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Manufacturing process signatures reflect the process stability and anomalies that potentially lead to detrimental
effects on the manufactured outcomes. Sensing technologies, especially in-situ image sensors, are widely used
to capture process signatures for diagnostics and prognostics. This imaging data is crucial evidence for process
signature characterization and monitoring. A critical aspect of process signature analysis is identifying the
unique patterns in an image that differ from the generic behavior of the manufacturing process in order to
detect anomalies. It is equivalent to separating the “unique features” and process-wise (or phase-wise) “shared
features” from the same image and recognizing the transient anomaly, i.e., recognizing the outlier “unique
features”. In state-of-the-art literature, image-based process signature analysis relies on conventional feature
extraction procedures, which limit the “view” of information to each image and cannot decouple the shared
and unique features. Consequently, the features extracted are less interpretable, and the anomaly detection
method cannot distinguish the abnormality in the current process signature from the process-wise evolution.
Targeting this limitation, this study proposes personalized feature extraction (PFE) to decouple process-wise
shared features and transient unique features from a sensor image and further develops process signature
characterization and anomaly detection strategies. The PFE algorithm is designed for heterogeneous data with
shared features. Supervised and unsupervised anomaly detection strategies are developed upon PFE features
to remove the shared features from a process signature and examine the unique features for abnormality.
The proposed method is demonstrated on two datasets (i) selected data from the 2018 AM Benchmark Test
Series from the National Institute of Standards and Technology (NIST), and (ii) thermal measurements in
additive manufacturing of a thin-walled structure of Ti-6A1-4V. The results highlight the power of personalized
modeling in extracting features from manufacturing imaging data.

1. Introduction to deepen the understanding of a manufacturing process, optimize the

parameters, and facilitate quality improvement.

In manufacturing, process signatures refer to the information col-
lected for the physical conditions and outcomes of a manufacturing
process or system [1-5]. Typical process signatures for machining pro-
cesses include heat dissipation, surface integrity, material modification,
and material load [1], while process signatures for additive manufac-
turing (AM) processes mainly consist of melt pool dynamics [5-8],
spattering patterns [9,10], fusion area topology [11], and residual
stress [12]. Process signatures enable correlation analysis between
process parameters and manufacturing outcomes [1]. For example, the
analysis of material load signatures builds a correlation between the
process parameters and surface integrity in machining [1]; the inspec-
tion of melt pool signatures establishes a parameter-signature—quality
relationship for metal AM [5]. Indeed, process signatures are valuable
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Mostly, process signatures reflect the dynamic processing results
that must be controlled indirectly by modifying the process parame-
ters [13]. Hence, sensing technologies are necessary to capture the pro-
cess signatures, e.g., thermal imaging [2] and acoustic signaling [14].
In-situ thermal imaging [10,15-17] is especially popular for capturing
heat-related process signatures with high resolution and frequency
during the manufacturing process. For instance, Fig. 1 shows the in-
situ thermal images for spattering patterns during a laser-based metal
AM process under regular and irregular situations. These sensing data
are crucial evidence for characterizing the process signatures and, more
importantly, detecting the abnormality in process signatures caused by
process instability, mechanical issues, and systematic failures.
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(a) Regular spatter pattern  (b) Irregular spatter pattern

(c) Thermal image of
regular spatter pattern

(d) Thermal image of
irregular spatter pattern

Fig. 1. Examples of regular and irregular (or severe) side view spattering pattern and
thermal images.
Source: Adapted from Amano et al. [18].

Nonetheless, process signature characterization and anomaly detec-
tion from thermal images are challenging. Process signatures are highly
dynamic. The thermal images capture both generic process signatures
and transient patterns. Taking Fig. 1 as an example, the plume region
with high temperature shows the process signature’s generic shape,
size, and temperature distribution; the colder region and scattered
dots are transient spattering patterns at the printing time. The generic
information reveals process-wise features [19,20] and is more relevant
to process signature characterization. In contrast, the transient patterns
are evidence of instability and unexpected changes and, thus, are more
useful for anomaly detection. To characterize the process signature and
facilitate anomaly detection, a powerful feature extraction approach is
needed to decouple the generic and transient information.

