood in a generalised sense, since they now belong to ad hoc Lebesgue or Sobolev spaces.

Theorem 2.1. Let ω be a domain in R2 and let an immersion θ ∈ C3(ω;E3) be given such that the surface
θ(ω) is elliptic. Define the space

VM (ω) := H1
0 (ω)×H1

0 (ω)× L2(ω).

Then, there exists a constant c0 = c0(ω,θ) > 0 such that{︄∑︂
α

∥ηα∥2H1(ω) + ∥η3∥2L2(ω)

}︄1/2

≤ c0

⎧⎨⎩∑︂
α,β

∥γαβ(η)∥2L2(ω)

⎫⎬⎭
1/2

for all η = (ηi) ∈ VM (ω). □

The above inequality, which is due to [19] and [23] (see also Theorem 2.7-3 of [15]), constitutes an example
of a Korn’s inequality on a surface, in the sense that it provides an estimate of an appropriate norm of a
displacement field defined on a surface in terms of an appropriate norm of a specific “measure of strain”
(here, the linearized change of metric tensor) corresponding to the displacement field under consideration.

3. The three-dimensional obstacle problem for a “general” linearly elastic shell

Let ω be a domain in R2, let γ := ∂ω, and let γ0 be a non-empty relatively open subset of γ. For each
ε > 0, we define the sets

Ωε = ω × ]−ε, ε[ and Γε
0 := γ0 × ]−ε, ε[ ,

we let xε = (xε
i ) designate a generic point in the set Ωε, and we let ∂ε

i := ∂/∂xε
i . Hence we also have xε

α = yα
and ∂ε

α = ∂α.
Given an immersion θ ∈ C3(ω;E3) and ε > 0, consider a shell with middle surface θ(ω) and with constant

thickness 2ε. This means that the reference configuration of the shell is the set Θ(Ωε), where the mapping
Θ : Ωε → E3 is defined by

Θ(xε) := θ(y) + xε
3a

3(y) at each point xε = (y, xε
3) ∈ Ωε.

One can then show (cf., e.g., Theorem 3.1-1 of [15]) that, if ε > 0 is small enough, such a mapping
Θ ∈ C2(Ωε;E3) is an immersion, in the sense that the three vectors

gεi (x
ε) := ∂ε

iΘ(xε)
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are linearly independent at each point xε ∈ Ωε; these vectors then constitute the covariant basis at the point
Θ(xε), while the three vectors gj,ε(xε) defined by the relations

gj,ε(xε) · gεi (x
ε) = δji

constitute the contravariant basis at the same point. It will be implicitly assumed in the sequel that ε > 0
is small enough so that Θ : Ωε → E3 is an immersion.

One then defines the metric tensor associated with the immersion Θ by means of its covariant components

gεij := g
ε
i · gεj ∈ C1(Ωε),

or by means of its contravariant components

gij,ε := gi,ε · gj,ε ∈ C1(Ωε).

Note that the symmetric matrix field (gij,ε) is then the inverse of the positive-definite matrix field (gεij),

that gj,ε = gij,εgεi and gεi = gεijg
j,ε, and that the volume element in Θ(Ωε) is given at each point Θ(xε),

xε ∈ Ωε, by
√︁
gε(xε) dxε, where

gε := det(gεij) ∈ C1(Ωε).

One also defines the Christoffel symbols associated with the immersion Θ by

Γp,ε
ij := ∂ε

i g
ε
j · gp,ε = Γp,ε

ji ∈ C0(Ωε).

Note that Γ3,ε
α3 = Γp,ε

33 = 0.

Given a vector field vε = (vεi ) ∈ C1(Ωε;R3), the associated vector field

ṽε := vεi g
i,ε

can be viewed as a displacement field of the reference configuration Θ(Ωε) of the shell, thus defined by means
of its covariant components vεi over the vectors gi,ε of the contravariant bases in the reference configuration.

If the norms ∥vεi ∥C1(Ωε) are small enough, the mapping (Θ + vεi g
i,ε) is also an immersion, so that one

can also define the metric tensor of the deformed configuration (Θ + vεi g
i,ε)(Ωε) by means of its covariant

components

gεij(v
ε) :=(gεi + ∂ε

i ṽ
ε) · (gεj + ∂ε

j ṽ
ε)

=gεij + g
ε
i · ∂ε

j ṽ
ε + ∂ε

i ṽ
ε · gεj + ∂ε

i ṽ
ε · ∂ε

j ṽ
ε.

The linear part with respect to ṽε in the difference (gεij(v
ε) − gεij)/2 is then called the linearized strain

tensor associated with the displacement field vεi g
i,ε, the covariant components of which are thus defined by

eεi∥j(v
ε) :=

1

2

(︁
gεi · ∂ε

j ṽ
ε + ∂ε

i ṽ
ε · gεj

)︁
=

1

2
(∂ε

j v
ε
i + ∂ε

i v
ε
j )− Γp,ε

ij vεp = eεj∥i(v
ε).

The functions eεi∥j(v
ε) are called the linearized strains in curvilinear coordinates associated with the

displacement field vεi g
i,ε.

We assume throughout this paper that, for each ε > 0, the reference configuration Θ(Ωε) of the shell is
a natural state (i.e., stress-free) and that the material constituting the shell is homogeneous, isotropic, and
linearly elastic. The behavior of such an elastic material is thus entirely governed by its two Lamé constants
λ ≥ 0 and µ > 0 (for details, see, e.g., Section 3.8 of [14]).

We will also assume that the shell is subjected to applied body forces whose density per unit volume is
defined by means of its covariant components f i,ε ∈ L2(Ωε), and to a homogeneous boundary condition of
place along the portion Γε

0 of its lateral face (i.e., the displacement vanishes on Γε
0).

In this paper, we consider a specific obstacle problem for such a shell, in the sense that the shell is also
subjected to a confinement condition, expressing that any admissible deformed configuration remains in a
half-space of the form

H := {Ox ∈ E3; Ox · q ≥ 0},
where q ∈ E3 is a non-zero vector given once and for all. In other words, any admissible displacement field
must satisfy (︁

Θ(xε) + vεi (x
ε)gi,ε(xε)

)︁
· q ≥ 0

for all xε ∈ Ωε, or possibly only for almost all (a.a. in what follows) xε ∈ Ωε when the covariant components
vεi are required to belong to the Sobolev space H1(Ωε) as in Theorem 3.1 below.
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We will of course assume that the reference configuration satisfies the confinement condition, i.e., that

Θ(Ωε) ⊂ H.

It is to be emphasized that the above confinement condition considerably departs from the usual Signorini
condition favoured by most authors, who usually require that only the points of the undeformed and deformed
“lower face” ω × {−ε} of the reference configuration satisfy the confinement condition (see, e.g., [38], [40],
[43], [55]). Clearly, the confinement condition considered in the present paper is more physically realistic,
since a Signorini condition imposed only on the lower face of the reference configuration does not prevent
– at least “mathematically” – other points of the deformed reference configuration to “cross” the plane
{Ox ∈ E3; Ox · q = 0} and then to end up on the “other side” of this plane. The mathematical models
characterized by the confinement condition introduced beforehand, confinement condition which is also
considered in the seminal paper [38] in a different geometrical framework, do not take any traction forces
into account. Indeed, by Classical Mechanics, there could be no traction forces applied to the portion of the
three-dimensional shell boundary that engages contact with the obstacle. In the same spirit as [48], friction
is not considered in the context of this analysis.

Unlike the classical Signorni condition, the confinement condition here considered is more suitable in the
context of multi-scales multi-bodies problems like, for instance, the study of the motion of the human heart
valves, conducted by Quarteroni and his associates in [53, 54, 59] and the references therein.

Such a confinement condition renders the study of this problem considerably more difficult, however, as
the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead
of on only a single component of this field.

The mathematical modelling of such an obstacle problem for a linearly elastic shell is then clear; since,
apart from the confinement condition, the rest, i.e., the function space and the expression of the quadratic
energy Jε, is classical (viz. [15]). More specifically, let

Aijkℓ,ε := λgij,εgkℓ,ε + µ
(︁
gik,εgjℓ,ε + giℓ,εgjk,ε

)︁
= Ajikℓ,ε = Akℓij,ε

denote the contravariant components of the elasticity tensor of the elastic material constituting the shell.
Then the unknown of the problem, which is the vector field uε = (uε

i ) where the functions uε
i : Ωε → R are

the three covariant components of the unknown “three-dimensional” displacement vector field uε
ig

i,ε of the
reference configuration of the shell, should minimize the energy Jε :H1(Ωε) → R defined by

Jε(vε) :=
1

2

∫︂
Ωε

Aijkℓ,εeεk∥ℓ(v
ε)eεi∥j(v

ε)
√
gε dxε −

∫︂
Ωε

f i,εvεi
√
gε dxε

for each vε = (vεi ) ∈H1(Ωε) over the set of admissible displacements defined by:

U(Ωε) := {vε = (vεi ) ∈H1(Ωε);vε = 0 on Γε
0 and (Θ(xε) + vεi (x

ε)gi,ε(xε)) · q ≥ 0 for a.a. xε ∈ Ωε}.

The solution to this minimization problem exists and is unique, and it can be also characterized as the
solution of a set of appropriate variational inequalities (cf., Theorem 2.1 of [25]).

Theorem 3.1. The quadratic minimization problem: Find a vector field uε ∈ U(Ωε) such that

Jε(uε) = inf
vε∈U(Ωε)

Jε(vε)

has one and only one solution. Besides, the vector field uε is also the unique solution of the variational
problem P(Ωε): Find uε ∈ U(Ωε) that satisfies the following variational inequalities:∫︂

Ωε

Aijkℓ,εeεk∥ℓ(u
ε)
(︂
eεi∥j(v

ε)− eεi∥j(u
ε)
)︂√

gε dxε ≥
∫︂
Ωε

f i,ε(vεi − uε
i )
√
gε dxε

for all vε = (vεi ) ∈ U(Ωε). □

Since θ(ω) ⊂ Θ(Ωε), it evidently follows that θ(y) · q ≥ 0 for all y ∈ ω. But in fact, a stronger property
holds (cf., Lemma 2.1 of [25], and see also [46] for a different approach to the asymptotic analysis):

Lemma 3.1. Let ω be a domain in R2, let θ ∈ C1(ω;E3) be an immersion, let q ∈ E3 be a non-zero vector,
and let ε > 0. Then the inclusion

Θ(Ωε) ⊂ H = {x ∈ E3; Ox · q ≥ 0}
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implies that

min
y∈ω

(θ(y) · q) > 0.

□

4. The scaled three-dimensional problem for a family of linearly elastic elliptic
membrane shells

In section 3, we considered an obstacle problem for “general” linearly elastic shells. From now on, we
will restrict ourselves to a specific class of shells, according to the following definition that was originally
proposed in [20] (see also [15]).

Consider a linearly elastic shell, subjected to the various assumptions set forth in section 3. Such a shell
is said to be a linearly elastic elliptic membrane shell (from now on simply membrane shell) if the following
two additional assumptions are satisfied: first, γ0 = γ, i.e., the homogeneous boundary condition of place is
imposed over the entire lateral face γ × ]−ε, ε[ of the shell, and second, its middle surface θ(ω) is elliptic,
according to the definition given in section 2.

In this paper, we consider the obstacle problem (as defined in section 3) for a family of membrane shells, all
sharing the same middle surface and whose thickness 2ε > 0 is considered as a “small” parameter approaching
zero. In order to conduct an asymptotic analysis on the three-dimensional model as the thickness ε → 0, we
resorted to a (by now standard) methodology first proposed in [18]: To begin with, we “scale” each problem
P(Ωε), ε > 0, over a fixed domain Ω, using appropriate scalings on the unknowns and assumptions on the
data.

More specifically, let

Ω := ω × ]−1, 1[ ,

let x = (xi) denote a generic point in the set Ω, and let ∂i := ∂/∂xi. With each point x = (xi) ∈ Ω, we
associate the point xε = (xε

i ) defined by

xε
α := xα = yα and xε

3 := εx3,

so that ∂ε
α = ∂α and ∂ε

3 = ε−1∂3. To the unknown uε = (uε
i ) and to the vector fields vε = (vεi ) appearing

in the formulation of the problem P(Ωε) corresponding to a membrane shell, we then associate the scaled
unknown u(ε) = (ui(ε)) and the scaled vector fields v = (vi) by letting

ui(ε)(x) := uε
i (x

ε) and vi(x) := vεi (x
ε)

at each x ∈ Ω. Finally, we assume that there exist functions f i ∈ L2(Ω) independent of ε such that the
following assumptions on the data hold

f i,ε(xε) = f i(x) at each x ∈ Ω.

Note that the independence on ε of the Lamé constants assumed in Section 3 in the formulation of problem
P(Ωε) implicitly constituted another assumption on the data.

The variational problem P(ε; Ω) defined in the next theorem will constitute the point of departure of the
asymptotic analysis performed in [25].

Theorem 4.1. For each ε > 0, define the set

U(ε; Ω) := {v = (vi) ∈H1(Ω);v = 0 on γ × ]−1, 1[ ,(︁
θ(y) + εx3a3(y) + vi(x)g

i(ε)(x)
)︁
· q ≥ 0 for a.a. x = (y, x3) ∈ Ω},

where

gi(ε)(x) := gi,ε(xε) at each x ∈ Ω.

Then the scaled unknown of the variational problem P(Ωε) is the unique solution of the variational problem
P(ε; Ω): Find u(ε) ∈ U(ε; Ω) that satisfies the following variational inequalities:∫︂

Ω

Aijkℓ(ε)ek∥ℓ(ε;u(ε))
(︁
ei∥j(ε;v)− ei∥j(ε;u(ε))

)︁√︁
g(ε) dx ≥

∫︂
Ω

f i(vi − ui(ε))
√︁
g(ε) dx,

for all v ∈ U(ε; Ω), where

g(ε)(x) := gε(xε) and Aijkℓ(ε)(x) := Aijkℓ,ε(xε) at each x ∈ Ω,
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eα∥β(ε;v) :=
1

2
(∂βvα + ∂αvβ)− Γk

αβ(ε)vk = eβ∥α(ε;v),

e3∥α(ε;v) :=
1

2

(︃
1

ε
∂3vα + ∂αv3

)︃
− Γσ

α3(ε)vσ = eα∥3(ε;v),

e3∥3(ε;v) :=
1

ε
∂3v3,

where

Γp
ij(ε)(x) := Γp,ε

ij (xε) at each x ∈ Ω.

□

The problem we are interested in is derived as a result of the rigorous asymptotic analysis conducted in
Theorem 4.1 of [25].

