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NUMERICAL APPROXIMATION OF THE SOLUTION OF AN OBSTACLE

PROBLEM MODELLING THE DISPLACEMENT OF ELLIPTIC MEMBRANE SHELLS
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VIA THE PENALTY METHOD

AARON MEIXNER AND PAOLO PIERSANTI

ABSTRACT. In this paper we establish the convergence of a numerical scheme based, on the Finite Element
Method, for a time-independent problem modelling the deformation of a linearly elastic elliptic membrane
shell subjected to remaining confined in a half space. Instead of approximating the original variational
inequalities governing this obstacle problem, we approximate the penalized version of the problem under
consideration. A suitable coupling between the penalty parameter and the mesh size will then lead us to
establish the convergence of the solution of the discrete penalized problem to the solution of the original
variational inequalities.

We also establish the convergence of the Brezis-Sibony scheme for the problem under consideration.
Thanks to this iterative method, we can approximate the solution of the discrete penalized problem without
having to resort to nonlinear optimization tools.

Finally, we present numerical simulations validating our new theoretical results.
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In this paper we establish the convergence of a numerical scheme, based on the Finite Element Method,
for approximating the solution of a set of variational inequalities modelling the displacement of a linearly
elastic elliptic membrane shell subject to remaining confined in a prescribed half space.

Differently from the numerical scheme presented in [49], where the authors studied the convergence of a
numerical scheme based on the Finite Element Method for approximating the solution of a fourth order set
of variational inequalities modelling the displacement of a shallow shell which, we recall, takes the form of a
Kirchhoff-Love vector field, the solution of the problem we are studying in this paper is a vector field and
the variational inequalities we shall be considering involve all the three components of one such displacement
vector field.

Critical to establishing the convergence of the finite element approximation of the solution of the problem
under consideration is the augmentation of regularity of the solution of the governing variational inequalities.
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2 AARON MEIXNER AND PAOLO PIERSANTI

This preparatory result improves the standard penalization argument extensively discussed in [42] and lets
us infer how fast the penalized solution converges to the solution of the original variational inequalities.

A similar numerical analysis has been treated by Scholz in the paper [56] where, however, the author
resorted to the very peculiar assumption (x) on the elliptic operator under consideration. We will replace
this assumption by a more reasonable geometrical assumption, which is exactly the assumption needed to
ensure the “density property” devised by Ciarlet, Mardare & Piersanti in [24, 25]. In addition to this, the
augmentation of regularity argument carried out in [56] is only valid for scalar functions. The fact that the
solution of the variational problem under consideration is a vector field renders this analysis substantially
more complicated than in the scalar case.

Other references about numerical approximations of the solutions of obstacle problems via the Finite Ele-
ment Method are, for instance, the seminal paper by Falk [29], where the author exploited the augmentation
of regularity result established by Brezis and Stampacchia [8]. The scheme there proposed, however, seems
not to be reproducible in the case where the unknown of the variational problem under consideration is a
vector field.

The study of the augmentation of regularity of solutions for boundary value problems modelled via elliptic
equations began between the end of the Fifties and the early Sixties, when Agmon, Douglis & Nirenberg
published the two pioneering papers [1] and [2] about the regularity properties of solutions of elliptic systems
up to the boundary of the integration domain.

The augmentation of regularity for solutions of variational inequalities for scalar functions was first ad-
dressed by Frehse in the early Seventies [30, 31]. In the late Seventies and early Eighties, Caffarelli and his
collaborators published the two papers [9, 10], where they proved that the solution of an obstacle problem
for the biharmonic operator (cf., e.g., Section 6.7 of [17]) could not be too regular. It was recently established
in [47] that the solution of an obstacle problem for linearly elastic shallow shells enjoys higher regularity
properties in the interior of the domain where it is defined. To our best knowledge, the results contained
in [47] constitute the first attempt where the augmented regularity of a vector field solving a set of variational
inequalities is studied.

Augmentation of regularity for linear problems in elasticity theory was treated, for instance, by Geyomonat
in the seminal paper [34], by Alexandrescu-losifescu [4], where the augmentation of regularity for Koiter’s
model is considered, and by Genevey in [33], where the higher regularity of the solution for a variational
problem modelling the displacement of a linearly elastic elliptic membrane shell is established.

To our best knowledge, the only record in the literature treating the augmentation of regularity of the
solution of second order variational inequalities in the case where one such solution is a vector field and
the constraint defining the non-empty, closed, and convex subset of the Sobolev space where the solution
is sought is expressed in terms of all of the three components of the displacement vector field is the recent
paper [45].

This paper is divided into ten sections (including this one). In section 2 we present some background and
notation.

In section 3 we recall the formulation and the properties of a three-dimensional obstacle problem for a
“general” linearly elastic shell. It is worth mentioning that this three-dimensional problem is the starting
point for deriving the variational formulation of the two-dimensional problem, whose solution regularity is
the object of interest of this paper.

In section 4 we scale the original three-dimensional problem over a domain of fixed thickness and we state
the corresponding scaled problem, modelled by a set of variational inequalities. We then recall the result
of the asymptotic analysis conducted in [24, 25], we state the two-dimensional limit problem obtained as a
result of an application of the “density property” and, finally, we de-scale the limit problem by re-introducing
the thickness parameter.

In section 5, we establish the existence and uniqueness of the solution for the de-scaled penalized limit
problem, after recalling the regularity properties of the penalty operator entering the model under consider-
ation.

In section 6, we establish the augmentation of regularity up to the boundary of the de-scaled penalized
problem. As a consequence of this, we are able to prove that the solution of the de-scaled variational
inequalities is actually the weak limit of the sequence of solutions of the de-scaled penalized problems as
the penalty parameter tends to zero with respect to a vector space which is is characterized by a higher
regularity than the one where the search for minimizers of the energy functional was originally performed.
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In section 7 we show that the sequence of solutions of the de-scaled penalized problems converges to the
solution of the de-scaled variational inequalities at a polynomial rate. To obtain this result, the augmentation
of regularity devised in section 6 will be playing a crucial role.

In section 8 we approximate the solution of the de-scaled penalized problem by a Finite Element Method,
the convergence of which shall strongly be hinging on a suitable coupling between the penalty parameter
and the mesh size.

In section 9, we prove that the iterative scheme originally proposed by Brezis and Sibony in the seminal
paper [7] makes possible to approximate the solution of the discrete penalized problem introduced in section 8
without having to resort to nonlinear optimization tools like, for instance, the Primal-Dual Active Set Method
and the Gradient Descent Method.

Finally, in section 10 we present numerical experiments meant to validate our theoretical results.

2. BACKGROUND AND NOTATION

For a complete overview about the classical notions of differential geometry used in this paper, see, e.g. [15]
or [16].

Greek indices, except ¢, take their values in the set {1,2}, while Latin indices, except when they are used
for ordering sequences, take their values in the set {1,2,3}, and, unless differently specified, the summation
convention with respect to repeated indices is used jointly with these two rules. As a model of the three-
dimensional “physical” space R3?, we take a real three-dimensional affine Euclidean space, i.e., a set in which a
point O € R? has been chosen as the origin and with which a real three-dimensional Euclidean space, denoted
E3, is associated. We equip E? with an orthonormal basis consisting of three vectors e’, with components
el = 0.

The definition of R? as an affine Euclidean space means that with any point € R3 is associated an
uniquely determined vector Ox € E3. The origin O € R? and the orthonormal vectors e’ € E? together
constitute a Cartesian frame in R? and the three components x; of the vector Oz over the basis formed
by e’ are called the Cartesian coordinates of x € R3, or the Cartesian components of Oz € E3. Once a
Cartesian frame has been chosen, any point € R3 may be thus identified with the vector Oz = z;e’ € E3.
As a result, a set in R? can be identified with a “physical” body in the Euclidean space E3. The Euclidean
inner product and the vector product of u,v € E3 are respectively denoted by u - v and u A v; the Euclidean
norm of w € E? is denoted by |u|. The notation 67 designates the Kronecker symbol.

Given an open subset 2 of R", where n > 1, we denote the usual Lebesgue and Sobolev spaces by
L3(Q), L. (), H'(Q), H}(Q), HL .(2), and the notation D(2) designates the space of all functions that
are infinitely differentiable over © and have compact supports in 2. We denote || - || the norm in a normed
vector space X. Spaces of vector-valued functions are written in boldface. The Euclidean norm of any point
x € Q is denoted by |z|.

The boundary I' of an open subset 2 in R” is said to be Lipschitz-continuous if the following conditions
are satisfied (cf., e.g., Section 1.18 of [17]): Given an integer s > 1, there exist constants a; > 0 and L > 0,
a finite number of local coordinate systems, with coordinates

P =(#),....,¢" ) ER" L and ¢, = ¢, 1 <r <s,
sets
@p = {¢r eR" L[| <ar}, 1<r<s,
and corresponding functions
éT:LDT—HR, 1<r<s,
such that

I'=J{(¢}.6r); ¢, € @, and ¢, = 0,(¢].)},
r=1
and
10,.(¢.) — 0,.(v))| < L|g. — v, for all ¢, v € @,, and all 1 <71 <s.

We observe that the second last formula takes into account overlapping local charts, while the last set of
inequalities expresses the Lipschitz continuity of the mappings 6,..
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An open set € is said to be locally on the same side of its boundary I' if, in addition, there exists a
constant ap > 0 such that

{(P., 6,); ¢ € @y and 0,.(¢L) < ¢ < O (P.) + 2} € Q,  forall 1 <r<s,
{(@, br); @l € Oy and 0,.(¢L) — ag < ¢ < 0,.(pL)} CR™\Q, forall 1 <r<s.

A domain in R™ is a bounded and connected open subset {2 of R™, whose boundary 0f) is Lipschitz-
continuous, the set Q being locally on a single side of 9.

Let w be a domain in R? with boundary v := dw, and let w; C w. The special notation w; CC w means
that Wy C w and dist(7y,0w;) := min{|z — y|;z € v and y € w1} > 0. Let y = (y) denote a generic point
in w, and let 9, := 0/dy,. A mapping 0 € C!(w;E?) is said to be an immersion if the two vectors

aa(y) = 0a6(y)
are linearly independent at each point y € @. Then the set 8(w) is a surface in E3, equipped with 31,92 as

its curvilinear coordinates. Given any point y € w, the linear combinations of the vectors a,(y) span the
tangent plane to the surface () at the point (y), the unit vector

_ai(y) Nao(y)
%) = a1y A az(y)]

is orthogonal to 6(w) at the point 6(y), the three vectors a;(y) form the covariant basis at the point 6(y),
and the three vectors a? (y) defined by the relations

al(y)- ai(y) = 5!
form the contravariant basis at 6(y); note that the vectors a”(y) also span the tangent plane to 8(@) at
0(y) and that a®(y) = a3(y).
The first fundamental form of the surface 8(w) is then defined by means of its covariant components
Uop i= @y a5 = ag, € CO(W),
or by means of its contravariant components
a®? = a% . a’ =’ c C"@).

Note that the symmetric matrix field (a®?) is then the inverse of the positive-definite matrix field (aqz),
that a® = a*fa, and a, = a,3a”, and that the area element along 6() is given at each point 0(y),y € @,

by /a(y) dy, where

a = det(anp) € C°(w),
and satisfies ag < a(y) < aq, for all y € @ for some ag,a; > 0.
Given an immersion 8 € C?(w;E?), the second fundamental form of the surface (@) is defined by means
of its covariant components
bog = 0nap-as = —ag-0,a3 = bgy € (@),
or by means of its mized components
b2 = a’b,, € C'(@),
and the Christoffel symbols associated with the immersion @ are defined by
[75:=0qap-a’ =T%, € C').
The Gaussian curvature at each point 0(y), y € @, of the surface (@) is defined by
det(bas(y))
K(y) = ———=5 = det bgy .
)= Settanptpy ~ 2 o)

Observe that the denominator in the above relation does not vanish since 0 is assumed to be an immersion.
Note that the Gaussian curvature K (y) at the point 6(y) is also equal to the product of the two principal
curvatures at this point.

Given an immersion 0 € C?(w;E3) and a vector field n = (n;) € C(w; R?), the vector field

7= na’

may be viewed as the displacement field of the surface (@), thus defined by means of its covariant components
1; over the vectors a’ of the contravariant bases along the surface. If the norms |[7;|¢1 () are small enough,
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the mapping (6 + n;a’) € C!(w;E?) is also an immersion, so that the set (6 + n;a®)(@) is again a surface in
[E3, equipped with the same curvilinear coordinates as those of the surface 8(w) and is called the deformed
surface corresponding to the displacement field 7 = 7;a’.

It is thus possible to define the first fundamental form of the deformed surface in terms of its covariant
components by

aap(n) :=(aa + 0aM) - (ap + M)
=0ap + Qg 8ﬂ7~’[ + 8a?~7 -ag + 80/77 . aﬂﬁ.

The linear part with respect to ©7 in the difference (aqg(n) — aap)/2 is called the linearized change of
metric, or strain, tensor associated with the displacement field n;a’, the covariant components of which are
thus defined by

1 _ _ 1 o
'7046("7) = i(aa : 8[‘3"7 + 0aM - aﬂ) = 5(857704 + aanﬁ) - Faﬁna - baﬂ"]S = ’Vﬁa(n)'

In this paper, we shall consider a specific class of surfaces, according to the following definition: Let w be
a domain in R?. Then a surface 8(w) defined by means of an immersion 8 € C?(w; E?) is said to be elliptic
if its Gaussian curvature K is everywhere strictly positive in @, or equivalently, if there exists a constant K
such that:
0< Ko< K(y), forall y € @.