Currently, feature decoupling remains understudied in manufac-
turing process signature analysis. State-of-the-art literature [9,10,17,
21,22] mostly extracted features from the entire thermal images us-
ing classic statistical approaches, e.g., Principal Component Analysis
(PCA) [16] and tensor decomposition [23], but do not decompose
the features into process-wise features (shared by subsequent thermal
images) and transient features (unique to a single thermal image).
Targeting the research gap, this study explores personalized feature
extraction (PFE) [24,25] for process signature characterization and
anomaly detection in thermal images. The proposed PFE algorithm
is developed upon asymmetric matrix factorization [26] and exploits
highly efficient gradient descent. Compared with prior works such
as PerPCA [24] or JIVE [27], this algorithm significantly improves
computational efficiency by removing the need for feature orthonor-
malization or SVD on large matrices. The goal is to leverage this
PFE algorithm for identifying the shared features that are generic for
the manufacturing process (or each phase during the process) and,
meanwhile, extracting the unique features owned by individual process
signatures. Once decoupled, the shared features will unveil high-level
information about the underlying physics and are used for process sig-
nature characterization; the unique features will become the inputs for
anomaly detection strategies that capture irregular, transient patterns
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in process signatures. This study proposes two alternative strategies
for supervised and unsupervised anomaly detection. They will support
decision-making with thermal images either labeled with ground-truth
anomaly records or unlabeled.

This work will contribute to manufacturing process signature anal-
ysis and, broadly, data-enabled smart manufacturing [28]. First, it
identifies a critical research gap in process signature characterization,
revealing the need for feature decoupling to separate the generic and
transient information in manufacturing thermal images. Second, PFE is
introduced into manufacturing data analysis to build a PFE paradigm.
Its feature decoupling and subsequent anomaly detection performance
will set a benchmark for further exploration, either from a methodology
or application perspective. Third, anomaly detection based on PFE
features respects the physics of manufacturing processes and generates
more interpretable results. By altering the thermal image batches fed
to PFE, one can characterize the generic process signatures for spe-
cific phases in the manufacturing process and better understand the
source of abnormality, i.e., process-wise changes or degradation [29]
caused by systemic issues (e.g., machine failures, incorrect parameters)
or temporary instability caused by uncertainty [30]. In general, the
methodology and case studies from this work will generate new knowl-
edge for manufacturing data analysis and indicate future directions to
improve data-enabled smart manufacturing.

The rest of this paper is organized as follows. Section 2 will re-
view state-of-the-art literature for process signature modeling and PFE.
Section 3 will elaborate on the technical details of PFE and anomaly
detection strategies. Section 4 will apply the proposed methods on two
datasets from metal AM [31] and discuss the results. Section 5 will
conclude the paper and remark on future research directions.

2. Related work

This section reviews state-of-the-art literature on image-based man-
ufacturing process signature analysis and common statistical methods
for low-rank modeling of high-dimensional data. The potential and
suitability of PFE for process signature characterization and anomaly
detection are highlighted.

2.1. Image-based manufacturing process signature analysis

Depending on the manufacturing processes and data forms, process
signature analysis may be physics-based modeling [12,32], correla-
tion evaluation [1,33], or purely data-driven analytics [13,34,35].
Data-driven approaches have seen a surging popularity due to the
advances in sensing technologies [5,36,37]. Imaging data is especially
widely adopted [5,8,11,38], motivating various studies about image-
based manufacturing process signature modeling and anomaly detec-
tion. Generic image-based process signature analysis follows four steps:

1. Data processing: This step removes the background in images
and preserves the image segments containing the process sig-
nature, i.e., the so-called “region of interest” (ROI) [9]. Object
recognition techniques may be used for locating the ROI in
image [10,21,39]. Down-sampling may be done on the extracted
ROI to reduce the data size and facilitate model fitting [40].

. Feature extraction: This step defines features describing the
shape, size, or temperature distribution of the process signa-
tures and extracts these features from the processed thermal
images [9,10,17,21,22]. Some works used statistical dimension-
ality reduction [16,23] or deep learning (DL) models [41-43] for
automatic feature extraction from thermal images, thus saving
the effort of manual feature definition and extraction.

