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ABSTRACT. Motivated in part by hook-content formulas for certain restricted parti-
tions in representation theory, we consider the total number of hooks of fixed length
in odd versus distinct partitions. We show that there are more hooks of length 2,
respectively 3, in all odd partitions of n than in all distinct partitions of n, and
make the analogous conjecture for arbitrary hook length ¢ > 2. We also establish
additional bias results on the number of gaps of size 1, respectively 2, in all odd
versus distinct partitions of n. We conjecture similar biases and asymptotics, as well
as congruences for the number of hooks of fixed length in odd distinct partitions
versus self-conjugate partitions.

An integral component of the proof of our bias result for hooks of length 3 is
a linear inequality involving ¢(n), the number of distinct partitions of n. In this
article we also establish effective linear inequalities for ¢(n) in great generality, a
result which is of independent interest.

Our methods are both analytic and combinatorial, and our results and conjec-
tures intersect the areas of representation theory, analytic number theory, partition
theory, and g-series. In particular, we use a Rademacher-type exact formula for g(n),
Wright’s circle method, modularity, g-series transformations, asymptotic methods,
and combinatorial arguments.

1. INTRODUCTION

Connections between representation theory and the theory of integer partitions are
well-known. For example, the irreducible polynomial representations of GL,,(C) may
be indexed by partitions of length at most n; moreover, the conjugacy classes of the
symmetric group S, and therefore the number of non-equivalent irreducible complex
representations, may be indexed by the partitions of n. Hook lengths of partitions
play particularly important roles in establishing these connections. Namely, such irre-
ducible representations can be analyzed via partition Young tableauzr. The dimension
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of a representation of S, (respectively GL,(C)) corresponding to a particular par-
tition is given by a hook length formula (respectively a hook-content formula). For
more on these topics, see e.g. [25].

We recall that a partition A = (A, Ag, ..., Ar) of size n € Ny is a non-increasing
sequence of positive integers A\ > Ay > --- > A, called parts that add up to n. The
number of parts of a partition A is called the length of A and is denoted by ¢(\). We
denote by P the set of all partitions, and by p(n) the number of partitions of n. We
adopt the usual convention that the empty set is the only partition of zero.

A partition A = (A1, \g, ..., \r) has a natural graphical representation as a Young
diagram (also called a Ferrers diagram), i.e. a left-justified vertical array of boxes
with \; boxes in the i-th row from the top. The conjugate of a partition \ is the
partition A\’ whose Young diagram has the columns of A as rows. Each box in a
Young diagram of A may be labeled with a hook number, also called hook length,
which, informally, is the number of boxes in the upside-down-L-shaped portion of the
diagram with the box appearing as its corner. More precisely, for a box in the i-th
row and j-th column of the Young diagram of a partition A, its hook length is defined
as h(i,j) = \i + N; —i—j+1 (see Figure 1). We denote by H(A) the multi-set of all
hook lengths of A\, and let

H\) = {h | heH()), h=0 (modt)}.

If H,(\) =0, then X is called a t-core partition.

In their study of Seiberg-Witten theory, Nekrasov and Okounkov [18] discovered
the now celebrated formula for arbitrary powers of Euler’s infinite product in terms
of hook numbers.

Theorem 1.1 (Nekrasov-Okounkov). For any complex number z we have

| (1 - %) = ﬁ(1 — zF)* L, (1.1)

AEP  heH(N) k=1

Using properties of a classical combinatorial bijection between partitions and t-
cores and t-quotients, Han [10] established an extension of the Nekrasov-Okounkov
formula (1.1), which unifies the Macdonald identities in representation theory and
the generating function for t-core partitions.

Theorem 1.2 (Han). Let t be a positive integer. For any complex numbers y and z
we have

A tyz\ _ = (1 —a™)
2 1L - %) Moy 02

AEP heH( k=1

In a similar manner, Han [10] also obtained a two-variable generating function for
the number of partitions of n with m hooks of length ¢.

Theorem 1.3 (Han). Let t be a positive integer. For any complex number y we have

e th\t
AL theny), = _ T L+ (y = Da™) L3
>_ 2y [I—— (1.3)
AeP k=1
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Restricted partitions also play important roles in this context. For example, there
is a relationship between irreducible spin representations of the symmetric group
and distinct partitions, with tableaux and hooks acting as liaisons (see e.g. [17, 24]
for more). Han and Xiong have also established hook-content formulas for distinct
partitions in [11, 12]. Here, we compare certain hook numbers of distinct partitions
to those of odd partitions.

In what follows, we refer to a partition into odd parts as an odd partition and to
a partition into distinct parts as a distinct partition. We denote by O(n), respec-
tively D(n), the set of odd, respectively distinct, partitions of n. Euler’s identity [1,
Corollary 1.2] states that |O(n)| = |D(n)| for all n > 0. In this paper we establish
results analogous to Han’s generating function (1.2) for partitions in O(n), respec-
tively D(n), for t = 2 in (3.1) and (3.3). We do the same for ¢ = 3 in Section 4,
however our expressions for these generating functions are more complicated and are
not manifestly positive. We leave it as an open problem to find simpler, manifestly
positive generating functions for ¢ = 3, and more generally for ¢ > 3. We use these
results to study the total number of hooks of fixed length in all partitions in O(n),
respectively D(n), as explained below.

Let ai(n) (respectively b;(n)) be the total number of hooks of length ¢ in all odd
(respectively distinct) partitions of n.

Example 1.4. We compute by(7) = 6 and b3(7) = 6. The partitions of 7 into distinct
parts are (7),(6,1),(5,2),(4,3), and (4,2,1). We give their Young diagrams (in that
order) with hook lengths labeled.

\7|6|5|4|3|2|1\ 75|4|3|2|1\ 653|2|1\

4 2|1\

’wwcn

F1GURE 1. The distinct partitions of n = 7 and their hook lengths.

For a partition A, a box in its Young diagram has hook length 1 if and only if it is
at the end of a row and there is no box directly below it. Thus, in a partition A, the
number of hooks of length 1 equals the number of different part sizes in .

The next result was conjectured by Beck [20] and proved analytically by Andrews
[2].

Theorem 1.5 (Andrews). The difference between the total number of parts in all
distinct partitions of n and the total number of different part sizes in all odd partitions
of n equals c(n), the number of partitions of n with exactly one part occurring three
times while all other parts occur only once.

Corollary 1.6. Forn >0, bj(n) —ai1(n) = ¢(n).
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Thus, there are at least as many hooks of length 1 in all distinct partitions of n as
there are in all odd partitions of n. Given Corollary 1.6 as well as the identity

> an) => bin) (1.4)

t>1 t>1

which follows from Euler’s identity, it is natural to study the relationship between
at(n) and b;(n) for any fixed ¢ > 1. Corollary 1.6 shows that b;(n) > ai(n). We
conjecture that this bias reverses for t > 2; that is, for large enough n we conjecture
that there are at least as many hooks of length ¢ in all odd partitions of n as there
are in all distinct partitions of n. We state this conjecture formally below.

Conjecture 1.7.

(i) For every integer t > 2, there exists an integer Ny such that for all n > Ny,
we have a;(n) > by(n). Moreover, we conjecture the following values of Ny for
2 <t<10:

t 2|84 56| 78] 9|10
N | 0| 781816 34| 34| 50|59

FiGURE 2. Conjectural values for N;.

(ii) For every integer t > 2 we have that a;(n) — by(n) — oo as n — oo.

We note that for n < N; (2 <t < 10), some values of a;(n) —b;(n) are negative and
some are nonnegative. Data supporting Conjecture 1.7 was obtained by enumerating
partitions and not from generating functions; this is because the generating functions
for a;(n) and bi(n) are difficult to derive explicitly. We are, however, able to write
down generating functions for ¢ = 2 and ¢ = 3, which we use to ultimately prove
Conjecture 1.7 for t =2 and t = 3.

Theorem 1.8. We have az(n) > by(n) for alln > 0 and az(n) > bs(n) for alln > 7.
Theorem 1.9. Fort € {2,3}, we have a;(n) — by(n) — 0o as n — oo.

Remark 1.10. Together, Theorems 1.8 and 1.9 prove that Conjecture 1.7 is true
when t =2 and ¢t = 3.

In order to prove Theorem 1.8 for ¢t = 3, we use a special case of our Theorem 1.11
which gives a general result on linear inequalities for ¢(n), the number of partitions
of n into distinct parts. The result of Theorem 1.11 is also of independent interest
(see also [15] for a similar result for p(n), the number of partitions of n).

Theorem 1.11. Suppose Y, _, ap < >y, Be, where o = {ay},_; and B = {fe}i_,
are sequences of positive real numbers, and r,s € N. Moreover, let {px}r_q,{ve}i_; C
No, where g < pg < +++ < p and vy < vg < -+- < vs. Then there exists an N (which
depends on o, B, and p,.) such that for n > N,

Z&kQ(n+uk) < ZB@C](VH—V@)- (1.5)

Specifically, we may take N = Nq g, as given in (2.11).
4



Remark 1.12. The assumptions p; < po < -+ < p, and v; < vy < -+ < Vg are
made without loss of generality.

The remainder of the paper is structured as follows. In Section 2, we prove The-
orem 1.11, as well as an analogous result (Corollary 2.7) for p(n,m), the number of
partitions of n into distinct parts at least m. In Section 3 and 4 we prove Theorem
1.8 for t = 2 and t = 3, respectively. In Section 5, we establish asymptotic formulas
for a,(n) and b;(n) for t € {2, 3}, proving Theorem 1.9. In Section 6, we establish bias
results for additional partition statistics related to hook length. Finally, in Section 7,
we conjecture similar biases and asymptotics, as well as congruences for the number
of hooks of fixed length in odd distinct partitions versus self-conjugate partitions.

