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ABSTRACT

Detecting and analyzing the local environment is crucial for investigating the dynamical processes of crystal nucle-
ation and shape colloidal particle self-assembly. Recent developments in machine learning provide a promising avenue
for better order parameters in complex systems that are challenging to study using traditional approaches. However,
the application of machine learning to self-assembly on systems of particle shapes is still underexplored. To address
this gap, we propose a simple, physics-agnostic, yet powerful approach that involves training a multilayer perceptron
(MLP) as a local environment classifier for systems of particle shapes, using input features such as particle distances
and orientations. Our MLP classifier is trained in a supervised manner with a shape symmetry-encoded data augmen-
tation technique without the need for any conventional roto-translations invariant symmetry functions. We evaluate the
performance of our classifiers on four different scenarios involving self-assembly of cubic structures, 2-dimensional and
3-dimensional patchy particle shape systems, hexagonal bipyramids with varying aspect ratios, and truncated shapes
with different degrees of truncation. The proposed training process and data augmentation technique are both straight-
forward and flexible, enabling easy application of the classifier to other processes involving particle orientations. Our
work thus presents a valuable tool for investigating self-assembly processes on systems of particle shapes, with potential
applications in structure identification of any particle-based or molecular system where orientations can be defined.

I. INTRODUCTION

Self-assembly is studied extensively in such fields as
physics, chemistry, materials science, chemical engineering
and biology1,2. A fundamental process involving thermody-
namics and kinetics, self-assembly refers to the formation of
ordered structures from individual building blocks or particles
without direction from an external field. In recent years, the
development of self-assembled structures from sub-micron-
sized particle building blocks has attracted considerable atten-
tion due to their potential applications in nanotechnology3–10.
An important challenge in elucidating and, eventually, engi-
neering assembly pathways to optimize target structures is
defining appropriate order parameters that quantify local order
in the assembling structures along the pathway11–15. Defin-
ing suitable local order parameters is particularly challeng-
ing when the self-assembling structure is complex (e.g. a
large unit cell, possessing chirality, etc.) or when compet-
ing polymorphs or pre-nucleation motifs emerge along the
pathway16–18.

Previous studies have attempted to identify suitable
order parameters for self-assembly, including using the
radial distribution function, the bond-orientational order
parameter15,19–21, and Voronoi tessellation19,22,23. While
these order parameters have been used extensively and suc-
cessfully in capturing some aspects of the assembly process,
they have limitations. For example, the radial distribution
function (RDF) considers only the pairwise (two-point) cor-

relation between particles and does not capture higher-order
correlations. The bond-orientational order parameter is sensi-
tive to local structure but is less effective in detecting global
ordering. Methods using the Voronoi tessellation can eluci-
date local structure but are less effective in describing long-
range order. In particular, these approaches are insufficient for
interrogating, e.g., the self-assembly of a system of truncated
tetrahedra into a crystal with 432-particle unit cell17.

Machine learning (ML) is becoming an increasingly pop-
ular approach for discovering order parameters useful in
the study of self-assembly12–14,24–28. One ML approach
uses existing order parameters that combine roto-translation-
invariant symmetry functions as input descriptors and approx-
imates optimal order parameters12,29. However, an immedi-
ate shortcoming of this type of supervised ML method is its
limited classification capabilities, which are constrained by its
input descriptors. If none of the input descriptors can clas-
sify a certain crystal structure, the machine learning methods
will fail to classify that crystal structure. Training deep neu-
ral networks (NNs) to classify crystal phases is another in-
creasingly common approach15,21,30–33. Deep NNs can iden-
tify nonlinearity and are especially promising in construct-
ing order parameters from particle features, such as instan-
taneous positions along a trajectory. Since thermal fluctua-
tions often lead to noisy data, however, applying symmetry
functions to encode particle positions is usually inevitable34.
These pre-engineered symmetry functions can work well for
some systems, but finding symmetry functions that encode
particle orientations is non-trivial. Finally, graph neural net-
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works (GNNs) have also become popular for classifying crys-
tal structures35–37. By treating crystal structures as connected
graphs, GNNs preserve permutation symmetry. However,
they often require additional manipulation to deal with ro-
tational and translational symmetry29. Although equivariant
GNNs have recently been proposed38, the question of how to
incorporate equivariant properties for particle shapes remains
to be addressed. Common to all of these ML approaches is
the tendency for increasing complexity in the approach as the
building blocks and the structures they form become increas-
ingly complex.

In this work, we show how we can use the most basic
NN, a multilayer perceptron (MLP), as a local environment
classifier in systems of particle shapes. Because we use the
MLP classifier to quantify the local environment around each
particle, the classifier is permutation-invariant, precluding the
use of more sophisticated network structures such as GNNs37.
Thus, instead of employing conventional symmetry functions
to transform per-particle quantities to input descriptors, we
analyze step-by-step the symmetry of a particle’s shape and
propose a straightforward shape-symmetry encoded data aug-
mentation method that allows our MLP classifier to operate on
per-particle features directly. This data augmentation method
ensures the roto-translation invariance of input features to the
global environment and accounts for the particle shape’s sym-
metry. Importantly, the simplicity of our data augmentation
method necessitates minimal manipulation of the raw data,
and also leads to a substantial improvement in the classifica-
tion performance and flexibility when distinguishing different
thermodynamic phases in our test systems. In this way, our
approach can provide a simple, powerful, physics-agnostic al-
ternative to conventional order parameters when studying self-
assembly.