It turns out that, when an elliptic surface is subjected to a displacement field n;a’ whose tangential
covariant components 1, vanish on the entire boundary of the domain w, the following inequality holds.
Note that the components of the displacement fields and linearized change of metric tensors appearing in
the next theorem are no longer assumed to be continuously differentiable functions; they are instead to be
understood in a generalised sense, since they now belong to ad hoc Lebesgue or Sobolev spaces.

Theorem 2.1. Let w be a domain in R? and let an immersion 6 € C3(w; E3) be given such that the surface
0(w) is elliptic. Define the space

Vi (w) := Hi(w) x Hy (w) x L*(w).

Then, there exists a constant ¢y = co(w,0) > 0 such that

1/2
{zﬂm@%ﬂwmmw} <0l S Irasmla,
a,B

(03

1/2

for allm = (n;) € Vi (w). O

The above inequality, which is due to [19] and [23] (see also Theorem 2.7-3 of [15]), constitutes an example
of a Korn’s inequality on a surface, in the sense that it provides an estimate of an appropriate norm of a
displacement field defined on a surface in terms of an appropriate norm of a specific “measure of strain”
(here, the linearized change of metric tensor) corresponding to the displacement field under consideration.

3. THE THREE-DIMENSIONAL OBSTACLE PROBLEM FOR A “GENERAL” LINEARLY ELASTIC SHELL

Let w be a domain in R?, let v := dw, and let 7o be a non-empty relatively open subset of 7. For each

€ > 0, we define the sets

O =w x |—e, e and I'§ := v X |—¢,¢[,
we let z° = (x%) designate a generic point in the set Q¢, and we let 9F := 9/dx¢. Hence we also have 5, = y,
and 05, = 0,.

Given an immersion 6 € C3(w;E3) and € > 0, consider a shell with middle surface 8(w) and with constant
thickness 2e. This means that the reference configuration of the shell is the set ©(Q¢), where the mapping
O : Of = E3 is defined by

O (%) := 0(y) + 25a>(y) at each point z° = (y,z5) € QF.

One can then show (cf., e.g., Theorem 3.1-1 of [15]) that, if £ > 0 is small enough, such a mapping
© € C?(QF; E3) is an immersion, in the sense that the three vectors

g (2%) = 37O (a%)
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are linearly independent at each point 2° € Q¢; these vectors then constitute the covariant basis at the point
©(z°), while the three vectors g7¢(z°) defined by the relations

g™ (@) 97(a%) = o]
constitute the contravariant basis at the same point. It will be implicitly assumed in the sequel that € > 0

is small enough so that ® : Q¢ — E3 is an immersion.
One then defines the metric tensor associated with the immersion ® by means of its covariant components

95 =95 - g5 € C1 (),
or by means of its contravariant components
gij,a = gi,g _gj,a c Cl(@)

Note that the symmetric matrix field (g%/¢) is then the inverse of the positive-definite matrix field (95;)s
that g/ = ¢"cgf and gf = gfjgj’s, and that the volume element in ©(¢) is given at each point ©(z°),
2 € QF, by /g°(2¢) da®, where

g° = det(g;;) € cr(Q9).
One also defines the Christoffel symbols associated with the immersion @ by
Iy = 07g;-gm° =14 € C°(Qe).

Note that T'%$ = % = 0.
Given a vector field v© = (v$) € CH(Q5;R3), the associated vector field
¢ = vight
can be viewed as a displacement field of the reference configuration @ (Q¢) of the shell, thus defined by means

of its covariant components v over the vectors g“° of the contravariant bases in the reference configuration.
If the norms [[vf||¢1 gz are small enough, the mapping (© + v;g"©) is also an immersion, so that one

can also define the metric tensor of the deformed configuration (® + vig»©)(QF) by means of its covariant
components

9;(v°) :==(gi + 0;v%) - (g5 + 0;0%)
=g;; +gi - 0;0° + 0;0° - g5 + 050" - 050°.

The linear part with respect to v in the difference (g;;(v®) — g5;)/2 is then called the linearized strain
tensor associated with the displacement field vg"*, the covariant components of which are thus defined by
ef; (v%) = % (g5 - 050" +0;0° - g5) = %(3]5115 +05v5) =T vy, = €5 (v9).

The functions ef‘lj(vs) are called the linearized strains in curvilinear coordinates associated with the
displacement field v g®*.

We assume throughout this paper that, for each ¢ > 0, the reference configuration ®(Q¢) of the shell is
a natural state (i.e., stress-free) and that the material constituting the shell is homogeneous, isotropic, and
linearly elastic. The behavior of such an elastic material is thus entirely governed by its two Lamé constants
A > 0and p > 0 (for details, see, e.g., Section 3.8 of [14]).

We will also assume that the shell is subjected to applied body forces whose density per unit volume is
defined by means of its covariant components f“¢ € L?(Q¢), and to a homogeneous boundary condition of
place along the portion I'§ of its lateral face (i.e., the displacement vanishes on I'§).

In this paper, we consider a specific obstacle problem for such a shell, in the sense that the shell is also
subjected to a confinement condition, expressing that any admissible deformed configuration remains in a
half-space of the form

H:= {Oz € E*; Oz -q > 0},
where q € E? is a non-zero vector given once and for all. In other words, any admissible displacement field
must satisfy
(©(2%) +vf (2%)g"*(27)) -q 2 0
for all ¢ € Q¢, or possibly only for almost all (a.a. in what follows) 2 € ¢ when the covariant components
v are required to belong to the Sobolev space H!(€F) as in Theorem 3.1 below.
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We will of course assume that the reference configuration satisfies the confinement condition, i.e., that
() Cc H.

It is to be emphasized that the above confinement condition considerably departs from the usual Signorini
condition favoured by most authors, who usually require that only the points of the undeformed and deformed
“lower face” w x {—e} of the reference configuration satisfy the confinement condition (see, e.g., [38], [40],
[43], [55]). Clearly, the confinement condition considered in the present paper is more physically realistic,
since a Signorini condition imposed only on the lower face of the reference configuration does not prevent
— at least “mathematically” — other points of the deformed reference configuration to “cross” the plane
{Ox € E3; Ox-q = 0} and then to end up on the “other side” of this plane. The mathematical models
characterized by the confinement condition introduced beforehand, confinement condition which is also
considered in the seminal paper [38] in a different geometrical framework, do not take any traction forces
into account. Indeed, by Classical Mechanics, there could be no traction forces applied to the portion of the
three-dimensional shell boundary that engages contact with the obstacle. In the same spirit as [48], friction
is not considered in the context of this analysis.

Unlike the classical Signorni condition, the confinement condition here considered is more suitable in the
context of multi-scales multi-bodies problems like, for instance, the study of the motion of the human heart
valves, conducted by Quarteroni and his associates in [53, 54, 59] and the references therein.

Such a confinement condition renders the study of this problem considerably more difficult, however, as
the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead
of on only a single component of this field.

The mathematical modelling of such an obstacle problem for a linearly elastic shell is then clear; since,
apart from the confinement condition, the rest, i.e., the function space and the expression of the quadratic
energy J¢, is classical (viz. [15]). More specifically, let

Aijké,s .— )\gij,egkf,s + I (gik,egjf,s +gil,agjk,5) — Ajik&s _ Akéij,s
denote the contravariant components of the elasticity tensor of the elastic material constituting the shell.
Then the unknown of the problem, which is the vector field u® = (u$) where the functions u : Q¢ — R are

the three covariant components of the unknown “three-dimensional” displacement vector field u$g®® of the
reference configuration of the shell, should minimize the energy J¢ : H'(Q¢) — R defined by
€ (nyE€ 1 ijkl,e e €\ ,€ € € €, ,E €
JE(vF) = §/EAJM’ eqe(v)eg; (v )Vge dx —/st’ viV/ge dz
for each v = (v5) € H(QF) over the set of admissible displacements defined by:
U(Q°) := {v° = (v7) € H'(Q);v° = 0 on T and (O(z°) + v5(2°)g"*(2%)) - q > 0 for a.a. 2° € QO°}.

The solution to this minimization problem exists and is unique, and it can be also characterized as the
solution of a set of appropriate variational inequalities (cf., Theorem 2.1 of [25]).

Theorem 3.1. The quadratic minimization problem: Find a vector field u® € U(QF) such that

T () = ve eilIJlfo) )

has one and only one solution. Besides, the vector field u® is also the unique solution of the variational
problem P(Q°): Find u® € U(Q°) that satisfies the following variational inequalities:

[ AT ) (5, (0%) — () ) Vo da” 2 /Q F2(0F — uE) Vg da®
for all v¢ = (v§) € U(£2F). O

Since O(w) C O(9Q¢), it evidently follows that 8(y)-q > 0 for all y € ©. But in fact, a stronger property
holds (cf., Lemma 2.1 of [25], and see also [46] for a different approach to the asymptotic analysis):

Lemma 3.1. Let w be a domain in R?, let @ € C1(w;E3) be an immersion, let ¢ € E® be a non-zero vector,
and let € > 0. Then the inclusion

O(Q°) CH = {r € E* Ox-q >0}
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implies that

min(6(y) -q) > 0.

4. THE SCALED THREE-DIMENSIONAL PROBLEM FOR A FAMILY OF LINEARLY ELASTIC ELLIPTIC
MEMBRANE SHELLS

In section 3, we considered an obstacle problem for “general” linearly elastic shells. From now on, we
will restrict ourselves to a specific class of shells, according to the following definition that was originally
proposed in [20] (see also [15]).

Consider a linearly elastic shell, subjected to the various assumptions set forth in section 3. Such a shell
is said to be a linearly elastic elliptic membrane shell (from now on simply membrane shell) if the following
two additional assumptions are satisfied: first, y9 = 7, i.e., the homogeneous boundary condition of place is
imposed over the entire lateral face v x |—¢, [ of the shell, and second, its middle surface (@) is elliptic,
according to the definition given in section 2.

In this paper, we consider the obstacle problem (as defined in section 3) for a family of membrane shells, all
sharing the same middle surface and whose thickness 2e > 0 is considered as a “small” parameter approaching
zero. In order to conduct an asymptotic analysis on the three-dimensional model as the thickness € — 0, we
resorted to a (by now standard) methodology first proposed in [18]: To begin with, we “scale” each problem
P(F), e > 0, over a fized domain Q, using appropriate scalings on the unknowns and assumptions on the
data.

More specifically, let

Q:=wx]-1,1],

let * = (z;) denote a generic point in the set Q, and let 9; := 9/dz;. With each point = = (z;) € Q, we
associate the point z° = (xf) defined by

15

Lo

= 2o = Yo and x5 1= exg,

so that 95 = 9, and 95 = e 105. To the unknown u® = (u$) and to the vector fields v = (v$) appearing

in the formulation of the problem P(£2¢) corresponding to a membrane shell, we then associate the scaled
unknown wu(e) = (u;(€)) and the scaled vector fields v = (v;) by letting

wi(e)(x) :=wui(zf) and w;(x) = v (a®)
at each € Q. Finally, we assume that there exist functions f* € L?(Q) independent of € such that the
following assumptions on the data hold
f55(2%) = fi(x) at each x € Q.

Note that the independence on ¢ of the Lamé constants assumed in Section 3 in the formulation of problem
P(€°) implicitly constituted another assumption on the data.

The variational problem P(e; 2) defined in the next theorem will constitute the point of departure of the
asymptotic analysis performed in [25].

Theorem 4.1. For each € > 0, define the set
U(g;Q) = {v=(v;) € H'(Q);v =0o0n v x |-1,1[,
(H(y) +exzas(y) + vl(x)gz(s)(ac)) -q > 0 for a.a. x = (y,z3) € N},
where
g'(e)(x) := g (2°) at each x € Q.
Then the scaled unknown of the variational problem P(2F) is the unique solution of the variational problem
P(e;2): Find u(e) € U(e; Q) that satisfies the following variational inequalities:

/QA“M(E)%M(S;U(E)) (ean(50) — eqi (5 u(e)) Vg(e) da = Afi(vi — ui(e))V/g(e) du,
for allv € U(e;Q), where
g(e)(z) := ¢°(2°) and AWK (g)(z) := AFE2(2°) at each z € Q,
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1 k
eqgle;v) = 5(851)@ + 0qug) — Faﬁ(s)’uk = eg|lal(&; ),
1/1
e3lale;v) = B (Eagva + &ng) —I73(e)vs = eq3(e;v),

e3|a(e;v) 1= 553713,
where
P . T'P:€ =
I (e)(w) := L% (zf) at each z € Q.
O

The problem we are interested in is derived as a result of the rigorous asymptotic analysis conducted in
Theorem 4.1 of [25].