2. GENERAL LINEAR INEQUALITIES FOR PARTITIONS INTO DISTINCT PARTS

The case of t = 3 in the proof of Theorem 1.8 relies centrally on a certain linear
partition inequality (see (4.11)). In this section, we prove results which immediately
imply (4.11). In fact, we prove much more general results, namely Theorem 1.11 and
Corollary 2.7, which are also of independent interest. The most important idea behind
the proof of Theorem 1.11 is the circle method developed by Hardy and Ramanujan
in their seminal paper [13]. Using the modular transformation law of Dedekind’s eta
function, they prove the famous asymptotic formula

1 I
~ ™ 3
p(n) ~ 75
as n — 00. Their method was later refined by Rademacher [23] to prove an exact
formula for p(n) expressed as a convergent infinite series involving Kloosterman sums
and Bessel functions. Such formulas in the literature on partition theory are usually
called Rademacher-type formulas. The Rademacher-type formula for ¢(n), established
by Hagis in [9], is given by

q(n) = m kz:; k?_1< Z/ x(h, k)e_%kmh)h (&(48n+ 2)1/2) (2.1)

h (mod k)

k odd

Above, [; is the Bessel function of the first order (see (2.2)), x is an explicit expo-
nential function, and the sum on A is taken over h (mod k) relatively prime to k. As
discussed in the next subsection, this equation implies strong asymptotics for ¢(n)
which we use to prove Theorem 1.11.

2.1. Proof of Theorem 1.11. Recall that we aim to prove the inequality

> aq(n+ ) < Baln + we),
k=1 (=1

for sufficiently large n, where oy, 6, € RT and ), _, o, < D>_)_, Be. We also explicitly
define Nq g, such that this inequality holds for all n > Nq g, -

The main idea of the proof of Theorem 1.11 is that the Rademacher-type expansion
(2.1) allows us to reduce linear inequalities for ¢(n) to inequalities involving only
Bessel functions. Classical explicit asymptotics for Bessel functions then reduce this
problem to elementary inequalities involving exponential functions. To this end, we

establish the following key proposition.
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Proposition 2.1. For L € N and € > 0, there exists an N(e, L) such that
qg(n+ L)
q(n)
forn > N(e, L). Specifically, we may take N(e,L) = N pc(e, L) as in (2.8) below.

0< —1<e

Remark 2.2. As will become clear in the proof of Proposition 2.1, we may choose
any A, B,C such that A, B,C' > 0 and 0 < & + & + % < 1 in defining N(e, L) =
Napc(e, L) in (2.8). In practice, one can choose such A, B, C' to obtain a suitably
small N(e, L).

To prove Proposition 2.1, we will not need the full exact formula (2.1) for ¢(n), but
only certain error terms connected with it. Recall that the Bessel functions I4(z),
s € C, are defined by

L) e o [ e (2w L)) d (2.2)

s(r) = — w exp| = (w+ — w. .
27 )1 oo P 2 w

We will use the following result due to Beckwith and Bessenrodt, which is derived

from Hagis’ formula (2.1).

Theorem 2.3 ([4, Theorem 2.3]). Let p = p,, := ;ﬁm Then we have
2
q(n) = 6\/§M11(u)+E(u)
where
B(p)| < 0.972 et (1 N 5/ﬁ267“) _

6v2 12
We will also require effective estimates for the I; Bessel function.

Proposition 2.4. For all x > 3, we have

e’ 2 27" e’ 2 27"
Lilx)=—|1-"—-")| - —< o)< —|14+—- |+ — = Ui(x
1(@) \/27rx( 90) 2rx (@) \/2mz( x) 2rx (@)

for x > 3.

Proof. Let z be a complex number with |arg(z)| < 5 and let s € C. Then, from [21,
Exercise 7.13.2],

h(:) = <= 140 +i = [+ ()]

with bounds

3 3T 3 3
) < — = < 2 _
e < sgon () hee < e (a57)

Thus for x > 0, by the triangle inequality we have that
e’ 3T 3T e * 3 3
I > 1—— — — 1+ — —
)2 ( A <8x>) Varz ( TP <4x))
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and

L(z) < e 14 3T 3T n e " 14 3 3
x —exp | — — —exp|—) .
WY = ona 8z P\ 3y V2orx 1z P\ 4z

It is easily checked that for all z > 3 we have both
3T 3T - 2
8T P 8T T

3 3
14— — ] <2
+ 4x P (4x>

from which the statement of the proposition follows. O

and

2.1.1. Proof of Proposition 2.1. Let ¢ > 0 and let L > 1 be an integer. We seek to
find a real number N(g, L) such that for n > N(e, L), we have

0< aln + L) _ I<e.
q(n)
Note that 0 < q(n+L)/q(n) —1for all n > 5. Let fi:= pnyr = 5l51/24(n+ L) + L.

By Theorem 2.3, it suffices to prove that for sufficiently large n

, R
sl (1) + E(f)
Gz <1+, (2.3)
svanl1(w) — E(p)

where
~ 0.972 et
E(u) = - — (1 +5p’e™) .
() =575 - g (L 5%e™)
It is straightforward to show that
~ 11 e*
E(p) < (2.4)

10 2
for > 9, or for n > 25. Note that fi > p. By applying these simplifications to (2.3),

together with Proposition 2.4, it now suffices to find N (e, L) such that forn > N (e, L)
we have

2 ~ 11ef
6\/§ﬂU1('u) + 102
2 1ler

621 Ly (:u) T 10p2

<l+e. (2.5)

We assume that n > 26 so that we may apply (2.4) and so that the denominator in
(2.5) is positive.

Now, using the definitions of L; and U;, we simplify and show that (2.5) is equiv-
alent to

2l waek  pare B 11 1let  gmaet gae T2ek
~3+ ~5 + ~3 _'_ ~2+(1 5) 2+ 5 + 3 <(1+€) 3

122 6/i2 612 104 104 62 62 1212
(2.6)



Since e‘“,u_% is a decreasing function of u, the fact that i > p implies

& 3 3

3
m2e M mze M mze M
— +(1+¢) — < (2+¢) ER)
612 602 602
and likewise the fact that e#u~™® is increasing for p > « implies
3 3 3~
m2et m2et m2et
5 +(1+€) 5 §(2+5)7
62 612 612
and
11e? 11e# 11e?
1 < (2 )
Toz T He) o2 = CFe) o

Therefore, to prove (2.6) we need only prove the inequality
3 =~ 3 ~ ~ 3 3
m2et m2et 11e# m2e H m2et
—+2+e) =5 +2+e) 5+ 2+e) —5 < (1+¢) —5.
12/i2 6/12 104 6412 1242

Define functions Fj(n), 1 < j <4, and M(n) so that the above inequality reads
Fi(n) + Fy(n) + F5(n) + Fy(n) < M(n).

Fi(n) is asymptotically larger than F;(n) for 2 < j < 4, and so it is natural to simplify
further by bounding Fj(n), 2 < j < 4 with small multiples of Fj(n). For any choice
of positive real numbers A, B, C, it is straightforward to show that Fy(n) < §Fi(n)
for all

12A4% (2 4 ¢)° 1
n>NA:NA(€,L) ::7T2—52_L_ﬁ’
that Fs(n) < 5F1(n) for all
910787328 B (2 + ¢)* 1
n>NB—NB(€,L) = 100007524 _L_ﬁ’

and that Fy(n) < §Fi(n) for

n > No = N¢(e, L) ::4i7r210g2 (20(2+g)<1+L)> 1

€ YN

The calculation of N¢ above uses the assumptions n > 1 and 2 > p. We have reduced
our problem to proving that

73 el T3 ek
(1+De)—5 < (1+¢) 5 (2.7)
1202 12p2

for sufficiently large n, where

1 1 1
D=D(ABC):=—4+—=+—.
(4,B,C) A + B + C
Because the choice of A, B, C'is made freely, we make these choices so that 0 < D < 1,

which is required for (2.7) to hold for sufficiently large n.
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Let 1 := 24n+1 for convenience. By elementary manipulations, (2.7) is equivalent
to

. 3
n ' e lVAELVA] l+e
n—+24L 14 De’

Since 71 > 0 and L > 0, we have =2 < 1 and Vi1 + 24L — Vi = féjﬂr\f <1
Thus, it is enough to prove that for large enough n we have

3|h

V2L 1+¢
Vi <
¢ 1+ De’
which holds if and only if
L3272 1
n > Np = Np(e, L) := T - —.
1210g2< 1+¢ ) 24
14+¢eD

Therefore, we conclude that the inequality in Proposition 2.1 holds for all n >
Napcl(e, L), where

NA,B,C(57 L) — Imax (NA,NB,Nc,ND,Qﬁ). (28)
2.1.2. Proof of Theorem 1.11. Since g(n) > 0 for all n > 0, (1.5) is equivalent to

Zak% < Zﬂe%~ (2.9)
k=1 =1

Moreover, since for all n > 0, we have g(n + 14)/q(n) > 1 for all 1 < ¢ < s and
q(n+ pg) < q(n+ p,) for all 1 < k < r, inequality (1.5) holds for all n such that

(£ (5 ) B

k=1
Let L := u, and

— (Z ak) <Z By — Zak> . (2.10)

Choose A, B,C' > 0 such that % + % + % < 1 and define

Naﬂ,ur = NA,B,C<5: L) (211)
where Na g (e, L) is given by (2.8) for the above choice of € and L. The proof then
follows from Proposition 2.1. O

Remark 2.5. We point out that in practice, it may be possible to improve (i.e. de-
crease) the bound Ny g, obtained in the proof of Theorem 1.11 above. For example,
at the outset, any summands ayq(n + px) and Beg(n + vy) appearing in an inequal-
ity (1.5) such that ap = Sy and p, = v, can be canceled, producing an equivalent
inequality with a larger € in (2.10). Similarly, in case of any summands agq(n + )
and Beq(n + vp) with o # By but py = vy, one may subtract min(ay, 5o)g(n + px)
from both sides of (1.5) yielding an equivalent inequality with potentially smaller L

and larger ¢ as chosen in the proof of Theorem 1.11 above. Further, given L, e as
9



in the proof of Theorem 1.11, one may seek to choose appropriate A, B, and C' such
that Ne,g,, in (2.11) is minimized.

2.2. General linear inequalities for distinct partitions without small parts.
In our proof of Theorem 1.8 for ¢ = 3, we require a linear partition inequality for
the p(n,m), which counts partitions of n into distinct parts all at least m. To prove
this inequality, we make use of the following result of Erdés-Nicolas-Szalay [7] which
relates g(n) and p(n,m).