The remainder of this article is organized as follows. In
Sec. II A, we introduce per-particle quantities as input fea-
tures. Next, in Sec. II B, we show how we perform data aug-
mentation on input features based on particle shape symmetry.
In Sec. II C, we introduce the MLP model we used as a local
environment classifier. In Sec. III, we demonstrate our method
on seven different test cases. We first test our classifier’s sta-
bility in Sec. III A for a simple cubic structure self-assembled
in simulation from hard cubes. Subsequently, we test our clas-
sifier on six additional self-assembly examples that result in
three different categories of final products. In each case, we
show how data augmentation improves classification quality.
A conclusion is given in Sec. III D. We have also created a
repository that grants complete access to all trajectory data,
code and scripts, enabling users to reproduce our work39,40.

II. METHOD

We construct a classifier for the local environment around
a particle using an MLP that incorporates continuous, dis-
crete and shape symmetry information. By building an MLP
classifier that learns to classify each particle, we ensure that
the classification is permutation invariant. We first extract
features from each particle’s local environment and then use

these features to train MLP classifiers to accurately classify
particles based on their local environment.

A. Per-particle quantities as input features

To account for translational symmetry and describe the lo-
cal environment of a target particle in a system of like parti-
cles, we employ a set of interparticle quantities defined with
respect to the surrounding neighborhood. Specifically, we cal-
culate the relative positions ri j and relative orientations de-
fined by quaternion qi j of a predetermined number of neigh-
boring particles j in relation to the target particle i. These
quantities serve as a unique fingerprint of the local environ-
ment surrounding the target particle15,42 and are defined be-
low.

We define the relative position ri j using spherical coordi-
nates (ri j,θi j,φi j), where the relative distances ri j between a
fixed number Nb of neighboring particles denoted by the index
j (that is, the size of the neighborhood) and the target parti-
cle i contain information about the local density distribution.
The angular part (θi j,φi j) define the local bond angles. Note
that for a two-dimensional system, θi j is always 0. However,
despite the invariance of the relative distances ri j to arbitrary
translation operations, these distances can still be affected by
thermal fluctuations and the length scale of the system, which
can impact the transferability of our classifier. Thus, we nor-
malized the relative distances:

r(au)
i j =

ri j

max j∈Nb ri j
(1)

where the superscript (au) denotes the augmented features.

The relative quaternion qi j is commonly used to define the
relative orientation of a neighboring particle j with respect to
the target particle i. The quaternion plays an important role
in both simulating and analyzing crystallization of a system
of anisotropic particles43,44 and in defining the space group
of crystals of certain molecular systems. To describe a parti-
cle’s orientation, a reference orientation first needs to be estab-
lished using the important symmetry axis of the particle along
the orthogonal basis of Cartesian coordinates. We denote the
reference orientation by q0 = (1,0,0,0), which is equivalent
to the identity rotation with respect to the reference orienta-
tion. In Fig. 1, we illustrate the particles studied in this pa-
per by placing them in the predefined reference orientation.
Given this reference orientation, we can define subsequent ori-
entations of each particle by performing a 3-dimensional spa-
tial rotation, which can be expressed as a rotation quaternion
q = (C,Sux,Suy,Suz) where (C,S) = (cos(θ/2),sin(θ/2)).
This q thus represents a rotation angle θ from the reference
orientation about the axis u. The relative orientation between
target particle i and its neighborhood j can then be expressed
as the rotation quaternion via the conventional rotation from i
to j as:

qi j = q−1
i q j (2)
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FIG. 1. Systems of particle shapes The particle systems studied in this paper: (a) cube, (b) patchy triangle, (c) patchy triangular prism41, (d)
hexagonal bipyramid with aspect ratio α = 3.0, (e) hexagonal bipyramid with α = 1.28, (f) truncated tetrahedron, and (g) truncated octahedron.
In (a) and (b), the transparent blue region decorating the particles indicates the attractive patch, while the transparent red region indicates a
repulsive patch. Also shown are the shape symmetry-related factors Dθ , Dφ , and mirror plane normal vector n utilized for each system. Each
particle pictured here is oriented such that it is in the reference orientation given by the quaternion q0 = (1,0,0,0).
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FIG. 2. Rotation in the local environment The blue bipyramid
represents the target particle, and the white bipyramid represents a
neighboring particle.

By utilizing relative position and orientation, we can accu-
rately capture each particle’s local environment while main-
taining translational invariance. We have yet to discuss the
property of invariance to an arbitrary rotation of the system,
which can influence the angular parts θi j,φi j that are used to
define relative position and qi j. Conventionally, the rotational
invariance is achieved by randomly rotating the training set in
each training epoch36; this step is referred to as data augmen-
tation. In the next section, we present a more robust approach
for training a classifier invariant to an arbitrary system rotation
of particle environments.

B. Shape-symmetry encoded data augmentation

In the previous section, we introduced relative positions
and quaternions as input features. These input features are
designed so they are invariant to the translation of the sys-
tem. However, arbitrary rotation of the system can also limit
the transferability of the classifier, which is traditionally ad-
dressed using data augmentation techniques27. Note that our
data augmentation is different from the data augmentation

used in the training of convolution neural networks, where
random orientations are applied to generate modified copies
of image data to allow the network to recognize different sym-
metry of the images. For example, in image processing, one
duplicates the image but with random rotations to create a
training dataset to prevent possible overfitting and enhance
the transferability of the classifier. Recent developments in
equivariant NNs (ENNs) also allow for input without data
augmentation38,45,46. For systems of point particles, the final
crystal structure can be used to define the reference orienta-
tion. Here we exploit particle shape and use the user-defined
reference orientation represented by quaternions to define the
local environment. To ensure rotational invariance, we inde-
pendently rotate each target particle and its local environment
onto the predefined reference orientation, such that each target
particle is in the predefined reference orientation as shown in
Fig. 1 prior to calculating the per-particle quantities.