Theorem 4.2. Let w be a domain in R?, let @ € C3(w;E3) be an immersion such that the surface O(w) is
elliptic (cf. section 2). Define the space and sets

Vi (w) == Hi (w) x Hi (w) x L*(w),

Un(w) = {n = (m) € Hy(w) x Hy(w) x L*(); (8(y) + mi(y)a’(y)) -q = 0 for a.a. y € w},

Un(w) = {n=(m) € Hy(w) x Hy(w) x Hy(w); (6(y) +n:(y)a’(y)) -q > 0 for a.a. y € w},

and assume that the immersion 0 is such that

d :=min(6(y) -q) > 0,
YyEWw
is independent of £, and assume that the following “density property” holds:
U pr(w) is dense in Uy (w) with respect to the norm of || - | £11 (w) x 11 () x L2.(w) -

Let there be given a family of membrane shells with the same middle surface 8() and thickness 2 > 0,
and let
u(e) = (ui(e)) € U(g;Q) == {v = (v;) € H(Q); v=0o0n v x |-1,1],
(H(y) + exsas(y) + vz(:v)gl(g)(x)) -q >0 for a.a. x = (y,z3) € Q}
denote for each € > 0 the unique solution of the corresponding problem P(e; Q) introduced in Theorem 4.1.
Then there exist functions u, € H' () independent of the variable x3 and satisfying
Uq =0on vy x]|-1,1],
and there exists a function uz € L?(Q) independent of the variable x3, such that
Uo (€) = g in HY(Q) and uz(e) — uz in L*().

Define the average
1

u= (ﬂl) = f/ udrs € VM(w).

—1
Then

u =,
where ¢ is the unique solution of the two-dimensional variational problem Pyr(w): Find ¢ € Uy (w) that
satisfies the following variational inequalities

/ a7 Y57 (ap(n — ()Vady > /Pi(ni —Gi)Vady  forall m = (m) € Un(w),

w

where

A . Lo
a®Pom = a0 4+ 21 (a7 dPT + a*"aP7) and p' = / ftdxs.
)\ + 2,[14 ( ) 1
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Note that it does not make sense to talk about the trace of (3 along ~, since (3 is a priori only of class
L?(w). The loss of the homogeneous boundary condition for the transverse component of the limit model,
which is a priori only square integrable, is compensated by the appearance of a boundary layer for the
transverse component. By proving that the solution enjoys a higher regularity, we will establish that it is
possible to restore the boundary condition for the transverse component of the solution too, and that the
trace of the transverse component of the solution along the boundary is almost everywhere (in the sense of
the measure of the contour) equal to zero.

Critical to establish the convergence of the family {w(e)}.>0 is the “density property” assumed there,
which asserts that the set U ys(w) is dense in the set Upr(w) with respect to the norm || - | £12 (w) B2 () x L2 () -
The same “density property” is used to provide a justification, via a rigorous asymptotic analysis, of Koiter’s
model for membrane shells subject to an obstacle (cf. [22], [21]). We hereby recall a sufficient geometric
condition ensuring the assumed “density property” (cf. Theorem 5.1 of [25]).

Theorem 4.3. Let 0 € C?(w;E?) be an immersion with the following property: There exists a mon-zero

vector q € E? such that
min(6(y) -q) > 0 and min(as(y) -q) > 0.
YyeEw YyeEw

Define the sets
Un(w) = {n =(m) € Hy(w) x Hy(w) x L*(w); (8(y) +mi(y)a’(y)) -q = 0 for a.a. y € w},
Un(w) N D(w) == {n =(1m:) € D(w) x D(w) x D(w); (8(y) +mi(y)a’(y)) -q > 0 for a.a. y € w}.
Then the set Un(w) N D(w) is dense in the set Unr(w) with respect to the norm || || g1 ) x i1 (wyx12(w)- O

Examples of membrane shells satisfying the “density property” thus include those whose middle surface
is a portion of an ellipsoid that is strictly contained in one of the open half-spaces that contain two of its
main axes, the boundary of the half-space coinciding with the obstacle in this case.

As a final step, we de-scale Problem Pps(w) and we obtain the following variational formulation (cf.
Theorem 4.2 of [25]).

Problem P5;(w). Find ¢ = (¢f) € Un(w) satisfying the following variational inequalities:

[ T (s~ CWady = [ 5 - ) Vad,

for all m = (n;) € Upr(w), where p€ := af_ll fidas. |

By virtue of the Korn inequality recalled in Theorem 2.1, it results that Problem P5,(w) admits a unique
solution. Solving Problem P§,(w) amounts to minimizing the energy functional J¢ : H!(w)x H!(w)x L?(w) —
R, which is defined by

£ € affoT i,€
J*(n) = 5/@ 7 %T(n)vaﬁ(n)\/&dyf/p’ nivady,
along all the test functions n = (n;) € Ups(w).

5. APPROXIMATION OF THE SOLUTION OF PROBLEM P5;(w) BY PENALIZATION

Following [56], we first approximate the solution of Problem P§,(w) by penalty method. By so doing, the
geometrical constraint appearing in the definition of the set Uy (w) the deformation must obey now appears
in the governing model in the form of a monotone term. As a consequence of this, the test vector fields
are no longer sought in a non-empty, closed and convex subset of Vj;(w), but in the whole Vs (w), and the
variational inequalities are replaced by a set of nonlinear equations, where the nonlinearity is monotone.

More precisely, define the operator 3 : L?(w) — L?(w) in the following fashion

3
a'-q

b
3
VEiilatal) )

and we notice that this operator is associated with a penalization proportional to the extent the constraint
is broken. Note that the denominator never vanishes and that this fact is independent of the assumption

B&) = | ~{(0+¢&a’)-a}~ for all & = (&) € L*(w),
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minyez(a® - g) > 0. Following the ideas of [52] (see also [48, 50]), we show that the operator 3 is monotone,
bounded and non-expansive.

Lemma 5.1. Let g € E® be a given unit-norm vector. Assume that mingeg(a®(y) -q) > 0. Then, the
operator 3 : L?(w) — L?*(w) defined by

3

Be) = [-{0+&a) -qp | —2T || | foralle=(&) e L),

3
VXilat-al?) )

is bounded, monotone and Lipschitz continuous with Lipschitz constant L = 1.

Proof. Let &€ and i be arbitrarily given in L?(w). Evaluating

/(5(5)—6'(77))-(5 n)dy=/([ (0 +&a))-a} ] — [0 +njal)-qy]) | E=mata ) o

3
V2= lat-af?

[l q} o +/\ © +na)-a) |

\ Zz 1la’-q Ze— la’ - qf?

+/ (*{(0+§jaﬂ)-q} ) (—{(9+77iai)~q}++{(0+niai)-q}_) dy

Yooy lat-qf?
+/ {0+ mye) a) {(0+&a’)-q}t +{(0+&a")-q}7) d
w Y- 1|a‘ ql?
/| {9+§J )-a}” ‘ ‘_{(9+77jaj)'Q}_| dy+/ (—{(9+fjaj)"J}_) ({(9+rh—ai)'q}7) dy

VXl lat-qP V5 |at-gf?
+/ 9+m )q}) ({(0+¢&a')-q}7) d
@ /8 lat-qf?
/\ {(0+n;07)-q} ) — ({8 +&a7)-q) )]

3
V2= lat-qf?

proves the monotonicity of the operator 3.
For showing the boundedness of the operator 3, we show that it maps bounded sets of L?(w) into bounded
sets of L?(w). Let the set .# C L?(w) be bounded. For each & € .%, we have that

3
D=1 la’ - gl?

dy >0,

. 1/2
|- {(0+&0) @ PR, i o
18(&) 20 = ( / ' - g dy
>0 lat-q? Z

=[|-{0+¢&a’) a} |lr2() <110 allr2(w) + 1€l L2(w),

and the sought boundedness is thus asserted, being 6 € C3(w; E?) and .% bounded in L?(w).
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Finally, to establish the Lipschitz continuity, for all £ and g € L?*(w), we evaluate ||B(€) — B8(n)| L2(w)
We have that

1/2
1 L i
18(&) — B)llL2w) = (/WW{H—{@JFEM)'Q} ] = [—{(0 +n;a’) <Z|a Q|2>} )
1/2
</| (0 +&a7)-q) ] — [0 +ma))-a)7 ]| dy)

< (/ <’<e+sjaﬂ'>~q2<e+njaj>-q’+‘<o+gjaj>.q2

. . . . 1/2
(6+¢07)-a| — (0+&0a) g |<0+njaﬂ>-q|—(0+njaf>~qr dy)
2 2

) 2 1/2
<e+njaﬂ>~q‘> dy)

< H(0 + gjaj) 'q — (0 + Ujaj) : qHLQ(w) < ||£ - nHL2(w)a

and the sought Lipschitz continuity is thus established. Note in passing that the Lipschitz constant is L = 1.
This completes the proof. O

Let & > 0 denote a penalty parameter which is meant to approach zero. The penalized version of
Problem Pj5,(w) is formulated as follows.

Problem P§, (w). Find ¢ = (C; ;) € Vm(w) satisfying the following variational equations:

e [ resady+ S [ B mdy = [ penvady,

for allm = (n;) € Viy(w). ]

The existence and uniqueness of solutions of Problem Pj, , (w) can be established by resorting to the
Minty-Browder theorem (cf., e.g., Theorem 9.14-1 of [17]). For the sake of completeness, we present the
proof of this existence and uniqueness result.

Theorem 5.1. Let g € E? be a given unit-norm vector. Assume that 0 € C3(w;E?) is such that min,ez(0(y) -q) > 0.
Then, for each k > 0 and € > 0, Problem Pifﬁ(w) admits a unique solution. Moreover, the family of
solutions {CZ} x>0 is bounded in Vi (w) independently of k and e, and

¢E—¢5, inVy(w)ask— 0T,
where §° 1is the solution of Problem P, (w).
Proof. Let us define the operator A® : Vs (w) — Vi, (w) by

(A€, 1)y (0 Vi) =€ / a7y (€)ys(m)v/a dy.

w

We observe that the operator A€ is linear, continuous and, thanks to Korn’s inequality (Theorem 2.1),
such that

(1) (A% — AN, & —M)v) () Vi (@) = ECll€ =T, ), for all §,m € Viy(w),
for some ¢ = ¢(w, @) > 0. Define the operator 3 : Vis(w) — V{,(w) as the following composition
Vir(w) = L2(w) & L?(w) = Vi (w).

Thanks to the monotonicity of 3 established in Lemma 5.1, we easily infer that B is monotone Therefore,
as a direct consequence of (1) and Lemma 5.1, we can infer that the operator (A + 3) : Vas(w) — Vi, (w)
is strictly monotone. To see this, observe that for all n, € € Vj;(w) with € # n, we have that

(A* + B)E — (A" + BN, & — MV, (), Var (@)
= (A€~ AN, — M)V}, (). Vi (w)
+ <B(€) - B(TI)’S - ”7>V](/I(w)7VM(w) > €C||€ - T’H%/M(w) > 0.
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Similarly, we can establish the coerciveness of the operator (A€ + ,6’) Indeed, we have that

(A= + B)N, M) v, (), Var () _ (A M) vy @) Vi) (BM), MV, (). Var ()
||,’7||VI\/I(UJ) ||n||V]\4(UJ) HTIHVM (w)

> cel[nllva @)

where the last inequality is obtained by combining (1), Lemma 5.1 with the fact that 0 € Ups(w) or,
equivalently, that 8(0) = 0 in L?(w).

The continuity of the operator A® and the Lipschitz continuity of the operator 3 established in Lemma 5.1
in turn give that the operator (A¢+) is hemicontinuous, and we are in position to apply the Minty-Browder
theorem (cf., e.g., Theorem 9.14-1 of [17]) to establish that there exists a unique solution ¢¢ € Vj;(w) for
Problem P5, ,.(w).

Observe that the fact that min,eg(8(y) - q) > 0 implies:

B(¢r)-¢rdy =
o = | e
/W {(0+¢a7) q)7) ((8+¢,a')-q)dy
=11

> / 3—|—{<0+<:,iai>-q}—|2dy.
© /Xl lat g

Furthermore, if we specialize 7 = ¢; in the variational equations of Problem Pj,  (w), we have that an
application of Korn’s inequality (Theorem 2.1), the monotonicity of 3 (Lemma 5.1), the strict positiveness
and boundedness of a (Theorems 3.1-1 of [15]), the uniform positive definiteness of the fourth order two-
dimensional elasticity tensor (a®?°7) (Theorem 3.3-2 of [15]), and the fact that 0 € Uy, (w) or, equivalently,
that 3(0) = 0 in L?(w) give:

/0

{(6+¢ a7)-q}7) (¢ha'-q)dy

{(6+¢:,a7)-q}7)(0-q)dy

Gl < ¢ / a5 (C e (CE)Vady + & / B(E3) ¢ dy

<Pz @) 1R Ivas @) Var = evarllpllz ) 1€ lTva -

Note that the last equality holds thanks to the definition of p = (p?) and p° = (p**) introduced, respectively,
in Theorem 4.2 and Problem P35, (w).

By virtue of the definition of p»¢ and the assumptions on the data stated at the beginning of section 4,
we get that ||¢F]lv,, () is bounded independently of x and e. Therefore, by the Banach-Eberlein-Smulian
theorem (cf., e.g., Theorem 5.14-4 of [17]), we can extract a subsequence, still denoted {¢%},>0 such that

(3) ¢E—¢5, inVy(w)ask— 0.
Specializing i = ¢; in the variational equations of Problem Pj, , (w) and applying (3) and (2) give that

. ) —1/2
(3max{lla - qll2 31 < j < 3})

K

; 1
=46+ Gyahal I3y < 5 [ BED-Ciay<c.

for some C' > 0 independent of € and k. Therefore, we have that an application of the Banach-Eberlein-
Smulian theorem and (4) give that

(5) B(C) =0, in L*(w) as & — 07,
and that
(6) (B(CE), ¢V, @) Var(w) — 0, sk — 0.