. Model fitting/training: This step builds a monitoring statistic
(or equivalently, a control chart) [9,10,23,40,44] or trains a
machine learning (ML) model [16,17,22,42,45] with the fea-
tures of ROIL If supervised ML models are selected, the ground-
truth anomaly records are also needed as the labels of ROI
features [41-43].
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Fig. 2. An overview of our method.

. Anomaly detection: This step implements the fitted or trained
model for in-situ anomaly detection [9,10,16,17,22,41,42,44,
46], phase-wise (e.g., a printed layer in AM) anomaly detec-
tion [19], or prognostic analysis [47-49].

Step 1 is dependent on the data quality. The most critical step is
step 2. How well the features describe the process signatures directly
impacts the fitness and learning outcome of the anomaly detection
model. For manual feature extraction, the features’ descriptive power
relies on the human understanding of the data and manufacturing pro-
cesses, which can be uncomprehensive, especially when the operator
is not a domain expert. Automatic feature extraction with statistical
dimensionality reduction or DL models is a promising direction. It
is advantageous in efficiency and information preservation. However,
these methods do not decouple the process-wise shared features and
unique image-wise features. Consequently, anomaly detection must
be done on a mixture of shared and unique features, which is less
physically valid or interpretable.

Recently, the coexistence of shared and unique features in manufac-
turing process signatures has drawn researchers’ attention. Preliminary
work was done in Yang et al. [23], where the monitoring statistic
(i.e., the model in step 3) was built for between-layer anomaly, within-
layer anomaly, and between-sample anomaly for AM processes. This is
one step forward toward PFE and anomaly detection based on unique
features. Nonetheless, the work emphasized a hierarchical design of
monitoring statistics rather than the decoupling of phase-wise shared
features and unique features. PFE for process signature characterization
and anomaly detection with manufacturing images remains an open
issue.

2.2. PFE and low-rank modeling

Principal Component Analysis (PCA) is an important unsupervised
learning method to extract important features from high-dimensional
data. On imaging data, PCA is widely used for compression [50],
denoising [51], segmentation [52], and many more. Essentially, PCA
finds a low-dimensional subspace that can explain the most variance
in high-dimensional data. Therefore, PCA is also closely related to
methods devoted to finding low-rank structures (i.e., low-dimensional
representations of the original data) from the observation matrix. Nu-
merous works also applied low-rank matrix factorization methods to
image processing [53,54].
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One limitation of using classic PCA or other low-rank modeling
methods in image processing is that they often make holistic assump-
tions about the images and, thus, are inadequate to differentiate com-
mon (or shared) and personalized (or unique) information from dif-
ferent images. A series of algorithms, including joint and individual
variance explained (JIVE) [27], common orthogonal basis extraction
(COBE) [55], SLIDE [56], and PerPCA [24], propose to extract shared
and unique linear features from data. Among them, JIVE introduces an
alternating minimization algorithm to find the common and individual
low-rank components in data. COBE analyzes the singular vectors of
the observation matrices and attempts to identify the common parts
of the singular vectors. A caveat of these algorithms is that they are
based on heuristics and hence cannot justify the correctness of their
outputs. PerPCA [24] is proposed to provably separate the shared and
unique features with a Stiefel gradient descent algorithm. PerPCA has
strong statistical and convergence guarantees and has been shown to
be useful in multiple tasks. However, it only applies to symmetric
covariance matrices and involves computationally expensive retraction
steps. Different from PerPCA, this work proposes a formulation based
on asymmetric matrix factorization to extract shared and unique fea-
tures while inheriting the strong theoretical guarantees of PerPCA. We
use a few numerical studies to illustrate the difference between PFE
and existing algorithms in terms of statistical performance and compu-
tational efficiency. The feature-extraction capabilities of our approach
make it a natural fit to analyze the variations of manufacturing process
signatures. We also show that the extracted features provide invaluable
information for downstream data analytics.

3. Method development

This section elaborates on the technical details of our personal-
ized feature extraction methodology and its use within downstream
analytics, namely process characterization and anomaly detection.

3.1. Method overview

Before delving into the methodology, we hereby highlight our over-
arching framework in Fig. 2. As shown in Fig. 2, our approach extracts
shared and unique features from thermal images. These features are
then used for:
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« Unsupervised outlier detection: Through finding outliers from uni-
que features, we can detect abnormal process signatures. The
central philosophy is to emphasize the information in unique
features so that differences are more explicit for improved outlier
detection.