In addition to translational and rotational symmetries as-
sociated with the system of particles, the individual particles
can possess symmetries. With a sophisticated design, the
ENNs can process these additional symmetries during train-
ing. However, we propose a simple yet effective way to
achieve the same result here. We perform an additional data
augmentation that encodes the particle’s shape and interaction
anisotropy (patchiness). The new angular part of the relative
position and relative quaternion after this data augmentation
is denoted as (θ (au)

i j ,φ
(au)
i j ) and q(au)

i j . Through simple geomet-
ric reasoning, the augmented angular part can be calculated
easily as follows:

(θ
(au)
i j ,φ

(au)
i j ) =

(
θi j

π
mod

1
Dθ

,
φi j

π
mod

2
Dφ

)
(3)

where mod is the modulo operator, and Dφ and Dθ are dis-
crete integers that assume the value, N of the N-fold rotational
symmetry along φ and θ -direction with respect to the parti-
cles’ shape when it is in the reference orientation. In Fig. 1,
we show Dφ and Dθ for each of the corresponding hard shapes
and patchy particles in their reference orientations.

The orientation quaternion qi j ican be written as a rotation
of angle Φ along an axis u, as shown in Fig. 2 It can be proved
that the same quaternion can also be written as the rotation of
angle φ along axis v,
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FIG. 3. The data augmentation and the architecture of Multilayer Perceptron (MLP) The diagram of the data augmentation and the MLP
architecture used to classify local particle environment. The raw local environment data is augmented through sets of rotations and passed to
the input layer of MLP. The input layer has Nb +4Nb +2Nb units as described in Eq. 9, and the hidden layer contains 256 units. The number
of output layers depends on the system. For example, we will present results for a system of particles undergoing a two-steps crystallization
transition, where the output layer is composed of three units representing the probability that a given particle belongs to one of three predefined
phases.

qi j = ei Φ

2 u = ei φ

2 vQ (4)

where v = QzQ−1 defines the symmetry axis of the particle.
The symmetry axis is defined as the z-axis when each particle
is in its reference orientation and rotates in the same way the
particle rotates. The augmented quaternion is then calculated
as

q(au)
i j = ei φ(au)

2 v(au)
(5)

where φ (au) = φ mod 2π

Dφ
and

v(au) = v⊥z + cosθ
(au)z (6)

where v⊥z is defined as the component perpendicular to z and
θ (au) = arccos(v · z) mod π

Dθ
.

Under the same rule, it is also straightforward to consider
mirror symmetry. For the angular part, in general, we can
calculate augmented relative positions r(au)

i j before separating
relative positions into distance ri j and angular parts (θi j,φi j):

r(au)
i j = (ri j)⊥n +∥ri j ·n∥n (7)

where (ri j)⊥n = n×(ri j ×n) is defined as the component per-
pendicular to n. In practice, since the mirror plane of a hexag-
onal bipyramid is along the z-axis, we need only to take the
absolute value of the z-coordinate before separating relative
positions into distance and angular parts. For the quaternion
part, we need to separate the symmetry axis into normal and
parallel parts with respect to the plane normal vector n:

v(au) = v⊥n +∥v ·n∥n (8)

where v⊥n = n× (v×n) is defined as the component perpen-
dicular to n.

C. Multilayer Perceptron (MLP) as local environment
classifier

The local symmetry is broken during a self-assembly pro-
cess as the local environment around a particle changes. To
monitor the change in the local environment, we utilize a
fully connected NN, commonly known as a multilayer per-
ceptron (MLP), to classify this local environment, as illus-
trated in Fig. 3. There are several advantages of using a sim-
ple MLP instead of a more advanced GNNs or ENNs. First,
an MLP handles large datasets with simplicity and effective-
ness. An MLP allows us to train the machine even on a per-
sonal laptop, suitable for a quick, on-the-fly test. Additionally,
an MLP can be easily extended to incorporate additional fea-
tures or classify particles in other colloidal systems. Second,
a simple MLP can be greatly accelerated by harnessing the
power of modern graphical processing units (GPUs), which
can facilitate future research, such as using MLPs as order pa-
rameters to study the assembly pathways of disparate systems
forming the same structure, or in enhanced sampling meth-
ods such as umbrella sampling or metadynamics whose algo-
rithms demand efficient calculation of order parameters and
their derivatives. Third, despite its simple network structure,
a MLP still provides sufficient nonlinearity to build a powerful
classifier from fundamental features, e.g., particle coordinates
and orientations. Its classification ability is decent enough
to map local environmental fingerprints of particle shapes to
thermodynamic phases.

The input to the MLP classifier is a set of feature vectors
(r(au)

i j ,q(au)
i j ,θ

(au)
i j ,φ

(au)
i j ), as described in Sec. II A and II B.