Therefore, the monotonicity of B (which is a direct consequence of Lemma 5.1), and the the properties
established in (3), (5) and (6) give that 3(¢%) = 0, so that ¢ € Uy (w).
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Observe that the monotonicity of 3 (viz. Lemma 5.1), the properties of €2, the continuity of the compo-
nents 7,3 of the linearized change of metric tensor, the definition of p® (Theorem 4.2), the boundedness ¢*
independently of e (Theorem 4.2), and the weak convergence (3) give

CoCe

\/% w
CoCe
Ky/ao

/
n CoCe /
w

165 = ¢ 13w a7y (€5 — ¢ )ap (€S — ¢F)Vady

B(CR) - (¢ —¢)dy

PUE(CR — ¢)Vady

a®P 7750 (¢ )vas (G — €)W ady

|
o
(=)
% R
[} o
T

< S0l /p”( 2o C)Vady

_ Coce / T (s (€5 — ¢)Vady

= PG~ C)Vady
007 (Ve (CG — CWady — 0,

as kK — 0T. Observe that the latter term is bounded independently of € and x. In conclusion, we have been
able to establish the strong convergence:

(7) ¢ — ¢, in Viy(w)ask — 0T,

Specializing (n — () € Vi(w) in the variational equations of Problem P§,  (w), with n € Uy (w), the
monotonicity of 3, the convergence (5) and the convergence (7) immediately give that the limit ¢° satisfies
the variational inequalities in Problem P5,(w). This completes the proof. |

We observe that in the proof of Theorem 5.1, we established that ||(; — ¢%||v,, () converges to zero as
% — 0T. For the purpose of constructing a convergent numerical scheme for approximating the solution of
the variational inequalities in Problem (P5,(w)), we need to establish how fast the latter norm converges to
zero as K — 0T. In order to establish this property, we need to prove a preparatory result concerning the
augmentation of regularity of th solution of Problem P%ﬁm(w) by resorting to the finite difference quotients
approach originally proposed by Agmon, Douglis & Nirenberg [1, 2], as well as the approach proposed by
Frehse [30] for variational inequalities, that was later on generalized in [45, 47].

Recalling that ¢ denotes the solution of Problem Pj,  (w), in the same spirit as Theorem 4.5-1(b) of [15]
we define

ngte = e, (G5),
and we also define
nePe|, 1= 9pno® £ T2 nf7e 4 T8 nome,

If the solution j; of Problem P§, , (w) is smooth enough, then it is immediate to see that it satisfies the
following boundary value problem:

9 .
—np”els + wvalalCs)  =pt e,
19 .
(®) “hasnT+ 2 B(G) =P i,
o =0, on .
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6. AUGMENTATION OF THE REGULARITY OF THE SOLUTION OF PROBLEM Pj;  (w)
Let wy C w and wy C w be such that
(9) w1 CC wy CC w.
Let ¢1 € D(w) be such that
supp ¢1 CCwi and 0 < 7 < 1.
By the definition of the symbol CC in (9), we obtain that the quantity

(10) d=d(¢1) := %min{dist(&ul, Owy), dist(dwo, v), dist (supp ¢1,0w;)}

is strictly greater than zero.

Denote by D, the first order (forward) finite difference quotient of either a function or a vector field in
the canonical direction e, of R? and with increment size 0 < h < d sufficiently small. We can regard the
first order (forward) finite difference quotient of a function as a linear operator defined as follows:

Do o L*(w) = L?(wp).

The first order finite difference quotient of a function ¢ in the canonical direction e, of R? and with
increment size 0 < h < d is defined by:

for all (or, possibly, a.a.) y € w such that (y + he,) € w.
The first order finite difference quotient of a vector field & = (&;) in the canonical direction e, of R? and
with increment size 0 < h < d is defined by

Doné(y) = &y + he}:) - ﬁ(y)7

or, equivalently,
Dphg(y) = (Dphgi(y))'

Similarly, we can show that the first order (forward) finite difference quotient of a vector field is a linear
operator from L?(w) to L?(wy).

We define the second order finite difference quotient of a function ¢ in the canonical direction e, of R?
and with increment size 0 < h < d by

Sunély) = St Rep) = 2) +y — hey)

for all (or, possibly, a.a.) y € w such that (y £ he,) € w.
The second order finite difference quotient of a vector field £ = (&;) in the canonical direction e, of R?
and with increment size 0 < h < d is defined by

Soné(y) = (fi@ hep) = 260) + 6~ m)) |

for all (or, possibly, a.a.) y € w such that (y & he,) € w.
Define, following page 293 of [28], the mapping D_,, : L?*(w) — L*(wo) by

Dyl o= SO =8 he)

as well as the mapping D_,, : L*(w) — L?*(wq) by

D_h€(y) = £(y) — 5}(5/ - hep).

Note in passing that the second order finite difference quotient of a function £ can be expressed in terms
of the first order finite difference quotient via the following identity:

6ph§ = D—pthh€~
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Similarly, the second order finite difference quotient of a vector field € = (&;) can be expressed in terms
of the first order finite difference quotient via the following identity:

5ph£ = D—pth}zg-

Let us define the translation operator E in the canonical direction e, of R? and with increment size
0 < h < d for a smooth enough function v : wg — R by

Epno(y) := v(y + hey),
E_pnv(y) :=v(y — he,).
Moreover, the following identities can be easily checked out (cf. [30] and [47]):

(1) Dypn(0w) = (Ey) (Dynv) + 0D,
(12) D_pn(vw) = (E_ppw)(D—pnv) + vD_ppw,
(13) dpn(vw) = wé,pv + (Dppw)(Dppv) + (D—ppw)(D—ppv) + voppw.

We observe that the following properties hold for finite difference quotients.
The proof of the first lemma can be found in Lemma 4 of [45] and for this reason it is omitted.

Lemma 6.1. Let {vg }r>1 be a sequence in C*(w) that converges to a certain element v € H'(w) with respect
to the norm || - || g1(wy. Then, we have that for all 0 < h < d and all p € {1,2},

Dypv € H'(wp) with O0a(Dppv) = Dpp(0qv) and  Dypvr — Dppv in H'(wp) as k — oo.
O

As a direct consequence of Lemma 6.1, if {vy, },>1 is a sequence in C' (@) that converges to a certain element
v € H'(w) with respect to the norm || - || g1 (,), then, we have that for all 0 < h < d and all p € {1,2},
dpnv € H'(w;) with O0a(0pnv) = 0pn(0qv) and  dppvr — Oppv in H'(w;) as k — oo.
We also state the following elementary lemma, which exploits the compactness of the support of the test

function ¢; defined beforehand.

Lemma 6.2. Let f € D(w) with supp f CC wy. Let 0 < h < d, where d > 0 has been defined in (10) and
let p € {1,2} be given. Then,

[ D=1 1D 2 0.

Proof. By the definition of D, and the definition of the positive and negative part of a function, we have

that /prh(_f_)DPh(er) 0y _/w (f‘(y + he},:) - f‘(y)) <f+(y + he},:) - f+(y)> dy.

If y € w is such that f(y+ he,) > 0 and f(y) > 0 then the integrand (i.e., the argument of the integral
under consideration) of interest is equal to zero.

If y € w is such that f(y+ he,) < 0 and f(y) < O then the integrand (i.e., the argument of the integral
under consideration) of interest is equal to zero.

If y € w is such that f(y + he,) > 0 and f(y) < 0 then the integrand (i.e., the argument of the integral
under consideration) of interest becomes equal to

(-l (Ushenty

h h

If y € w is such that f(y + he,) < 0 and f(y) > 0 then the integrand (i.e., the argument of the integral
under consideration) of interest becomes equal to

- <{f(y +hhep)}> ({f(z)ﬁ) >0

In conclusion, the integrand is never negative and the integral under examination is always greater or
equal than zero, as it was to be proved. |
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Let us recall that 8(y) - g > 0 for all y € @ (Lemma 3.1), where the unit-norm vector g is given. In view of
this, we wonder whether the immersion 8 € C3(w; E?) admits a prolongation 8 € C3(&; E?), for some domain
w CC @, prolongation which is associated with the natural covariant and contravariant bases {ai, as,as}
and {a',a*,a} and which enjoys the following properties:

(a) The mapping 6 € C3(©; E?) is an immersion and é!w =0;
(b) The surface (@) is elliptic;

(c) If ming,ez(60(y) - q) > 0 then mmyEw(O(y) -q) > 0;

(d) If minyez(a®(y) - q) > 0 then mlnyew(a3(y) -q) > 0.

We will say that @ satisfies the “prolongation property” if there exists an extension @ satisfying the
properties (a)—(d) above.

Thanks to the Whitney’s extension theorem (cf., e.g., Theorem 2.3.6 of [36]), we are able to give a
constructive proof of the fact that the “prolongation property” is satisfied by all the elliptic surfaces satisfying
the sufficient condition ensuring the “density property”, thus giving an affirmative answer to the question
posed above.

Lemma 6.3. Let w C R? be a domain and let 9 € C*(w;E?) be an immersion associated with an elliptic
surface and satisfying the sufficient condition ensuring the “density property”. Then O satisfies the “prolon-
gation property”.

Proof. Let {e;}3_; be an orthonormal covariant basis for the Euclidean space E3. Let {e}?_; denote the
corresponding contravariant basis of the Euclidean space E3, and recall that e; = e’ for all 1 S 1 < 3. For
each y € W, we can write 9(y) = ¥;(y)e’. Therefore, each of the components 9;, 1 < i < 3, of the immersion
9 is clearly of class C*(w) since ¥J; = ¥ -ej, for all 1 < j < 3 and the right hand side is of class C*().

By the Whitney extension theorem (cf., e.g., Theorem 2.3.6 of [36]), for each 1 <7 < 3, there exists a
function 9; € C?(R?) that extends 9;. We can thus define a mapping 9 := 9;e’ € C2(&; E?) that extends 9,
for all © DD w.

Observe that the covariant basis {a;};_; associated with 9 satisfies

det(ans(y)) >0, forallyew,

since ¥ is assumed to be an immersion. Let {a@;}3_; denote the covariant basis of the extension 9. By the
continuity of the determinant and the properties of the prolongation 9 with obvious meaning of the notation
we have that, up to shrinking @:

det(aap(y)) >0, forallyem,

and property (a) is thus established.
Recall that the Gaussian curvature x of the immersion 9 is defined at each y € @ by

K(y) = det(b](y)),

namely, in terms of the invariants of the matrix associated with the mixed components of the second funda-
mental form of 9. Let K denote the Gaussian curvature associated with the extension 9 and observe that
K € C*(R), and that K (y) = K(y), for all y € @.

By the continuity of the mixed components of the second fundamental form (recall that 9 was assumed
to be of class C(@;E?)) we can thus find a set @ DD w such that K > 0 in @. This proves property (b).

Properties (c) and (d) also a direct consequence of the continuity of 9.

Up to shrinking @, we can affirm without loss of generality that the restriction of the mapping 9 to the set
@ is the sought prolongation of the given immersion 1, that satisfies properties (a)—(d) of the “prolongation
property”. This completes the proof. O

We are ready to state the main result of this section, that constitutes the first new result in this paper.
Note in passing, upon proving the following theorem, we will be able to obtain the conclusion of Theorem 6
in [45] under weaker assumptions on the given term p®. The main novelty of the approach presented in this
paper is that the proof of the augmented regularity of the solution of Problem P§,(w) will be established
without resorting to the “density property” exploited for establishing Theorem 4.3.
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Theorem 6.1. Let wy and wy be as in (9). Assume that there ezists a unit norm vector q € E* such that

min(0(y) -q) > 0 and min(as(y) -q) > 0.
YyeEw YyEwW

Assume also that the vector field £¢ = (f*¢) defining the applied body force density is of class L?(2F) x
L2(Q°) x H'(QF). Then, the solution {5 = (C5 ;) of Problem P5; () is of class Vas(w) N HE (w) x H, (w) X
Hlloc(w)'

Proof. Fix ¢ € D(w) such that supp ¢ CC wy and 0 < ¢ < 1. Let ¢¢ € Vis(w) be the unique solution
of Problem Pfuﬁ(w). Observe that the transverse component (y 5 can be extended outside of w by zero,

preserving the L?(R?) regularity. For what concerns the tangential components ¢ ,, Proposition 9.18 of [6]
states that the only admissible prolongation outside of w is the prolongation by zero. Therefore, it makes
sense to consider the vector field

(—pdon(pCr)) € H' (R?) x H'(R?) x L*(R?).
Since the support of this vector field is compactly contained in wy, we obtain that, actually,

(=don(#€5)) € Vi (w),

and we can specialize n = —d,n(¢(;;) in the variational equations of Problem Pj,  (w).
Let us now evaluate

[ o esmtecc Vady = - [ (e ) Emleci))vady

w1
- / (7™ ) Gpn(pCE ))Vady + / Do (00%%) (Do (02 5))Wady
wi w
= elleller@) 1PNl 2 (w) x 22 @) x 51 (@) VAL Do (08 H1 () x HY (1) x L2 (w1 ) »

where the second holds thanks to the integration by parts formula for finite difference quotients (cf. page 293
of [28]), and the inequality holds thanks to the Holder inequality.
Thanks to these inequalities, we have that

" e | o G et pG)Vady + - [ BGE)- (bl

<ell@ller@ Pl 22wy x L2 (@) x 51 () VAL I Dph (€2 Lt (1) x Y (1) x L2 (1) -

The first step in our analysis consists in showing that:

—e / Py (€ ) Vap (pn (9C))Va dy
(15) o
< —8/ a7 e (C)Vap (20n (9C2))Vady + Ce(1 4 (| Dpn (960 || 1 (wr) x H (wr)x L2(wr) )
w1
for some C' > 0 independent of €, k and h.
Recalling the definition of the change of metric tensor components 7,5 (cf. section 2) and recalling that
0 € C3(w; E3), we have that the integral

- / a®P7 Ty (062) Vs (on (9€5))Vady

can be estimated by estimating the following main nine addends of it. In the evaluation of the following nine
terms, the indices are assumed to be fixed, i.e., the summation rule with respect to repeated indices is not
enforced in (16)—(24) below.