Theorem 4.2. Let ω be a domain in R2, let θ ∈ C3(ω;E3) be an immersion such that the surface θ(ω) is
elliptic (cf. section 2). Define the space and sets

VM (ω) := H1
0 (ω)×H1

0 (ω)× L2(ω),

UM (ω) := {η = (ηi) ∈ H1
0 (ω)×H1

0 (ω)× L2(ω);
(︁
θ(y) + ηi(y)a

i(y)
)︁
· q ≥ 0 for a.a. y ∈ ω},

ŨM (ω) := {η = (ηi) ∈ H1
0 (ω)×H1

0 (ω)×H1
0 (ω);

(︁
θ(y) + ηi(y)a

i(y)
)︁
· q ≥ 0 for a.a. y ∈ ω},

and assume that the immersion θ is such that

d̃ := min
y∈ω

(θ(y) · q) > 0,

is independent of ε, and assume that the following “density property” holds:

ŨM (ω) is dense in UM (ω) with respect to the norm of ∥ · ∥H1(ω)×H1(ω)×L2(ω) .

Let there be given a family of membrane shells with the same middle surface θ(ω) and thickness 2ε > 0,
and let

u(ε) = (ui(ε)) ∈ U(ε; Ω) := {v = (vi) ∈H1(Ω); v = 0 on γ × ]−1, 1[ ,(︁
θ(y) + εx3a3(y) + vi(x)g

i(ε)(x)
)︁
· q ≥ 0 for a.a. x = (y, x3) ∈ Ω}

denote for each ε > 0 the unique solution of the corresponding problem P(ε; Ω) introduced in Theorem 4.1.
Then there exist functions uα ∈ H1(Ω) independent of the variable x3 and satisfying

uα = 0 on γ × ]−1, 1[ ,

and there exists a function u3 ∈ L2(Ω) independent of the variable x3, such that

uα(ε) → uα in H1(Ω) and u3(ε) → u3 in L2(Ω).

Define the average

u = (ui) :=
1

2

∫︂ 1

−1

udx3 ∈ VM (ω).

Then

u = ζ,

where ζ is the unique solution of the two-dimensional variational problem PM (ω): Find ζ ∈ UM (ω) that
satisfies the following variational inequalities∫︂

ω

aαβστγστ (ζ)γαβ(η − ζ)
√
a dy ≥

∫︂
ω

pi(ηi − ζi)
√
a dy for all η = (ηi) ∈ UM (ω),

where

aαβστ :=
4λµ

λ+ 2µ
aαβaστ + 2µ

(︁
aασaβτ + aατaβσ

)︁
and pi :=

∫︂ 1

−1

f i dx3.

□
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Note that it does not make sense to talk about the trace of ζ3 along γ, since ζ3 is a priori only of class
L2(ω). The loss of the homogeneous boundary condition for the transverse component of the limit model,
which is a priori only square integrable, is compensated by the appearance of a boundary layer for the
transverse component. By proving that the solution enjoys a higher regularity, we will establish that it is
possible to restore the boundary condition for the transverse component of the solution too, and that the
trace of the transverse component of the solution along the boundary is almost everywhere (in the sense of
the measure of the contour) equal to zero.

Critical to establish the convergence of the family {u(ε)}ε>0 is the “density property” assumed there,

which asserts that the set ŨM (ω) is dense in the set UM (ω) with respect to the norm ∥ · ∥H1(ω)×H1(ω)×L2(ω).

The same “density property” is used to provide a justification, via a rigorous asymptotic analysis, of Koiter’s
model for membrane shells subject to an obstacle (cf. [22], [21]). We hereby recall a sufficient geometric
condition ensuring the assumed “density property” (cf. Theorem 5.1 of [25]).

Theorem 4.3. Let θ ∈ C2(ω;E3) be an immersion with the following property: There exists a non-zero
vector q ∈ E3 such that

min
y∈ω

(θ(y) · q) > 0 and min
y∈ω

(a3(y) · q) > 0.

Define the sets

UM (ω) := {η =(ηi) ∈ H1
0 (ω)×H1

0 (ω)× L2(ω);
(︁
θ(y) + ηi(y)a

i(y)
)︁
· q ≥ 0 for a.a. y ∈ ω},

UM (ω) ∩D(ω) := {η =(ηi) ∈ D(ω)×D(ω)×D(ω);
(︁
θ(y) + ηi(y)a

i(y)
)︁
· q ≥ 0 for a.a. y ∈ ω}.

Then the set UM (ω) ∩D(ω) is dense in the set UM (ω) with respect to the norm ∥ · ∥H1(ω)×H1(ω)×L2(ω). □

Examples of membrane shells satisfying the “density property” thus include those whose middle surface
is a portion of an ellipsoid that is strictly contained in one of the open half-spaces that contain two of its
main axes, the boundary of the half-space coinciding with the obstacle in this case.

As a final step, we de-scale Problem PM (ω) and we obtain the following variational formulation (cf.
Theorem 4.2 of [25]).

Problem Pε
M (ω). Find ζε = (ζεi ) ∈ UM (ω) satisfying the following variational inequalities:

ε

∫︂
ω

aαβστγστ (ζ
ε)γαβ(η − ζε)

√
ady ≥

∫︂
ω

pi,ε(ηi − ζεi )
√
a dy,

for all η = (ηi) ∈ UM (ω), where pi,ε := ε
∫︁ 1

−1
f i dx3. ■

By virtue of the Korn inequality recalled in Theorem 2.1, it results that Problem Pε
M (ω) admits a unique

solution. Solving Problem Pε
M (ω) amounts to minimizing the energy functional Jε : H1(ω)×H1(ω)×L2(ω) →

R, which is defined by

Jε(η) :=
ε

2

∫︂
ω

aαβστγστ (η)γαβ(η)
√
ady −

∫︂
ω

pi,εηi
√
a dy,

along all the test functions η = (ηi) ∈ UM (ω).

5. Approximation of the solution of Problem Pε
M (ω) by penalization

Following [56], we first approximate the solution of Problem Pε
M (ω) by penalty method. By so doing, the

geometrical constraint appearing in the definition of the set UM (ω) the deformation must obey now appears
in the governing model in the form of a monotone term. As a consequence of this, the test vector fields
are no longer sought in a non-empty, closed and convex subset of VM (ω), but in the whole VM (ω), and the
variational inequalities are replaced by a set of nonlinear equations, where the nonlinearity is monotone.

More precisely, define the operator β : L2(ω) → L2(ω) in the following fashion

β(ξ) :=

⎛⎝−{(θ + ξja
j) · q}−

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠⎞⎠3

i=1

, for all ξ = (ξi) ∈ L2(ω),

and we notice that this operator is associated with a penalization proportional to the extent the constraint
is broken. Note that the denominator never vanishes and that this fact is independent of the assumption
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miny∈ω(a
3 · q) > 0. Following the ideas of [52] (see also [48, 50]), we show that the operator β is monotone,

bounded and non-expansive.

Lemma 5.1. Let q ∈ E3 be a given unit-norm vector. Assume that miny∈ω(a
3(y) · q) > 0. Then, the

operator β : L2(ω) → L2(ω) defined by

β(ξ) :=

⎛⎝−{(θ + ξja
j) · q}−

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠⎞⎠3

i=1

, for all ξ = (ξi) ∈ L2(ω),

is bounded, monotone and Lipschitz continuous with Lipschitz constant L = 1.

Proof. Let ξ and η be arbitrarily given in L2(ω). Evaluating

∫︂
ω

(β(ξ)− β(η)) · (ξ − η) dy =

∫︂
ω

(︁[︁
−{(θ + ξja

j) · q}−
]︁
−
[︁
−{(θ + ηja

j) · q}−
]︁)︁⎛⎝ (ξi − ηi)a

i · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠ dy

=

∫︂
ω

⃓⃓
−{(θ + ξja

j) · q}−
⃓⃓2√︂∑︁3

ℓ=1 |aℓ · q|2
dy +

∫︂
ω

⃓⃓
−{(θ + ηja

j) · q}−
⃓⃓2√︂∑︁3

ℓ=1 |aℓ · q|2
dy

+

∫︂
ω

(︁
−{(θ + ξja

j) · q}−
)︁√︂∑︁3

ℓ=1 |aℓ · q|2

(︁
−{(θ + ηia

i) · q}+ + {(θ + ηia
i) · q}−

)︁
dy

+

∫︂
ω

(︁
−{(θ + ηja

j) · q}−
)︁√︂∑︁3

ℓ=1 |aℓ · q|2

(︁
−{(θ + ξia

i) · q}+ + {(θ + ξia
i) · q}−

)︁
dy

≥
∫︂
ω

⃓⃓
−{(θ + ξja

j) · q}−
⃓⃓2√︂∑︁3

ℓ=1 |aℓ · q|2
dy +

∫︂
ω

⃓⃓
−{(θ + ηja

j) · q}−
⃓⃓2√︂∑︁3

ℓ=1 |aℓ · q|2
dy +

∫︂
ω

(︁
−{(θ + ξja

j) · q}−
)︁√︂∑︁3

ℓ=1 |aℓ · q|2

(︁
{(θ + ηia

i) · q}−
)︁
dy

+

∫︂
ω

(︁
−{(θ + ηja

j) · q}−
)︁√︂∑︁3

ℓ=1 |aℓ · q|2

(︁
{(θ + ξia

i) · q}−
)︁
dy

=

∫︂
ω

⃓⃓(︁
−{(θ + ηja

j) · q}−
)︁
−
(︁
−{(θ + ξja

j) · q}−
)︁⃓⃓2√︂∑︁3

ℓ=1 |aℓ · q|2
dy ≥ 0,

proves the monotonicity of the operator β.
For showing the boundedness of the operator β, we show that it maps bounded sets of L2(ω) into bounded

sets of L2(ω). Let the set F ⊂ L2(ω) be bounded. For each ξ ∈ F , we have that

∥β(ξ)∥L2(ω) =

(︄∫︂
ω

| − {(θ + ξja
j) · q}−|2∑︁3

ℓ=1 |aℓ · q|2

3∑︂
i=1

|ai · q|2 dy

)︄1/2

= ∥ − {(θ + ξja
j) · q}−∥L2(ω) ≤ ∥θ · q∥L2(ω) + ∥ξ∥L2(ω),

and the sought boundedness is thus asserted, being θ ∈ C3(ω;E3) and F bounded in L2(ω).



12 AARON MEIXNER AND PAOLO PIERSANTI

Finally, to establish the Lipschitz continuity, for all ξ and η ∈ L2(ω), we evaluate ∥β(ξ) − β(η)∥L2(ω).
We have that

∥β(ξ)− β(η)∥L2(ω) =

(︄∫︂
ω

1∑︁3
ℓ=1 |aℓ · q|2

{︄⃓⃓
[−{(θ + ξia

i) · q}−]− [−{(θ + ηja
j) · q}−]

⃓⃓2(︄ 3∑︂
ℓ=1

|aℓ · q|2
)︄}︄

dy

)︄1/2

=

(︃∫︂
ω

⃓⃓[︁
−{(θ + ξja

j) · q}−
]︁
−
[︁
−{(θ + ηja

j) · q}−
]︁⃓⃓2

dy

)︃1/2

=

(︄∫︂
ω

⃓⃓⃓⃓
|(θ + ξja

j) · q| − (θ + ξja
j) · q

2
− |(θ + ηja

j) · q| − (θ + ηja
j) · q

2

⃓⃓⃓⃓2
dy

)︄1/2

≤

(︄∫︂
ω

(︃⃓⃓⃓⃓
(θ + ξja

j) · q − (θ + ηja
j) · q

2

⃓⃓⃓⃓
+

⃓⃓⃓⃓
(θ + ξja

j) · q − (θ + ηja
j) · q

2

⃓⃓⃓⃓)︃2

dy

)︄1/2

≤
⃦⃦
(θ + ξja

j) · q − (θ + ηja
j) · q

⃦⃦
L2(ω)

≤ ∥ξ − η∥L2(ω),

and the sought Lipschitz continuity is thus established. Note in passing that the Lipschitz constant is L = 1.
This completes the proof. □

Let κ > 0 denote a penalty parameter which is meant to approach zero. The penalized version of
Problem Pε

M (ω) is formulated as follows.

Problem Pε
M,κ(ω). Find ζεκ = (ζεκ,i) ∈ VM (ω) satisfying the following variational equations:

ε

∫︂
ω

aαβστγστ (ζ
ε
κ)γαβ(η)

√
a dy +

ε

κ

∫︂
ω

β(ζεκ) ·η dy =

∫︂
ω

pi,εηi
√
a dy,

for all η = (ηi) ∈ VM (ω). ■

The existence and uniqueness of solutions of Problem Pε
M,κ(ω) can be established by resorting to the

Minty-Browder theorem (cf., e.g., Theorem 9.14-1 of [17]). For the sake of completeness, we present the
proof of this existence and uniqueness result.

Theorem 5.1. Let q ∈ E3 be a given unit-norm vector. Assume that θ ∈ C3(ω;E3) is such that miny∈ω(θ(y) · q) > 0.
Then, for each κ > 0 and ε > 0, Problem Pε

M,κ(ω) admits a unique solution. Moreover, the family of

solutions {ζεκ}κ>0 is bounded in VM (ω) independently of κ and ε, and

ζεκ → ζε, in VM (ω) as κ → 0+,

where ζε is the solution of Problem Pε
M (ω).

Proof. Let us define the operator Aε : VM (ω) → V ′
M (ω) by

⟨Aεξ,η⟩V ′
M (ω),VM (ω) := ε

∫︂
ω

aαβστγστ (ξ)γαβ(η)
√
a dy.

We observe that the operator Aε is linear, continuous and, thanks to Korn’s inequality (Theorem 2.1),
such that

(1) ⟨Aεξ −Aεη, ξ − η⟩V ′
M (ω),VM (ω) ≥ εc∥ξ − η∥2VM (ω), for all ξ,η ∈ VM (ω),

for some c = c(ω,θ) > 0. Define the operator β̂ : VM (ω) → V ′
M (ω) as the following composition

VM (ω) ↪→ L2(ω)
β−→ L2(ω) ↪→ V ′

M (ω).

Thanks to the monotonicity of β established in Lemma 5.1, we easily infer that β̂ is monotone. Therefore,

as a direct consequence of (1) and Lemma 5.1, we can infer that the operator (Aε + β̂) : VM (ω) → V ′
M (ω)

is strictly monotone. To see this, observe that for all η, ξ ∈ VM (ω) with ξ ̸= η, we have that

⟨(Aε + β̂)ξ − (Aε + β̂)η, ξ − η⟩V ′
M (ω),VM (ω)

= ⟨Aεξ −Aεη, ξ − η⟩V ′
M (ω),VM (ω)

+ ⟨β̂(ξ)− β̂(η), ξ − η⟩V ′
M (ω),VM (ω) ≥ εc∥ξ − η∥2VM (ω) > 0.
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Similarly, we can establish the coerciveness of the operator (Aε + β̂). Indeed, we have that

⟨(Aε + β̂)η,η⟩V ′
M (ω),VM (ω)

∥η∥VM (ω)
=

⟨Aεη,η⟩V ′
M (ω),VM (ω)

∥η∥VM (ω)
+

⟨β̂(η),η⟩V ′
M (ω),VM (ω)

∥η∥VM (ω)
≥ cε∥η∥VM (ω),

where the last inequality is obtained by combining (1), Lemma 5.1 with the fact that 0 ∈ UM (ω) or,
equivalently, that β(0) = 0 in L2(ω).