Theorem 2.6 (Theorem 1, [7]). For all n and m satisfying 1 < m < n, we have that

1) < pn,m) < At mlm = DJ2)

. (2.12)

General linear inequalities for p(n, m) then follow from Theorems 1.11 and 2.6. We
make this explicit in the following corollary.

Corollary 2.7. Suppose Y ,_ o < Yy, B, where oo = {ay};_, and B = {Be}i_,
are sequences of positive real numbers, and r,s € N. Moreover, let {px}r_q,{ve}i_; C
Ny, where 1 < pro < -+ < pp and vy < vy < --- < vs. Then for any m € N, there
exists an N (which depends on o, 3, j1-, and m) such that for n > N,

Z agp(n + pg, m) < Z Bep(n + ve,m). (2.13)
k=1 =1

Specifically, we may take N = Na g i +m(m—-1)/2 s in (2.11).
Remark 2.8. When m = 1, Corollary 2.7 becomes Theorem 1.11.
Proof of Corollary 2.7. We apply Theorem 2.6 to each p(n + py, m) and obtain

Z arp(n + p,m) < 2™ Z arq(n + pr + m(m —1)/2). (2.14)
k=1 k=1
By Theorem 1.11, after replacing {pu} with {4z +m(m —1)/2}, the right-hand side
of (2.14) is at most

27" " Bug(n + 1) (2.15)
=1
for n > No gy, +m(m-1)/2- Applying Theorem 2.6 again, this time to each g(n + v),
we obtain that (2.15) is at most

> Bup(n +ve,m)
(=1

for n > Nqo gy, +m(m—-1)/2 as desired. O

3. HOOKS OF LENGTH 2

In this section, we prove Theorem 1.8 in the case of hooks of length ¢t = 2. To
do so, we first establish relevant generating functions for odd (respectively distinct)
partitions in Section 3.1 (respectively Section 3.2). In Section 3.3 we use these results
to prove Theorem 1.8 for ¢ = 2. We also give a combinatorial interpretation of the

excess az(n) — ba(n), in analogy with Theorem 1.5.
10



First we introduce some notation used throughout the remainder of the article.
The g-Pochhammer symbol is defined for n € Ny U {oo} by

n—1

(a;9)n == [ [(1 = ag?).

Jj=0

We will make use of the following well-known partition generating functions (with
gl < 1):

Zp - 1%, nzoqm)q" — (g @)
Zo(n)q” ZdO ~¢;0%) o0

where o(n) equals the number of odd parts partitions of n, and do(n) equals the
number of distinct odd parts partitions of n. Since the only partition of n = 0 is the
empty partition, we have p(0) = ¢(0) = 0(0) = do(0) =

We may abuse notation, and use partition and Young diagram interchangeably; we
do the same for parts of a partition and rows of its diagram.

3.1. Odd partitions and hooks of length t = 2. We establish the generating
function for ay(n).

Proposition 3.1. We have

a2 o 2n— 1 2(2n—1) )
> o (7 e

n>0 n>2

Proof. Let as(m,n) be the number of odd partitions of n with m hooks of length 2
and denote by Fy(z;q) the bivariate generating function for the sequence as(m,n),
ie.,
Fy(zq) = Y ax(m,n)z"q",
n,m>0

If X is an odd partition, then by considering the possible ways a hook of length
2 can occur in a Young diagram, we see that the number of hooks of length 2 in A
is equal to the number of different part sizes of \ that are greater than 1 plus the
number of different parts of A that occur at least twice. Therefore we have

2 0 2 2(2n—1)
zq n— z2°q
FQ(Z;q): (1—|—q+1_q> | | (1—1—2(]2 1+m) (31)

n=2

From the definition of ay(m,n), we have

., O
§ az(n)q :—az
z=1

n>0

Fy(z;q).

Using logarithmic differentiation finishes the proof. O
11



3.2. Distinct partitions and hooks of length t = 2. We establish the generating
function for by(n).

Proposition 3.2. We have

2

> by(n)g" = 1q_ (=% @)oo (3.2)

n>0 q

Proof. Let by(m,n) be the number of distinct partitions of n with m hooks of length
2 and denote by Ga(z;¢) the bivariate generating function for the sequence by(m,n),
ie.,

Ga(z1q) ==Y ba(m,n)2"q".

n,m=>0

In the Young diagram of a distinct partition A, the number of hooks of length 2 in
A equals the number of parts A; such that A\; — A\j11 > 2, where A\, = 0 if & > £()).
Thus, the number of hooks of length 2 in A can be calculated as follows: start with the
Young diagram of A\ and remove the Sylvester triangle, i.e., subtract 1 from the last
part, 2 from the second to last part, etc., to obtain an ordinary partition u. Then, we
count the number of different part sizes in u. We note that the number of different
part sizes in p is equal to the number of different part sizes in its conjugate p/. Let
u,(t,m) be the number of partitions of m with ¢ different part sizes and all parts at
most n. Then

annJrl <Zuntm2q )Ian(n+l)/2H<1+1Z_q]qj>

n>1 t>0 n>1 J=1
(3.3)

From the definition of by(m,n), we have

., 0
D b =o-| Gafz).
n>0 z z=1
Logarithmic differentiation gives
a q— qn+1
i G n n+1)/2
9z 20 = ;q ,) 1—gq

Using the well-known limiting case of the g-binomial theorem (see e.g. [1, (2.2.6)]),

n(n+1)

Zq = (2 Q) (3.4)

with z = ¢, we obtain

n24n ) n243n 2
Z ba(n a: _ 4 Z a = _ 4 (—¢%q)
= 1 — 05 @GO 1-a S (GDn 14

12



3.3. Proof of Theorem 1.8 for hooks of length t = 2. Using Propositions 3.1
and 3.2, we have

> (as(n) = bo(n))g" = T Qz+§: "t “%*U)——i—bﬂ%wm

1 —
n>0 n>2 q

Then, using geometric series, Euler’s identity [1, (1.2.5)], 1/(¢; ¢*)eso = (—¢; q)0, and
straightforward manipulations, we obtain

1 ¢l+g+d’) & (69«
as(n) —by(n))q" = —
%;<ﬂ) Py N — l—q 1+gq

¢ [(1+q+¢
= (~¢ ¢ 5 — 1
1—gq 1+4+g¢

EYEPAPR iy el

1+q

= 3.5

ql_q(q @)oo (3.5)

Clearly, the expression in (3.5), expanded as a g-series, has non-negative coefficients.
This concludes the proof of Theorem 1.8 for t = 2. 0

Next we give a combinatorial interpretation for as(n)—bs(n). Here and throughout,
for i € Z*, we define the multiplicity my(i) of 7 in A to be the number of times i
appears as a part in partition A.

Proposition 3.3. Forn >0, ay(n) — bae(n) = w(n), where w(n) is the total number
of different part sizes greater than 1 in all odd partitions X\ of n with my(1) = 0,3
(mod 4).

Proof. Let w(m,n) be the number of odd partitions A of n with my(1) = 0,3 (mod 4)
and exactly m different part sizes greater than 1. Then,

)= X wtmmery = (o PO (142 ).

n,m>0 k=1

Using this, we compute

0 +q ¢! - 2k+1
Z:1H( )= 4 ( 2k+1 Zq

n>0 k=1
144 _ 1 . 7
1—q¢" (*¢°) 1-¢°
1+q-1_q~Gﬂ@)
1= @ 1—q¢ ’
—31t;‘kfmh,
which, together with (3.5), completes the proof. O
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4. HOOKS OF LENGTH 3

In this section, we prove Theorem 1.8 in the case of hooks of length ¢t = 3. To
do so, we first establish relevant generating functions for odd (respectively distinct)
partitions in Section 4.1 (respectively Section 4.2). In Section 4.3 we use these results
as well as results from Section 2 to prove Theorem 1.8 for t = 3.

First, we introduce some useful notation. For any partition A, denote by ¢(\) the
length of A, i.e., the number of parts in \. We denote by ¢1(\) (respectively f2())) the
number of parts A; of A with \; — \;1; = 1 (respectively \; — ;11 = 2). We assume
A =01f & > £(N).

4.1. Odd partitions and hooks of length t = 3. We establish the generating
function for ag(n).

Proposition 4.1. We have that

w3 €+ , ¢° ¢
> as(n)g" = (—q ,Q)oo_—q2 + (¢ 9w (1 + ) :

_ 4 _ 46
= 1 q 1—g¢q

Proof. Let X be an odd partition. Among parts equal to 1, there is a hook of length
3 only in the third to last part equal to 1 (thus, only if the multiplicity of 1 is at least
three). For all other parts, there is a hook of length 3 in the second to last and third
to last occurrence of the part size (if the multiplicity of the part permits). There is
also a hook of length 3 in the last occurrence of the part size if that last occurrence
is in row ¢ with A\; — A\;41 # 2. For example, the hooks of length 3 are marked in the
Young diagram of (7,7,7,7,3,3,1,1,1,1).

Let asz(m,n) be the number of odd partitions of n with m hooks of length 3. It
follows from above that az(m,n) is the number of odd partitions A of n such that

6mx(1)23 + (Z((Smx(u)zl + 6m>\(u)22 + (5m)\(u)23)) — ly(N\) = m.
u>2
Here and throughout, 6, denotes the Kronecker delta symbol, which evaluates to 1 if
property p is true, and 0 if not.
If z(k,n) is the number of odd partitions A of n such that

Sma)23 T OOyt + Oy w2 + Oy (wy3) = &,
u>2
14



and y(k,n) is the number of odd partitions A of n with f2(\) = k, then

az(n) = Zmag(m,n) = ka(k:,n) — Zky(k,n)

m>0 k>0 k>0

Let Fi(z;q) := Z x(k,n)2"¢" and Fo(z;q) := Z y(k,n)z"q". Then,

n,k>0 n,k>0
0 0
;ag(n)q = & 3:1-7:1(2’; Q) - & Z:1f2(27(1)~

By standard arguments, we have that

| 1—q n>1 1_q2n+1

To find Fy(z;q), we consider the conjugate of the 2-modular diagram of an odd
partition. The 2-modular diagram of an odd partition A is a Young diagram in which
row ¢ has ’\1;“ ! boxes, with the first box filled with 1, and the remaining boxes filled
with 2. Then the sum of the entries in row 7 equals \;. See the left diagram in Figure
3.