Overall, the strategy we resort to is the following: we take into accounts the addends of the linearised
change of metric tensor and we apply Green’s formula and the integration-by-parts formula for finite difference
quotients for suitably arranging the position of the compactly supported function ¢.
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First, thanks to an application of Green’s formula (cf., e.g., Theorem 6.6-7 of [17]), we estimate:
/wl —a®77 9, (G )05 (Fpm (€5 o)) Vady
B / —a T ((Or )5 + 905G 103 (0un(9CE )V ady
= /w 1 9p(a* (Do) V) Ipn (965 o) dy

(16) + / —aaBgTao-C,iﬂ_[Q@a@(éph((pgia))]\/&dy
w1
< ONGE el arr ) x bt @) x 22 1) 1P (965 o) L1 (w01

+ _aa50780<:7785(¢5ph(‘p<2,a))\/ady

e~

a®P7 (95 G ) (059)0on (G5 0 )Va dy

+
§/ a®P77 (95 CE )90, (9C5 )V dy + Cl Do (0CE o) | 1 (wr)-

Second, we estimate:

/w*aaﬁm(*FZTSDCZC)@/;(5ph(¢<g7a))\/ady
:/w a®PoTTY 2 005 (00m(9CC.0))Vady

_/w1 a“ﬁdfl“gr(;,v(35@)(§ph((p<27a))\/ady

</ TG0 0n (G5 )V + CD (G )

where the equality holds as a consequence of Green’s formula.
Third, we estimate:

/w —a®P7T (—bap (s )05 (8o (9C5 o)) Vady
:/w a®P7T (bag (s 3)08(90pn (9CE o))V ady

_/w aaﬂwbaﬁﬁ,s(aﬁsﬁ)%h(@Ci,a)\/5dy

= / a7 (bag (2 )08 (0, (9G53, 0))Vady + ClDpn (26 o)l 1 r)-

Fourth, we estimate:
/w =077 05 (0CE T ap0pn (G5, Va dy
= /u1 —aaBaT(8[,90)(2’71“5[3%“%;7})\/&dy

+/w =0T p(05 G )T ap0pn (G5, Va dy

< ClIDpn (G o)l wr) +/ —a®?T (85 )Ta gldon (0G5 )V ady.

wi
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Fifth, we straightforwardly observe that:

| =G TG eI ady
w1
(20 < OO+ 1D it a1 o x1)

+ / AT (LTS ¢ T g lpbn(CE o)V dy.
wy

Sixth, we straightforwardly observe that:

/ T (b 5 )T o (0 )V ly
w1
(21) S CA+NDpn (i)l (1) x HY (1) x L2 (w1))

+ / _aaﬁUTbUTCfQ,SFZﬂ[Soéﬂh(@gf;,v)]ﬁdy'
w1

Seventh, we straightforwardly observe that:

[ =TT 6 Db G Wady
w1
(22) S O+ 1Dpn(PCo) | 1 (1) x H (wr) x L2 (w1))

+ / —a®00T (=T, €5 Vbagldpn (G 50)]V/a dy.

Eighth, we estimate:

/ —a®"77 95 (9C: - )bapdon(C 3)Vady
:/ —a®?T (855 1 )bapldpn (G 50 Vady

+ / T (D 0)CE b bon (CE 5 0)v/a dy

(23) _ / a7 (D, CE Ve PO (CE50) ]V ady

+ / Don (— a7 (8, 0)CE by /@) Dy (C5.) dy
< / a0 (0,C5 Ybas [ 0Opn (C2 50| V/ady
+ C(1+ | Dpr (€l (o) x B (wr) x L2 (1))

where in the last equality we used the integration-by-parts formula for finite difference quotients.
Ninth, and last, we straightforwardly observe that

/ _aaﬁw(bar Z,3<P)baﬁ5ph(€'i,3@)\/ady
w1

- / a7 (B CE )b 90 (CE ) V@ dy
w1
< C(L 4 IDpn (€ 1 () x HY (1) x L2 (1))

+ / T (b ()b [0, (CE )]V .

(24)
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In conclusion, combining (16)—(24) together gives (15). Combining (14) and (15) gives that there exists
a constant C' > 0 independent of ¢, k and h such that

o / a®P7T 0 (9CE) Vs (6on (9¢2))Vady

€ € £ €
+ | BG) - (=90 (w6)) dy < Ce(l+ [1Dpn (@Gl () x i (wn) x L2 (o) )-

An application of the integration-by-parts formula for finite difference quotients (cf., e.g., page 293 of [28])
and (11) turn the latter into:

£ / a®P Ty (D i (9€2))Vas (Do (965))Vady + € / Don (a7 /@) Ep (Yor (9€5)) Yap(Don(9€5)) dy
+= [ B (—pdm(eCD) dy

—= [ Do (0 07 (0CVA) 1 D€ dy + = [ BIGE) - (~ob(062)) dy

w1 w1

= —6/ a7y (9C2) D ph (Yap(Dpn(0€5))) Vady + % B(¢r) - (—wdpn(¢€r)) dy

=== [ a0 (0O (pCWVady + = [ BGE) - (~obn(06) dy

< Ce(1+ | Dpn (€ ) It (wr) x H (1) x L2 (w1) )

for some C' > 0 independent of €, x and h.
We then have that the fact that ¢ has compact support in wp, Korn’s inequality (Theorem 2.1), the
definition of d (viz. (10)) give

E+/ £
L Do (G2 sy + = | B (—iBon(62)) dy

COCB w1

< e/ aaﬁ‘”vm(Dph(eoC,i))%B(Dph(wCi))\/5dy+% B(Cr) - (—pdpn(9Cr)) dy

w1

< Ce(14 | Dpn (D) 1 () x i (@) x 12 (w1) — € | Dpn(@*P7"V@) Epp (Yor (065)) Yas (Do (965)) dy
< Ce(L+ [|Dpn (€ H1 (wr) x HY (1) x L2 (w1))
te ( max {||a“ﬂ”ﬁ||c1(w>}) ( i Waﬁ(Dph(SDCZ)llm(wl)) ( i ||Eph<vm<socz>>||mw)

a,B,0,7€{1,2} a,B8€{1,2} o,7€{1,2}
= Ce(1+ | Dpn (@€t (wr) x H (1) x L2 (1))
afor - D € e

te (Q,Bﬁgf{l,z}{lla \/5||c1<w>}> (a,éﬁ?ﬁ} as( ph@CR)IILz(m) <0,52?§2} II%T(wCH)mwO))
= 05(1 + ||Dph(@Ci)||H1(w1)><H1(w1)><L2(w1))

+e (a 5 x| 2}{||Claﬁ‘”\/5||cl(w)}> IDor (PCN Et (w1) x 1 (1) x L2 (w00) |G It (w0 B2 (0) x 22 ()
< Ce(1+ 1Dpn(0€o) | 11 (1) x HY (w1) x L2(w1) )5
where, once again, the constant C' > 0 is independent of ¢, x and h. The latter computations summarize in
the following result

E\/% 1112 € € €
(25) CoCe ”Dﬂh((pcn)”Hl(wl)XHl(wl)XLz(wl) + E /wl ﬁ(Cn) ' (_Soéph(SOCk&)) dy

< Ce(1+ [|Dpn (S 1 (wr) x H (1) % L2 (w1) )5

for some constant C' > 0 is independent of ¢, k¥ and h.
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Let us now estimate the penalty term. Thanks to the equations of Problem P, (w), we have that

= [ 86 ndy == [ e Grasmvady + [ pnady. oralln = () € Vis(w).

An application of the triangle inequality and the continuity of the components 7,z of the linearized change
of metric tensor gives

= [ 8 nay

for all n = (n;) € Vi (w).
Passing to the supremum over all the vector fields n = (1;) € Viy(w) with ||[9[lv,, ) = 1 gives

1 apoT
s | [ gty man] < var (w10 oo ) 16 v + ol ).

"IGVJVI(UJ) aa61077-€{112}
Imllvy, (w)=1

<e max_[|a®®7[[co) ) IS Ivar @) IM1var ) Var + €llpll L2y Inll 22 w)var,
a,B,0,7€{1,2}

where, by Theorem 5.1, the right hand side is bounded independently of € and . In conclusion, we have
shown that there exists a constant M7 > 0 independent of € and x (and clearly h) such that:

1
(26) EH/@(CE)HVAI(W) < M.

The fact that we identified L?(w) with its dual, the assumption minyez(a®-q) > 0, and (26) give
2

1 1 ; _ a'-q
M, > ;Hﬁ(Ci)HVA'{(w) = H{ —{(0+ ¢ ;a7) g} \/3:£2
Zl:l ‘a q| H-1(w)
2
€ J — a’z'q
-t e e ===
Zé:l ‘CL 'Q|2 H-1(w)
5 2 1/2
€ J - a-q
+||—{(0 + ¢ ;a”) -q} =
/ Cql2
Z[:l‘a’ ql L2 (w)
1 e _ a®-q
> 0+ e ) | e
ZZ:I ‘a‘e'ql2 L2(w)
min,c(a® - q) < _ 12
> (min ez ) ( | —{(0+¢:07) g} |2dy>

ey fBmax {latalloy1 < 0 <3}

. 3 j
_ (minyez(a® - q)) = {0+ ,a7) a} |lr2(w)

oy (ot alf i1 < 0 <3

so that we have the following estimate:

Ml\/?’max{”ae 'quO(w);l <t < 3}

(minyeg(a®-q))

(27) I={(0+¢ 0) @} ey < s

Let us now evaluate the penalty term in the governing equations of Problem Pifjm(w). An application of
formulas (11), (12), (13), Lemma 6.2, Lemma 6.3 and (27) gives:

1 1 a’-q

L[ B¢ (—pim(pcs)) dy = —— / {0+ ¢ ,a0) g | —2L
K w1 R w1 /Zzzl‘aé,qP

dph (‘sz,i) dy
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1 . _ a'-q
) —@ 0 —+ € . Ty . P —— D "2 c i d
K Ll Epi ( {( Cﬁ,ja ) q} ( 3:1 |ae . q|2)) ph( Cmt) Y

/]
_|_7
K w

1/ . ( 1
e
3
e V2= e qf?

1/ . ( 1
g
e Vi lat - gf?

(—{(0+ ¢k 0)) a)”

1
+ —
K

e

1

1/ 5 ( 1
- o | ———
K 3
“ Vi lat-qf?
1/ 5 ( 1
2 | —
3
" V2= lat-q?

/ ((0+¢,a7) q)

/w (0+¢,a7)-q}

l/ B 1
K w1 ph 3 4 2
> i1 la’-q|

1 1
o
“ > i—1 lat-ql?

Dpn (—{(8 + ¢ ja7) -

Don (@Ci,z‘) dy

) B ()
\/ > =1 lat-qf?

(—{(6+¢,a%)-a) @) Don (”)] Do (0C2.) dy

3
V2= et gl

) [Dph (_{(9 + C;i,jaj) : Q}_@ﬂ D,p (@Ci,iai : Q) dy
) [Don ({6 + ¢ ;07) -a}¢)] (#C5.))Dpn (@' - q) dy
90) (Dph (;ﬂtl) Dph(@cz,i)) dy
\V > lat - qf?
) [Don (—{(0 + ¢25a7) - @}~ 9)] Dpn (2(0 + ¢ 4a') - q) dy

) [Don (—{(0+ ¢ ;07)-q}~©)] Do (06 - q) dy

©) D_pn (Eph (31) (¢Cs.i) Don (a“q)) dy
\/ 2= lat - qf?
‘P) (Dph (;12(1) Dph(SOC;i,i)) dy
\V ZZ:l lat - q|?

) [Don (—{(0 +C5 507) @}~ ¢) | Don (#{(0 +¢51a") - @} ™) dy

)|Dph( {0+, a7)-q)¢)| dy

/ —o{(0+ ¢ a7) - a} ) D_pn | Epn (31) Dph(‘Pa"I):| dy
w1 i /ZE:I |a€.q|2

/ —o{(0+¢;;a7) gy )D_pn | Epn (51) (Don(a’ - q)) (sOCZ,i)] d
w1 L \/ 25:1 |a€~q|2

/w {0+ a7) a} o

) (Dph (;7(1) Dph(‘PC;i,i)) dy.
\/ 2= lat - qf?