The continuity of the operatorAε and the Lipschitz continuity of the operator β established in Lemma 5.1

in turn give that the operator (Aε+β̂) is hemicontinuous, and we are in position to apply the Minty-Browder
theorem (cf., e.g., Theorem 9.14-1 of [17]) to establish that there exists a unique solution ζεκ ∈ VM (ω) for
Problem Pε

M,κ(ω).

Observe that the fact that miny∈ω(θ(y) · q) > 0 implies:

(2)

∫︂
ω

β(ζεκ) · ζεκ dy =

∫︂
ω

1√︂∑︁3
ℓ=1 |aℓ · q|2

(︁
−{(θ + ζεκ,ja

j) · q}−
)︁
(ζεκ,ia

i · q) dy

=

∫︂
ω

1√︂∑︁3
ℓ=1 |aℓ · q|2

(︁
−{(θ + ζεκ,ja

j) · q}−
)︁
((θ + ζεκ,ia

i) · q) dy

−
∫︂
ω

1√︂∑︁3
ℓ=1 |aℓ · q|2

(︁
−{(θ + ζεκ,ja

j) · q}−
)︁
(θ · q) dy

≥
∫︂
ω

1√︂∑︁3
ℓ=1 |aℓ · q|2

| − {(θ + ζεκ,ia
i) · q}−|2 dy.

Furthermore, if we specialize η = ζεκ in the variational equations of Problem Pε
M,κ(ω), we have that an

application of Korn’s inequality (Theorem 2.1), the monotonicity of β (Lemma 5.1), the strict positiveness
and boundedness of a (Theorems 3.1-1 of [15]), the uniform positive definiteness of the fourth order two-
dimensional elasticity tensor (aαβστ ) (Theorem 3.3-2 of [15]), and the fact that 0 ∈ UM (ω) or, equivalently,
that β(0) = 0 in L2(ω) give:

ε
√
a0

c0ce
∥ζεκ∥2VM (ω) ≤ ε

∫︂
ω

aαβστγστ (ζ
ε
κ)γαβ(ζ

ε
κ)
√
a dy +

ε

κ

∫︂
ω

β(ζεκ) · ζεκ dy

≤ ∥pε∥L2(ω)∥ζεκ∥VM (ω)
√
a1 = ε

√
a1∥p∥L2(ω)∥ζεκ∥VM (ω).

Note that the last equality holds thanks to the definition of p = (pi) and pε = (pi,ε) introduced, respectively,
in Theorem 4.2 and Problem Pε

M (ω).
By virtue of the definition of pi,ε and the assumptions on the data stated at the beginning of section 4,

we get that ∥ζεκ∥VM (ω) is bounded independently of κ and ε. Therefore, by the Banach-Eberlein-Smulian
theorem (cf., e.g., Theorem 5.14-4 of [17]), we can extract a subsequence, still denoted {ζεκ}κ>0 such that

(3) ζεκ ⇀ ζε, in VM (ω) as κ → 0+.

Specializing η = ζεκ in the variational equations of Problem Pε
M,κ(ω) and applying (3) and (2) give that

(4)

(︂
3max{∥aj · q∥2C0(ω); 1 ≤ j ≤ 3}

)︂−1/2

κ
∥ − {(θ + ζεκ,ja

j)q}−∥2L2(ω) ≤
1

κ

∫︂
ω

β(ζεκ) · ζεκ dy ≤ C,

for some C > 0 independent of ε and κ. Therefore, we have that an application of the Banach-Eberlein-
Smulian theorem and (4) give that

(5) β(ζεκ) → 0, in L2(ω) as κ → 0+,

and that

(6) ⟨β̂(ζεκ), ζεκ⟩V ′
M (ω),VM (ω) → 0, as κ → 0+.

Therefore, the monotonicity of β̂ (which is a direct consequence of Lemma 5.1), and the the properties

established in (3), (5) and (6) give that β̂(ζε) = 0, so that ζε ∈ UM (ω).
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Observe that the monotonicity of β (viz. Lemma 5.1), the properties of ζεκ, the continuity of the compo-
nents γαβ of the linearized change of metric tensor, the definition of pε (Theorem 4.2), the boundedness ζε

independently of ε (Theorem 4.2), and the weak convergence (3) give

∥ζεκ − ζε∥2VM (ω) ≤
c0ce√
a0

∫︂
ω

aαβστγστ (ζ
ε
κ − ζε)γαβ(ζεκ − ζε)

√
ady

= − c0ce
κ
√
a0

∫︂
ω

β(ζεκ) · (ζεκ − ζε) dy

+
c0ce
ε
√
a0

∫︂
ω

pi,ε(ζεκ,i − ζεi )
√
ady

− c0ce√
a0

∫︂
ω

aαβστγστ (ζ
ε)γαβ(ζ

ε
κ − ζε)

√
a dy

≤ c0ce
ε
√
a0

∫︂
ω

pi,ε(ζεκ,i − ζεi )
√
ady

− c0ce√
a0

∫︂
ω

aαβστγστ (ζ
ε)γαβ(ζ

ε
κ − ζε)

√
a dy

=
c0ce√
a0

∫︂
ω

pi(ζεκ,i − ζεi )
√
a dy

− c0ce√
a0

∫︂
ω

aαβστγστ (ζ
ε)γαβ(ζ

ε
κ − ζε)

√
a dy → 0,

as κ → 0+. Observe that the latter term is bounded independently of ε and κ. In conclusion, we have been
able to establish the strong convergence:

(7) ζεκ → ζε, in VM (ω) as κ → 0+.

Specializing (η − ζεκ) ∈ VM (ω) in the variational equations of Problem Pε
M,κ(ω), with η ∈ UM (ω), the

monotonicity of β, the convergence (5) and the convergence (7) immediately give that the limit ζε satisfies
the variational inequalities in Problem Pε

M (ω). This completes the proof. □

We observe that in the proof of Theorem 5.1, we established that ∥ζεκ − ζε∥VM (ω) converges to zero as

κ → 0+. For the purpose of constructing a convergent numerical scheme for approximating the solution of
the variational inequalities in Problem (Pε

M (ω)), we need to establish how fast the latter norm converges to
zero as κ → 0+. In order to establish this property, we need to prove a preparatory result concerning the
augmentation of regularity of th solution of Problem Pε

M,κ(ω) by resorting to the finite difference quotients

approach originally proposed by Agmon, Douglis & Nirenberg [1, 2], as well as the approach proposed by
Frehse [30] for variational inequalities, that was later on generalized in [45, 47].

Recalling that ζεκ denotes the solution of Problem Pε
M,κ(ω), in the same spirit as Theorem 4.5-1(b) of [15]

we define

nαβ,ε
κ := εaαβστγστ (ζ

ε
κ),

and we also define

nαβ,ε
κ |σ := ∂σn

αβ,ε
κ + Γα

στn
βτ,ε
κ + Γβ

στn
ατ,ε
κ .

If the solution ζεκ of Problem Pε
M,κ(ω) is smooth enough, then it is immediate to see that it satisfies the

following boundary value problem:

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−nαβ,ε
κ |β +

ε

κ
√
a
βα(ζ

ε
κ) = pα,ε, in ω,

−bαβn
αβ,ε
κ +

ε

κ
√
a
β3(ζ

ε
κ) = p3,ε, in ω,

ζεκ,α = 0, on γ.
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6. Augmentation of the regularity of the solution of Problem Pε
M,κ(ω)

Let ω0 ⊂ ω and ω1 ⊂ ω be such that

(9) ω1 ⊂⊂ ω0 ⊂⊂ ω.

Let φ1 ∈ D(ω) be such that

supp φ1 ⊂⊂ ω1 and 0 ≤ φ1 ≤ 1.

By the definition of the symbol ⊂⊂ in (9), we obtain that the quantity

(10) d = d(φ1) :=
1

2
min{dist(∂ω1, ∂ω0),dist(∂ω0, γ),dist(supp φ1, ∂ω1)}

is strictly greater than zero.
Denote by Dρh the first order (forward) finite difference quotient of either a function or a vector field in

the canonical direction eρ of R2 and with increment size 0 < h < d sufficiently small. We can regard the
first order (forward) finite difference quotient of a function as a linear operator defined as follows:

Dρh : L2(ω) → L2(ω0).

The first order finite difference quotient of a function ξ in the canonical direction eρ of R2 and with
increment size 0 < h < d is defined by:

Dρhξ(y) :=
ξ(y + heρ)− ξ(y)

h
,

for all (or, possibly, a.a.) y ∈ ω such that (y + heρ) ∈ ω.
The first order finite difference quotient of a vector field ξ = (ξi) in the canonical direction eρ of R2 and

with increment size 0 < h < d is defined by

Dρhξ(y) :=
ξ(y + heρ)− ξ(y)

h
,

or, equivalently,

Dρhξ(y) = (Dρhξi(y)).

Similarly, we can show that the first order (forward) finite difference quotient of a vector field is a linear
operator from L2(ω) to L2(ω0).

We define the second order finite difference quotient of a function ξ in the canonical direction eρ of R2

and with increment size 0 < h < d by

δρhξ(y) :=
ξ(y + heρ)− 2ξ(y) + ξ(y − heρ)

h2
,

for all (or, possibly, a.a.) y ∈ ω such that (y ± heρ) ∈ ω.
The second order finite difference quotient of a vector field ξ = (ξi) in the canonical direction eρ of R2

and with increment size 0 < h < d is defined by

δρhξ(y) :=

(︃
ξi(y + heρ)− 2ξi(y) + ξi(y − heρ)

h2

)︃
,

for all (or, possibly, a.a.) y ∈ ω such that (y ± heρ) ∈ ω.
Define, following page 293 of [28], the mapping D−ρh : L2(ω) → L2(ω0) by

D−ρhξ(y) :=
ξ(y)− ξ(y − heρ)

h
,

as well as the mapping D−ρh : L2(ω) → L2(ω0) by

D−ρhξ(y) :=
ξ(y)− ξ(y − heρ)

h
.

Note in passing that the second order finite difference quotient of a function ξ can be expressed in terms
of the first order finite difference quotient via the following identity:

δρhξ = D−ρhDρhξ.
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Similarly, the second order finite difference quotient of a vector field ξ = (ξi) can be expressed in terms
of the first order finite difference quotient via the following identity:

δρhξ = D−ρhDρhξ.

Let us define the translation operator E in the canonical direction eρ of R2 and with increment size
0 < h < d for a smooth enough function v : ω0 → R by

Eρhv(y) := v(y + heρ),

E−ρhv(y) := v(y − heρ).

Moreover, the following identities can be easily checked out (cf. [30] and [47]):

Dρh(vw) = (Eρhw)(Dρhv) + vDρhw,(11)

D−ρh(vw) = (E−ρhw)(D−ρhv) + vD−ρhw,(12)

δρh(vw) = wδρhv + (Dρhw)(Dρhv) + (D−ρhw)(D−ρhv) + vδρhw.(13)

We observe that the following properties hold for finite difference quotients.
The proof of the first lemma can be found in Lemma 4 of [45] and for this reason it is omitted.

Lemma 6.1. Let {vk}k≥1 be a sequence in C1(ω) that converges to a certain element v ∈ H1(ω) with respect
to the norm ∥ · ∥H1(ω). Then, we have that for all 0 < h < d and all ρ ∈ {1, 2},

Dρhv ∈ H1(ω0) with ∂α(Dρhv) = Dρh(∂αv) and Dρhvk → Dρhv in H1(ω0) as k → ∞.

□

As a direct consequence of Lemma 6.1, if {vk}k≥1 is a sequence in C1(ω) that converges to a certain element
v ∈ H1(ω) with respect to the norm ∥ · ∥H1(ω), then, we have that for all 0 < h < d and all ρ ∈ {1, 2},

δρhv ∈ H1(ω1) with ∂α(δρhv) = δρh(∂αv) and δρhvk → δρhv in H1(ω1) as k → ∞.

We also state the following elementary lemma, which exploits the compactness of the support of the test
function φ1 defined beforehand.

Lemma 6.2. Let f ∈ D(ω) with supp f ⊂⊂ ω1. Let 0 < h < d, where d > 0 has been defined in (10) and
let ρ ∈ {1, 2} be given. Then, ∫︂

ω

Dρh(−f−)Dρh(f
+) dy ≥ 0.

Proof. By the definition of Dρh and the definition of the positive and negative part of a function, we have
that ∫︂

ω

Dρh(−f−)Dρh(f
+) dy = −

∫︂
ω

(︃
f−(y + heρ)− f−(y)

h

)︃(︃
f+(y + heρ)− f+(y)

h

)︃
dy.

If y ∈ ω is such that f(y + heρ) > 0 and f(y) > 0 then the integrand (i.e., the argument of the integral
under consideration) of interest is equal to zero.

If y ∈ ω is such that f(y + heρ) < 0 and f(y) < 0 then the integrand (i.e., the argument of the integral
under consideration) of interest is equal to zero.

If y ∈ ω is such that f(y + heρ) > 0 and f(y) < 0 then the integrand (i.e., the argument of the integral
under consideration) of interest becomes equal to

−
(︃
−{f(y)}−

h

)︃(︃
{f(y + heρ)}+

h

)︃
> 0.

If y ∈ ω is such that f(y + heρ) < 0 and f(y) > 0 then the integrand (i.e., the argument of the integral
under consideration) of interest becomes equal to

−
(︃
{f(y + heρ)}−

h

)︃(︃
−{f(y)}+

h

)︃
> 0.

In conclusion, the integrand is never negative and the integral under examination is always greater or
equal than zero, as it was to be proved. □
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Let us recall that θ(y) · q > 0 for all y ∈ ω (Lemma 3.1), where the unit-norm vector q is given. In view of

this, we wonder whether the immersion θ ∈ C3(ω;E3) admits a prolongation θ̃ ∈ C3(ω̃;E3), for some domain
ω ⊂⊂ ω̃, prolongation which is associated with the natural covariant and contravariant bases {ã1, ã2, ã3}
and {ã1, ã2, ã3} and which enjoys the following properties:

(a) The mapping θ̃ ∈ C3(ω̃;E3) is an immersion and θ̃
⃓⃓
ω
= θ;

(b) The surface θ̃(ω̃) is elliptic;

(c) If miny∈ω(θ(y) · q) > 0 then miny∈ω̃(θ̃(y) · q) > 0;

(d) If miny∈ω(a
3(y) · q) > 0 then miny∈ω̃(ã

3(y) · q) > 0.

We will say that θ satisfies the “prolongation property” if there exists an extension θ̃ satisfying the
properties (a)–(d) above.