Supervised anomaly detection: When labeled data are accessible, we

can also train classifiers based on the extracted features to predict

anomalies in real-time.

* Building in-control benchmarks: The extracted shared features from
thermal images of a given layer can be used as a benchmark that
characterizes the expected behavior of spatter patterns within that
layer.

3.2. Personalized feature extraction via matrix factorization

The method development considers thermal or gray-scale images
capturing manufacturing process signatures. Assume that, after pre-
processing, data from each image is represented by Y, € R and
the data is collected across N thermal images. For each phase during
manufacturing, e.g., a printed layer or one build in AM, the process is
relatively stable, so {Y; },;ny; Of the N images share certain common
characteristics. Meanwhile, each image contains unique characteristics
for the transient spattering behavior at the printing time.

As an effort to model such commonality and heterogeneity, we take
a matrix factorization route where we decompose Y|, into shared and
unique constituents. Specifically, we assume that Y;, can be explained
by r| shared features and r, unique features. The notation U represents
the shared feature matrix, and U, represents the unique feature
matrix. Then Y € R is modeled as:

T
Y(l) =U V(I) s + U(")JIV([)A,u (l)

where U; € R™"1, U, € R™"2 are feature matrices, V,, € R™",
V. € R™"2, are the corresponding feature coefficient matrices, and
E; € R®" are noise matrices. The dimension parameters d and n
represent the shape of data. The features U, are shared for all thermal
images, while each image retains its own unique factor matrix Uy ,.
However, we allow the shared coefficient matrices V; ; to vary across
images, as the intensity of shared components may not be the same in
all the images. Despite this decomposed formulation, (1) is essentially
a linear model. We will discuss non-linear extensions in Section 4.

A key assumption to ensure the separability between shared and
unique features is the orthogonality condition below:

+E;

u'y,, =0, Vi=1,....N 2

Condition (2) essentially requires that the shared and unique com-
ponents span orthogonal subspaces to characterize different features.
Such inductive bias is intuitive as shared and unique features should
be dissimilar by definition. Orthogonality enforces this definition and
allows us to maximize the effectiveness of feature decoupling.

Now, to recover the features, we define our objective to minimize
the reconstruction error between our model and observed data, under
the orthogonality constraint. This is given as:

2
- T
min [HY(,) U,VE U VI F]
US’ {V(i),s }, (3)
{U(i),u }5 {V(i),u }
such that UTU,, =0, Vi

As reiterated in (3), the shared features U, are the same among
all the images, while the unique features U, can differ for different
images.

To optimize (3), a natural route to take is gradient descent that
respects the orthogonality constraint. To do so, for thermal image i, we

define f; (Ux,r’ Uirues Yiises V(,’),u,f) = ”Y(,) U, V U(i),u,rVT

(D),u,t

(i),s,7

F
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where we use U, Ug;) o> Viiys.0o Vo to denote the update at epoch
7. Then the gradients of the f; are:

Vu,fi=2 (U Ninse * Ve Ve Y(i)) Ve

VWi, /i =2 (U Vs T Utraue ¥ e = Y(i))T Uy @
Vue. /i = ( Vs * Utraus Y e = Ym) Virue

YWouli = ( Virse * Your Ve = Yo )T Uiyue

To handle the orthogonal constraints, we can use a correction
step to explicitly orthogonalize U; and U(,.)u More specifically, we

apply the projection I — U (U U, UT to project unique fea-
tures to the orthogonal space of shared features U,. The resulting
Upue = <1 -U,, (Vu,.) UL) U
where we use U(l)u1+l, V(,)”Jr
between two full rounds of upcfates Thus, the constraint is satis-
fied. However, such a correction step can change the function value
f; and be counterproductive to the optimization. To maintain the
same value of f;, we also introduce a correction step on V; . that
Vose = Yiose 1+ V<,)”U(T> U, (UT U, ) ' One can easily
check that f; remalns the same be%ore and after the correction step,

fi(U§ T2 V(i) S,T° U(i) U V(i) u, ’l.' fi(Uv T2 V(,) 57— l U(,) u, ,_l V(i) u, r)
The computation cost of V) . correction is comparable to that of
U, correction. Hence, the additional computation cost associated
with V; ;. correction is small.