These feature vectors are arranged and concatenated to a 1-
dimensional vector xi with the relative position and relative
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quaternion sequentially placed in ascending order as follows,

xi = sort
r(au)
i j

(...,r(au)
i j ,q(au)

i j ,θ
(au)
i j , φ

(au)
i j , ...) (9)

where j runs over all neighbors and therefore xi ∈
RNb+4Nb+2Nb . As shown in Fig. 3, the MLP architecture in-
cludes one hidden layer consisting of 256 neurons. The input
layer of the network takes the feature vectors xi and propa-
gates them forward to the hidden layer, which performs a lin-
ear operation followed by a non-linear activation function σ :

h = σ(Wxi +b) (10)

The activation function comprises a linear operation defined
by a layer-wise matrix multiplication with trainable weight
matrix W and bias vector b.

The hidden layer l = 0 takes input feature vectors xi di-
rectly, and therefore has dimensions W ∈ RM×N and b ∈
RM , where M = 256 and N = Nb + 4Nb + 2Nb. After this
linear operation, we used a rectified linear unit (ReLU) as the
activation function σ . The output from the hidden layer is
then converted to output nodes y ∈ RC in the output layer,

ŷ = softmax(W(o)h+b(o)) (11)

where W(o) ∈RM×C and b(o) ∈RC are the output weight ma-
trix and output bias, respectively, and C is the number of pre-
defined classes. The softmax function in eq. 11 is a mathemat-
ical function that converts a vector of real numbers into a prob-
ability distribution. The MLP classifiers are then trained using
the optimizer Adam47, with a learning rate of 7.5×10−4, and
with an error metric given by the cross-entropy loss L, defined
as:

L =−
C

∑
n=1

log ŷn (12)

The cross-entropy loss L, or log loss, measures the perfor-
mance of a probabilistic classification model whose output is
a probability distribution. For simplicity, all of our MLP clas-
sifiers are trained with 30 epochs, where the number of epochs
is defined as the number of times the optimization algorithm
goes through all training samples. The classifier and training
algorithm are both implemented using PyTorch48.

D. Data preparation

We generated independent training and testing trajectories
for all seven test systems. Our training trajectories comprise
fully equilibrated phases that were initiated from synthetic
structures or self-assembled and annealed at various thermo-
dynamic conditions. Equally spaced snapshots of the train-
ing trajectories were used to generate the training sets, from
which we randomly drew the validation sets. The partitioning
ratio of training and validation sets was fixed at 4:1, and each

training set comprised a minimum of 20,000 local environ-
ments. The testing trajectories comprised self-assembly runs
in which at least one phase transition was observed in each
run.

We utilized the Hard Particle Monte Carlo (HPMC) and
Molecular Dynamics (MD) modules of HOOMD-Blue49 to
simulate two-dimensional and three-dimensional convex hard
particles. Interaction patchiness was implemented using
the Just-In-Time (JIT) compilation module under HPMC.
We simulated the equilibration, annealing and self-assembly
processes within both the canonical (NVT) and isobaric-
isothermal (NPT) ensemble. To simulate the hard particles
using MD, we employed the anisotropic Weeks-Chandler-
Andersen (AWCA) potential in HOOMD-Blue50.

After we obtained the trajectories, we used the freud anal-
ysis package51 to construct the neighbor list used to calcu-
late per-particle input features. Other analysis functions of
freud were also used, such as the radial distribution function
(RDF) and Steinhardt order parameters52. The quaternion al-
gebra is handled by rowan44. Snapshot images are rendered
using Ovito53. Because our model is a supervised model,
the model’s ability to classify the phases is largely influenced
by the labeling strategy during training. Here, our labeling
strategy labels all particles within the same crystal the same.
Additionally, we confirmed via calculation of the diffraction
pattern and bond order diagram that our training trajectories
contain mostly the reference local environments.

However, we note that one can never be 100% sure in any
type of supervised ML model that all configurations that ap-
pear in the test trajectory will be in the training trajectories.
Indeed, there is always a chance that small local fluctuations
in particle arrangements will make our labeling less accurate,
and thus will be missed by the model. In the systems used
as test cases, we know a priori what equilibrium phases form
and train on those phases. We then confirmed via the diffrac-
tion pattern and bond order diagram that our training dataset
contains mostly the reference environments and that any spon-
taneous fluctuations that create locally the coordination of a
different phase do not persist.

Each test case was simulated as follows:

• Cubes: For training trajectories, three independent equili-
brated HPMC training trajectories were prepared, with
one dense fluid trajectory and two crystal trajectories
equilibrated at packing fractions of 0.244 and 0.751,
respectively. The testing trajectory was generated by
compressing the system from packing fraction 0.244 to
0.864 using HPMC simulation and then equilibrating.

• Patchy triangles: For training trajectories, three indepen-
dent equilibrated training HPMC trajectories were pre-
pared, with one dense fluid trajectory and two kagome
lattice trajectories. The kagome lattice is a two-
dimensional crystal composed of corner-sharing trian-
gles that has been discovered to be assembled by tri-
block Janus particles54,55. The fluid phase was equili-
brated above the nucleation temperature (kBT ⪆ 0.105),
while the kagome lattice was initialized from a per-
fect kagome lattice with randomly placed guest parti-
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cles and equilibrated at kBT = 0.105. The testing tra-
jectory was prepared by quenching from kBT = 0.3 to
0.1 and equilibrating using HPMC.