Thanks to the Whitney’s extension theorem (cf., e.g., Theorem 2.3.6 of [36]), we are able to give a
constructive proof of the fact that the “prolongation property” is satisfied by all the elliptic surfaces satisfying
the sufficient condition ensuring the “density property”, thus giving an affirmative answer to the question
posed above.

Lemma 6.3. Let ω ⊂ R2 be a domain and let ϑ ∈ C2(ω;E3) be an immersion associated with an elliptic
surface and satisfying the sufficient condition ensuring the “density property”. Then ϑ satisfies the “prolon-
gation property”.

Proof. Let {ei}3i=1 be an orthonormal covariant basis for the Euclidean space E3. Let {ei}3i=1 denote the
corresponding contravariant basis of the Euclidean space E3, and recall that ei = ei for all 1 ≤ i ≤ 3. For
each y ∈ ω, we can write ϑ(y) = ϑi(y)e

i. Therefore, each of the components ϑi, 1 ≤ i ≤ 3, of the immersion
ϑ is clearly of class C2(ω) since ϑj = ϑ · ej , for all 1 ≤ j ≤ 3 and the right hand side is of class C2(ω).

By the Whitney extension theorem (cf., e.g., Theorem 2.3.6 of [36]), for each 1 ≤ i ≤ 3, there exists a

function ϑ̃i ∈ C2(R2) that extends ϑi. We can thus define a mapping ϑ̃ := ϑ̃ie
i ∈ C2(ω̃;E3) that extends ϑ,

for all ω̃ ⊃⊃ ω.
Observe that the covariant basis {ai}3i=1 associated with ϑ satisfies

det(aαβ(y)) > 0, for all y ∈ ω,

since ϑ is assumed to be an immersion. Let {ãi}3i=1 denote the covariant basis of the extension ϑ̃. By the

continuity of the determinant and the properties of the prolongation ϑ̃ with obvious meaning of the notation
we have that, up to shrinking ω̃:

det(ãαβ(y)) > 0, for all y ∈ ω̃,

and property (a) is thus established.
Recall that the Gaussian curvature κ of the immersion ϑ is defined at each y ∈ ω by

K(y) = det(bβα(y)),

namely, in terms of the invariants of the matrix associated with the mixed components of the second funda-
mental form of ϑ. Let K̃ denote the Gaussian curvature associated with the extension ϑ̃ and observe that
K̃ ∈ C2(R), and that K̃(y) = K(y), for all y ∈ ω.

By the continuity of the mixed components of the second fundamental form (recall that ϑ was assumed

to be of class C2(ω;E3)) we can thus find a set ω̃ ⊃⊃ ω such that K̃ > 0 in ω̃. This proves property (b).

Properties (c) and (d) also a direct consequence of the continuity of ϑ̃.

Up to shrinking ω̃, we can affirm without loss of generality that the restriction of the mapping ϑ̃ to the set
ω̃ is the sought prolongation of the given immersion ϑ, that satisfies properties (a)–(d) of the “prolongation
property”. This completes the proof. □

We are ready to state the main result of this section, that constitutes the first new result in this paper.
Note in passing, upon proving the following theorem, we will be able to obtain the conclusion of Theorem 6
in [45] under weaker assumptions on the given term pε. The main novelty of the approach presented in this
paper is that the proof of the augmented regularity of the solution of Problem Pε

M (ω) will be established
without resorting to the “density property” exploited for establishing Theorem 4.3.
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Theorem 6.1. Let ω0 and ω1 be as in (9). Assume that there exists a unit norm vector q ∈ E3 such that

min
y∈ω

(θ(y) · q) > 0 and min
y∈ω

(a3(y) · q) > 0.

Assume also that the vector field fε = (f i,ε) defining the applied body force density is of class L2(Ωε) ×
L2(Ωε)×H1(Ωε). Then, the solution ζεκ = (ζεκ,i) of Problem Pε

M,κ(ω) is of class VM (ω)∩H2
loc(ω)×H2

loc(ω)×
H1

loc(ω).

Proof. Fix φ ∈ D(ω) such that supp φ ⊂⊂ ω1 and 0 ≤ φ ≤ 1. Let ζεκ ∈ VM (ω) be the unique solution
of Problem Pε

M,κ(ω). Observe that the transverse component ζεκ,3 can be extended outside of ω by zero,

preserving the L2(R2) regularity. For what concerns the tangential components ζεκ,α, Proposition 9.18 of [6]
states that the only admissible prolongation outside of ω is the prolongation by zero. Therefore, it makes
sense to consider the vector field

(−φδρh(φζ
ε
κ)) ∈ H1(R2)×H1(R2)× L2(R2).

Since the support of this vector field is compactly contained in ω1, we obtain that, actually,

(−φδρh(φζ
ε
κ)) ∈ VM (ω),

and we can specialize η = −φδρh(φζ
ε
κ) in the variational equations of Problem Pε

M,κ(ω).
Let us now evaluate∫︂

ω

pi,ε(−φδρh(φζ
ε
κ,i))

√
ady = −

∫︂
ω1

(φpi,ε)(δρh(φζ
ε
κ,i))

√
ady

= −
∫︂
ω1

(φpα,ε)(δρh(φζ
ε
κ,α))

√
ady +

∫︂
ω

Dρh(φp
3,ε)(Dρh(φζ

ε
κ,3))

√
ady

= ε∥φ∥C1(ω)∥p∥L2(ω)×L2(ω)×H1(ω)
√
a1∥Dρh(φζ

ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1),

where the second holds thanks to the integration by parts formula for finite difference quotients (cf. page 293
of [28]), and the inequality holds thanks to the Hölder inequality.

Thanks to these inequalities, we have that

(14)
ε

∫︂
ω1

aαβστγστ (ζ
ε
κ)γαβ(−φδρh(φζ

ε
κ))

√
ady +

ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

≤ ε∥φ∥C1(ω)∥p∥L2(ω)×L2(ω)×H1(ω)
√
a1∥Dρh(φζ

ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1).

The first step in our analysis consists in showing that:

(15)

− ε

∫︂
ω1

aαβστγστ (φζ
ε
κ)γαβ(δρh(φζ

ε
κ))

√
a dy

≤ −ε

∫︂
ω1

aαβστγστ (ζ
ε
κ)γαβ(φδρh(φζ

ε
κ))

√
ady + Cε(1 + ∥Dρh(φζ

ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)),

for some C > 0 independent of ε, κ and h.
Recalling the definition of the change of metric tensor components γαβ (cf. section 2) and recalling that

θ ∈ C3(ω;E3), we have that the integral

−ε

∫︂
ω1

aαβστγστ (φζ
ε
κ)γαβ(δρh(φζ

ε
κ))

√
a dy

can be estimated by estimating the following main nine addends of it. In the evaluation of the following nine
terms, the indices are assumed to be fixed, i.e., the summation rule with respect to repeated indices is not
enforced in (16)–(24) below.

Overall, the strategy we resort to is the following: we take into accounts the addends of the linearised
change of metric tensor and we apply Green’s formula and the integration-by-parts formula for finite difference
quotients for suitably arranging the position of the compactly supported function φ.
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First, thanks to an application of Green’s formula (cf., e.g., Theorem 6.6-7 of [17]), we estimate:

(16)

∫︂
ω1

−aαβστ∂σ(φζ
ε
κ,τ )∂β(δρh(φζ

ε
κ,α))

√
a dy

=

∫︂
ω1

−aαβστ [(∂σφ)ζ
ε
κ,τ + φ∂σζ

ε
κ,τ ]∂β(δρh(φζ

ε
κ,α))

√
a dy

=

∫︂
ω1

∂β(a
αβστ (∂σφ)ζ

ε
κ,τ

√
a)δρh(φζ

ε
κ,α) dy

+

∫︂
ω1

−aαβστ∂σζ
ε
κ,τ [φ∂β(δρh(φζ

ε
κ,α))]

√
a dy

≤ C∥ζεκ,τ∥H1(ω1)×H1(ω1)×L2(ω1)∥Dρh(φζ
ε
κ,α)∥H1(ω1)

+

∫︂
ω1

−aαβστ∂σζ
ε
κ,τ∂β(φδρh(φζ

ε
κ,α))

√
a dy

+

∫︂
ω1

aαβστ (∂σζ
ε
κ,τ )(∂βφ)δρh(φζ

ε
κ,α)

√
a dy

≤
∫︂
ω1

−aαβστ (∂σζ
ε
κ,τ )∂β(φδρh(φζ

ε
κ,α))

√
a dy + C∥Dρh(φζ

ε
κ,α)∥H1(ω1).

Second, we estimate:

(17)

∫︂
ω1

−aαβστ (−Γς
στφζ

ε
κ,ς)∂β(δρh(φζ

ε
κ,α))

√
ady

=

∫︂
ω1

aαβστΓυ
στζ

ε
κ,υ∂β(φδρh(φζ

ε
κ,α))

√
ady

−
∫︂
ω1

aαβστΓυ
στζ

ε
κ,υ(∂βφ)(δρh(φζ

ε
κ,α))

√
a dy

≤
∫︂
ω1

aαβστΓυ
στζ

ε
κ,υ∂β(φδρh(φζ

ε
κ,α))

√
ady + C∥Dρh(φζ

ε
κ,α)∥H1(ω1),

where the equality holds as a consequence of Green’s formula.
Third, we estimate:

(18)

∫︂
ω1

−aαβστ (−bαβφζ
ε
κ,3)∂β(δρh(φζ

ε
κ,α))

√
a dy

=

∫︂
ω1

aαβστ (bαβζ
ε
κ,3)∂β(φδρh(φζ

ε
κ,α))

√
a dy

−
∫︂
ω1

aαβστ bαβζ
ε
κ,3(∂βφ)δρh(φζ

ε
κ,α)

√
a dy

≤
∫︂
ω1

aαβστ (bαβζ
ε
κ,3)∂β(φδρh(φζ

ε
κ,α))

√
a dy + C∥Dρh(φζ

ε
κ,α)∥H1(ω1).

Fourth, we estimate:

(19)

∫︂
ω1

−aαβστ∂σ(φζ
ε
κ,τ )Γ

υ
αβδρh(φζ

ε
κ,υ)

√
a dy

=

∫︂
U1

−aαβστ (∂σφ)ζ
ε
κ,τΓ

υ
αβδρh(φζ

ε
κ,υ)

√
a dy

+

∫︂
ω1

−aαβστφ(∂σζ
ε
κ,τ )Γ

υ
αβδρh(φζ

ε
κ,υ)

√
a dy

≤ C∥Dρh(φζ
ε
κ,α)∥H1(ω1) +

∫︂
ω1

−aαβστ (∂σζ
ε
κ,τ )Γ

υ
αβ [φδρh(φζ

ε
κ,υ)]

√
ady.
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Fifth, we straightforwardly observe that:

(20)

∫︂
ω1

−aαβστ (−Γς
στζ

ε
κ,ςφ)Γ

υ
αβδρh(ζ

ε
κ,υφ)

√
a dy

≤ C(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

+

∫︂
ω1

−aαβστ (−Γς
στζ

ε
κ,ς)Γ

υ
αβ [φδρh(ζ

ε
κ,υφ)]

√
ady.

Sixth, we straightforwardly observe that:

(21)

∫︂
ω1

−aαβστ (bστζ
ε
κ,3φ)Γ

υ
αβδρh(φζ

ε
κ,υ)

√
ady

≤ C(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

+

∫︂
ω1

−aαβστ bστζ
ε
κ,3Γ

υ
αβ [φδρh(φζ

ε
κ,υ)]

√
a dy.

Seventh, we straightforwardly observe that:

(22)

∫︂
ω1

−aαβστ (−Γς
στφζ

ε
κ,ς)bαβδρh(ζ

ε
κ,3φ)

√
a dy

≤ C(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

+

∫︂
ω1

−aαβστ (−Γς
στζ

ε
κ,ς)bαβ [φδρh(ζ

ε
κ,3φ)]

√
ady.

Eighth, we estimate:

(23)

∫︂
ω1

−aαβστ∂σ(φζ
ε
κ,τ )bαβδρh(ζ

ε
κ,3φ)

√
ady

=

∫︂
ω1

−aαβστ (∂σζ
ε
κ,τ )bαβ [φδρh(ζ

ε
κ,3φ)]

√
ady

+

∫︂
ω1

−aαβστ (∂σφ)ζ
ε
κ,τ bαβδρh(ζ

ε
κ,3φ)

√
ady

=

∫︂
ω1

−aαβστ (∂σζ
ε
κ,τ )bαβ [φδρh(ζ

ε
κ,3φ)]

√
ady

+

∫︂
ω1

Dρh(−aαβστ (∂σφ)ζ
ε
κ,τ bαβ

√
a)Dρh(φζ

ε
κ,3) dy

≤
∫︂
ω1

−aαβστ (∂σζ
ε
κ,τ )bαβ [φδρh(ζ

ε
κ,3φ)]

√
ady

+ C(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)),

where in the last equality we used the integration-by-parts formula for finite difference quotients.
Ninth, and last, we straightforwardly observe that

(24)

∫︂
ω1

−aαβστ (bστζ
ε
κ,3φ)bαβδρh(ζ

ε
κ,3φ)

√
a dy

=

∫︂
ω1

−aαβστ (bστζ
ε
κ,3)bαβ [φδρh(ζ

ε
κ,3φ)]

√
ady

≤ C(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

+

∫︂
ω1

−aαβστ (bστζ
ε
κ,3)bαβ [φδρh(ζ

ε
κ,3φ)]

√
ady.
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In conclusion, combining (16)–(24) together gives (15). Combining (14) and (15) gives that there exists
a constant C > 0 independent of ε, κ and h such that

− ε

∫︂
ω1

aαβστγστ (φζ
ε
κ)γαβ(δρh(φζ

ε
κ))

√
a dy

+
ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy ≤ Cε(1 + ∥Dρh(φζ

ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)).