The correction step, along with the gradients in (4), induces a
natural iterative algorithm to solve (3). At the beginning of epoch =z,
we deflate the unique feature matrix U, to make it orthogonal to
the shared feature matrix U, and correct V; - accordingly. This step
guarantees that the constraints in (3) are satisfied at the beginning of
each epoch. Then, we perform gradient descent using the gradients in
(4) to minimize the fitting error. Afterward, we take the average of all
updated U at the end of each epoch to balance the updates from all
images. The pseudo-code of the projected gradient descent algorithm is
shown in Algorithm 1.

(i),u,t—
to denote intermediate variables

1 is orthogonal to U,
2

1
uT—=

Algorithm 1 Gradient descent to optimize (3).

Input matrices {Y(,)}’Z |» Stepsize 7,

Initialize U |,V Ls U 1 V.1 to be small random matrices.
S, (i),s, (i),u, ().,
for Epoch r =1,. R do
for Time i = 1,~--,N do
-1
- T T
Correct Vi or = Vi 1 + ViUl Ui (U U, )
i)

Correct Uy, . = U(i)’uﬁ 1= ( )
Update U(i),s,‘r+l = USJ — Nz VUJ fl

(I)M‘r

Update V(i>4,x,r+ A nTVV(i).S i
Update U(‘> =Upur —"; VUm.u fi
Update V(z),u,‘r+l - V(i),u.r — N VV(,)M fi
end for
1 ©N
Calculate U, .y = & 2.5, Uy et
end for

Return U g, V(MVR, UUMR, V(i),u,R'

As for the initialization of Algorithm 1, entries of all updates are
sampled from an i.i.d. Gaussian distribution with mean 0 and
standard deviation 0.01. We find such simple initialization works well
on all of our numerical experiments.

3.3. Convergence guarantee

Now we discuss the convergence of Algorithm 1. For notational sim-
plicity, we use f to denote the objective f (U .. {V( s> Uiz Yiyur})
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= Zfil fi (U2 Vs Uyuer Yiyur )- The following theorem indicates
that the gradient of the objective will converge to 0 at rate O (%)

Theorem 1. Under the conditions

1. The norm of Y;’s is upper bounded by a constant G such that

o] <o
2. There exists constant B, B 0 that upper bound the norm of
iterates, ie., |U |, 1 < B, and ”V@”) HV(,)” < B,.
o 1
3. The stepsize is constant n, =n = O —G+Bf+3§
Algorithm 1 converges into stationary points,
Temln va AT’{V(I)AT’U(l)uT’V(l)MT ” - O(R) (5)

Intuitively, Theorem 1 shows that when the norms of the data
matrix Y, are upper bounded, and the stepsize is chosen smaller
than a threshold inversely proportional to the maximum norm of Y,
Algorithm 1 can converge into stationary points. We hope to emphasize
that the V. and Uy ,, correction steps are indispensable to the
convergence guarantee in Theorem 1. The proof for Theorem 1 is
relegated to Appendix A.

3.4. Process signature visualization

After retrieving the shared and unique features, we are able to
use them to visualize the process signatures. Manufacturing process
signatures can be highly dynamic, and each image reflects the pro-
cess signature at a specific timestamp. Hence, unique features in an
image naturally characterize the transient behavior. Correspondingly,
U(,-MV(TI,),M captures the process signature in time i. We thus can visualize
the process signature by plotting U(/-)'uVT)’u. Notice that such informa-
tion is recovered purely through data-driven methods and does not
require domain expertise.

3.5. Process signature characterization

The shared features U, capture the generic information for the
entire phase (or process); thus, they can be averaged to construct
a benchmark process signature for the process, which is calculated as
the mean % Z{i L USV<T,-),S' As our approach can be applied to images
from subsequent phases, such a benchmark process signature can be
constructed for each phase. Together, they characterize the process
signature evolution of the entire manufacturing process.

3.6. Anomaly detection: Unsupervised

If the process signatures come as in-situ images, they are usually
not “labeled”, i.e., there is no ground truth for training a classification
model for supervised anomaly detection. Therefore, we propose cluster-
ing analysis on the unique features extracted from process signatures
for unsupervised anomaly (i.e., outlier) detection. To evaluate the
proximity of two images, we propose two distance metrics.