Given an odd partition A of n, if a part \; satisfies \; — A\, 1 = 2, then the i-th
row in the 2-modular diagram of A\ has last box filled with 2 and is exactly one box
longer than the next row. To find f5()), we conjugate the 2-modular diagram of A,
and in it find the number of rows with multiplicity 1 among the rows filled with 2
that are strictly shorter than the first row. For example, the 2-modular diagram of
A = (11,9,5,3) with marked relevant rows and its conjugate are shown in Figure 3.

Here, (5(\) = 2.

1(2|12(2(2]2 111]1]1

1(2]2 2 21222

1122 21212

112 212
212
2

FIGURE 3. 2-modular diagram and conjugate for A = (11,9, 5, 3).

Thus,
no ol 2(25)
q ] q
FZ(Z?Q):Zl_ an(lJquQMr 1— 2j>'
n>1 E At q

We use logarithmic differentiation to obtain

0 1
F . — 3 2n+1 2(2n+1) 3(2n+1)
52”59 = s (q +2 " t)

n>1
3 6 9
(e 3 q q q
15




and

0 1 &, .
—| Flzg) =) " > a7 (1 —q¥).
0z lz=1 = (4% ¢®)n =
Using the well-known identity Z 2"/ @)n = 1/(2; @)oo (see e.g. [1, (2.2.5)]) and the
n>0
geometric series identity, after simplifying, we further obtain that
9 1 2 4 1+¢)(1+¢%) 1+
91 Rlng = —~ “__ q4+( Q)(4Q)_ 1
Oz lz=1 (6% \1—=¢* 1—¢ 1—gq 1—gq
_ 4
(¢:6%)c 1 — g
Finally, we have
0 3}
Y=ol Az - o) Falz
> s =o-|  Fi(zq)— 5| Fa(9)
n>0
3 6 9 4
_ : 3 q q g g
3 3 6 3
5. (1 +4q7) q q
) . _ 4.1
(—¢%q) v +(—=¢;9) i (4.1)

O

4.2. Distinct partitions and hooks of length t = 3. We establish the generating
function for bs(n).

Proposition 4.2. We have that
2

n q" q 3
> bs(n)g" = (—¢:¢)w — — —— (0% @)
n>0 m>2 1+¢ 1—g¢

Proof. Let bs(m,n) denote the number of distinct partitions of n with m hooks of
length 3. In a distinct partition A, there is a hook of length 3 in every row A\; > 1
except when \; — A\;y1 = 2. Thus, b3(m,n) is the number of distinct partitions of n
such that £(A) —my(1) — lo(N\) = m.

If u(k,n) is the number of distinct partitions of n with exactly k parts greater than
1, and v(k, n) is the number of distinct partitions A of n with ¢5(\) = k, then

bs(n) = Zmbg(m, n) = Zku(k,n) — Zk:v(k,n).

m>0 k>0 k>0
Let Gi(z;q) = Z u(k,n)z"q" and Go(z;q) := Z v(k,n)z"q". Then,
n,k>0 n,k>0
0 0
n_ 0 a2 ). 4.2
; bg (n)q aZ Z:1g1(27 Q) az Z:1g2(27 Q> ( )

We have

Gi(zq) = (1 +6Q)(—Zq2;Q)oo-



To find G»(z;q), let A be a partition with distinct parts and, as in the case t = 2,
remove the Sylvester triangle from A to obtain a partition g with at most ¢(\) parts.
Note that parts p; in @ such that pu; — p; .1 = 1 correspond to parts A; in A such that
Ai — Aip1 = 2. Thus, £1(11) = £5()\). For a partition v, denote by £(v) the number of
parts of v with multiplicity one. Since ¢;(u) = Z(u’ ), we have

:ZQWH<1+qu+1q_2j )

J
m>1 j=1 q

Using logarithmic differentiation, we compute

0 qm
— 1q) = (—4;¢) o 4.3
5:|._ 91(z4) = (=¢:q) 2 Ty (4.3)
and
a qn(n2+1) n
52,0 =2 g, 270"
n(n+1)
:Zq 5 (1_qn+1_1_q2(n+1))
o1 bl I—q L—¢
q qn(n;—l)
— 1 _ qn+1
1-¢ ; T )
n(n+1) +n+l n(n+1) +2n+3
_ q 2 q 2
(e )
n>0 n>0
4q
=1 (9(=0* @)oo — q?’(—q ;q)oo)
2
4q
=1 qz(_q3§Q)oo~ (4.4)

For the second to last equality we use the g-binomial theorem (3.4) twice, once with
z = ¢ and once with z = ¢%.
Finally, from (4.2), (4.3), and (4.4) we have that

2

> " bs(n) —q; q)oo (A 5(—0% @)oo (4.5)

n>0 m221+qm 1—¢

O

4.3. Proof of Theorem 1.8 for hooks of length t = 3. To prove Theorem 1.8 for
hooks of length ¢t = 3, we find a particular bisection A(q) + B(q) of the generating
function ) ,(as(n) — bs(n))q™ established in the prior two subsections. We then
prove separately that A(q) and B(q) have non-negative coefficients of ¢" for sufficiently
large n. We complete the proof by verifying the theorem directly for the initial
coeflicients.

The bisection A(q) + B(q) is somewhat ad hoc; on the other hand, it reveals that

our bias result for hooks of length ¢t = 3 ultimately follows from the rather natural
17



partition inequality established in Corollary 2.7. We welcome alternative proofs to
Theorem 1.8 for ¢t = 3, especially a proof given by a combinatorial injection.
We define the g-series

3
q*
A(q) == qqooZqu —¢" Q) (1 + ¢ +2¢° + ¢*)
m=1
and
o0 6m 41 2 3 44 3 5
¢"(1+¢)d+4q¢") ¢ (1+¢)1+q)
Blg) —
(9) = (—giq Z1+ —¢";@)oe ( T + -

+ (=07 9)(f(g) = 9(a)),

where the polynomials f(q) and g(¢) and their respective coeflicients {f;} and {g;}
are defined by

f(q) = q25+q26+q27+3q28+5q29+3q30+6q31+7q32+5q33+8q34+7q35+7q36
+9q37+8q38+7q39+7q40+6q41+6q42+5q43+4q44+3q45+3q46+2q47

+ q48 + q49 +q50 +q51 (46)
27
=Y fid (4.7)
: va .
j=1

and

9(@) = ¢+ 4"+ ¢ + " + 20" g1 + ¢ + 20" 1 g1 + 2¢%° 1 242 + ¢ (4.8)
14
= ¢*) gi¢. (4.9)
j=1
Proposition 4.3. With A(q) and B(q) defined above, we have that

> (as(n) = bs(n))q" = A(q) + B(g).

n>0

Before proving Proposition 4.3, we establish the non-negativity of the coefficients
of ¢" in the series expressions for A(q) and B(q) for sufficiently large values of n by
proving Lemma 4.4 and Proposition 4.5 below.

In the remainder of the paper we use the notation G(q) =g 0, where S C Ny, to
mean that when expanded as a g-series, the coefficients of G(q) are non-negative, with
the possible exception of the coefficients of ¢" for n € S. When S = (), we simply use
the notation > 0.

Lemma 4.4. We have that A(q) =7 0.
Proposition 4.5. We have that
(=" @)oo (f(@) = 9(0) Zqr2,..75 0. (4.10)

Remark 4.6. The coefficients of ¢™ for some n in the exceptional set {1,2,...,75}
appearing in (4.10) are in fact non-negative, but the result of Proposition 4.5 is

sufficient for our purposes.
18



We begin with the proof of Proposition 4.5, which ultimately follows from a special
case of our Corollary 2.7. Following this, we provide an analytic (g-series) proof of
Lemma 4.4.

Proof of Proposition 4.5. Using that (—¢%; )« is the generating function for p(n,9),
the statement in Proposition 4.5 is equivalent to the statement that
42

26
D s ipn+5,9) <> foripln+j,9) (4.11)
=29 5=0
for n > 25. In Corollary 2.7 we take r = 14,s = 27, = ¢15_%, and [, = fog_y,
so that 16 = ,1€4:1 o < Z?; By = 118. We further take pp = k+ 28,1, = ¢ — 1,
and m =9, so that by Corollary 2.7, we have that (4.11) holds for n > N, grs as in
(2.11), which proves the desired result for all but finitely many coefficients.
Precisely, we have as in the proof of Theorem 1.11 and using Corollary 2.7 that
L = p14+909—1)/2 =78 and ¢ = (118 — 16)/16 = 6.375. Experimenting with
Mathematica™ [26], we further choose positive A, B, C satisfying 1/A+1/B+1/C <
1, namely A = 180,B = 7,C = 471177, so that (4.11) holds for n > Ny grs =
Nigo7.471177(6.375, 78) = 67910.5, a small enough value to allow us to verify inequality
(4.11) for 25 < n < 67910 using SageMath. This completes the proof of Proposition
4.5. O

Proof of Lemma /.4. We begin by rewriting A(q) as
AlQ) = (%Dt + 1+ )* (=% @)oo + (1 + )1+ ¢*)q"* (=0 @)oo
— (=0 Qoolq" + ¢° +2¢" + ¢°)
= (¢ 9 (® +2¢" + ¢"" +2¢" + ¢ + ¢ + ¢"* — " — ¢").
We have
(" + ) (=" Qoo = (—0; Qoo + (=" Qoo + ¢ (=3 Q)0 + ¢ (—0°; @) -
Since,
(7" @)oo — 0" (—¢";
"' (—q* @)oo — "1 (—¢";
it follows that
(=" @)oo(d® +2¢° + 4" + ¢ — ¢" — ¢")
= (=" 0)o(® + @ + ") + (=0 ) (0" + ¢*°) — (=¢"; @)oo (@® + ¢).
Next,
(@ + ) (=" Do =+ 4"+ 0" (—¢° Qo + " (—¢°; @)oo + ¢°Z6 + ¢" e,
where we define for m € N

k>m
We observe that
°(—=¢* @)oo — "°(—0% @)oo = °*(—0°; Q) + ¢*°(—¢°; @),
19



7H(=0"% oo — ¢%(=0% oo = (0" + ¢ + ") (=% D)0
Finally, we have
°(—=¢% @)oo — ¢"56 = ¢° + ¢°%5 — 4"
e A I G C e [ ) I N L G L)
m>5 m>6
=+ (=" @)
m>5
and similarly
(=0 Do =06 ="+ D" (@™ + "+ ) (=0 )
m>4