• Patchy prisms: For training trajectories, three independent
equilibrated HPMC training trajectories were prepared,
with one dense fluid trajectory and two crystal trajec-
tories. The testing trajectory was generated by equili-
brating an initially disordered system. Here, we use the
system from Ref.41 where the distance between the at-
tractive patches and the face center of the prism is 0.8.

• Hexagonal bipyramids with aspect ratio α = 1.28: For
training trajectories, three independent equilibrated
training MD trajectories were prepared, with one dense
fluid trajectory, one plastic crystal trajectory, and one
body-centered tetragonal (BCT) crystal trajectory56.
The systems were equilibrated at packing fractions
0.464 and 0.569 for the dense fluid and plastic crystal,
respectively.

• Hexagonal bipyramids with aspect ratio α = 3.0: For
training trajectories, three independent equilibrated
training MD trajectories were prepared, with one
dense fluid trajectory, one liquid crystal trajectory,
and one triclinic crystal trajectory56 equilibrated at
packing fractions of 0.4, 0.51, and 0.661, respectively.
The testing trajectory was prepared by quenching the
system from a reduced pressure P∗ of 0.5 to 10 and
equilibrating it using MD.

• Truncated tetrahedrons and octahedrons: For truncated
tetrahedrons, three independent HPMC training trajec-
tories were prepared, with one dense fluid trajectory
and two crystal trajectories. The dense fluid trajectories
were equilibrated at packing fractions 0.347 for trun-
cated tetrahedrons and 0.524 for truncated octahedrons.
For truncated tetrahedrons, the two training diamond
crystal trajectories were equilibrated at packing frac-
tions of 0.561. For the truncated octahedrons, the two
training high-pressure lithium crystal trajectories were
prepared by slowly annealing a self-assembled crystal
and equilibrating at a packing fraction of 0.606. The
HPMC testing trajectories were prepared by quench-
ing the systems from a reduced pressure P∗ from 0.5 to
10 for truncated tetrahedrons (using NPT) and a pack-
ing fraction from 0.14 to 0.62 for truncated octahedrons
(using NVT), followed by equilibration.

III. RESULTS AND DISCUSSION

We test the performance of our MLP on seven different sys-
tems, beginning with the simplest case of hard cubes that self-
assemble into a simple cubic lattice.

A. Test case 1: Simple cubic crystals assembled by hard
cubes

As a demonstration of our method, we first show a simple
classification test on a simple cubic structure self-assembled
from the fluid phase of hard cubes upon an increase in pack-
ing fraction. As shown in Fig. 1, the cube exhibits 2-fold and
4-fold rotational symmetries along the θ - and φ -directions.
Using Eq. 3 and Eq. 5, we can explicitly consider these sym-
metries in the data augmentation step and generate an appro-
priate training dataset that accounts for symmetry. From the
three snapshots, each representing a different stage in the self-
assembly process, in Fig. 4 (a), we see that as the packing
fraction increases, the number of local environments classi-
fied as locally cubic also increases.

To further quantify the extent to which data augmentation
using symmetry improves the MLP’s classification abilities,
we compare the classification results by the classifier trained
with and without data augmentation. In Fig. 4 (b), the particle
fraction is defined as the number of particles being classified
as a certain local environment divided by the total number of
particles in the system. There, we also plot the conventional
Steinhardt order parameter Ql

52 with l = 4 for comparison.
The order parameter Ql is defined by averaging Ql,i over each
particle i in a system defined as:

Ql,i =

√√√√ 4π

2l +1

l

∑
m=−l

Qlm,iQ∗
lm,i (13)

Qlm,i =
1

Nb

Nb

∑
j=1

Ylm, i j(ri j) (14)

where Ylm, i j is the spherical harmonic calculated by the rela-
tive position of the target particle i and its neighbors j. For
clarification, Ql differs from the quaternion Q in equation 4.

Note that when using Q4, we need to select a threshold
value (manually selected as 0.51 in this case) based on human
intuition or visualization, or we can apply another ML method
to determine this threshold, such as support vector machine
(SVM), which maximizes the margin. While in the MLP clas-
sifier, the threshold is determined solely by the MLP. It can
be clearly seen that without data augmentation based on sym-
metry, misclassification occurs primarily in the fluid phase. In
Fig. 4 (c), we see from the convergence behavior of the loss
values that the augmented dataset generally converges faster
and better.

To ensure that the augmented data provides sufficient infor-
mation for the model to recognize the difference between dif-
ferent local environments and predict all possible local fluctu-
ations as the same label, a sufficiently large number of neigh-
bors must be included to build each training dataset. If the
number of neighbors is not large enough, a clear drop of train-
ing and validation accuracy is seen, as depicted in Fig. 4 (e).

Fig. 4 (d) and (e) shows the results of accuracy tests per-
formed on two other aspects. First, in Fig. 4(d), we ob-
serve that accuracy increases with the number of training
epochs. We observe that the accuracy converges at around
eight epochs and persists without severe overfitting until 32
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(d) (e)

IIIIII
(a)

FIG. 4. Simple cubic lattice consisted of cubes. Summary of the MLP classifier’s classification results, training details, and accuracy tests, in
which we use the simple cubic system as a test case. (a) The MLP classifier’s classification results on three different snapshots. (b) The MLP
classifier’s classification results on the self-assembly trajectory and classification, compared to the Steinhardt order parameter Q4 (dotted line)
calculated as ground truth. For visualization purposes, solid lines represent the MLP classifier trained on the data accounting for symmetry,
while dashed lines are for the MLP classifier trained on the data without accounting for symmetry. Annotations I, II, and III indicate the three
corresponding snapshots in (a) for the classifier trained on augmented data. (c) Learning curve of the MLP classifier used in (a) with (solid
line) and without (dashed line) data augmentation (d) MLP classification accuracy plotted versus increasing number of training epochs (e)
MLP classification accuracy plotted versus increasing number of neighbors Nb in the local particle neighborhood. In (a)-(d), we used fixed
Nb = 6. In (a)-(c) and (e), we used 30 training epochs.