An application of the integration-by-parts formula for finite difference quotients (cf., e.g., page 293 of [28])
and (11) turn the latter into:

ε

∫︂
ω1

aαβστγστ (Dρh(φζ
ε
κ))γαβ(Dρh(φζ

ε
κ))

√
ady + ε

∫︂
ω1

Dρh(a
αβστ

√
a)Eρh (γστ (φζ

ε
κ)) γαβ(Dρh(φζ

ε
κ)) dy

+
ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

= ε

∫︂
ω1

Dρh

(︁
aαβστγστ (φζ

ε
κ)
√
a
)︁
γαβ(Dρh(φζ

ε
κ)) dy +

ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

= −ε

∫︂
ω1

aαβστγστ (φζ
ε
κ)D−ρh (γαβ(Dρh(φζ

ε
κ)))

√
a dy +

ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

= −ε

∫︂
ω1

aαβστγστ (φζ
ε
κ)γαβ(δρh(φζ

ε
κ))

√
a dy +

ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)),

for some C > 0 independent of ε, κ and h.
We then have that the fact that φ has compact support in ω1, Korn’s inequality (Theorem 2.1), the

definition of d (viz. (10)) give

ε
√
a0

c0ce
∥Dρh(φζ

ε
κ)∥2H1(ω1)×H1(ω1)×L2(ω1)

+
ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

≤ ε

∫︂
ω1

aαβστγστ (Dρh(φζ
ε
κ))γαβ(Dρh(φζ

ε
κ))

√
a dy +

ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))− ε

∫︂
ω1

Dρh(a
αβστ

√
a)Eρh (γστ (φζ

ε
κ)) γαβ(Dρh(φζ

ε
κ)) dy

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

+ ε

(︃
max

α,β,σ,τ∈{1,2}
{∥aαβστ

√
a∥C1(ω)}

)︃(︃
max

α,β∈{1,2}
∥γαβ(Dρh(φζ

ε
κ)∥L2(ω1)

)︃(︃
max

σ,τ∈{1,2}
∥Eρh(γστ (φζ

ε
κ))∥L2(ω1)

)︃
= Cε(1 + ∥Dρh(φζ

ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

+ ε

(︃
max

α,β,σ,τ∈{1,2}
{∥aαβστ

√
a∥C1(ω)}

)︃(︃
max

α,β∈{1,2}
∥γαβ(Dρh(φζ

ε
κ)∥L2(ω1)

)︃(︃
max

σ,τ∈{1,2}
∥γστ (φζεκ)∥L2(ω0)

)︃
= Cε(1 + ∥Dρh(φζ

ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

+ ε

(︃
max

α,β,σ,τ∈{1,2}
{∥aαβστ

√
a∥C1(ω)}

)︃
∥Dρh(φζ

ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)∥ζ

ε
κ∥H1(ω)×H1(ω)×L2(ω)

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)),

where, once again, the constant C > 0 is independent of ε, κ and h. The latter computations summarize in
the following result

(25)

ε
√
a0

c0ce
∥Dρh(φζ

ε
κ)∥2H1(ω1)×H1(ω1)×L2(ω1)

+
ε

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)),

for some constant C > 0 is independent of ε, κ and h.
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Let us now estimate the penalty term. Thanks to the equations of Problem Pε
M (ω), we have that

ε

κ

∫︂
ω

β(ζεκ) ·η dy = −ε

∫︂
ω

aαβστγστ (ζ
ε
κ)γαβ(η)

√
ady +

∫︂
ω

pi,εηi
√
a dy, for all η = (ηi) ∈ VM (ω).

An application of the triangle inequality and the continuity of the components γαβ of the linearized change
of metric tensor gives⃓⃓⃓⃓

ε

κ

∫︂
ω

β(ζεκ) ·η dy
⃓⃓⃓⃓
≤ ε

(︃
max

α,β,σ,τ∈{1,2}
∥aαβστ∥C0(ω)

)︃
∥ζεκ∥VM (ω)∥η∥VM (ω)

√
a1 + ε∥p∥L2(ω)∥η∥L2(ω)

√
a1,

for all η = (ηi) ∈ VM (ω).
Passing to the supremum over all the vector fields η = (ηi) ∈ VM (ω) with ∥η∥VM (ω) = 1 gives

sup
η∈VM (ω)

∥η∥VM (ω)=1

⃓⃓⃓⃓
1

κ

∫︂
ω

β(ζεκ) ·η dy
⃓⃓⃓⃓
≤

√
a1

(︃(︃
max

α,β,σ,τ∈{1,2}
∥aαβστ∥C0(ω)

)︃
∥ζεκ∥VM (ω) + ∥p∥L2(ω)

)︃
,

where, by Theorem 5.1, the right hand side is bounded independently of ε and κ. In conclusion, we have
shown that there exists a constant M1 > 0 independent of ε and κ (and clearly h) such that:

(26)
1

κ
∥β(ζεκ)∥V ′

M (ω) ≤ M1.

The fact that we identified L2(ω) with its dual, the assumption miny∈ω(a
3 · q) > 0, and (26) give

M1 ≥ 1

κ
∥β(ζεκ)∥V ′

M (ω) =
1

κ

{︄ ⃦⃦⃦⃦
⃦⃦−{(θ + ζεκ,ja

j) · q}−
⎛⎝ a1 · q√︂∑︁3

ℓ=1 |aℓ · q|2

⎞⎠⃦⃦⃦⃦⃦⃦
2

H−1(ω)

+

⃦⃦⃦⃦
⃦⃦−{(θ + ζεκ,ja

j) · q}−
⎛⎝ a2 · q√︂∑︁3

ℓ=1 |aℓ · q|2

⎞⎠⃦⃦⃦⃦⃦⃦
2

H−1(ω)

+

⃦⃦⃦⃦
⃦⃦−{(θ + ζεκ,ja

j) · q}−
⎛⎝ a3 · q√︂∑︁3

ℓ=1 |aℓ · q|2

⎞⎠⃦⃦⃦⃦⃦⃦
2

L2(ω)

}︄1/2

≥ 1

κ

⃦⃦⃦⃦
⃦⃦−{(θ + ζεκ,ja

j) · q}−
⎛⎝ a3 · q√︂∑︁3

ℓ=1 |aℓ · q|2

⎞⎠⃦⃦⃦⃦⃦⃦
L2(ω)

≥
(︁
miny∈ω(a

3 · q)
)︁

κ

√︃
3max

{︂
∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3

}︂ (︃∫︂
ω

| − {(θ + ζεκ,ja
j) · q}−|2 dy

)︃1/2

=

(︁
miny∈ω(a

3 · q)
)︁

κ

√︃
3max

{︂
∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3

}︂∥ − {(θ + ζεκ,ja
j) · q}−∥L2(ω),

so that we have the following estimate:

(27) ∥ − {(θ + ζεκ,ja
j) · q}−∥L2(ω) ≤ κ

M1

√︃
3max

{︂
∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3

}︂
(miny∈ω(a3 · q))

.

Let us now evaluate the penalty term in the governing equations of Problem Pε
M,κ(ω). An application of

formulas (11), (12), (13), Lemma 6.2, Lemma 6.3 and (27) gives:

1

κ

∫︂
ω1

β(ζεκ) · (−φδρh(φζ
ε
κ)) dy = − 1

κ

∫︂
ω1

⎡⎣−φ{(θ + ζεκ,ja
j) · q}−

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠⎤⎦ δρh(φζ
ε
κ,i) dy
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=
1

κ

∫︂
ω1

Dρh

⎛⎝−φ{(θ + ζεκ,ja
j) · q}−

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠⎞⎠Dρh(φζ
ε
κ,i) dy

=
1

κ

∫︂
ω1

⎡⎣Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁
Eρh

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠⎤⎦Dρh(φζ
ε
κ,i) dy

+
1

κ

∫︂
ω1

⎡⎣(︁−{(θ + ζεκ,ja
j) · q}−φ

)︁
Dρh

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠⎤⎦Dρh(φζ
ε
κ,i) dy

=
1

κ

∫︂
ω1

Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠[︁Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁]︁

Dρh

(︁
φζεκ,ia

i · q
)︁
dy

− 1

κ

∫︂
ω1

Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠[︁Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁]︁

(φζεκ,i)Dρh

(︁
ai · q

)︁
dy

+
1

κ

∫︂
ω1

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⎛⎝Dρh

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠Dρh(φζ
ε
κ,i)

⎞⎠ dy

=
1

κ

∫︂
ω1

Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠[︁Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁]︁

Dρh

(︁
φ(θ + ζεκ,ia

i) · q
)︁
dy

− 1

κ

∫︂
ω1

Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠[︁Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁]︁

Dρh (φθ · q) dy

+
1

κ

∫︂
ω1

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁
D−ρh

⎛⎝Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠ (φζεκ,i)Dρh

(︁
ai · q

)︁⎞⎠ dy

+
1

κ

∫︂
ω1

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⎛⎝Dρh

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠Dρh(φζ
ε
κ,i)

⎞⎠ dy

=
1

κ

∫︂
ω1

Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠[︁Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁]︁

Dρh

(︁
φ{(θ + ζεκ,ia

i) · q}+
)︁
dy

+
1

κ

∫︂
ω1

Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠ ⃓⃓Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⃓⃓2

dy

+
1

κ

∫︂
ω1

(−φ{(θ + ζεκ,ja
j) · q}−)D−ρh

⎡⎣Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠Dρh(φθ · q)

⎤⎦ dy

+
1

κ

∫︂
ω1

(−φ{(θ + ζεκ,ja
j) · q}−)D−ρh

⎡⎣Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠(︁Dρh(a
i · q)

)︁
(φζεκ,i)

⎤⎦ dy

+
1

κ

∫︂
ω1

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⎛⎝Dρh

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠Dρh(φζ
ε
κ,i)

⎞⎠ dy.
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Applying the latter computations, (27), the fact that θ ∈ C3(ω;E3), Lemma 6.2, Lemma 6.3, the assump-
tion according to which miny∈ω(a

3 · q) > 0 and the fact that supp φ ⊂⊂ ω1 to (25) gives:

ε
√
a0

c0ce
∥Dρh(φζ

ε
κ)∥2H1(ω1)×H1(ω1)×L2(ω1)

+ ε

(︂
3max{∥ãℓ · q∥2C0(ω̃)

; 1 ≤ ℓ ≤ 3}
)︂−1/2

κ

∫︂
ω1

⃓⃓
Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⃓⃓2

dy

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1))

− ε

κ

∫︂
ω1

(−φ{(θ + ζεκ,ja
j) · q}−)D−ρh

⎡⎣Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠Dρh(φθ · q)

⎤⎦ dy

− ε

κ

∫︂
ω1

(−φ{(θ + ζεκ,ja
j) · q}−)D−ρh

⎡⎣Eρh

⎛⎝ 1√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠(︁Dρh(a
i · q)

)︁
(φζεκ,i)

⎤⎦ dy

− ε

κ

∫︂
ω1

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⎛⎝Dρh

⎛⎝ ai · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠Dρh(φζ
ε
κ,i)

⎞⎠ dy

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)),

for some constant C > 0 independent of ε, κ and h. In conclusion, the latter computations can be summarized
as follows:

(28)

ε
√
a0

c0ce
∥Dρh(φζ

ε
κ)∥2H1(ω1)×H1(ω1)×L2(ω1)

+ ε

(︂
3max{∥ãℓ · q∥2C0(ω̃)

; 1 ≤ ℓ ≤ 3}
)︂−1/2

κ

∫︂
ω1

⃓⃓
Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⃓⃓2

dy

≤ Cε(1 + ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1)).

A consequence of (28) is that

(29)

√
a0

c0ce
∥Dρh(φζ

ε
κ)∥2H1(ω1)×H1(ω1)×L2(ω1)

− C∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1) − C ≤ 0.

Regarding ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1) as the variable of the corresponding second-degree polynomial

√
a0

c0ce
x2 − Cx − C, we have that its discriminant is positive. Therefore, we have that the inequality (29) is

satisfied for

(30) 0 ≤ ∥Dρh(φζ
ε
κ)∥H1(ω1)×H1(ω1)×L2(ω1) ≤

C +
√︂
C2 + 4

C
√
a0

c0ce

2
√
a0

c0ce

,

where the upper bound is independent of ε, κ and h. Applying (30) to (28) gives that

(31)
1

κ

⃦⃦
Dρh

(︁
−{(θ + ζεκ,ja

j) · q}−φ
)︁⃦⃦2

L2(ω1)
≤ C,

for some C > 0 independent of ε, κ and h.
An application of Theorem 3 of Section 5.8.2 of [28], together with the fact that φ in a way such that

its support has nonempty interior in ω and that there exists a nonzero measure set U ⊂ supp φ such that
φ ≡ 1 in U shows that the sequence {ζεκ}κ>0 is bounded in H2

loc(ω)×H2
loc(ω)×H1

loc(ω) independently of κ
as well as that {(θ + ζεκ,ja

j) · q}− ∈ H1
loc(ω), and

∥ − {(θ + ζεκ,ja
j) · q}−∥H1(U) ≤ C

√
κ.

Exploiting the fact that (ai · q) ∈ C1(ω) for all 1 ≤ i ≤ 3 and the assumption miny∈ω(a
3 · q) > 0, we have

that an application of the product rule in Sobolev spaces (cf., e.g., Proposition 9.4 of [6]) together with (31)
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implies that each component of the vector field β(φζεκ) is of class H1
loc(ω) and that the following estimate

holds

∥β(ζεκ)∥2H1(U) ≤ Cκ,

for some C > 0 independent of ε, κ and h. This completes the proof. □

As a remark, we observe that the higher regularity of the negative part of the constraint has been
established without resorting by any means to Stampacchia’s theorem [57]. Moreover, we showed that
the negative part approaches zero as κ → 0+ more rapidly than what inferred in the energy estimates in
Theorem 5.1.

A straightforward consequence of (31) is that

ζεκ ⇀ ζε, in H2(ω1)×H2(ω1)×H1(ω1) as κ → 0+,

thus showing an alternative proof of the interior regularity for the solution of Problem Pε
M (ω) without

resorting, as it was instead done in [45], to the “density property” recalled in Theorem 4.3 (although in the
proof of Theorem 6.1 we exploited the sufficient conditions ensuring the validity of the “density property”)
and without assuming additional regularity for the tangential components of pε.

The result established in Theorem 6.1 actually shows that the solution of Problem Pε
M (ω) is the weak

limit of the sequence of solutions of Problem Pε
M,κ(ω) in the space H2(ω1)×H2(ω1)×H1(ω1).

Let us now show that the solution ζεκ of Problem Pε
M,κ(ω) enjoys the higher regularity established in

Theorem 6.1 up to the boundary of the domain ω. In order to establish this result, we will need to make the
assumption that the solution ζεκ of Problem Pε

M,κ(ω) does not violate the constraint under consideration near
the boundary of the integration domain ω. This assumption is physically feasible, since this limit model is
derived as a result of asymptotic analyses of models whose solutions have vanishing trace along the boundary
(cf. [21, 22, 24, 25]).

Theorem 6.2. Assume that the boundary γ of the domain ω is of class C4 and that the immersion θ is of
class C4(ω;E3). Assume that there exists a unit-norm vector q ∈ E3 such that

min
y∈ω

(θ(y) · q) > 0 and min
y∈ω

(a3(y) · q) > 0.

Assume also that the vector field fε = (f i,ε) defining the applied body force density is such that pε =
(pi,ε) ∈ L2(ω)× L2(ω)×H1(ω). Define H(ω) := H2(ω)×H2(ω)×H1(ω).

Finally, assume that the solution ζεκ of Problem Pε
M,κ(ω) is such that there exists a neighbourhood U ⊂ γ

independent of ε and κ such that

(32) β(ζεκ) = 0 for a.a. points in U ∩ ω.

Then, the solution ζεκ = (ζεκ,i) of Problem Pε
M,κ(ω) is of class VM (ω) ∩H(ω).