This completes the proof. 0

4.3.1. Proof of Proposition 4.3. We use Propositions 4.1 and 4.2 and find that

> (as(n) — bs(n))q"

n>0
2 3 6 6 3 > g
s CHC+E q q
= (—¢" @)oo v +(%®WQ_¢+1_¢> 7é T+ a
@u)
Next we observe that
_E: " ¢ q
“1+qm m:11+qm 1—¢® 1-¢%

which follows by a direct calculation, for example, by adding the negative of the series
in m on the left-hand-side to the one on the right, using the geometric series formula,
and simplifying. With this, we re-write (4.12) as

2 3 6 6 3 3
2 G Lrtere 4 @ ¢ 49
(=055 @)t + (=05 @)™ 5 + %@m(1_¢+@ [y 1_f>

(4.13)

e 4m
q
(—4;9) E¥1+¢1
By straightforward algebra, we find that
¢+ +4q°
1—¢q?

1 1 2 1 3 _ _
Frr A0+ (1 - s -

1+ +¢*)g+ (1+¢°)

4 3 4 q
= — 1+ 2q° + + .

20



We multiply this identity by (—¢*; ¢)o and insert it into the sum seen in (4.13). Thus,
we have shown that the generating function for az(n) — bs(n) equals

e 4m 9
q
AQ) + (4D Y — (" Qo (4.14)
= 1+qm 1—gq
Next, we re-write
> 4m s 6m 19
q q 3 q
—4;4) =7¢:q9) T (—4"9) +q" 4"+ )
(—¢;9) 2 i (—¢;9) ;qu (—¢%q) (q ¢ +¢' 1_q)
(4.15)

which may again be proved by, for example, subtracting the two infinite series appear-
ing in (4.15), using geometric series, and simplifying. We take the series (—¢®; q)ooq™®/(1—
¢°) appearing in (4.15) and subtract from it the term (—q*; ¢)s0q®/(1 — ¢*) appearing

in (4.14) as follows:

, 19 A 9
(—q §Q)ool_—q5 - (_CI QQ)ool_—qg,
19 9
_ (9. 3. q s q
_( Q7Q)OO(( qu)ﬁl_q5 ( q7q>51_q3>
41 2 3 44 3 5
¢ (1+¢)1+¢) ¢ (1+¢)(1+¢q°)
:(_QQ;Q)oo( = + T —plq) ), (4.16)
where

p(q) = q9+q12+q13+q14+2q15+2q16+2q17+3q18+2q19+4q20_|_5q21+4q22+4q23
+5q24+5q25+5q26+6q27+5q28+4q29+6q30+4q31+3q32+5q33+2q34
+3q35+3q36+q38+q39

Inserting (4.15) and then (4.16) into (4.14) followed by some straightforward algebra
reveals that the generating function for asz(n) — b3(n) may be written as

Ag) + (=) lq + (—¢%) oo (4" + 4"+ ¢'%)
(1+¢)1+¢%) ¢ (1+¢*)1+¢°)
( - + v —p(C])>
= A(q) +

as claimed. In partlcular, we have also used the easy to verify identity
(0% D)oo (0" + ¢ +¢"%) = (4" Doop(9) = (=¢"; ) (f (@) — 9(0)).

This completes the proof of Proposition 4.3. U

Proof of Theorem 1.8 for t = 3. Using Proposition 4.3, Theorem 1.8 for t = 3 now
follows from Lemma 4.4 and Proposition 4.5, along with a finite computation of the ¢-
series coefficients in Proposition 4.3 through the ¢™ term, which is easily done (using,

for example, Mathematica™). O
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5. ASYMPTOTIC FORMULAS

In this section, we prove Theorem 1.9. To this end, we obtain asymptotic formulas
for as(n), ba(n), az(n), and bs(n) using the circle method. From these, we immediately
obtain asymptotic formulas for as(n)—be(n) and asz(n)—bs(n), allowing us to establish
Theorem 1.9. As usual, for two functions f(n) and g(n), we write f(n) ~ g(n) as
n — oo if % — 1 as n — o0o. Moreover, log denotes the natural logarithm.

Theorem 5.1. As n — oo, we have

™

35/4 m
~ e V5

as(n)
and

™

31/4 7
~ dn/A© ’

ba(n)
Theorem 5.2. Asn — oo, we have
3vt L m
a3(n) ~ W@ 3
and
1 31/4 W\/E
b3(n) ~ (10g(2) — g) WG 3,

As an immediate consequence of these two theorems, we obtain the following corol-
laries.

Corollary 5.3. As n — oo, we have

™

31/4 7
- 8mnl/4 ers

as(n) — ba(n)

Corollary 5.4. As n — oo, we have

as(n) ~ ;@(n).

Corollary 5.5. As n — oo, we have

1/4
as(n) — by(n) ~ (i—z - logf)) SV,
Corollary 5.6. As n — oo, we have
2
3(log(2) — )

Remark 5.7. The asymptotic results in Corollaries 5.3 and 5.5 explain the inequali-
ties of Theorem 1.8 and prove Theorem 1.9. In addition, Corollaries 5.4 and 5.6 prove
stronger statements, as will be discussed in Section 7.

bg(n)

az(n) ~

In light of Theorem 1.5, it is natural to ask about the asymptotics of a;(n) and

bi(n) as well. We outline them here since the proofs are easier than those of Theorems
22



5.1 and 5.2. Asymptotics for by(n) can be easily derived from [6, Theorem 1.1]; in
particular, as n — oo, we have

3/*og(2) .. /z

bl(n) ~ Wa \/;

Furthermore, using the generating function identity for a;(n)—by(n) given in [2, (3.1)]

and [19, Proposition 1.8] (which we restate as Proposition 5.8 below) it can be shown
that

(5.1)

31 (log(2) — 3) Vi
21/
as n — 0o. Using (5.1) and (5.2) along with the definition of ~, we also deduce that
1/4
Vi

~ i /AC
We additionally note, comparing with Corollaries 5.4 and 5.6, that
1
~ b .
al(n) lOg(4) 1(”)

(5.2)

bi(n) — ai(n) ~

ay(n)

We now discuss Wright’s circle method and use it to prove Theorems 5.1 and 5.2.

5.1. Wright’s circle method. The circle method is one of the most important tools
in the modern analytic theory of partitions. The method goes back to famous work
of Hardy and Ramanujan on p(n) [13] in which they proved that

1 o

~ ™ 3
p(n) ~ 75

as n — 0o. Rademacher [22] later extended their method to prove an exact formula
for p(n) similar to, and predating, (2.1). The presence of non-modular terms in the
generating functions of a,(n) and b;(n), such as Lambert series and rational functions,
means Rademacher’s approach cannot be directly used to give exact formulas for a;(n)
or b(n). To overcome this difficulty, we use a variation of the circle method due to
Wright [27] to obtain asymptotic expansions. We use the formulation of this method
given by Ngo and Rhoades [19], who derived asymptotic formulas for the coefficients
of products L(q)¢(q), where L(q) and £(q) are certain analytic functions of ¢ € C
with |¢| < 1 and ¢ ¢ R<,. Informally, £ must have a “main” exponential singularity
as ¢ — 1 and L(g) must have polynomial behavior as ¢ — 1.

To state the formulation of Wright’s circle method given in [19], we require some
notation. For |¢| < 1 and ¢ € R<p, we write ¢ = e~ with z = x + iy such that
x> 0and |y] <7 Let 0 < ¢ < § and define D5 := {2z € C : |arg(2)| < § — J}.
Equivalently, if we let A = cot(6), then Ds :={z+iy € C: 0 < |y| < Az}. For fixed
¢ > 0 and integer n > 1, we let C = C(c, n) be the circle in the complex plane centered
at zero with radius |¢| = e™*, where z = \/Lﬁ For fixed §, we let C; := Ds N C and

Cy :=C\ C;. We call C; the major arc and Cy the minor arc. We will interchangeably
use Landau’s big-O and Vinogradov’s < notations in this section. Recall that for two
complex-valued functions f(z), g(z), we write f = O(g) or f < ¢ in a region if and
only if there is a constant C' > 0 such that |f(z)| < C'|g(z)| for all z in that region.
Let L(q),&(q) be analytic functions for ¢ = e in the unit disk, and fix ¢ and ¢ as

above. Following Ngo and Rhoades, we define four hypotheses about the asymptotic
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properties of these functions. In (H1)-(H4) below, the notation < and Os; and
indicates that the implied constants depends on 4.

(H1) For every positive integer k, as |z| — 0 in the cone Ds we have

where B € R and o, € C.
(H2) As |z| — 0 in the cone Dy we have

£(q) = KPe? <1 + Oy (e_%>> ,

where A :=¢?, and K,3>0and v > 0.
(H3) As |z| — 0 in the region § — ¢ < |arg(z)| < §, we have
[L(a)] <5 217,
where C' > 0.
(H4) As |z| — 0 in the region § — ¢ < |arg(z)| < 7, we have

€(q)] < € (lql) e ™,

where ¢ = 0'(0) > 0.

Note that (H1) and (H2) put restrictions of the asymptotic behavior of L(¢)&(q)
on the major arc; hypotheses (H3) and (H4) put restrictions on the minor arc. Ngo-
Rhoades proved the following result from these hypotheses.