epochs. Second, in Fig. 4 (e), we show the change in accu-
racy by increasing Nb. The accuracy converges after Nb = 5,
roughly the number of first nearest neighbors in a cubic lat-
tice. This provides an excellent initial guess for Nb in prepar-
ing the training set of our classifier. Furthermore, for the test
accuracy, which is defined with respect to the Ql , 85-90% of
the time our model will classify a particle the same as the
classification using Ql . This level of accuracy is sufficient to
detect phase transitions also detected by Ql . Importantly, our
model (i) will also detect phase transitions in known systems
where Steinhardt OPs (which contain no orientation informa-
tion) and other commonly used OPs fail, and (ii) process par-
ticles’ raw positions and orientations with a set of linear oper-
ations while Steinhardt OPs use non-linear functions such as
spherical harmonics. This linearity in OPs will be important
when one would like to apply them to various biased simu-
lations, where gradients of OPs are required. We have also
included training and testing time in the Supplementary In-
formation. These tests show that our classifier is robust with
appropriate augmentation, training epochs, and Nb. In the next
section, we will look at more complicated crystals formed by
hard particle shapes with different symmetries.

B. Test cases 2 and 3: Self-assembly of 2D and 3D patchy
particles

For this second test case, we employ our classifier to clas-
sify 2D and 3D systems of patchy particles. In the 2D case
depicted in Fig. 5 (a), each particle is a rigid equilateral tri-
angle (Fig. 1 (b)). The patchiness is realized by decorating
each particle with a Kern-Frenkel attractive patch57 at each
of the three vertices. Additionally, we apply three repulsive
patches centered on each of the particle’s edges to negatively
design against undesirable phases. The guest particles inside
the kagome lattice make finding a reliable order parameter
that distinguishes the guest particles from non-guest kagome
particles necessary. Our simulation results show that during
self-assembly three distinct local environments emerge cor-
responding to a fluid-like, guest particle, and kagome lattice
environments .

We demonstrate the classification result of our MLP classi-
fier on the test case assembly pathway of the kagome lattice
in Figure 5 (b), where the light green color indicates the local
environment is classified as a guest particle. It can be seen
that the system nucleates and forms a kagome lattice clus-
ter within the fluid phase. Inside the kagome lattice cluster,
several guest triangles are enclosed by six surrounding trian-
gles. As the assembly simulation proceeds, we observe the
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(b)

I II III
(a)

FIG. 5. Kagome lattice of patchy triangles Summary of the MLP classifier’s classification results on the test assembly trajectory. (a) The
MLP classifier’s classification results on the three snapshots. (b) The MLP classifier’s classification results on the entire trajectory. For
visualization purposes, solid and dashed lines represent the MLP classifier trained on the data with and without augmentation, respectively.
The annotations I, II, and III correspond to the three snapshots in (a) for the classifier trained on augmented data.

coalescence of multiple small clusters into a single crystallite.
Once the majority of particles in the system are in kagome lat-
tice phase, the number of guest particles remains unchanged,
which is also captured by the MLP classifier. It should be
noted that some guest particles are misclassified as belonging
to the fluid phase when they are too close to the surrounding
particles within the kagome lattice. On the other hand, without
data augmentation, the classifier only discovered fluid phase.
This inability to distinguish local environments without data
augmentation is consistent with our observation in hard cubes
that when the crystal phase forms, the MLP classifier without

data augmentation tends to underestimate the local environ-
ments of the ordered phases.

The second test case is the 3-dimensional dimer diamond
self-assembled from the fluid phase of patchy triangular
prisms41 (See Fig. 1 (c)). In this test example, the triangular
prisms pair up and arrange the pairs into the dimer-diamond
structure. Since we treat each triangular prism as a particle, it
is insufficient for the MLP classifier to classify only the dia-
mond structure. It is crucial to recognize the pairing motif to
classify the crystal phase.

In Fig. 6 (b), we show the trajectories of particle fractions
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FIG. 6. Dimer-diamond phase consisted of anti-aligned patchy triangular prism41 The MLP classifier’s classification results on the testing
self-assembly trajectory, in which we identify the crystallization dimer-diamond structure. Each Wyckoff site comprises two anti-aligned
patchy prisms forming a gyrobifastigium. (a) The MLP classifier’s classification results on the three snapshots. (b) The MLP classifier’s
classification results on the whole trajectory. For visualization purposes, solid and dashed lines represent the MLP classifier trained on the data
with and without augmentation, respectively. The annotates I, II, and III indicate the corresponding snapshots in (a) for the classifier trained
on augmented data.

identified by the classifier trained with or without data aug-
mentation. While the initial and final particle fractions are
now the same, the classifier trained with or without data aug-
mentation exhibits different transition behaviors: the non-
augmented classifier identifies half of the crystal particles

much later than the augmented classifier.
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C. Test cases 4 and 5: self-assembly of prolate hexagonal
bipyramids