Metric I: Similarity Angle

The principal angle can measure the similarity between the unique
features of two spatter patterns. More specifically, for unique feature
matrices U, and U ,, we use Qu,,., and Qu,,, to represent their
corresponding Q-factors in the QR factorization. As QU() and QU< b

are orthonormal, the largest singular value o, QU QUmu) is upper
bounded by 1. We use d;; to denote the difference between the largest
singular value and 1.

_ T
dj=1-0 (QU(,),MQUuw) ©)
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d;; is related to the smallest principal angle 6;; between the subspace
spanned by the columns of Uy, and U;) ,:
di; =1-cosd;;
When d;; is larger, the subspaces are more dissimilar, and the spattering
patterns are also less alike. ¢,(-) in (6) can be calculated by SVD. The
similarity angle metric is only determined by unique features Uy,
thus less affected by inaccurate estimates of coefficients V; ,. However,
calculating (6) requires performing QR decomposition on U, then
SVD on QU QU(” which can be time-consuming for large datasets.

Metric II Frobenlus norm of difference The principal angle only mea-
sures the difference between U, , features. However, it is possible that
the feature coefficient matrices V ;) , and V; ; are also important in the
similarity calculation. To this end, we can define the distance as,

UVE)V)

+ VoV = U V5,

WDl

)

_ T
dyj = “Y<f> - Y ” r (s o

The distance measures the similarity between raw data and the shared
and unique signals between two data matrices Y, and Y ;. Compared
with similarity angle, Frobenius norm of difference can be faster to
calculate on modern GPUs.

To visualize the relative distance relations among all the figures,
we can calculate the distance of all (i, j) thermal image pairs to form
an N x N distance matrix D, then perform t-SNE on D to visualize
it on a 2-dimensional plane. t-SNE [57] will attempt to find a 2-
dimensional representation of the images whose similarity structure
will resemble the similarity structure in D locally. Such a visualization
can demonstrate the relations among different spattering patterns.

3.7. Anomaly detection: Supervised

If the ground truth of whether an image is “regular” or “irregular”
is known, then supervised anomaly detection can be implemented by
training classification models with the extracted features.

More specifically, we denote the anomaly label by y; € {0,1}. After
running Algorithm 1 and obtaining optimal (U, {V(,.),s,U(,)u,V(,)u})

one can train a classifier » that maps [Y;, U, V(I)S U,V il 0 the
label y; to minimize the empirical loss on the training set.
B RO 40,1} ®)

h can be any binary classifier, e.g., a neural network or a random forest
classifier. The input of 4 contains not only the original data but also the
extracted shared and unique information in each image because they
can enrich the features of spatter patterns.

Real-time inference. With U extracted from historical data, when a
new image Y, comes in, one can efficiently calculate its corre-
sponding shared coefficients V,,,, ;, unique features U,,,,, and the
corresponding coefficients V,,,, , by,

-1

Viewys = Yoo Us (UTU,)

(new)

-1
U(new),u = SVDr2 (Y(new) - Us (USTUS) UzY(neu;)>

-1
— T T
V("CW)JA - (U(new),uU("ew)v“) U(new),uY('lew)

where SVD denoted singular value decomposition and SVD,, denotes
the top r, singular column vectors of a matrix.

From calculated feature matrices V(,,eu)s,U(,,Ew),u, and V., ,, the
input matrices [Y ), Uy V("ew>Y U(ne,”uV(nm)u] can be constructed.
Then, the trained classifier could make predictions based on the input
matrices. The classification procedure extracts the shared and unique
components from Y,,,,, thus augmenting the feature space and leading

to potentially better prediction performance.
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4. Case study

In this section, we apply the proposed method to a synthetic dataset
and two real-life metal AM datasets. On the synthetic dataset, we
showcase the statistical and computational advantages of PFE. The first
AM dataset is the 2018 AM Benchmark Test Series (NIST) [31]. It is an
unlabeled dataset. Therefore, we analyze it through the lens of process
signature characterization and unsupervised anomaly detection. The
second contains thermal images of the AM process of a thin-walled
structure [58]. The dataset is labeled according to whether pores are
existent at the time thermal images are taken. We study the data by
supervised anomaly detection.