Proof. Let ζεκ = (ζεκ,i) be the solution of Problem Pε
M,κ(ω). Combining the assumption according to which

β(ζεκ) = 0 for a.a. points in U ∩ ω with the conclusion of Theorem 6.1 according to which β(ζεκ) ∈H1
loc(ω),

we straightforwardly infer that β(ζεκ) ∈H1
0 (ω).

Keeping in mind the boundary value problem (8) we recovered beforehand, we apply the elliptic augmen-
tation of regularity argument near the boundary proposed in [33] after observing that:(︃

p3,ε − ε

κ
√
a
β3(ζ

ε
κ)

)︃
∈ H1(ω).

This completes the proof. □

The boundary value problem recovered in (8) enters, in the same spirit of Theorem 4 on page 334 of [28],
the proof of Theorem 6.2 to show the augmented regularity in the nearness of a flat boundary for the reduced
problem.

As a remark, we observe that an application of Theorem 6.1 and Theorem 6.2 gives

(33) ζεκ ⇀ ζε, in H2(ω)×H2(ω)×H1(ω) as κ → 0+,

where we recall that ζε is the solution of Problem Pε
M (ω).
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Furthermore, the estimate (30) can be extended up to the boundary, so that, exploiting the compactness
of ω gives

(34) 0 ≤ ∥ζεκ∥H2(ω)×H2(ω)×H1(ω) ≤
C +

√︂
C2 + 4

C
√
a0

c0ce

2
√
a0

c0ce

,

for some C > 0 independent of ε, κ and h. Combining the lower semicontinuity of ∥ · ∥H2(ω)×H2(ω)×H1(ω)

with (33) and (34) gives that

(35) ∥ζε∥H2(ω)×H2(ω)×H1(ω) ≤ lim inf
κ→0+

∥ζεκ∥H2(ω)×H2(ω)×H1(ω) ≤
C +

√︂
C2 + 4

C
√
a0

c0ce

2
√
a0

c0ce

,

thus asserting that the solution of Problem Pε
M (ω) is of class H(ω) = H2(ω) ×H2(ω) ×H1(ω) and which

is bounded in H(ω) independently of ε.
The results established in Theorem 6.1 and Theorem 6.2 actually improve Theorem 5.1 as the solution of

Problem Pε
M (ω) is proved to be the weak limit of the sequence of solutions of Problem Pε

M,κ(ω) in the space

H2(ω)×H2(ω)×H1(ω).
Finally, we recall that the augmentation of regularity up to the boundary holds for domains with Lipschitz

continuous boundary provided that ω is convex (viz. [27] and [35]).

7. Approximation of the solution of Problem Pε
M (ω) via the Penalty Method

In this section, we exploit the augmentation of regularity established in Theorem 6.1, Theorem 6.2 as well
as the subsequent remarks to sharpen the convergence (7) obtained as a result of Theorem 5.1.

Theorem 7.1. Let κ > 0 be given. Let ζε ∈ VM (ω) ∩H(ω) be the solution of Problem Pε
M (ω) and let

ζεκ ∈ VM (ω) ∩H(ω) be the solution of Problem Pε
M,κ(ω). Then, there exists a constant C > 0 independent

of ε and κ such that

∥ζε − ζεκ∥VM (ω) ≤ C
√
κ.

Proof. For each η ∈ L2(ω), define

β̃(η) :=

(︄
−{(θ + ηja

j) · q}−
(︄

ai · q∑︁3
ℓ=1 |aℓ · q|2

)︄)︄3

i=1

.

Define P (ζεκ) := ζ
ε
κ − β̃(ζεκ), and observe that P (ζεκ) ∈ UM (ω). Indeed, a direct computation gives(︄

θ +

[︄
ζεκ,i −

−{(θ + ζεκ,ia
i) · q}−(ai · q)∑︁3

ℓ=1 |aℓ · q|2

]︄
ai

)︄
· q = ((θ + ζεκ,ia

i) · q) + {(θ + ζεκ,ia
i) · q}−

= {(θ + ζεκ,ia
i) · q}+ ≥ 0,

thus proving the claim. Let us estimate

∥ζεκ − ζε∥VM (ω) ≤ ∥β̃(ζεκ)∥H1(ω) + ∥ζεκ − β̃(ζεκ)− ζε∥VM (ω) ≤ C
√
κ+ ∥ζεκ − β̃(ζεκ)− ζε∥VM (ω),

where the latter inequality holds thanks to (32). Since P (ζεκ) ∈ UM (ω), an application of the uniform
positive definiteness of the fourth order two-dimensional elasticity tensor (aαβστ ) (Theorem 3.1-1 of [15]),
Korn’s inequality (Theorem 2.1) and (32) gives

ε
√
a0

cec0
∥P (ζεκ)− ζε∥VM (ω) ≤ ε

∫︂
ω

aαβστγστ (P (ζεκ)− ζε)γαβ(P (ζεκ)− ζε)
√
ady

≤ −
∫︂
ω

pε · (P (ζεκ)− ζε)
√
a dy + ε

∫︂
ω

aαβστγστ (P (ζεκ))γαβ(P (ζεκ)− ζε)
√
ady

= −
∫︂
ω

pε · (P (ζεκ)− ζε)
√
a dy − ε

κ

∫︂
ω

β(ζεκ) · (P (ζεκ)− ζε) dy +
∫︂
ω

pε · (P (ζεκ)− ζε)
√
ady

− ε

∫︂
ω

aαβστγστ (β̃(ζ
ε
κ))γαβ(P (ζεκ)− ζε)

√
ady
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=
ε

κ

∫︂
ω

(︁
−{(θ + ζεκ,ja

j) · q}−
)︁⎛⎝ ζεi a

i · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠ dy − ε

κ

∫︂
ω

(︁
−{(θ + ζεκ,ja

j) · q}−
)︁⎛⎝ ζεκ,ia

i · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠ dy

+
ε

κ

∫︂
ω

⎛⎝−{(θ + ζεκ,ja
j) · q}− ai · q√︂∑︁3

ℓ=1 |aℓ · q|2

⎞⎠3

i=1

·

(︄
−{(θ + ζεκ,ja

j) · q}− ai · q∑︁3
ℓ=1 |aℓ · q|2

)︄3

i=1

dy

− ε

∫︂
ω

aαβστγστ (β̃(ζ
ε
κ))γαβ(P (ζεκ)− ζε)

√
ady

≤ − ε

κ

∫︂
ω

(︁
−{(θ + ζεκ,ja

j) · q}−
)︁⎛⎝ θ · q√︂∑︁3

ℓ=1 |aℓ · q|2

⎞⎠ dy +
ε

κ

∫︂
ω

(︁
−{(θ + ζεκ,ja

j) · q}−
)︁⎛⎝ θ · q√︂∑︁3

ℓ=1 |aℓ · q|2

⎞⎠ dy

− ε

κ

∫︂
ω

| − {(θ + ζεκ,ja
j) · q}−|2√︂∑︁3

ℓ=1 |aℓ · q|2
dy +

ε

κ

∫︂
ω

| − {(θ + ζεκ,ja
j) · q}−|2√︂∑︁3

ℓ=1 |aℓ · q|2
dy

− ε

∫︂
ω

aαβστγστ (β̃(ζ
ε
κ))γαβ(P (ζεκ)− ζε)

√
ady

= −ε

∫︂
ω

aαβστγστ (β̃(ζ
ε
κ))γαβ(P (ζεκ)− ζε)

√
ady ≤ Mε∥β̃(ζεκ)∥H1

0 (ω)∥P (ζεκ)− ζε∥VM (ω)
√
a1

≤ MC
√
a1εκ∥P (ζεκ)− ζε∥VM (ω).

In conclusion, we have that

∥P (ζεκ)− ζε∥VM (ω) ≤ MCc0ce

√
a1√
a0

κ,

so that

∥ζεκ − ζε∥VM (ω) ≤ C
√
κ,

for some C > 0 independent of ε and κ. □

We note in passing that the proof of Theorem 7.1 was established by just assuming that miny∈ω(a
3 · q) > 0.

Our assumption appears to be more realistic than the abstract assumption (∗) introduced on page 299 of
Scholz’s seminal paper [56]. Moreover, we notice that the conclusions in Lemma 3 and Theorem 4 of [56]
continue to hold in the vector-valued case.

8. Numerical approximation of the solution of Problem Pε
M,κ(ω) via the Finite Element

Method

In this section we present a suitable Finite Element Method to approximate the solution to Prob-
lem Pε

M (ω). Following [13] and [5] (see also [11], [12], [32] and [41]), we recall some basic terminology
and definitions. In what follows the letter h denotes a quantity approaching zero. For brevity, the same
notation C (with or without subscripts) designates a positive constant independent of ε, κ and h, which can
take different values at different places. We denote by (Th)h>0 a family of triangulations of the polygonal
domain ω made of triangles and we let T denote any element of such a family. Let us first recall, following [5]
and [13], the rigorous definition of finite element in Rn, where n ≥ 1 is an integer. A finite element in Rn

is a triple (T, P,N ) where:
(i) T is a closed subset of Rn with non-empty interior and Lipschitz-continuous boundary,
(ii) P is a finite dimensional space of real-valued functions defined over T ,
(iii) N is is a finite set of linearly independent linear forms Ni, 1 ≤ i ≤ dimP , defined over the space P .
By definition, it is assumed that the set N is P -unisolvent in the following sense: given any real scalars

αi, 1 ≤ i ≤ dimP , there exists a unique function g ∈ P which satisfies

Ni(g) = αi, 1 ≤ i ≤ dimP.

It is henceforth assumed that the degrees of freedom, Ni , lie in the dual space of a function space larger
than P like, for instance, a Sobolev space (see [5]). For brevity we shall conform our terminology to the one
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of [13], calling the sole set T a finite element. Define the diameter of any finite element T as follows:

hT = diam T := max
x,y∈T

|x− y|.

Let us also define

ρT := sup{diam B;B is a ball contained in T}.
A triangulation Th is said to be regular (cf., e.g., [13]) if:
(i) There exists a constant σ > 0, independent of h, such that

for all T ∈ Th,
hT

ρT
≤ σ.

(ii) The quantity h := max{hT > 0;T ∈ Th} approaches zero.
A triangulation Th is said to satisfy an inverse assumption (cf., e.g., [13]) if there exists a constant υ > 0

such that

for all T ∈ Th,
h

hT
≤ υ.

We assume that the finite elements (K,PK ,ΣK), K ∈
⋃︁

h>0 Th, are of class C0 and are affine (cf. Sec-

tion 2.3 of [13]), in the sense that they are affine equivalent to a single reference element (K̂, P̂ , Σ̂).
The forthcoming finite element analysis will be carried out using triangles of type (1) (see Figure 2.2.1

of [13]) to approximate the components of the solution of Problem Pε
M,κ(ω). In this case, the set Vh consists

of all the vertices of the triangulation Th.
Let V1,h, V2,h and V3,h be three finite dimensional spaces such that Vα,h ⊂ H1

0 (ω) and V3,h ⊂ L2(ω).
Define

Vh := V1,h × V2,h × V3,h,

and observe that Vh ⊂ VM (ω).
Let us now define the Vh interpolation operator Πh : C0(ω) → Vh as follows

Πhξ := (Π1,hξ1,Π2,hξ2,Π3,hξ3) for all ξ = (ξi) ∈ C0(ω),

where Πi,h is the standard Vi,h interpolation operator (cf., e.g., [13] and [5]). It thus results that the
interpolation operator Πh satisfies the following properties

(Πj,hξj)(p) = ξj(p) for all integers 1 ≤ j ≤ 3 and all vertices p ∈ Vh,

where νe is outer unit normal vector to the edge e. Recall that

H(ω) = H2(ω)×H2(ω)×H1(ω)

and that it is equipped with the norm:

∥ξ∥H(ω) = ∥ξ1∥H2(ω) + ∥ξ2∥H2(ω) + ∥ξ3∥H1(ω) for all ξ = (ξi) ∈H(ω).

An application of Theorem 3.2.1 of [13] (see also Theorem 4.4.20 of [5]) yields

(36) ∥ξ −Πhξ∥VM (ω) ≤ Ch|ξ|H(ω),

for all ξ ∈H(ω) ∩ VM (ω), where | · |H(ω) denotes the semi-norm associated with the norm ∥ · ∥H(ω).
For each h > 0, denote the discretization of the elliptic operator Aε : VM (ω) → V ′

M (ω) over the triangu-
lation Th by Aε,h. We have that the linear mapping Aε,h : Vh → Vh si defined by

⟨Aε,hη, ξ⟩V ′
M (ω),VM (ω) := ε

∫︂
ω

aαβστγστ (η)γαβ(ξ)
√
ady, for all η, ξ ∈ Vh.

For each h > 0, denote the projection of L2(ω) onto Vh by P h. We have that the mapping P h : L2(ω) →
Vh is defined by

P h(η) :=

dimVh∑︂
ℓ=1

(︃∫︂
ω

η · eℓ dy
)︃
eℓ,

where {eℓ}∞ℓ=1 is a Hilbert basis in L2(ω). We observe that the projection is defined in terms of the Fourier
series of η (viz. Theorem 4.9-1 of [17]).

The discretized version of Problem Pε
M,κ(ω) is formulated as follows.
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Problem Pε,h
M,κ(ω). Find ζε,hκ = (ζε,hκ,i ) ∈ Vh satisfying the following variational equations:

ε

∫︂
ω

aαβστγστ (ζ
ε,h
κ )γαβ(η)

√
a dy +

ε

κ

∫︂
ω

β(ζε,hκ ) ·η dy =

∫︂
ω

pi,εηi
√
ady,

for all η = (ηi) ∈ Vh. ■

It can be shown, thanks to an argument similar to the one exploited for establishing Theorem 5.1, that

Problem Pε,h
M,κ(ω) admits a unique solution ζε,hκ ∈ Vh.

Theorem 8.1. Let ζεκ ∈ VM (ω) ∩ H(ω) be the solution of Problem Pε
M,κ(ω), and let ζε,hκ ∈ Vh be the

solution of Problem Pε,h
M,κ(ω). Then there exists a constant Ĉ > 0 independent of ε, κ and h for which the

following estimate holds

∥ζεκ − ζε,hκ ∥VM (ω) ≤ Ĉh

(︃
1 +

1√
κ

)︃
.

Proof. Thanks to the boundedness of the sequences {ζεκ}κ>0 and {ζε}ε>0 in H(ω) (Theorem 5.1, Theo-
rem 4.2, Theorem 6.1, Theorem 6.2, (35) and (36)), we have that

∥ζεκ −Πhζ
ε
κ∥VM (ω) ≤ Ch|ζεκ|H(ω),

and the semi-norm on the right-hand side is bounded independently of κ and ε (see the remark after
Theorem 6.2).