In the previous section, we showed two different patchy
particle systems for which distinguishing the different local
environments during assembly is crucial for observing that, in
both 2D and 3D, these patchy shapes follow similar assem-
bly pathways. In this section, we focus on two different as-
sembly pathways using geometrically similar building blocks.
Both crystals are self-assembled entropically by hard hexag-
onal bipyramids, but the bipyramid’s aspect ratio (α = 1.28
vs. 3.0), defined as the ratio of the particle’s height h to its cir-
cumcircle diameter of base d, i.e., α = h/d, greatly influences
the intermediate and final products. For α = 3.0 orientational
order develops prior to translational order, while for α = 1.28
we observe the opposite. According to a recent study56, the
self-assembly pathway from a fluid to the final crystal under
slow compression involves an intermediate phase – a plastic
crystal BCT phase for α = 1.28 and a liquid crystal phase for
α = 3.0. The final products are BCT and triclinic phases for
α = 1.28 and α = 3.0, respectively.

Because only the aspect ratio, and not symmetry, is differ-
ent for the two shapes, we prepared only one classifier trained
on six different synthetically prepared phases of hexagonal
bipyramids for the two aspect ratios. We labeled the disor-
dered phase of both hexagonal bipyramid systems as the same
dense fluid phase. Because we consider only the particles’ rel-
ative positions and quaternions as input, there is no difference
in the form of the feature vectors except that they describe
different local environments.

We first show the classification results of the MLP classi-
fier on the test case trajectory of hexagonal bipyramids with
α = 3.0 in Fig. 7 (a) and (b). The dense fluid, liquid crys-
talline, and triclinic crystal phases are labeled purple, light
blue, and light green, respectively. We also calculated the
RDF for the three snapshots of Fig. 7 (a). In Fig. 7 (b), our
MLP classifier reveals that the system starts to transform into
the liquid crystalline phase immediately, followed by slow
growth of the triclinic phase. This can also be seen in snap-
shots I, II, and III of Fig 7 (a). By comparing snapshots I and
II, it is evident that the first transition involves only the ori-
entational, and not yet the translational, ordering of particles,
leading to a small difference between the two RDFs. Only af-
ter the liquid crystalline phase is sufficiently developed does
the system order translationally to produce the triclinic crys-
tal; this subsequent behavior is supported by snapshots II and
III, as well as their RDFs.

Furthermore, our MLP classifier trained on the augmented
data for the hexagonal bipyramids with α = 1.28 was used to
detect a similar two-step transition, and the outcomes are il-
lustrated in Fig. 7 (c) and (d). The plastic crystal and BCT
phases are indicated by orange and red colors, respectively. In
this instance, the translational ordering of the particles occurs
before the orientational ordering, which corresponds to a tran-
sition from the dense fluid phase to a plastic crystal phase, fol-
lowed by a transition to the final BCT phase. It is worth noting
that both snapshots IV and V of Fig. 7 (c) possess nearly iden-
tical RDFs, meaning the local density and structure are very

similar. Despite this, our MLP classifier captures a signifi-
cant difference in the particle fraction corresponding to dense
fluid and plastic crystal. Without data augmentation, the MLP
classifier cannot identify particle fractions that match our ob-
served snapshots. In particular, the non-augmented MLP clas-
sifier underestimates the particle fractions of the final crys-
talline phases in both cases. Since the final crystalline phases
have both translational and orientational ordering, the MLP
classifier performs better with augmented data.

D. Test cases 6 and 7: Self-assembly of truncated polyhedra

As a final test of our classifier, we consider systems that are
particularly challenging to identify using order parameters.
As an example, we consider self-assembled systems of trun-
cated tetrahedrons. Damasceno et al.58 showed that tetrahe-
drons with varying degrees of truncation self-assemble into a
wide range of complex crystal structures, including diamond
structures and high-pressure lithium phases. Here, we inves-
tigate two different truncated tetrahedron systems with inter-
mediate and large amounts of truncation. Because the tetra-
hedron gradually transforms to an octahedron with increasing
vertex truncation, we refer to the system with intermediate
truncation as the truncated tetrahedron and the system with
high truncation as the truncated octahedron, to avoid confu-
sion. Our simulations show results consistent with those of
Damasceno et al. When we compressed the systems to a pack-
ing fraction between 0.5 and 0.6, they self-assembled into
cubic diamond structures and high-pressure lithium phases
for truncated tetrahedrons and truncated octahedrons, respec-
tively.

In Fig. 8 (a) and (b), we demonstrate the classification re-
sults of the MLP classifier for the truncated tetrahedrons. In
Fig. 8 (b), during the early simulation stage, the classifier
trained on augmented data identifies an abrupt increase in the
number of particles classified as belonging to a cubic dia-
mond local environment. Subsequently, the diamond struc-
ture grows rapidly and remains stable. However, the classi-
fier trained on the data without augmentation reports a slow
growth of the diamond structure and fails to identify the phase
transition.