23
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Applying the latter computations, (27), the fact that 8 € C3(w; E?), Lemma 6.2, Lemma 6.3, the assump-
tion according to which minyez(a® - g) > 0 and the fact that supp ¢ CC w; to (25) gives:
e/

ao
coc Do (LCMF1 (wor) x 1 (w0 % 12 (o0

) 9 —1/2
(3max{lla’ - |2, 51 < ¢ < 3})
K
< Ce(1+ [|Dpn (€ H1 (w1) x HE (1) x L2 (w1 )

+e€

[ 10 (1604 a0 ar)

5/ e i _ [ 1

S ol 0+ G0 I | Bt | ————— | D0 a)| dy

e V2 i la - gf?

5 | ol G @)D | B @17,1 (Dol @) (62,0 | dy
=1 ’

3

2 e+ a a0 e) (D

ai~q

3
V2= la-gf?

S Ce(L+ |1Dpn (@Sl 1 (wi) x HY (1) x L2 (w1) )

Don(pCri) | dy

for some constant C' > 0 independent of €, k and h. In conclusion, the latter computations can be summarized
as follows:

€4/ Q0

Do (LEF1 (1) % 1 () % L2 (1)

CoCe
, ~1/2
(28) (3max{lla’ - |2, 51 <€ < 3}) | ,
te - /W [Don (—{(0 + ¢ ja7) @} )| dy
< Ce(1+ ||Dph(€0CZ)||H1(w1)xH1(w1)xL2(w1))-
A consequence of (28) is that
ao
(29) ng:HDph((pC/i)H%{l(wl)le(wl)xLQ(wl) = ClIDpn (PG| 1 (wr) x HY (1) x L2 () — C < 0.

Regarding || Dpn (0€5) | 51 (w1)x H (w1)x L2 (wy) @S the variable of the corresponding second-degree polynomial
Va0 42 O —

CoCe
satisfied for

C, we have that its discriminant is positive. Therefore, we have that the inequality (29) is

. C+,/C2 44520
(30) 0 < [1Dpn (PGl 1 (1) x HY (1) x L2 (w1) < NG —,

CoCe

where the upper bound is independent of ¢, k and h. Applying (30) to (28) gives that

1 )
(31) Do (40 + G ja7)-a} )|, < C

for some C' > 0 independent of €, x and h.

An application of Theorem 3 of Section 5.8.2 of [28], together with the fact that ¢ in a way such that
its support has nonempty interior in w and that there exists a nonzero measure set U C supp ¢ such that
¢ =1 in U shows that the sequence {{S}.~¢ is bounded in HZ (w) x HZ (w) x HL (w) independently of
as well as that {(8 + ¢ ;a7)-q}~ € H}, (), and

| ={(0+¢a7) - a} |l < CVe.

Exploiting the fact that (a’-gq) € C*(w) for all 1 < i < 3 and the assumption min,cz(a®-q) > 0, we have
that an application of the product rule in Sobolev spaces (cf., e.g., Proposition 9.4 of [6]) together with (31)
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implies that each component of the vector field B(p(S) is of class H (w) and that the following estimate
holds

1B ) < OF,
for some C > 0 independent of €, k and h. This completes the proof. O

As a remark, we observe that the higher regularity of the negative part of the constraint has been
established without resorting by any means to Stampacchia’s theorem [57]. Moreover, we showed that
the negative part approaches zero as x — 07 more rapidly than what inferred in the energy estimates in
Theorem 5.1.

A straightforward consequence of (31) is that

¢ —¢°, in H?(wy) x H*(wy) x H'(wy) as k — 07,

thus showing an alternative proof of the interior regularity for the solution of Problem P§,(w) without
resorting, as it was instead done in [45], to the “density property” recalled in Theorem 4.3 (although in the
proof of Theorem 6.1 we exploited the sufficient conditions ensuring the validity of the “density property”)
and without assuming additional regularity for the tangential components of p®.

The result established in Theorem 6.1 actually shows that the solution of Problem P§,(w) is the weak
limit of the sequence of solutions of Problem P5,, (w) in the space H?(w;) x H?(w1) x H*(w1).

Let us now show that the solution ¢Z of Problem Pis..(w) enjoys the higher regularity established in
Theorem 6.1 up to the boundary of the domain w. In order to establish this result, we will need to make the
assumption that the solution ¢ of Problem P, ,.(w) does not violate the constraint under consideration near
the boundary of the integration domain w. This assumption is physically feasible, since this limit model is
derived as a result of asymptotic analyses of models whose solutions have vanishing trace along the boundary
(cf. [21, 22, 24, 25]).

Theorem 6.2. Assume that the boundary v of the domain w is of class C* and that the immersion 0 is of
class C*(w; E®). Assume that there exists a unit-norm vector q € E3 such that

min(f(y) -q) >0 and min(as(y) -q) > 0.
yeEw yew

Assume also that the vector field f& = (f*°) defining the applied body force density is such that p* =
(p*€) € L?(w) x L?*(w) x HY(w). Define H(w) := H?*(w) x H?(w) x H'(w).

Finally, assume that the solution C: of Problem Pijﬁ(w) s such that there exists a neighbourhood U C
independent of € and k such that

(32) B(¢) = 0 for a.a. points in U Nw.
Then, the solution ¢ = (C5 ;) of Problem P§;  (w) is of class Viy(w) N H (w).

K,1

Proof. Let ¢ = (Cf ;) be the solution of Problem Pj;  (w). Combining the assumption according to which
B(¢Z) = 0 for a.a. points in U Nw with the conclusion of Theorem 6.1 according to which B(¢Z) € H}. . (w),
we straightforwardly infer that 8(¢S) € H} (w).

Keeping in mind the boundary value problem (8) we recovered beforehand, we apply the elliptic augmen-
tation of regularity argument near the boundary proposed in [33] after observing that:

3, € € 1
e eH .
(p H\/&BS(CN)) (OJ)
This completes the proof. O

The boundary value problem recovered in (8) enters, in the same spirit of Theorem 4 on page 334 of [28],
the proof of Theorem 6.2 to show the augmented regularity in the nearness of a flat boundary for the reduced
problem.

As a remark, we observe that an application of Theorem 6.1 and Theorem 6.2 gives

(33) ¢E—¢°,  in H*(w) x H*(w) x HY(w) as kK — 0T,

where we recall that ¢¢ is the solution of Problem P§,(w).
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Furthermore, the estimate (30) can be extended up to the boundary, so that, exploiting the compactness

of w gives
C+,/C2 +45Y%
(34) 0 < [I€5 1 a2 (w) x B2 () x B (w0) < NG ;
CoCe
for some C' > 0 independent of ¢, £ and h. Combining the lower semicontinuity of || - || g2 (w)x 72 (w)x H' (w)

with (33) and (34) gives that

C+,/C2 + 4550

(35) 1€ 72 ) x pr2 oy x a2 ) < T nF1CE ] 2wy x a2 )t () < NG ,

coCe
thus asserting that the solution of Problem P5,(w) is of class H(w) = H?(w) x H?(w) x H'(w) and which
is bounded in H(w) independently of €.

The results established in Theorem 6.1 and Theorem 6.2 actually improve Theorem 5.1 as the solution of
Problem Pj,(w) is proved to be the weak limit of the sequence of solutions of Problem Pj,  (w) in the space
H?(w) x H?(w) x H*(w).

Finally, we recall that the augmentation of regularity up to the boundary holds for domains with Lipschitz
continuous boundary provided that w is convex (viz. [27] and [35]).

7. APPROXIMATION OF THE SOLUTION OF PROBLEM Pj§,(w) VIA THE PENALTY METHOD

In this section, we exploit the augmentation of regularity established in Theorem 6.1, Theorem 6.2 as well
as the subsequent remarks to sharpen the convergence (7) obtained as a result of Theorem 5.1.

Theorem 7.1. Let k > 0 be given. Let (¢ € Vy(w) N H(w) be the solution of Problem P5,;(w) and let
¢ € Vu(w) N H(w) be the solution of Problem Pj . (w). Then, there exists a constant C' > 0 independent
of € and k such that

1€° = Cillvasw) < CVE.
Proof. For each n € L?(w), define

) 3
30— (10 maiy.ar [a e :
Bn) < {8 +mn;a%)-a} (Zi’zllaf-ﬂ))i—l

Define P(¢S) := ¢ — B(¢Z), and observe that P(¢S) € Ups(w). Indeed, a direct computation gives
—{(0+ ¢ ,a")-q} (a'-
0 {( Cg, )eq}Q( )
2 =1 la’-q|
={(6+Ca) )" 20,
thus proving the claim. Let us estimate
165 = ¢ llvase) S IBED a1 @) + 1165 = BED) = ¢ llvartw) < CVE + 1162 = BED) = ¢ llvas (e

where the latter inequality holds thanks to (32). Since P((Z) € Ujps(w), an application of the uniform
positive definiteness of the fourth order two-dimensional elasticity tensor (a®?°7) (Theorem 3.1-1 of [15]),
Korn’s inequality (Theorem 2.1) and (32) gives

%@IIP(CE) = Cllvir) < s/ a®P7 Ty (P(C2) = € )yap(P(CE) — ¢)Vady

ai) g =((0+¢.a')-q)+{(0+(a')a}~

<- / pF(P(¢5) — ¢)vady + / a7, (P(CE))ras (P(CE) — CF)Wady
:f/pg-(P( X~ fdyfi/ﬁ dy+/p — ¢ )Vady
. / B9 (BCE)as(P(CE) — ¢V ady
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—= [ oG a) | = 4y S [ (0 e g

3
V2=t lat-qf? \/Ze | Iaé
3

045 a9 0 | g i) g
—{(0+¢a7) a) <{< +¢2,a7) - q) Z“H )

/N3 0. o2
Ze:1|a q ie1

/ a7 (BCE)Tas(P(CE) — ¢)v/ady

+
o
—

—€
€ e _ 0-q € 0.  6-q
<=2 [ (HO+ G ar) | = | dy+ = [ ({0+ ¢ 0 ar) dy
“ \/ > -1 lat-q]? “ \/ Z£:1|a€~q\2
— {04+ .a) gl |? — {0+ .al) gl |?
s/| {6+ a7)-q) | dy+€/' (04,00 F
K
“ VZ? i la-qf? © X lal gl
— e [ T B s (PLGE) € ady
= 6/ 7T (BC)Vap (P(C5) — ¢ )Vady < Me| B¢y ) IP(C5) — ¢ llvis (@) v/ar
< MC\/ig"{HP(CE) C€||VM(W)
In conclusion, we have that
ey _ e vai
P - <M e — My
H (Cn) C ||VM(w) =~ CCOC \/&OKJ
so that
ch _CEHVM(W) < C\/Ev
for some C > 0 independent of € and x. O

We note in passing that the proof of Theorem 7.1 was established by just assuming that Ininyew(a?’ -q) > 0.
Our assumption appears to be more realistic than the abstract assumption (x) introduced on page 299 of
Scholz’s seminal paper [56]. Moreover, we notice that the conclusions in Lemma 3 and Theorem 4 of [56]
continue to hold in the vector-valued case.

8. NUMERICAL APPROXIMATION OF THE SOLUTION OF PROBLEM Pj,, (w) VIA THE FINITE ELEMENT
METHOD '

In this section we present a suitable Finite Element Method to approximate the solution to Prob-
lem P5,(w). Following [13] and [5] (see also [11], [12], [32] and [41]), we recall some basic terminology
and definitions. In what follows the letter h denotes a quantity approaching zero. For brevity, the same
notation C' (with or without subscripts) designates a positive constant independent of €, x and h, which can
take different values at different places. We denote by (7;,)ns0 a family of triangulations of the polygonal
domain @ made of triangles and we let T' denote any element of such a family. Let us first recall, following [5]
and [13], the rigorous definition of finite element in R™, where n > 1 is an integer. A finite element in R™
is a triple (T, P, N') where:

(i) T is a closed subset of R™ with non-empty interior and Lipschitz-continuous boundary,

(ii) P is a finite dimensional space of real-valued functions defined over T,

(iii) NV is is a finite set of linearly independent linear forms N;, 1 < i < dim P, defined over the space P.

By definition, it is assumed that the set A/ is P-unisolvent in the following sense: given any real scalars
«;, 1 < i < dim P, there exists a unique function g € P which satisfies

Ni(g) =a;, 1<i<dimP.

It is henceforth assumed that the degrees of freedom, N; , lie in the dual space of a function space larger
than P like, for instance, a Sobolev space (see [5]). For brevity we shall conform our terminology to the one
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of [13], calling the sole set T a finite element. Define the diameter of any finite element T as follows:
hp = diam T := max |z — y|.
r,yeT

Let us also define
pr := sup{diam B; B is a ball contained in T'}.