Proposition 5.8 ([19, Proposition 1.8]). Assume the hypotheses above. Then as
n — oo we have for any N € Z" that

N-1
c(n) = Ke?VAry1(2B-26-3) (Z pn"z+ 0 <n‘§v>> ’

r=0

» /itB—B+3 )
r (—57) VA *T(G+B+2+7)
where p, := Y a;Ci,—j and ¢;, = _ 5 )
=0 Qﬁ T!F(] + B+ 5~ 7’)

Observe that when applying Proposition 5.8, the precise values of the constants
d,7,C, and ¢’ do not appear in the asymptotic formula, and therefore we will not put
any emphasis on computing these values exactly in the calculations of this section.
In Section 5.2, we verify the hypotheses (H2) and (H4) for the function (—g¢;q)_,
which appears in all the generating functions we consider. In Section 5.3, we verify
the hypotheses (H1) and (H3) for certain rational functions and Lambert series which
appear in the generating functions for as(n), by(n), ag(n), and bs(n).

INgo and Rhoades assumed that v > ¢2, but this is not strictly necessary when establishing
Proposition 5.8, although the scenario where v > ¢? does arise naturally if ¢ is modular.
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5.2. Modular transformations. Here, we provide the calculation of the asymptotic
growth of (—g¢;¢)., on both the major and minor arcs. As we have seen in previous
sections, the generating functions for a;(n) and b;(n) naturally arise as the product of
(—¢; q),, and certain other factors. Since (—¢; ¢)~ is the only factor with exponential
singularities in the generating functions for a,(n), b:(n), t = 2,3, we set &(q) =
(—¢;q),- We also let P(q) := (g; q);l be the generating function for the partition
function p(n). Note here that for ¢ = ™7, we have the relation P (¢?™7) = ez = 1(7)
where 7(7) is the Dedekind n-function. For the remainder of the section, we use the
notation ¢ = e *. The following transformation property for P(q) follows easily
from the modular modular transformation law n(—1/7) \/_ i n(7) satisfied by the
Dedekind n-function:

z T2z 4n?
Plg) = ] = T_z P( % >
(@) =/ 55 &P (6z 24) ‘

From this formula, it follows that

472

5<q>=iep(”2+i)P<e—_;>.

V2 122 24 P(e_z)

Using this transformation law, Jackson and Otgonbayar [14] proved the following
asymptotic results on £(¢) on the major and minor arcs.

Lemma 5.9 ([14, Lemma 3.8]). Let A > 0 be a positive constant, and suppose
z =z + iy satisfies 0 < |y| < Azx. Then as z — 0 in this region, we have

1 2 z 2
= o(- 1))
Sla) = 5 exp (122 - 24) ( i N
Lemma 5.10 ([14, Lemma 3.9]). Let A > 0 be a positive constant, and suppose
z =z + iy satisfies Ax < |y| < w. Then as z — 0 in this region, we have

sl <o (1 (3+ 2+ ) )

In particular, if A > 1.45, then there is a positive constant &' such that

£(q)] < € () - exp (—‘i) |

Remark 5.11. The results of Jackson and Otgonbayar are stronger than this; in
particular, their bounds are completely explicit.

Notice that as a result of Lemmas 5 9 and 5.10, 5( ) = (—q;q),, satisfies (H2) and
(H4) with the constants § =0, K = 75 and A =

5.3. Estimating rational functlons and Lambert series. To verify (H1) and
(H3) for our situation, we must consider the rational functions and Lambert series
that appear in the generating functions for as(n), by(n), az(n), and b3(n). We define
the following functions:

2 3
(1+q+¢)
LO,Q(q> = 1— q4 ’
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2
Laa(q) = —2

1—¢?
(q) = ¢’(1+q°) ¢° N ¢
o (I+q)(1—¢" 1—¢* 1—¢%
2
—q q q
Las(q) :== Ras(q : — + '
;1%—(] 1—-¢H(1+q) 1+¢ Sl

By considering the Laurent expansions of L, (e %), Lg2(e™?), Los(e™?), and Ry 3(e?),
we obtain the following results.
3
Lemma 5.13. As |z| — 0, we have
1/1
Lap(q) = 2 <§ + O(Z)> :

Lemma 5.14. As |z| — 0, we have

Los(e™) = é (5 + 0(2)) |

Lemma 5.15. As |z| — 0, we have

Ras(q) = % (%1 + O(z)> .

Notice that, as a result of Lemmas 5.12 and 5.13, L,2 and Lgo each satisfy (H1)
with constants (B, ag) = (1,2) and (1, 3), respectlvely Similarly, by Lemma 5.14, L, 3
satisfies (H1) with constants (B ap) = (17 2). Furthermore, by using the triangle and

reverse triangle inequalities, we obtain the following bounds on our rational functions,
which show that L,o, Lg2, and L, 3 satisfy (H3).

Lemma 5.12. As |z| — 0, we have

IS

Loa(q) =

Lemma 5.16. Suppose z = x + 1y. Then, as |z| — 0, we have

3 _
Loa(a)| < 5= < |27

Lemma 5.17. Suppose z = x +1iy. Then, as |z| — 0, we have
1 -1
Laa@)] <+ << el
Lemma 5.18. Suppose z = x + iy. Then, as |z| — 0, we have
—z 1 -1
|Los(e™®)| <« - < |z| .

Lemma 5.19. Suppose z = x +1iy. Then, as |z| = 0 in the region T — 6 < |y| < 3
we have .
[Ras(q)| < 5- < |27

2
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Finally, we estimate the Lambert series appearing in the definition of Ly 3(g). Using
a technique of Zagier [28, Section 4] based on Euler-Maclaurin summation, Craig
proved the following estimates for this Lambert series.

Lemma 5.20 ([6, Lemma 4.1]). Let A > 0 be a constant, and let z = x + iy with
0 <l|y| < Az. Then as z — 0 in this region, we have

e " log(2
Z - 3(2)

1+ e z

n>1

Lemma 5.21 ([6, Lemma 4.6]). Let z = x + iy satisfy x > 0, 0 < |y| < 7. Then we
have

—nz

e 1
2 T <

x?
n>1

5.4. Proof of Theorems 5.1 and 5.2. In this section, we prove Theorems 5.1 and
5.2 by verifying that the hypotheses required for Proposition 5.8 are satisfied by the
generating functions of ag(n), by(n), asz(n), and bs(n).

Proof of Theorem 5.1. By Lemmas 5.9 and 5.12, we have L,2(e ™) = 2 + O(1) and

E(e™?) = \/iﬁ exp (”—2 + O(z)) on the major arc. These estimates show that L,2(q)

12z
and £(q) satisfy Hypotheses (H1) and (H2) with constants § = 0, K = \%, A= ’IT—;,

Qg = %, and B = 1. Furthermore, on the minor arcs, Lemmas 5.10 and 5.16 show

that our generating function satisfies Hypotheses (H3) and (H4).
Similarly, Lemmas 5.9, 5.13, 5.10, and 5.17 show that Lg2(¢) and £(q) satisfy

Hypotheses (H1)-(H4) with constants =0, K = \%, A=Z ap= %, and B = 1.

120
Therefore, we can apply Proposition 5.8 to obtain the desired asymptotics for by(n)

and as(n). O
Recall that, by Proposition 4.5,
m 2
n 4q q 3
> “bs(n)q" = (—q;q) 2 Ty 1_q2( )

n>0

2 m
—q —q q
=&(q + +
AN e ey e e A T

= ¢{(q)Las(q)
Proof of Theorem 5.2. Lemmas 5.9, 5.14, 5.10, and 5.18 show that L,3(q) and &(q)
satisfy Hypotheses (H1)-(H4) with constants § =0, K = A= ay=2 B=1.

Furthermore, by Lemmas 5.9, 5.20, and 5.15, we have

Lus(e—) = % (1og(2) _ é) +o(1)

1
V2’

and (e %) = \/Liexp (% + O(z)) on the major arc. These estimates show that

Li3(q) and £(q) satisfy Hypotheses (H1) and (H2) with constants § = 0, K = \/Li’
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A= 7{2, = log(2) — 3, and B = 1. Furthermore, on the minor arcs, Lemmas 5.10,

5.21 and 5 19 show that our generating function satisfies Hypotheses (HS) and (H4).
Therefore, we can apply Proposition 5.8 to obtain the desired asymptotics for bz(n)
and az(n). O

6. FURTHER BIAS RESULTS

Recall that we denote by ¢1(\) (respectively f2(\)) the number of parts A\; of A
with A\; — A\jx1 = 1 (respectively A\; — Aiy1 = 2). We assume A\, = 0 if & > ¢()). For
Jj = 1,2, we refer to ¢;(\), as the number of gaps of size j in A. Note that the f5(\)
partition statistic appeared in our calculations of both az(n) and bsz(n). Thus, it is
natural to investigate a possible bias in the total number of gaps of size exactly 1,
respectively 2, in odd versus distinct partitions. We prove that such a bias exists. As
in the case with the total number hooks of fixed length, the direction of the bias for
the total number of gaps of size 2 is the opposite of that for the total number of gaps
of size 1.

Theorem 6.1. Forn € Ny,
dooaN = o LM
AED(n) A€O(n)
s non-negative except for n = 2 and n = 4 in which case it equals —1.

Theorem 6.2. For n € Ny,
Z () — Z 210
AeO0(n) XeD(n)
is non-negative except for n =2 and n = 6 in which case it equals —1.

After proving each theorem, we provide combinatorial interpretations of the re-
spective excesses.