In Fig. 9 (b), our MLP classifier trained on augmented
data first detected a progressively increasing high-pressure
lithium-like local environment before the simulation reached
frame12000. After that, our classifier identified that the high-
pressure lithium phase reached the critical nucleus size, fol-
lowed by rapid crystal growth. Thus the MLP classifier dis-
covered a homogeneous nucleation process followed by crys-
tal growth. This nucleation process can also be seen in Fig. 9
(a). From the classification-based coloring in snapshot I, we
observed many small sub-critical crystal nuclei form and dis-
solve in the early stages. In snapshot II, shortly before the
rapid growth of the crystal, the MLP classifier identified a no-
ticeable amount of crystal-like local environment in the lower
part of the box, which we expect to be the critical nucleus.
At the end of the simulation, we can see that the crystal has
stabilized in the lower right corner of the box in snapshot III,
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FIG. 7. Hexagonal bipyramid systems The MLP classifier’s classification results on the assembly trajectories for two systems of hexagonal
bipyramids. Both systems exhibit a two-step transition when crystallizing from an initial disordered fluid phase. (a) and (c) The MLP
classifier’s classification on six snapshots of the hexagonal bipyramid systems with (a) α = 3.0 and (b) α = 1.28, as well as the corresponding
radial distribution functions at the bottom. (b) and (d) The MLP classifier’s classification results on the entire trajectories. The annotations
I, II, III, and IV, V, VI correspond to the snapshots in (a) and (b), respectively, for the classifier trained on augmented data. For visualization
purposes, solid and dashed lines represent the MLP classifier trained on the data with and without augmentation, respectively.

where it is in coexistence with a dense fluid phase.

For comparison, we demonstrate the classifier’s classifica-
tion ability without data augmentation. As expected, the MLP
classifier trained on the data without augmentation failed to
recognize the rapid growth of the crystal. The inability of the
classifier to identify the formation of complex crystals is sim-
ilar to the case of truncated tetrahedrons, as shown in Fig. 8
(a) and (b), and thus for both test cases we see that data aug-
mentation highly improves the performance of the MLP clas-
sifier. We can rationalize this performance difference between
training on augmented vs. non-augmented data by examining
the information contributed by each component of the particle
feature vector. Since we started both simulations from very
dense fluid phases, there are no significant changes in densi-
ties that are encoded in r(au)

i j during the formation of crystals.

Therefore, the information provided by r(au)
i j is insufficient to

recognize the formation of crystals. As a result, whether the
MLP classifier can correctly learn to identify the formation of
crystals largely depends on whether θi j, φi j and qi j are aug-
mented.

CONCLUSIONS

To summarize, we have developed a simple, yet powerful,
physics-agnostic local environment classifier specifically de-
signed for systems of particle shapes utilizing a multilayer
perceptron. As demonstrated in this paper, our method is ap-
plicable to a range of enthalpically and entropically patchy
particle systems. Importantly, our MLP classifier does not
need conventional roto-translation invariant symmetry func-
tions to transform per-particle quantities to input descriptors.
Instead, it directly takes particle positions and orientations
as input features, complemented by shape-encoded data aug-
mentation. To demonstrate robustness and flexibility, our
classifier’s performance was assessed on a variety of self-
assembling systems, including hard cubes, 2D and 3D patchy
shapes, hexagonal bipyramids with two different aspect ratios,
and two different truncated shapes. The data augmentation
method we used is straightforward and easily transferable to
other systems involving particle orientations, such as molec-
ular or coarse-grained systems. As a result, our approach
should be useful in classifying different polymorphs formed
by molecules by properly defining orientation through quater-
nions. Furthermore, due to the simplicity and the promis-
ing classification performance, our method may be applied
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FIG. 8. Diamond structure of truncated tetrahedrons The MLP classifier’s classification results on the self-assembly test trajectory, in
which we identify the crystallization of the diamond structure from an initially disordered fluid phase. (a) The MLP classifier’s classification
results on snapshots taken at three points along the trajectory. (b) The MLP classifier’s classification results on the entire trajectory. Solid
and dashed lines represent the MLP classifier trained on the data with and without augmentation, respectively. The annotations I, II, and III
indicate the corresponding snapshots in (a) for the classifier trained on augmented data.

to study nucleation pathways of colloidal systems with bi-
ased simulation techniques, such as umbrella sampling and
metadynamics36. Such applications will be explored in future
works.

We emphasize that we do not intend for our model to be
used on an unknown dataset. Likewise, Steinhardt and other

order parameters (OP) commonly used in soft matter studies
are not used on unknown datasets. Rather, they are used to
automate the detection of phase transitions in systems where
the initial and final phases are known. In our paper, we are
attempting to show that our supervised ML model is able to
detect phase transitions in known systems nearly as well as
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FIG. 9. High-pressure lithium phase of truncated octahedrons The MLP classifier’s classification results on the self-assembly test trajectory,
in which we identify the crystallization of the high-pressure lithium phase from an initially disordered fluid phase. (a) The MLP classifier’s
classification results on the three snapshots. (b) The MLP classifier’s classification results on the entire trajectory. Solid and dashed lines
represent the MLP classifier trained on the data with and without augmentation, respectively. The annotations I, II, and III indicate the
corresponding snapshots in (a) for the classifier trained on augmented data.

those order parameters.
Again, as with any supervised ML model, the model will

fail when applied to an unknown dataset that contains infor-
mation not contained in the training set. Our supervised model
is best used to quickly analyze many (often, hundreds or thou-
sands of) trajectories forming crystals that they are known a
priori to form (for example, to sample many statistically sim-

ilar pathways, a common workflow in studies of nucleation
and crystallization). Our ML model facilitates this workflow
significantly.

The generalizability of our approach to unknown datasets
can, in principle, be extended by training over all possible
intermediate (e.g. metastable) and equilibrium crystal struc-
tures. Such an undertaking is beyond the scope of this paper
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but would be worth doing in the future.
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