A triangulation Ty, is said to be regular (cf., e.g., [13]) if:
(i) There exists a constant o > 0, independent of h, such that

forall T € Ty, hlga.
PT

(ii) The quantity h := max{hpy > 0;T € T}, } approaches zero.
A triangulation Ty, is said to satisfy an inverse assumption (cf., e.g., [13]) if there exists a constant v > 0
such that

for all T € Ty, igv.
hr

We assume that the finite elements (K, Px,Yk), K € ;- Ta, are of class C° and are affine (cf. Sec-

tion 2.3 of [13]), in the sense that they are affine equivalent to a single reference element (K, P, ).

The forthcoming finite element analysis will be carried out using triangles of type (1) (see Figure 2.2.1
of [13]) to approximate the components of the solution of Problem P3, , (w). In this case, the set V, consists
of all the vertices of the triangulation 7p. '

Let Vi, Vo, and Vi, be three finite dimensional spaces such that Vi, C H}(w) and Van C L?(w).
Define

Vi = Vin x Vo x Vap,
and observe that Vj, C Vi (w).
Let us now define the V}, interpolation operator IIj, : C° (@) = V, as follows

€ = (Mupé Ton, Mans)  forall € = (&) € C°@),
where II, , is the standard V; interpolation operator (cf., e.g., [13] and [5]). It thus results that the
interpolation operator Il satisfies the following properties
(IL; n&;)(p) = &;(p)  for all integers 1 < j < 3 and all vertices p € Vy,
where v, is outer unit normal vector to the edge e. Recall that
H(w) = H*(w) x H*(w) x H'(w)
and that it is equipped with the norm:

1€l () = 6]l w) + 1€ellr2@) + [l w)  for all § = (&) € H(w).
An application of Theorem 3.2.1 of [13] (see also Theorem 4.4.20 of [5]) yields

(36) 1€ = Th€llvas () < ChlélE (),

for all £ € H(w) N Vas(w), where |- | g () denotes the semi-norm associated with the norm || - || gr(.)-
For each h > 0, denote the discretization of the elliptic operator A : Vs (w) — V{,;(w) over the triangu-
lation 7;, by A%". We have that the linear mapping A*" : V}, — V}, si defined by

(A", &) vi () Vs (w) = 5/ a®P Ty (M)Vap(€)vady, for all m, & € Vi,

w

For each h > 0, denote the projection of L?(w) onto V3, by P". We have that the mapping P" : L?(w) —

V), is defined by
dim V,
P'(n):= Y (/needy) e,
=1 w
where {e/}$2, is a Hilbert basis in L?(w). We observe that the projection is defined in terms of the Fourier
series of ) (viz. Theorem 4.9-1 of [17]).
The discretized version of Problem Pj;  (w) is formulated as follows.
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Problem P;}Ihﬁ(w). Find &M = (Cz?) € Vi, satisfying the following variational equations:

- .
5/ a7 e (€M) Vap (M) Vady + ;/ B(¢") -mdy = / p e mivady,
for allm = (n;) € Vj,. "

It can be shown, thanks to an argument similar to the one exploited for establishing Theorem 5.1, that
Problem Piﬂ (w) admits a unique solution (5" € Vj,.

Theorem 8.1. Let (i € Viy(w) N H(w) be the solution of Problem Pj; . (w), and let ¢ eV, be the

solution of Problem PM h(w). Then there exists a constant C > 0 independent of €, k and h for which the

following estimate holds
A 1
162 - G2 v < (14 2.
Proof. Thanks to the boundedness of the sequences {¢},>0 and {(¢}.>0 in H(w) (Theorem 5.1, Theo-
rem 4.2, Theorem 6.1, Theorem 6.2, (35) and (36)), we have that

I1€s — InCillvas () < ChICE H(w)s

and the semi-norm on the right-hand side is bounded independently of k and e (see the remark after
Theorem 6.2).

Thanks to the calculations carried out in Lemma 5.1 for establishing the monotonicity of the operator 3,
we have that

VIS o e,
CoCe u \/3max{uaf-q||%0@; 1<0<3}

<e / 0T (CE — €My (€5 — €M) Vady

5 (—{(0+¢ a7)-a)7) —< {0+ "al). q}_)‘z

€ ; _ ; _ (Cri— E7h)ai'q

+= [ ([-{O+¢a) a}7] - |—{(0+(hal) g} L dy
K /w ( J [ J D /2321 |af~q|2

\Fg € e,h ECQCeal £ e,h

< 3G G o+ S I~ G
er! . _ eh i 72

+ —{(0+C, .a)- — {0+ a’)- d

2\/3maX{Ha€.q”%O(w);1 </< 3} /w’[ {( G G ) Q} ] { {( q G ) Q} ” Y

3 max{[|a’ qnco(w)yl <(<3}

€ e,h |2
2"£m1ny€w(a3 q) ||C Cn ||L2(w)'

Combining the latter inequalities with Cea’s lemma (cf., e.g., Theorem 2.4.1 of [13]) and (36) gives

Vage B2 er1 . 3 ch N2
16r = S 1V ) + ({0 +¢07)-a}7) — ({0 + ¢ a")-a} dy
2¢0Ce Vi (w) 2\/3max{||ae 'QH(%O(*); 1<0< 3} w ‘ »J ( 2J )‘

3max{||a’ qHCO(w)vl < (<3}

£CoCel
— 2y/ag

Letting

”C;&; - HhC;iH%/M(w) +e

I Y 2
2Kmlny6w(a3 q) ||C th{”Lz(w)

_9 CoCoy 3max{||a’- q||(230(w); 1<¢<3}
C' :=max , - 3 )

Vao miny ez (ad - q)
where C' > 0 is the constant appearing in (36) or, equivalently, in Theorem 3.2.1 of [13], we obtain the
estimate

~2 1
£ _ <C h2 1 - €12
||Cm = < + KZ) |CN‘H(L«J)7

which, together with Lemma 3.2 page 260 of [44], straightforwardly leads to the conclusion. ]
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9. NUMERICAL APPROXIMATION OF THE SOLUTION OF PROBLEM Pj;, (w) VIA THE BREZIS-SIBONY
ITERATION SCHEME

In view of Theorem 8.1, we are in position to define the discrete nonlinear operator IN; : V}, — V}, by:
€
Niy(n) = Ajn + = Pu(B(n)) — Pu(p™Va),

where the specialization  := h?, with 0 < ¢ < 2 ensures the convergence of the sequence of solutions of
Problem P;Ihﬁ (w) to the solution of Problem Pj,  (w) (Theorem 8.1).

We have that if (5" is the solution of Problem P;}{Lﬂ(w), then we have that N5 (¢5") = 0.

In this section we extend the validity of the scheme proposed by Brezis & Sibony in [7] to approximate
the solution of Problem P;;[flﬁ (w) by means of an iterative pattern.

Critical to establishing the sought convergence is the inverse assumption stated in section 8 which, we

notice, was not exploitd to carry out the proof of Theorem 8.1. As a consequence of Theorem 3.2.6 of [13]
we have that the following inverse inequality holds.

Lemma 9.1. Let h > 0 be given and let Ty, be a regqular triangulation of w made of affine elements of class
CO (viz. section 8). Then, the following inverse inequality holds

1/2 1/2
< > |77h|%/M(K)> < Cinvh ™ ( > |77h|2L2(K)> , forall gy, € Vi,

KeTy KeT,

for some Ciy > 0 independent of h.

Proof. An application of Theorem 3.2.6 of [13] gives

1/2 1/2
< > |77h|12LII(K)> <Ch! ( > |77h|%2(K)> ;

KeTh KeTy,

and the sought estimate derives straightforwardly. O

We are thus in position to establish the main result of this section, namely, the convergence of the Brezis-

Sibony scheme for Problem P;}/’"K (w).

Theorem 9.1. Let us define, for the sake of simplicity, the vector field ’lZJ as follows
(37) "2) = C?h’

and we let ¢y € V3, be arbitrarily chosen. Let cog > 0 be the constant of Korn’s inequality (Theorem 2.1),
let c. > 0 the constant associated with the uniform positive-definiteness of the fourth order two-dimensional
elasticity tensor (a®P7T), let Cyny > 0 be the constant associated with the inverse property (Theorem 9.1), let
M > 0 be the sup norm of the fourth order two-dimensional elasticity tensor (a®°7), and let ag > 0 and
ay > 0 be, respectively, the minimum and maximum of the function a = det(aqng) introduced in section 2.
Then, there exists a positive number Z > 0 such that the sequence of vector fields {1y }72, C Vi, defined

by

(38) Yri1 =P — ZRNE (),
satisfies
(39) 19 = i@ < VI=pllY = rllraw),  forall k>0,

for some p' = p'(h,Z) € (0,1), whenever h > 0 is such that

(40) h < CoCe (]Mclznv\/a + 1)
Vao ’

and = > 0 s such that
2y/ag
coce (MC2\/ar + 1)2

(41)

(1]

<
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Proof. To begin with, thanks to (38) and the fact that N (¢) = 0 by (37), we compute
b= e = — $u + WEN; () = P — e — h'E (NF (W) — Ni(w))
=~ — WZ [(Aid + b TPUB)) — Pu(p V) — (Aithe + ch U PL(B()) — Pu(p V) |
=~ — h'Z [ A5 — pp) +eh P, (B() — Blwn))] -
Define the operator Qy, : Vi, — Vj, by
Qn(n) == Ajn+eh P, (B(n)), forallneV,.

Thanks to this newly introduced definition we can thus write
(42) b= e = — % — WE[QuW) — Qu(r)|,  forall k> 0.

In view of (42), the uniform positive-definiteness of the fourth order two-dimensional elasticity tensor
(a®f°7) (Theorem 3.3-1 of [15]), Korn’s inequality (Theorem 2.1), we compute

I — 1By = I — PulZ oy + AE2QN) — Qnlwo)l3e o)
~2n'z [ (=) (Qud) - Qulwn)) dy

= It = oy + P2 1Qu ) ~ Q) — 24'Z [ (b =) G —abi)
— 26012 [ (=) (PA(BW) ~ Pu(Be4) dy

< 1 = el + 21 QD) — Qu0) e — 20 =YD — e,
~ 261 [ (=) PL(B®) — B dy

Let {e/}{2, be a Hilbert basis in L?(w). By the theory of Fourier series (cf., e.g., Theorem 4.9-1 of [17]),
we have that the last integral term can be rewritten as follows:

/(121 — i) (Ph(ﬁ(’:b) - ﬁ(¢k))) dy = /w(?:b — i) (dli:v} </w(ﬁ(1:b) — B(bk)) - e ds) 64) dy

(=1

(44) =dlth{(/w¢ P) - ezdy)( )egds)}

- [ @) -1 (dlmw ([-w eedy) )dsz [ 86) - @) - vy as 2o

where the last equality holds thanks to the fact that 7,[), Y € Vy,.
For each k > 0, let us now estimate

1@n () — QW) 32 = [ (A7 +<h"Pu(BE))) — (Afabi +=h " Pu(B(0)) |

b2 Pu(B() — B(1)) 2o + 25h 71 / (A5 —wn) - (Pu(B) - Bwr)) dy

L?(w)

. . 2 .
AW —u) +eh IR (B() = B())| , = IIAR(D — )22 (w)

3(w)

== [ a0 (b ) (A3 — )V dy
4o 2 PA(B(D) — B ey + 267 [ (A7 = 0)) - (Pu(B) - B4)) do

<e / P77 (1 — i) Ve (AG (% — i) Vady + ch ™| Py (B() — BWr)) I3z ()
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+2eh9 A5 (% — ) L2 | Pr(B(®) — B(or)) || 2 ()
< M€\/a1||’:b - wk”VM(w)”AZ({b - 1;bk)”VM(W) + EhquH{b o ¢k|‘%2(w)

+2eh™ )| A5 (Y — )l 22 1% — Yl £20)s

where the second last estimate is due to the continuity of the bilinear form, and the last estimate is due to
the fact that the projection P, and the operator 3 are non-expansive mappings (cf., e.g., Theorem 4.3-1(c)
of [17] and Lemma 5.1). To sum up, we have shown that

1Qn (%) — Q)z(¢k)”2L2(w) < Mevay |9 — ¢k||VM(UJ)||AiL({p —r)llvi () + eh™2||ap — ¢’kH2L2(w)

+2eh™ | A5, (% — i)l 2y 1% — il L2()-
Thanks to the inverse property (Lemma 9.1), we have that

9 C'inv e/
(46) A%, (¥ — i)l viy () < 5 | A7, (¢ — i)l L2 (w)-

An application of (46) gives
14505 = 9l =< [ a7 0r (b = 070047 (B — ) Vady
< Mey/ailld = $ullvas o145 @ — ) lvis

< MO g A5 — 0l

(45)

The latter in turn imphes that

(47) 145 (& — )l o) < mvgf 1% — llz2e)-

Thanks to (46), (47), the inverse property (Lemma 9.1) and the fact that 0 < ¢ < 2, we are able to
estimate the right-hand side of (45) as follows:

Msﬁlnib v A5G — )iy R 2 — el + 260 AG (D — ) e | — el
an £ 2MCI2HV
MO D )y | AT — )l ) + b2 — iy + e VI e,

— h2 h2+a
M2CE e%a _ 2MC? e .
< (;{Zl +eh %+ hg+q\/>> 9 — ’l/’k||L2(w < h™H(MPCHe2ar + e + 2MC e ar) |4 — 1/’1c||2L2(w)

_ 2 -
< h 45 ('Z\Icfiznv\/a‘1 +1) H,l/)_djkniz(w)
Combining the latter inequality with (45) gives at once:

~ _ 2 N
(48) 1Qn(¥) — Qn(Wr)| 720y < h™'e (MChVar +1)7 |9 — rll7()-
Therefore, combining (43), (44) and (48) gives

~ ~ — ~ ’_\E CLO ~
I~ iy < 19— Bell3ago) + A2 1QE) — @u W) ey — W EL ) — el
< (122 et (UCR T +1)* 2 ) -
: : 4 \F 4 2 222
Let us now consider the polynomial p(Z) := 1 —2¢h E+eh* (MCZ, /a1 +1)" 22, and let us observe
that its discriminant is such that
A
A (52 90 4 o (MO2ar + 1)2> < eht ( Wt (M + 1)2)

4 CpCe CopCe

and it is negative when

) [eoce (M AT+ 1)
Vi

Therefore, thanks to (40), we have that p(2) > 0 for all E € R, on the one hand.
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On the other hand, we have that p(Z) < 1 if and only if
2\/ag
coce (MCE /a1 + 1)27

as per our assumption (41). This means that, under the assumptions (40) and (41), the coefficient on the
right-hand side of (49) is a number between 0 and 1. We thus define the number

(1]

<

pli=1-— (1 oyt + h*eE? (MCLar + 1)2> € (0,1),

CoCe
and (49) becomes
1% — YriillLzew) < V1= pllY — ¥rllze(w),

and the proof is complete. O
Note in passing that iterating (39) gives

~ ﬂ ~
1Y — Pryillzze) < (1 —p") "= 1Y = ollz2w) — 0,

as k — oo, being (1 — p') € (0,1).