Thanks to the calculations carried out in Lemma 5.1 for establishing the monotonicity of the operator β,
we have that
√
a0ε

c0ce
∥ζεκ − ζε,hκ ∥2VM (ω) +

εκ−1√︂
3max{∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3}

∫︂
ω

⃓⃓⃓(︁
−{(θ + ζεκ,ja

j) · q}−
)︁
−
(︂
−{(θ + ζε,hκ,ja

j) · q}−
)︂⃓⃓⃓2

dy

≤ ε

∫︂
ω

aαβστγστ (ζ
ε
κ − ζε,hκ )γαβ(ζ

ε
κ − ζε,hκ )

√
a dy

+
ε

κ

∫︂
ω

(︂[︁
−{(θ + ζεκ,ja

j) · q}−
]︁
−
[︂
−{(θ + ζε,hκ,ja

j) · q}−
]︂)︂⎛⎝ (ζεκ,i − ζε,hκ,i )a

i · q√︂∑︁3
ℓ=1 |aℓ · q|2

⎞⎠ dy

≤
√
a0ε

2c0ce
∥ζεκ − ζε,hκ ∥2VM (ω) +

εc0cea1
2
√
a0

∥ζεκ − ζε,hκ ∥2VM (ω)

+
εκ−1

2
√︂
3max{∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3}

∫︂
ω

⃓⃓⃓[︁
−{(θ + ζεκ,ja

j) · q}−
]︁
−
[︂
−{(θ + ζε,hκ,ja

j) · q}−
]︂⃓⃓⃓2

dy

+ ε
3max{∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3}

2κminy∈ω(a3 · q)
∥ζεκ − ζε,hκ ∥2L2(ω).

Combining the latter inequalities with Cea’s lemma (cf., e.g., Theorem 2.4.1 of [13]) and (36) gives
√
a0ε

2c0ce
∥ζεκ − ζε,hκ ∥2VM (ω) +

εκ−1

2
√︂
3max{∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3}

∫︂
ω

⃓⃓⃓(︁
−{(θ + ζεκ,ja

j) · q}−
)︁
−
(︂
−{(θ + ζε,hκ,ja

j) · q}−
)︂⃓⃓⃓2

dy

≤ εc0cea1
2
√
a0

∥ζεκ −Πhζ
ε
κ∥2VM (ω) + ε

3max{∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3}
2κminy∈ω(a3 · q)

∥ζεκ −Πhζ
ε
κ∥2L2(ω).

Letting

C̃
2
:= max

{︄
c0cea1√

a0
,
3max{∥aℓ · q∥2C0(ω); 1 ≤ ℓ ≤ 3}

miny∈ω(a3 · q)

}︄
C,

where C > 0 is the constant appearing in (36) or, equivalently, in Theorem 3.2.1 of [13], we obtain the
estimate

∥ζεκ − ζε,hκ ∥2VM (ω) ≤ C̃
2
h2

(︃
1 +

1

κ

)︃
|ζεκ|2H(ω),

which, together with Lemma 3.2 page 260 of [44], straightforwardly leads to the conclusion. □
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9. Numerical approximation of the solution of Problem Pε
M,κ(ω) via the Brezis-Sibony

iteration scheme

In view of Theorem 8.1, we are in position to define the discrete nonlinear operator N ε
h : Vh → Vh by:

N ε
h(η) = A

ε
hη +

ε

hq
Ph(β(η))− Ph(p

ε
√
a),

where the specialization κ := hq, with 0 < q < 2 ensures the convergence of the sequence of solutions of

Problem Pε,h
M,κ(ω) to the solution of Problem Pε

M,κ(ω) (Theorem 8.1).

We have that if ζε,hκ is the solution of Problem Pε,h
M,κ(ω), then we have that N ε

h(ζ
ε,h
κ ) = 0.

In this section we extend the validity of the scheme proposed by Brezis & Sibony in [7] to approximate

the solution of Problem Pε,h
M,κ(ω) by means of an iterative pattern.

Critical to establishing the sought convergence is the inverse assumption stated in section 8 which, we
notice, was not exploitd to carry out the proof of Theorem 8.1. As a consequence of Theorem 3.2.6 of [13]
we have that the following inverse inequality holds.

Lemma 9.1. Let h > 0 be given and let Th be a regular triangulation of ω made of affine elements of class
C0 (viz. section 8). Then, the following inverse inequality holds(︄ ∑︂

K∈Th

|ηh|2VM (K)

)︄1/2

≤ Cinvh
−1

(︄ ∑︂
K∈Th

|ηh|2L2(K)

)︄1/2

, for all ηh ∈ Vh,

for some Cinv > 0 independent of h.

Proof. An application of Theorem 3.2.6 of [13] gives(︄ ∑︂
K∈Th

|ηh|2H1(K)

)︄1/2

≤ Ch−1

(︄ ∑︂
K∈Th

|ηh|2L2(K)

)︄1/2

,

and the sought estimate derives straightforwardly. □

We are thus in position to establish the main result of this section, namely, the convergence of the Brezis-

Sibony scheme for Problem Pε,h
M,κ(ω).

Theorem 9.1. Let us define, for the sake of simplicity, the vector field ψ̂ as follows

(37) ψ̂ := ζε,hκ ,

and we let ψ0 ∈ Vh be arbitrarily chosen. Let c0 > 0 be the constant of Korn’s inequality (Theorem 2.1),
let ce > 0 the constant associated with the uniform positive-definiteness of the fourth order two-dimensional
elasticity tensor (aαβστ ), let Cinv > 0 be the constant associated with the inverse property (Theorem 9.1), let
M > 0 be the sup norm of the fourth order two-dimensional elasticity tensor (aαβστ ), and let a0 > 0 and
a1 > 0 be, respectively, the minimum and maximum of the function a = det(aαβ) introduced in section 2.

Then, there exists a positive number Ξ > 0 such that the sequence of vector fields {ψk}∞k=0 ⊂ Vh defined
by

(38) ψk+1 := ψk − Ξh4N ε
h(ψk),

satisfies

(39) ∥ψ̂ −ψk+1∥L2(ω) ≤
√︁

1− ρ′∥ψ̂ −ψk∥L2(ω), for all k ≥ 0,

for some ρ′ = ρ′(h,Ξ) ∈ (0, 1), whenever h > 0 is such that

(40) h <

√︄
c0ce

(︁
MC2

inv

√
a1 + 1

)︁
√
a0

,

and Ξ > 0 is such that

(41) Ξ <
2
√
a0

c0ce
(︁
MC2

inv

√
a1 + 1

)︁2 .
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Proof. To begin with, thanks to (38) and the fact that N ε
h(ψ̂) = 0 by (37), we compute

ψ̂ −ψk+1 = ψ̂ −ψk + h4ΞN ε
h(ψk) = ψ̂ −ψk − h4Ξ

(︂
N ε

h(ψ̂)−N ε
h(ψk)

)︂
= ψ̂ −ψk − h4Ξ

[︂(︂
Aε

hψ̂ + εh−qPh(β(ψ̂))− Ph(p
ε
√
a)
)︂
−
(︁
Aε

hψk + εh−qPh(β(ψk))− Ph(p
ε
√
a)
)︁]︂

= ψ̂ −ψk − h4Ξ
[︂
Aε

h(ψ̂ −ψk) + εh−qPh

(︂
β(ψ̂)− β(ψk)

)︂]︂
.

Define the operator Qh : Vh → Vh by

Qh(η) := A
ε
hη + εh−qPh (β(η)) , for all η ∈ Vh.

Thanks to this newly introduced definition we can thus write

(42) ψ̂ −ψk+1 = ψ̂ −ψk − h4Ξ
[︂
Qh(ψ̂)−Qh(ψk)

]︂
, for all k ≥ 0.

In view of (42), the uniform positive-definiteness of the fourth order two-dimensional elasticity tensor
(aαβστ ) (Theorem 3.3-1 of [15]), Korn’s inequality (Theorem 2.1), we compute

(43)

∥ψ̂ −ψk+1∥2L2(ω) = ∥ψ̂ −ψk∥2L2(ω) + h8Ξ2∥Qh(ψ̂)−Qh(ψk)∥2L2(ω)

− 2h4Ξ

∫︂
ω

(ψ̂ −ψk) ·
(︂
Qh(ψ̂)−Qh(ψk)

)︂
dy

= ∥ψ̂ −ψk∥2L2(ω) + h8Ξ2∥Qh(ψ̂)−Qh(ψk)∥2L2(ω) − 2h4Ξ

∫︂
ω

(ψ̂ −ψk) ·Aε
h(ψ̂ −ψk) dy

− 2εh4−qΞ

∫︂
ω

(ψ̂ −ψk) ·
(︂
Ph(β(ψ̂))− Ph(β(ψk))

)︂
dy

≤ ∥ψ̂ −ψk∥2L2(ω) + h8Ξ2∥Qh(ψ̂)−Qh(ψk)∥2L2(ω) − 2h4Ξ
ε
√
a0

c0ce
∥ψ̂ −ψk∥2L2(ω)

− 2εh4−qΞ

∫︂
ω

(ψ̂ −ψk) ·Ph(β(ψ̂)− β(ψk)) dy.

Let {eℓ}∞ℓ=1 be a Hilbert basis in L2(ω). By the theory of Fourier series (cf., e.g., Theorem 4.9-1 of [17]),
we have that the last integral term can be rewritten as follows:

(44)

∫︂
ω

(ψ̂ −ψk) ·
(︂
Ph(β(ψ̂)− β(ψk))

)︂
dy =

∫︂
ω

(ψ̂ −ψk) ·

(︄
dimVh∑︂
ℓ=1

(︃∫︂
ω

(β(ψ̂)− β(ψk)) · eℓ ds
)︃
eℓ

)︄
dy

=

dimVh∑︂
ℓ=1

{︃(︃∫︂
ω

(ψ̂ −ψk) · eℓ dy
)︃(︃∫︂

ω

(β(ψ̂)− β(ψk)) · eℓ ds
)︃}︃

=

∫︂
ω

(β(ψ̂)− β(ψk)) ·

(︄
dimVh∑︂
ℓ=1

(︃∫︂
ω

(ψ̂ −ψk) · eℓ dy
)︃
eℓ

)︄
ds =

∫︂
ω

(β(ψ̂)− β(ψk)) · (ψ̂ −ψk) ds ≥ 0,

where the last equality holds thanks to the fact that ψ̂,ψk ∈ Vh.
For each k ≥ 0, let us now estimate

∥Qh(ψ̂)−Qh(ψk)∥2L2(ω) =
⃦⃦⃦(︂
Aε

hψ̂ + εh−qPh(β(ψ̂))
)︂
−
(︁
Aε

hψk + εh−qPh(β(ψk))
)︁⃦⃦⃦2

L2(ω)

=
⃦⃦⃦
Aε

h(ψ̂ −ψk) + εh−qPh(β(ψ̂)− β(ψk))
⃦⃦⃦2
L2(ω)

= ∥Aε
h(ψ̂ −ψk)∥2L2(ω)

+ εh−2q∥Ph(β(ψ̂)− β(ψk))∥2L2(ω) + 2εh−q

∫︂
ω

(︂
Aε

h(ψ̂ −ψk)
)︂

·
(︂
Ph(β(ψ̂)− β(ψk))

)︂
dy

= ε

∫︂
ω

aαβστγστ (ψ̂ −ψk)γαβ(A
ε
h(ψ̂ −ψk))

√
ady

+ εh−2q∥Ph(β(ψ̂)− β(ψk))∥2L2(ω) + 2εh−q

∫︂
ω

(︂
Aε

h(ψ̂ −ψk)
)︂

·
(︂
Ph(β(ψ̂)− β(ψk))

)︂
dy

≤ ε

∫︂
ω

aαβστγστ (ψ̂ −ψk)γαβ(A
ε
h(ψ̂ −ψk))

√
ady + εh−2q∥Ph(β(ψ̂)− β(ψk))∥2L2(ω)
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+ 2εh−q∥Aε
h(ψ̂ −ψk)∥L2(ω)∥Ph(β(ψ̂)− β(ψk))∥L2(ω)

≤ Mε
√
a1∥ψ̂ −ψk∥VM (ω)∥Aε

h(ψ̂ −ψk)∥VM (ω) + εh−2q∥ψ̂ −ψk∥2L2(ω)

+ 2εh−q∥Aε
h(ψ̂ −ψk)∥L2(ω)∥ψ̂ −ψk∥L2(ω),

where the second last estimate is due to the continuity of the bilinear form, and the last estimate is due to
the fact that the projection Ph and the operator β are non-expansive mappings (cf., e.g., Theorem 4.3-1(c)
of [17] and Lemma 5.1). To sum up, we have shown that

(45)
∥Qh(ψ̂)−Qh(ψk)∥2L2(ω) ≤ Mε

√
a1∥ψ̂ −ψk∥VM (ω)∥Aε

h(ψ̂ −ψk)∥VM (ω) + εh−2q∥ψ̂ −ψk∥2L2(ω)

+ 2εh−q∥Aε
h(ψ̂ −ψk)∥L2(ω)∥ψ̂ −ψk∥L2(ω).

Thanks to the inverse property (Lemma 9.1), we have that

(46) ∥Aε
h(ψ̂ −ψk)∥VM (ω) ≤

Cinv

h
∥Aε

h(ψ̂ −ψk)∥L2(ω).

An application of (46) gives

∥Aε
h(ψ̂ −ψk)∥2L2(ω) = ε

∫︂
ω

aαβστγστ (ψ̂ −ψk)γαβ(A
ε
h(ψ̂ −ψk))

√
a dy

≤ Mε
√
a1∥ψ̂ −ψk∥VM (ω)∥Aε

h(ψ̂ −ψk)∥VM (ω)

≤
MC2

invε
√
a1

h2
∥ψ̂ −ψk∥L2(ω)∥Aε

h(ψ̂ −ψk)∥L2(ω).

The latter in turn implies that

(47) ∥Aε
h(ψ̂ −ψk)∥L2(ω) ≤

MC2
invε

√
a1

h2
∥ψ̂ −ψk∥L2(ω).

Thanks to (46), (47), the inverse property (Lemma 9.1) and the fact that 0 < q < 2, we are able to
estimate the right-hand side of (45) as follows:

Mε
√
a1∥ψ̂ −ψk∥VM (ω)∥Aε

h(ψ̂ −ψk)∥VM (ω) + εh−2q∥ψ̂ −ψk∥2L2(ω) + 2εh−q∥Aε
h(ψ̂ −ψk)∥L2(ω)∥ψ̂ −ψk∥L2(ω)

≤
MC2

invε
√
a1

h2
∥ψ̂ −ψk∥L2(ω)∥Aε

h(ψ̂ −ψk)∥L2(ω) + εh−2q∥ψ̂ −ψk∥2L2(ω) +
2MC2

invε
2√a1

h2+q
∥ψ̂ −ψk∥2L2(ω)

≤
(︃
M2C4

invε
2a1

h4
+ εh−2q +

2MC2
invε

2√a1
h2+q

)︃
∥ψ̂ −ψk∥2L2(ω) ≤ h−4

(︁
M2C4

invε
2a1 + ε+ 2MC2

invε
2√a1

)︁
∥ψ̂ −ψk∥2L2(ω)

≤ h−4ε
(︁
MC2

inv

√
a1 + 1

)︁2 ∥ψ̂ −ψk∥2L2(ω).