6.1. Proof of Theorem 6.1. If A € O(n), then

1 iflel,
6 = {0 else

Thus,

1
YD 0N =5 = (¢ D
o (45 %)

The number of gaps of size 1 all in distinct partitions of n is equal to the total
number of parts in all distinct partitions of n minus the total number of gaps of
size at least 2 in all distinct partitions of n, i.e., bj(n) — by(n). Using this and the
generating function for by(n) found in (3.2), we have

m 2

q q 2
> D €1 (4 @)oo ) - (=0 @)
n>0 AeD(n lel"‘q l—gq
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Therefore,

= (—¢;¢)oo __ 4 (=¢% @)oo — 4(—; Qoo
e I+qgm 1-—g¢q

= (4 Q) <Z - imqm -3 . i q) . (6.1)

m>1

We will show that the expression in (6.1), when expanded as a g¢-series, has non-
negative coefficients for n > 5. We rewrite (6.1) as

(=4 @)oo ( " - > , (6.2)

m211+qm I+gq

which can be seen by, for example, subtracting (6.2) from (6.1) and using the geo-
metric series identity.
Next we write

(—4;9) ( " q2>
m211+qm 1+q

:(—Q;Q)oo( . ¢ >+(—q;Q)ooZ i

I+q 1+¢ 1+gq = l4qm
3m
q
= (-0 (P + P+ +d" = — ") + (~ ) —. (6.3)
m>3 1 + q
To finish the proof, we show that the only negative terms in
(" Qe (@ + @+ +d" — " — "),
when expanded as a g-series, are —¢? and —¢*.
By expanding the ¢-Pochhammer symbol, we obtain
(0" oo =+ (0% Do + Y " (=" )
k>4
=+ (05D + D (0" ).
k>3
Similarly,
(=% 0o =+ " ("0 +6* ) (=" @)
k>3 k>3
¢'(—0% Do = 0" + € (0" Do + (0" Voo + ¢ (=" Do + D " (0" 0)c

k>3

(=% Qoo = (=" @)oo + (—0°; Do + (=% @)oo,
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(0% D0 ="+ DT+ 0+ )" 0o + D dH(

k>3 £>3
0(=¢% @)oo = 4" (0" Qoo + ¢ (=" D)oo + ¢ (=" Do
Then,
(%D (P+P++d - —¢") = -+ — ¢ + Hi(q),
where
Hy(q) = ¢" +q"°(=q" @) + qm(—(f" 7)o
+ @) T D + D T+ g+ ) (0 )
k>3 k>3

Clearly, Hi(q) expanded as a g-series has non-negative coefficients. This completes
the proof of Theorem 6.1. 0

The proof of Theorem 6.1 shows that

3m

2 Z G = Y 6N )¢ ==+ =+ @)+ (30w ) 1iqm.

n>0 \ XeD(n AEO(n) m>3

We now give a combinatorial interpretation for Z i (N) — Z ¢1(\) when n > 5.
AED(n) Ae0(n)
First note that

3Im

14+qg™

(4o Y

m>3

is the generating function for the number of partitions of n in which exactly one part

greater than 2 has multiplicity three and all other parts have multiplicity one. Next,
we interpret the summands in H;(q) as combinatorial generating functions:

e ¢° is the generating function for the number of partitions of n with exactly
three parts equal to 2 (and no other parts).

o ¢'°(—q* ¢)o is the generating function for the number of partitions A of n
with exactly three parts equal to 2, all other parts distinct, and 1,3 € A.

e ¢>(—¢°; q)oo is the generating function for the number of partitions A of n
with exactly three parts equal to 1, all other parts distinct, and 2,3,4 € \.

LI7AD DI "¢ (—¢"2; q) is the generating function for the number of par-

titions A of n with £(\) > 5, exactly three parts equal to 1, all other parts
distinct, 2 € A, and the two smallest parts not equal to 1 differing by one.

¢ ° Y ins L+ g + 4 (=01 g)e equals ¢° 30,05 050 (=0 ) +

q Zk>3 " ¢**2(—¢""3; ¢), which is the generating function for the number
of partitions A of n with £(\) > 5, exactly three parts equal to 2, all other
parts distinct, 1 € A, and the two smallest parts not equal to 2 differing by

one or two.
Thus, for n > 5,

PRAICY N 210N

XeD(n) AeO(n)
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equals the number of partitions A\ of n with exactly one part repeated three times
and all other parts distinct such that

(i) if the repeated part is 1, then £(\) > 5, the two smallest parts not equal to 1
differ by one, and if 2 € A\, then 4 € \.
(ii) if the repeated part is 2, then ¢(\) = 3 or () > 5, and
e if 1 € A\, then 3 € A
e if 1 ¢ A, then the two smallest parts not equal to 2 differ by one or two.

Corollary 6.3. Forn > 5,

)= D 6N <bi(n) - ay(n).

AeD(n) AeO(n)

Proof. This follows immediately from the combinatorial interpretation above and
Corollary 1.6. O

Remark 6.4. Corollary 6.3 can be rewritten as

a(n) = > (N <bi(n)— Y 4(N), forn>5 (6.4)

A€0(n) AeD(n)

In fact, the inequality is true for all n > 0. Combinatorially, (6.4) states that the
total number of different part sizes greater than 1 in all odd partitions of n is at most
the total number of gaps greater than 1 in all distinct partitions of n. It is interesting
to compare this with Corollary 1.6 which implies that the total number of parts in all
distinct partitions of n is at most the total number of different part sizes in all odd
partitions of n.

6.2. Proof of Theorem 6.2. From Section 4,
¢ q'
Z lo(A) = (_QBQQ)ooﬁ and Z l(A) = (¢ Q)ooﬁ-
AeD(n) q A€O0(n) q
Thus, we need to show that, the coefficients of ¢, n # 2,6, in

4 q2

W)= | 20 60 = 3 60 | ¢ = (60e g~ (e
)

n>0 \ A€O(n) AeD(n

are non-negative. A direct calculation shows that the coefficients of ¢? and ¢% in Hy(q)
are both equal to —1.
After some ¢-series manipulations, we have that
5

q m m
Hy(q) +¢* + ¢° = (=¢*; Voo gz C(—0* Qoo — (1 +¢") D q" (=" 0)oc

1
m>5
4 ! 2 4 1
= (5 Qoe— = (1 +¢") D> " (=" 0
1—q m>5
= (—¢" @) Y d" = (144" > d" (=" " 0w
k>7 k>7
=1+ ¢ ("0 — (=" 0)) -
k>T7
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Moreover, for k > 7, we have

(0 oo = (=" 5 Doe = D (e — Y (M 0)n

]>5 j>k—1

_Zq ]+1

Thus,
Hy(q)+ ¢ +¢*=(1+q)> ¢ Zq 7 g (6.5)
k>7 7=5
which clearly has non-negative coefficients and completes the proof. 0

We interpret (6.5) as a combinatorial generating function as follows. We write
k>7ask=3d+r, 0<r <2and we view ¢* as generating d parts equal to 3
and one part equal to . The sum Zf;g ¢ (—¢""1; q) o generates non-empty distinct
partitions with smallest part between 5 and k — 2 (inclusive).

Thus, for n # 2,6,
PORCICVENDBIREIEY
AeO0(n) AED(n)
equals the number of partitions A of n satisfying all of the following conditions:
(1) m)\(?)) > 2, and if m)\<3) = 2, then )\g(k) < 3,
(i) 3 is the only repeated part, and 1 and 2 cannot both occur as parts in A,
(iii) A has part greater than 4 and the smallest part s greater than 4 satisfies

b<s< (Xhwsh) -2
We also provide a second combinatorial interpretation for the excess of Theorem
6.2. From (6.5), we have that

k—1
Hy(q)+ ¢ +¢"=(1+4)> "> ¢ ()

k>7  j=6
=(1+4q") Zq’“ 4" 4)oo Zq
k=6 j=k+1
oo q2k .
=1+d) ) T (=a%0q)
q
k=6
2 oo
= 1+¢"> ¢
k=5
Thus, for n # 2,6,
PORACYEN DRAPY
A€0(n) AeD(n)

also equals the number of partitions A of n such that 1 occurs at least twice as a part
of A\, there are no parts equal to 2 or 3, the smallest part greater than 4 occurs twice,

and all other parts occur once.
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We end this section by noting that the combinatorial interpretations for the excess
in Theorem 6.1, respectively 6.2 are of a similar flavor to Theorem 1.5.

7. FURTHER CONJECTURES

We conclude this paper with several remarks and conjectures. In particular, we ex-
plore possible generalizations of our main results to other values of ¢ and other families
of partitions. We also remark briefly on an apparent congruence which appears in
our data.

7.1. A stronger conjecture. Recall Conjecture 1.7 (ii), which says that for all
integers ¢t > 2, a;(n) — b(n) — oo as n — oo. Corollaries 5.3 and 5.5 establish
Conjecture 1.7 (ii) for ¢t = 2 and ¢t = 3. We also conjecture the following stronger
asymptotic result, which is proved for ¢ = 2 and t = 3 in Corollaries 5.4 and 5.6.

Conjecture 7.1. For every integer t > 2, there is a positive constant oy > 1 such
that a;(n) ~ ayb(n) as n — oo.

We now give a heuristic explanation for why one should think that Conjecture 7.1
is true. Due to Euler, we know that the number of partitions into odd parts equals
the number of partitions into distinct parts. Thus, the total number of cells among
the two families of partitions are also equal and, as noted in Section 1, we have for

every n that
> ai(n) => bi(n). (7.1)

t>1 t>1

Corollary 1.6 states that by(n) > a;(n), and the main theorems of our paper establish
that a;(n) > by(n) for t = 2,3 and n sufficiently large. To explain this phenomenon
informally, let A € O(n) and p € D(n) be random partitions of the same (sufficiently
large) integer n. Theorem 1.5 implies that, on average, 1 should have more hooks of
length 1 than A. In order to balance this fact with (7.1), A must have more hooks of
other lengths ¢. Since there are in general more “small” hook lengths than “large”
hook lengths in a given partition, we should expect the “small” hook lengths to be
the main contribution to balancing (7.1). Our results do not consider what happens
if ¢ is allowed to vary with n, so we do not know whether a random odd partition
or a random distinct partition should have more “large” hook numbers. However,
the data we obtain, in particular the fact that N; appears to grow with ¢, suggests
that for n < IV, it is usually true that b;(n) > a;(n), contrary to the case for n > 0.
This suggests that the hook numbers of partitions into distinct parts tend to be
either equal to 1 or large relative to n, while partitions into odd parts tend to have
hook numbers of more intermediate values. It would be interesting to understand
this phenomenon in more detail. For example, given a positive constant 0 < ¢ < 1,
one could ask whether odd or distinct partitions have more hook numbers of size
t > nf. Our heuristic suggests that for large enough ¢ in this interval, hooks of length
t > n® should be more common in distinct partitions of n than in odd partitions
of n. It would also be interesting to understand this picture in terms of probability

distribution functions. Such a possibility is discussed further in Section 7.4.
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7.2. Hook bias conjectures for self-conjugate versus distinct odd parts par-
titions. Since the number of self-conjugate partitions of n equals the number of
partitions of n into distinct odd parts, one may study the possible bias in the number
of hooks of fixed length in these sets of partitions. To this end, let a;(n) be the total
number of hooks of length ¢ in all self-conjugate partitions of n and let b;(n) be the
total number of hooks of length ¢ in all partitions of n into distinct odd parts. We
propose the following conjecture, which is the analog of Conjecture 1.7.