As a final remark, we observe that the iterative scheme (38) is expected to converge very slowly. This
is due to the presence of the h* multiplicative term, which dampens the convergence by making the norm
lx+1 — Vil L2(w) small for all £ > 0. The dampening is due to the fact that the h* term neglects the effects
of the term k = h™%, 0 < g < 2, appearing in the penalty term. This means that the iterates will slowly
depart from the initialisation g which is customarily chosen to be either 0 (viz. [56]) or the solution of the
linearised version of the problem under consideration.

10. NUMERICAL SIMULATIONS

In this last section of the paper, we implement numerical simulations aiming to test the convergence of
the algorithms presented in section 7 and in section 8.
Let R > 0 be given. We consider as a domain a circle of radius r4 := %

w = {yz (¥a) € R%\/yf + 53 <7‘A}~

The middle surface of the membrane shell under consideration is a non-hemispherical spherical cap which
is not in contact with the plane {z3 = 0}. The parametrization we choose is 8 € C?(w;E?) defined by:

(50) 0(y) = (yhyg, VR — 2 —y3 — 0.85) , forally=(y,) €w.

Throughout this section, the values of ¢, A\, 4 and R are fixed as follows

e = 0.001,
A =04,
pn=0.012,
R=1.0.

The applied body force density p* = (p"*) entering the first two batches of experiments is given by
p° = (0,0,9(y)), where

oy) = — 25 (—5.0y7 — 5.0y% 4+ 0.295), if |y| < 0.060,
. 0, otherwise.

We let ¢ = (0,0,1). We observe that even though g defined as above is not of class H'(w), the numerical
results we obtained comply with the theoretical results obtained in Theorem 5.1 and Theorem 8.1.

The expressions of the geometrical parameters (i.e., the covariant and contravariant bases, the first fun-
damental form in covariant and contravariant components, the second fundamental form in covariant and
mixed components, etc.) associated with the middle surface (50) were computed by means of the symbolic
computer provided by MATLAB [26]. The numerical simulations are performed by means of the software
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FEniCS [37] and the visualization is performed by means of the software ParaView [3]. The plots were
created by means of the matplotlib libraries from a Python 3.9.8 installation.

The first batch of numerical experiments is meant to validate the claim of Theorem 5.1. We fix the mesh
size 0 < h << 1 and we let k = h? in Problem Pj,  (w). Consider a sequence of exponents {g¢}72, such that

qe — o0 as £ — oo and let C;;}l and C;‘;;}fn be the solutions of Problem P5; . (w) corresponding to x = h9" and
k = h9m respectively. The experiments whose results are shown in Figlires 1-5 an Tables 1-3 below show
that ||C2q}fb - CZ;ZI lVas(w) — 0 as m,n — oo. The algorithm stops when ||CZQZ - CZ;}; Vs (w) < 2.0 x 1076,
Each component ¢ ; of Problem Pj,  (w) is discretized by Lagrange triangles (cf., e.g., [13]) and homo-
geneous Dirichlet boundary conditions are imposed for all the components. The reason why the transverse
component (g 3 was imposed to be subjected to this boundary condition is that Problem Pj,(w) is derived
as a result of a rigorous asymptotic analysis starting from Koiter’s model [22, 21]. The fact that the trans-
verse component of the solution of Koiter’s model is of class H3(w) makes a boundary layer appear (viz.
Section 7.3 of [15]) and justifies our choice for this boundary condition, without which the boundary would
be pushed down to the obstacle when, clearly, this is not the case. The higher regularity of the solution of
Problem Pj; , (w) (viz. (35)) and the higher regularity of the solution of Koiter’s model for elliptic membranes
subject to an obstacle, which can be derived by adapting the argument of Theorem 6.1 and Theorem 6.2 to
the proof in [4] justify the choice for the boundary condition of the transverse component. At each iteration,

Problem Pi,hh (w) is solved by Newton’s method.

Iteration ¢, ¢, Error

1 0.5 1.0 0.0009870505482918299
2 1.0 1.5 0.0005716399376703707
3 1.5 2.0 0.0003259806690885746
4 2.0 2.5 0.0001851239908727575
5 2.5 3.0 0.00010447749338622102
6
7
8

3.0 3.5 5.8930703167247946e-05

3.5 4.0 3.2967335748701205e-05

4.0 4.5 1.928599264387323e-05
9 4.5 5.0 1.0777591612766316e-05
10 5.0 5.5 5.9221185866507025e-06
11 9.5 6.0 3.545734351957462e-06
12 6.0 6.5 2.595888616762957e-06
13 6.5 7.0 2.1107364521837126e-06
14 7.0 7.5 1.958867087445544e-06

Table 1. Verification of Theorem 5.1 for h =
0.03123779990753546 fixed and g varying

—— Vha —*— residual

0.0010 4
0.035 1

0.0008 - 0.030 1

0.025 4

0.0006
0.020 4

Error
Error

0.0004 4 0.015 4

0.010 4
0.0002 4
0.005 -

0.0000 0.000 +

2 4 6 8 10 12 14 0.00 0.02 0.04 0.06 0.08 0.10 0.12
Number of Iterations K

Figure 1. The residual HCZQ}; — Figure 2. Compari-
Jh 5 53
Cz?zm HvM(w) becomes lower than TI(Z.I;,h lietzxf%n I the i];lebflizl
the tolerance after fourteen itera- han ham 1V (@) )
tions. and the function 7”1‘3"7 in green.



0.0008 1

0.0006 4

Error

0.0002 4

0.0000 4

0.0007 1

0.0006 1

0.0005 -

0.0004 4

Error

0.0003 4

0.0002 4

0.0001 -

0.0000 4
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0.0004 1

=

1.0

25 3.0 35 4.0

Number of Iterations

4.5

. . Jh

Figure 5. The residual [|¢; 4, —
C;i'q}:” Iy, (w) becomes lower than
the tolerance after five iterations.

0.0200 -

0.0175 1

0.0150 -

0.0125 4

Error

0.0075 4

0.0050 1

0.0025 -

0.0000 -

Iteration ¢, ¢, Error
1 0.5 1.0 0.0008589020335743345
2 1.0 1.5 0.00024578598359837673
3 1.5 2.0 6.925018104565528e-05
4 2.0 2.5 1.943169742921457e-05
) 2.5 3.0 5.4843823503599594e-06
6 3.0 3.5 1.5246502664061824e-06
Table 2. Verification of Theorem 5.1 for h =
0.007812398571396802 fixed and g varying
Nun‘slber of Ilerati‘ons é ‘
Figure 4. Compari-
Figure 3. The residual chq}iL — son | betwae?n the  residual
C:,‘I’:n lvas (o) becomes lower than I<Ran = Cham lvpg(w)s in blue,
the tolerance after six iterations. and the function ’fg" , in green.
Iteration ¢, ¢ Error
1 0.5 1.0 0.0006853937021067343
2 1.0 1.5 0.0001389653237533636
3 1.5 2.0 2.8767966192506784e-05
4 2.0 2.5 6.876855587433019e-06
5 2.5 3.0 1.1588084240614098e-06
Table 3. Verification of Theorem 5.1 for h =
0.0039062328553237536 fixed and g varying

0.0100 4

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
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From the data patterns in Figures 1-6 we observe that as h decreases (and so k increases) less iterations
are needed to reach the tolerance triggering the stopping criterion. This is coherent with the conclusion of
Theorem 5.1.

The second batch of numerical experiments is meant to validate the claim of Theorem 8.1. We show that,
for a fixed 0 < ¢ < 2, the error ||§’2(11h1 — CZ’gh2||VM(w) tends to zero as hi,hs — 0. The results of these

experiments are reported in Figure 7 below.
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(b) For ¢ = 0.5 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00268

(c) For ¢ = 0.6 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00249

(a) For ¢ = 0.4 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00268

0.0005 0.0005

0.0004 0.0004 0.0004

0.0003 0.0003 0.0003

Error
Error
Error

0.0002 0.0002 0.0002

0.0001 0.0001 0.0001

0.0000 0.0000 0.0000

o H 10 15 20 25 30 o 10 20 30 40 [ 10 20 30 40 50
Number of Iterations. Number of Iterations. Number of Iterations

(d) For ¢ = 0.7 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00249

(e) For ¢ = 1.0 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00199

(f) For ¢ = 1.3 the stopping criterion
of the Cauchy sequence is reached when
h = 0.00169

Figure 7. Given 0 < ¢ < 2, the error ||Ci’qh'1 - Ci’qh'z vy, (w) converges to zero as hi, ha — 0. The value of h for
31 2

which the algorithm stops decreases as ¢ increases.

The third batch of numerical experiments validates the genuineness of the model. We observe that the
presented data exhibits the pattern that, for a fixed 0 < h << 1 and a fixed 0 < ¢ < 2, the contact area
increases as the applied body force intensity increases. For the third batch of experiments, the applied body
force density p = (p"¢) entering the model is given by p* = (0,0, g¢(y)), where ¢ is a nonnegative integer
and
—25(—5.0y7 — 5.0y3 + (14 0.05¢) x 0.295), if |y| < 0.060,

9ey) = 0, otherwise.

We observe that even though g, defined as above is not of class H'(w), the numerical results we obstained
comply with the Physics, in the sense that the contact area increases as the intensity of the applied body
force increases. The results of these experiments are reported in Figure 8 below.
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Figure 8. Cross sections of a deformed membrane shell subjected not to cross a given planar obstacle. Given
0 < h << 1and 0 < g < 2 we observe that as the applied body force magnitude increases the contact area
increases.

CONCLUSIONS AND COMMENTARY

In this paper we established the convergence of a numerical scheme based on the Finite Element Method
for approximating the solution of a set of variational inequalities modelling the deformation of a linearly
elastic elliptic membrane shell subject to remaining confined in a prescribed half space.

Instead of directly approximating the solution of the variational inequalities, we approximate the solution
of the corresponding penalized variational formulation with respect to the norm of the space where the
solution of this penalized problem is sought. Moreover, we also show that the iterative method proposed
by Brezis and Sibony can be applied to approximate the solution of the discrete penalized problem under
consideration with respect, however, to a weaker norm.

The main novelty introduced in this paper is the overcoming of the condition (x) introduced by Scholz [56].
Indeed, since the second order differential operator we are considering takes into account all the components
of the solution, which is a vector field with values in the Euclidean space E3, it is not straightforward to
re-write the condition (%) introduced by Scholz [56] in a vectorial context. We instead assume that the
middle surface of the linearly elastic shell under consideration satisfies a certain geometrical assumption,
which is the same assumption ensuring the validity of the “density property” introduced in [24, 25].

The method we presented in this paper is, however, in general not applicable to fourth order obstacle
problems like the one studied by Léger & Miara [38, 39], and for which a suitable numerical scheme was
studied in [49]. The reason why the methodology presented in this paper is not applicable to fourth order
problems is due to the fact that the solution of fourth order obstacle problems is not in general of class H* over
its definition domain. This limitation was established by Caffarelli and his associates in the papers [9, 10].

In order to study the convergence of the finite element analysis addressed in the paper [49], an interior
C penalty method based on a nonconforming finite element of Morley type had to be exploited. The choice
of the nonconforming finite element of Morley type is motivated by the fact that the highest regularity one
can achieve for the considered problem is H? over the definition domain. One such regularity is sufficient to
apply a suitable Green’s formula for establishing the convergence of the finite element scheme in [49].

We also observe that the penalty method discussed in this paper is, in the context of a finite element
analysis, more easily applicable than the primal-dual active set method [58]. The latter is particularly
amenable in the context of the optimization of problems the solution of which is a real-valued functions or
a vector field for which the constraint bears on the transverse component [51, 52].
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