Combining the latter inequality with (45) gives at once:

(48) ∥Qh(ψ̂)−Qh(ψk)∥2L2(ω) ≤ h−4ε
(︁
MC2

inv

√
a1 + 1

)︁2 ∥ψ̂ −ψk∥2L2(ω).

Therefore, combining (43), (44) and (48) gives

(49)

∥ψ̂ −ψk+1∥2L2(ω) ≤ ∥ψ̂ −ψk∥2L2(ω) + h8Ξ2∥Qh(ψ̂)−Qh(ψk)∥2L2(ω) − 2h4Ξ
ε
√
a0

c0ce
∥ψ̂ −ψk∥2L2(ω)

≤
(︃
1− 2h4 ε

√
a0

c0ce
Ξ + εh4

(︁
MC2

inv

√
a1 + 1

)︁2
Ξ2

)︃
∥ψ̂ −ψk∥2L2(ω).

Let us now consider the polynomial p(Ξ) := 1−2εh4

√
a0

c0ce
Ξ+ εh4

(︁
MC2

inv

√
a1 + 1

)︁2
Ξ2, and let us observe

that its discriminant is such that

∆

4
= h4

(︃
ε2

a0
c20c

2
e

h4 − ε
(︁
MC2

inv

√
a1 + 1

)︁2)︃
< εh4

(︃
a0
c20c

2
e

h4 −
(︁
MC2

inv

√
a1 + 1

)︁2)︃
and it is negative when

h <

√︄
c0ce

(︁
MC2

inv

√
a1 + 1

)︁
√
a0

.

Therefore, thanks to (40), we have that p(Ξ) > 0 for all Ξ ∈ R, on the one hand.
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On the other hand, we have that p(Ξ) < 1 if and only if

Ξ <
2
√
a0

c0ce
(︁
MC2

inv

√
a1 + 1

)︁2 ,
as per our assumption (41). This means that, under the assumptions (40) and (41), the coefficient on the
right-hand side of (49) is a number between 0 and 1. We thus define the number

ρ′ := 1−
(︃
1− 2h4Ξ

ε
√
a0

c0ce
+ h4εΞ2

(︁
MC2

inv

√
a1 + 1

)︁2)︃ ∈ (0, 1),

and (49) becomes

∥ψ̂ −ψk+1∥L2(ω) ≤
√︁

1− ρ′∥ψ̂ −ψk∥L2(ω),

and the proof is complete. □

Note in passing that iterating (39) gives

∥ψ̂ −ψk+1∥L2(ω) ≤ (1− ρ′)
k+1
2 ∥ψ̂ −ψ0∥L2(ω) → 0,

as k → ∞, being (1− ρ′) ∈ (0, 1).
As a final remark, we observe that the iterative scheme (38) is expected to converge very slowly. This

is due to the presence of the h4 multiplicative term, which dampens the convergence by making the norm
∥ψk+1−ψk∥L2(ω) small for all k ≥ 0. The dampening is due to the fact that the h4 term neglects the effects

of the term κ = h−q, 0 < q < 2, appearing in the penalty term. This means that the iterates will slowly
depart from the initialisation ψ0 which is customarily chosen to be either 0 (viz. [56]) or the solution of the
linearised version of the problem under consideration.

10. Numerical Simulations

In this last section of the paper, we implement numerical simulations aiming to test the convergence of
the algorithms presented in section 7 and in section 8.

Let R > 0 be given. We consider as a domain a circle of radius rA := R
2

ω :=

{︃
y = (yα) ∈ R2;

√︂
y21 + y22 < rA

}︃
.

The middle surface of the membrane shell under consideration is a non-hemispherical spherical cap which
is not in contact with the plane {x3 = 0}. The parametrization we choose is θ ∈ C2(ω;E3) defined by:

(50) θ(y) :=

(︃
y1, y2,

√︂
R2 − y21 − y22 − 0.85

)︃
, for all y = (yα) ∈ ω.

Throughout this section, the values of ε, λ, µ and R are fixed as follows

ε = 0.001,

λ = 0.4,

µ = 0.012,

R = 1.0.

The applied body force density pε = (pi,ε) entering the first two batches of experiments is given by
pε = (0, 0, g(y)), where

g(y) :=

{︄
− 2ε

25 (−5.0y21 − 5.0y22 + 0.295), if |y| < 0.060,

0, otherwise.

We let q = (0, 0, 1). We observe that even though g defined as above is not of class H1(ω), the numerical
results we obtained comply with the theoretical results obtained in Theorem 5.1 and Theorem 8.1.

The expressions of the geometrical parameters (i.e., the covariant and contravariant bases, the first fun-
damental form in covariant and contravariant components, the second fundamental form in covariant and
mixed components, etc.) associated with the middle surface (50) were computed by means of the symbolic
computer provided by MATLAB [26]. The numerical simulations are performed by means of the software
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FEniCS [37] and the visualization is performed by means of the software ParaView [3]. The plots were
created by means of the matplotlib libraries from a Python 3.9.8 installation.

The first batch of numerical experiments is meant to validate the claim of Theorem 5.1. We fix the mesh
size 0 < h << 1 and we let κ = hq in Problem Pε

M,κ(ω). Consider a sequence of exponents {qℓ}∞ℓ=1 such that

qℓ → ∞ as ℓ → ∞ and let ζε,hhqn and ζε,hhqm be the solutions of Problem Pε
M,κ(ω) corresponding to κ = hqn and

κ = hqm respectively. The experiments whose results are shown in Figures 1–5 an Tables 1–3 below show

that ∥ζε,hhqn − ζε,hhqm ∥VM (ω) → 0 as m,n → ∞. The algorithm stops when ∥ζε,hhqn − ζε,hhqm ∥VM (ω) < 2.0× 10−6.
Each component ζεκ,i of Problem Pε

M,κ(ω) is discretized by Lagrange triangles (cf., e.g., [13]) and homo-
geneous Dirichlet boundary conditions are imposed for all the components. The reason why the transverse
component ζεκ,3 was imposed to be subjected to this boundary condition is that Problem Pε

M (ω) is derived
as a result of a rigorous asymptotic analysis starting from Koiter’s model [22, 21]. The fact that the trans-
verse component of the solution of Koiter’s model is of class H2

0 (ω) makes a boundary layer appear (viz.
Section 7.3 of [15]) and justifies our choice for this boundary condition, without which the boundary would
be pushed down to the obstacle when, clearly, this is not the case. The higher regularity of the solution of
Problem Pε

M,κ(ω) (viz. (35)) and the higher regularity of the solution of Koiter’s model for elliptic membranes
subject to an obstacle, which can be derived by adapting the argument of Theorem 6.1 and Theorem 6.2 to
the proof in [4] justify the choice for the boundary condition of the transverse component. At each iteration,

Problem Pε,h
M,κ(ω) is solved by Newton’s method.

Iteration qn qm Error

1 0.5 1.0 0.0009870505482918299
2 1.0 1.5 0.0005716399376703707
3 1.5 2.0 0.0003259806690885746
4 2.0 2.5 0.0001851239908727575
5 2.5 3.0 0.00010447749338622102
6 3.0 3.5 5.8930703167247946e-05
7 3.5 4.0 3.2967335748701205e-05
8 4.0 4.5 1.928599264387323e-05
9 4.5 5.0 1.0777591612766316e-05
10 5.0 5.5 5.9221185866507025e-06
11 5.5 6.0 3.545734351957462e-06
12 6.0 6.5 2.595888616762957e-06
13 6.5 7.0 2.1107364521837126e-06
14 7.0 7.5 1.958867087445544e-06

Table 1. Verification of Theorem 5.1 for h =
0.03123779990753546 fixed and q varying

Figure 1. The residual ∥ζε,h
hqn −

ζε,h
hqm ∥VM (ω) becomes lower than

the tolerance after fourteen itera-
tions.
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Figure 2. Compari-
son between the residual
∥ζε,h

hqn − ζε,h
hqm ∥VM (ω), in blue,

and the function
√

hqn
10 , in green.
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Iteration qn qm Error

1 0.5 1.0 0.0008589020335743345
2 1.0 1.5 0.00024578598359837673
3 1.5 2.0 6.925018104565528e-05
4 2.0 2.5 1.943169742921457e-05
5 2.5 3.0 5.4843823503599594e-06
6 3.0 3.5 1.5246502664061824e-06

Table 2. Verification of Theorem 5.1 for h =
0.007812398571396802 fixed and q varying

Figure 3. The residual ∥ζε,h
hqn −

ζε,h
hqm ∥VM (ω) becomes lower than

the tolerance after six iterations.
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Figure 4. Compari-
son between the residual
∥ζε,h

hqn − ζε,h
hqm ∥VM (ω), in blue,

and the function
√

hqn
10 , in green.

Iteration qn qm Error

1 0.5 1.0 0.0006853937021067343
2 1.0 1.5 0.0001389653237533636
3 1.5 2.0 2.8767966192506784e-05
4 2.0 2.5 6.876855587433019e-06
5 2.5 3.0 1.1588084240614098e-06

Table 3. Verification of Theorem 5.1 for h =
0.0039062328553237536 fixed and q varying

Figure 5. The residual ∥ζε,h
hqn −

ζε,h
hqm ∥VM (ω) becomes lower than

the tolerance after five iterations.
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Figure 6. Compari-
son between the residual
∥ζε,h

hqn − ζε,h
hqm ∥VM (ω), in blue,

and the function
√

hqn
10 , in green.
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From the data patterns in Figures 1–6 we observe that as h decreases (and so κ increases) less iterations
are needed to reach the tolerance triggering the stopping criterion. This is coherent with the conclusion of
Theorem 5.1.

The second batch of numerical experiments is meant to validate the claim of Theorem 8.1. We show that,

for a fixed 0 < q < 2, the error ∥ζε,h1

hq
1

− ζε,h2

hq
2

∥VM (ω) tends to zero as h1, h2 → 0+. The results of these

experiments are reported in Figure 7 below.

(a) For q = 0.4 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00268

(b) For q = 0.5 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00268

(c) For q = 0.6 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00249

(d) For q = 0.7 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00249

(e) For q = 1.0 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00199

(f) For q = 1.3 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00169

Figure 7. Given 0 < q < 2, the error ∥ζε,h1
h
q
1

− ζ
ε,h2
h
q
2

∥VM (ω) converges to zero as h1, h2 → 0+. The value of h for

which the algorithm stops decreases as q increases.

The third batch of numerical experiments validates the genuineness of the model. We observe that the
presented data exhibits the pattern that, for a fixed 0 < h << 1 and a fixed 0 < q < 2, the contact area
increases as the applied body force intensity increases. For the third batch of experiments, the applied body
force density pε = (pi,ε) entering the model is given by pε = (0, 0, gℓ(y)), where ℓ is a nonnegative integer
and

gℓ(y) :=

{︄
− 2ε

25 (−5.0y21 − 5.0y22 + (1 + 0.05ℓ)× 0.295), if |y| < 0.060,

0, otherwise.

We observe that even though gℓ defined as above is not of class H1(ω), the numerical results we obstained
comply with the Physics, in the sense that the contact area increases as the intensity of the applied body
force increases. The results of these experiments are reported in Figure 8 below.
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(a) ℓ = 0 (b) ℓ = 3

(c) ℓ = 6 (d) ℓ = 9

Figure 8. Cross sections of a deformed membrane shell subjected not to cross a given planar obstacle. Given
0 < h << 1 and 0 < q < 2 we observe that as the applied body force magnitude increases the contact area
increases.

Conclusions and Commentary

In this paper we established the convergence of a numerical scheme based on the Finite Element Method
for approximating the solution of a set of variational inequalities modelling the deformation of a linearly
elastic elliptic membrane shell subject to remaining confined in a prescribed half space.

Instead of directly approximating the solution of the variational inequalities, we approximate the solution
of the corresponding penalized variational formulation with respect to the norm of the space where the
solution of this penalized problem is sought. Moreover, we also show that the iterative method proposed
by Brezis and Sibony can be applied to approximate the solution of the discrete penalized problem under
consideration with respect, however, to a weaker norm.

The main novelty introduced in this paper is the overcoming of the condition (∗) introduced by Scholz [56].
Indeed, since the second order differential operator we are considering takes into account all the components
of the solution, which is a vector field with values in the Euclidean space E3, it is not straightforward to
re-write the condition (∗) introduced by Scholz [56] in a vectorial context. We instead assume that the
middle surface of the linearly elastic shell under consideration satisfies a certain geometrical assumption,
which is the same assumption ensuring the validity of the “density property” introduced in [24, 25].

The method we presented in this paper is, however, in general not applicable to fourth order obstacle
problems like the one studied by Léger & Miara [38, 39], and for which a suitable numerical scheme was
studied in [49]. The reason why the methodology presented in this paper is not applicable to fourth order
problems is due to the fact that the solution of fourth order obstacle problems is not in general of classH4 over
its definition domain. This limitation was established by Caffarelli and his associates in the papers [9, 10].

In order to study the convergence of the finite element analysis addressed in the paper [49], an interior
C0 penalty method based on a nonconforming finite element of Morley type had to be exploited. The choice
of the nonconforming finite element of Morley type is motivated by the fact that the highest regularity one
can achieve for the considered problem is H3 over the definition domain. One such regularity is sufficient to
apply a suitable Green’s formula for establishing the convergence of the finite element scheme in [49].

We also observe that the penalty method discussed in this paper is, in the context of a finite element
analysis, more easily applicable than the primal-dual active set method [58]. The latter is particularly
amenable in the context of the optimization of problems the solution of which is a real-valued functions or
a vector field for which the constraint bears on the transverse component [51, 52].
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linéairement élastique de type elliptique. C. R. Math. Acad. Sci. Paris, 356(10):1040–1051, 2018.

[25] P. G. Ciarlet, C. Mardare, and P. Piersanti. An obstacle problem for elliptic membrane shells. Math.
Mech. Solids, 24(5):1503–1529, 2019.

[26] W. Duan, P. Piersanti, X. Shen, and Q. Yang. Numerical corroboration of koiter’s model for all the
main types of linearly elastic shells in the static case. Math. Mech. Solids, To appear.

[27] H. G. Eggleston. Convexity. Cambridge Tracts in Mathematics and Mathematical Physics, No. 47.
Cambridge University Press, New York, 1958.

[28] L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence, Second
edition, 2010.

[29] R. S. Falk. Error estimates for the approximation of a class of variational inequalities. Math. Comp.,
28:963–971, 1974.

[30] J. Frehse. Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. (German).
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