Conjecture 7.2. For every integer t > 2, there is an integer N such that for all
n > N, we have aj(n) > bi(n). Furthermore, we have a;(n)—bi(n) — 0o asn — oo.

The following table gives conjectural values of the constants NV for 2 < ¢ < 10.

t 1 2(3/4|5]6|7]8]9]10
Ny 1081221213020 383254

Table: Conjectural values for N/

The explanation of this conjecture is, on heuristic grounds, the same as that for
Conjecture 1.7. In particular, it appears that the hook numbers of partitions into
distinct odd parts tend to be either very small or very large, whereas the hook numbers
of self-conjugate partitions tend to take intermediate values. It would be equally
natural to investigate such questions for other well-known partition identities. For
example, one could consider the Rogers-Ramanujan identities or Glaisher’s identity
involving k-regular partitions and partitions with parts repeated at most (k—1) times.

7.3. Congruence conjectures. We now consider a;(n), the number of hooks of
length ¢ in all self-conjugate partitions of n, from an arithmetic point of view. By the
symmetry of self-conjugate partitions, it is clear that a3 (n) = 0 (mod 2) for all n;
this is because hook numbers on the main diagonal of a self-conjugate partition are
necessarily (distinct) odd integers. While generating data in support of Conjecture
7.2, the authors discovered what appear to be nontrivial congruence relations for
a;(n) extending the trivial observation above.

Conjecture 7.3. We have for alln >0 and m > 1 that
ay..(n) =0 (mod 2m).

This has been verified by computer for 1 < m < 5 and 0 < n < 70. We note
that if we denote by a;*(n) the number of hooks of length divisible by ¢ in all self-
conjugate partitions of n, then by using the sieve of Eratosthenes one may show
that the conjecture above is equivalent to showing that a3 (n) =0 (mod 2m) for all
m>1and n > 0.

7.4. Future directions. There are a number of statistical results in the literature
regarding how hook numbers distribute among unrestricted partitions. For example,
see [3, 5, 8, 16] for several different approaches to such distributions. Adopting the
same philosophy as this paper, it would be natural to ask how these statistics behave
in families of partitions such as partitions into odd parts or partitions into distinct
parts. For example, based on our work and [3] it would be natural to ask whether the
2-cores and 3-cores of partitions into distinct parts might be larger on average than

those of partitions into odd parts. It would also be natural to ask similar questions for
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partition statistics other than those statistics discussed in this paper; a few potentially
interesting examples might be the largest/smallest part or rank and crank statistics.

Data availability. Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.

1]

REFERENCES

George E. Andrews. The theory of partitions. Cambridge Mathematical Library. Cambridge
University Press, Cambridge, 1998. Reprint of the 1976 original.
George E. Andrews. Fuler’s partition identity and two problems of George Beck. Math. Student,
86(1-2):115-119, 2017.
Arvind Ayyer and Shubham Sinha. The size of t-cores and hook lengths of random cells in
random partitions. The Annals of Applied Probability, 33(1):85 — 106, 2023.
Olivia Beckwith and Christine Bessenrodt. Multiplicative properties of the number of k-regular
partitions. Ann. Comb., 20(2):231-250, 2016.
Kathrin Bringmann, William Craig, Joshua Males, and Ken Ono. Distributions on partitions
arising from hilbert schemes and hook lengths. Forum of Mathematics, Sigma, 10:e49, 2022.
William Craig. On the number of parts in congruence classes for partitions into distinct parts.
Research in Number Theory, 8(3):52, 2022.
P. Erdés, J.-L. Nicolas, and M. Szalay. Partitions into parts which are unequal and large. In
Number theory (Ulm, 1987), volume 1380 of Lecture Notes in Math., pages 19-30. Springer,
New York, 1989.
Michael Griffin, Ken Ono, and Wei-Lun Tsai. Distributions of hook lengths in integer partitions.
Proceedings of the American Mathematical Society, In press.
Peter Hagis, Jr. Partitions into odd summands. Amer. J. Math., 85:213-222, 1963.
Guo-Niu Han. The Nekrasov-Okounkov hook length formula: refinement, elementary proof,
extension and applications. Ann. Inst. Fourier (Grenoble), 60(1):1-29, 2010.
Guo-Niu Han and Huan Xiong. New hook-content formulas for strict partitions. In 28th In-
ternational Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2016),
Discrete Math. Theor. Comput. Sci. Proc., BC, pages 635-645. 2016.
Guo-Niu Han and Huan Xiong. New hook-content formulas for strict partitions. J. Algebraic
Combin., 45(4):1001-1019, 2017.
Gordon H. Hardy and Srinivasa Ramanujan. Asymptotic formulae in combinatory analysis.
Journal of The London Mathematical Society-second Series, 17:75-115.
Faye Jackson and Misheel Otgonbayar. Biases among congruence classes for parts in k-regular
partitions. arXiv preprint arXiw:2207.04352, 2022.
Jacob Katriel. Asymptotically trivial linear homogeneous partition inequalities. J. Number The-
ory, 184:107-121, 2018.
Hannah Lang, Hamilton Wan, and Nancy Xu. Distributions of hook lengths divisible by two or
three. Journal of Number Theory, 246:227-251, 2023.
Sho Matsumoto and Piotr Sniady. Random strict partitions and random shifted tableaux. Se-
lecta Math. (N.S.), 26(1):Paper No. 10, 59, 2020.
Nikita A. Nekrasov and Andrei Okounkov. Seiberg-Witten theory and random partitions. In
The unity of mathematics, volume 244 of Progr. Math., pages 525-596. Birkhéuser Boston,
Boston, MA, 2006.
Hieu T. Ngo and Robert C. Rhoades. Integer partitions, probabilities and quantum modular
forms. Res. Math. Sci., 4:Paper No. 17, 36, 2017.
OEIS Foundation. Entry A265251 in The On-Line Encyclopedia of Integer Sequences. http:
//oeis.org/A265251, 2017.
Frank W. J. Olver. Asymptotics and special functions. AKP Classics. A K Peters Ltd., Wellesley,
MA, 1997. Reprint of the 1974 original [Academic Press, New York].
Hans Rademacher. On the partition function p(n). Proceedings of the London Mathematical
Society, $2-43(1):241-254, 1938.

35


http://oeis.org/A265251
http://oeis.org/A265251

[23] Hans Rademacher. Topics in analytic number theory. Die Grundlehren der mathematischen
Wissenschaften, Band 169. Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Gross-
wald, J. Lehner and M. Newman.

24] Tssai Schur. Uber die Darstellung der symmetrischen und der alternierenden Gruppe durch
gebrochene lineare Substitutionen. J. Reine Angew. Math., 139:155-250, 1911.

[25] Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

[26) WOLFRAM. Numerical nonlinear local optimization. https://reference.wolfram.com/la
nguage/tutorial/ConstrainedOptimizationLocalNumerical.html#1422430628.

[27] E. M. Wright. Stacks. II. Quart. J. Math. Oxford Ser. (2), 22:107-116, 1971.

[28] Don Zagier. The Mellin transform and related analytic techniques, In: E. Zeidler, Quantum field
theory. I. Basics in mathematics and physics. A bridge between mathematicians and physicists.
Springer-Verlag, Berlin, 305-323, 2006.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, COLLEGE OF THE HoLy CROSS,
WORCESTER, MA 01610, USA
Email address: cballant@holycross.edu

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, TwIN CITIES, 127 VINCENT HALL
206 CHURCH ST. SE, MINNEAPOLIS, MN 55455, USA
Email address: hburson@umn . edu

MATHEMATICAL INSTITUTE, UNIVERSITY OF COLOGNE, GYRHOFSTR. 8B, 50931 COLOGNE,
GERMANY
Email address: wecraig@uni-koeln.de

DEPARTMENT OF MATHEMATICS AND STATISTICS, AMHERST COLLEGE, AMHERST, MA 01002,
USA

FEmail address: afolsom@amherst.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, 480 LINCOLN DRIVE, MADISON,
WI 53706, USA

FEmail address: bwen25@uwisc.edu

36


https://reference.wolfram.com/language/tutorial/ConstrainedOptimizationLocalNumerical.html#1422430628
https://reference.wolfram.com/language/tutorial/ConstrainedOptimizationLocalNumerical.html#1422430628

	1. Introduction
	2. General linear inequalities for partitions into distinct parts
	2.1. Proof of Theorem 1.11
	2.2. General linear inequalities for distinct partitions without small parts

	3. Hooks of length 2
	3.1. Odd partitions and hooks of length t=2
	3.2. Distinct partitions and hooks of length t=2
	3.3. Proof of Theorem 1.8 for hooks of length t=2

	4. Hooks of length 3
	4.1. Odd partitions and hooks of length t=3
	4.2. Distinct partitions and hooks of length t=3
	4.3. Proof of Theorem 1.8 for hooks of length t=3

	5. Asymptotic formulas
	5.1. Wright's circle method
	5.2. Modular transformations
	5.3. Estimating rational functions and Lambert series
	5.4. Proof of Theorems 5.1 and 5.2.

	6. Further bias results
	6.1. Proof of Theorem 6.1
	6.2. Proof of Theorem 6.2

	7. Further conjectures
	7.1. A stronger conjecture
	7.2. Hook bias conjectures for self-conjugate versus distinct odd parts partitions
	7.3. Congruence conjectures
	7.4. Future directions
	Data availability

	References