In this section, we use a few popular feature extraction algorithms
from the literature in Section 2 as benchmark methods. These methods
are summarized below.

Dual control chart [59]: The method applies multilinear principal
component analysis (MPCA) to extract orthonormal features, then
uses two control charts on the monitoring feature and residual for
anomaly detection.

Boundary feature extraction [17]: The method first parameterizes
the iso-thermal contour of the melt pool in a polar coordinate,
then uses the parametrized contour to perform statistical analysis.
JIVE [27]: We apply JIVE to extract the shared and unique
features from different frames.

Standard PCA: As a comparison, we also use standard PCA on the
pooled video frames to find the principal components.

We choose benchmark methods focusing on the feature extraction
procedures as they are most relevant to PFE. Code to generate the
results in this section is available in the linked Github repository.

4.1. Synthetic dataset

In this section, we compare the performance of PFE, JIVE, and
the standard version of PerPCA [24] on the synthetic data {Yyl
For data generation, we first sample the features U, U, and their
corresponding coefficients V;) , V; , from Gaussian distributions, then
generate Y; according to model (1). We set d = 100, N = 100, and
n = 100 to simulate a moderate-scale dataset. We run three algorithms
from the same initialization and calculate the subspace error

-1 _1 2 ) N
Jv.c (vrv.) vz - v oy oz e g s,

—1 -1 2
HU«),u,r (UZ)MUm,u,r) Uur = Vira <U<T,~>,uU(i>.u) UE),uL
eration 7. The subspace error measures the difference between esti-
mated shared and unique components and the ground truth. We plot
the loss curve in the left graph of Fig. 3. To compare the runtime, we
also collect the wall clock time for each iteration and plot the mean and
standard deviation of the per-iteration runtime in the middle graph of
Fig. 3. The error to time curve is plotted in the right graph of Fig. 3.
From the left graph pf Fig. 3, it is clear that PerPCA and PFE
have similar final subspace errors, which are lower than that of JIVE.
This is expected as PFE and the standard version of PerPCA have the
same statistical error guarantee, while the JIVE algorithm is based
on heuristics. The middle graph of Fig. 3 shows PFE is much faster
than the standard PerPCA: PFE takes around 0.03 s for each iteration,
while PerPCA takes around 0.09 s, which is almost 3 times slower. The
right graph of Fig. 3 shows the combined performance of statistical
and computational efficiency. One can see that, indeed, PFE converges
faster than standard PerPCA. The comparisons in Fig. 3 highlight the
statistical and computational advantages of PFE.

at every it-
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4.2. AM benchmark test series

4.2.1. Data description

The 2018 AM Benchmark Test Series from NIST provides in-situ
thermography of an L-PBF-ed metal bridge structure made with IN625
and stainless-steel 15-5. A sample thermal image from the dataset is
shown in Fig. 4. The bridge structure was completed with two builds;
each build fabricated four parts (eight parts in total). In-situ thermal
measurements of a select region on one of the parts within each build
were acquired at 1800 frames per second. The part had 12 legs of
varying size (5 mm X 5 mm, 5 mm X 2.5 mm, and 0.5 mm X 5 mm),
where each leg was 5 mm tall, then used a 45-degree overhang to
transition into the bridge structure with a constant cross-section. Each
part was manufactured using 0.02 mm layer thickness, a programmed
laser power of 195 W traveling at a scan speed of 800 mm/s, and the
hatch spacing was 0.1 mm. The part was completed with 624 layers
and a total build time of nearly 9.5 h [31].

The proposed PFE and anomaly detection methods are applied to in-
situ thermal videos of selected layers for the bridge body from build 1.
One in-situ thermal video is available for each layer. Per the build time
of the layer, the video length (or, equivalently, the number of frames)
may differ, ranging from (roughly) 400 to > 3000 frames. Each frame
is a gray-scale image with size 126 x 360, recording the spattering
behavior (or a transient process signature) at a particular printing time.
The pixel values represent the radiant temperature (not accounting for
emissivity) measured during each layer.

4.2.2. Data preprocessing

In a video, the laser scan direction could vary, so the moving
direction of spatter tracks could be either vertical or horizontal. Oc-
casionally, the spatter tracks might move outside the camera view,
leading to some “void” or noisy frames containing no process sig-
natures. This case study focuses on the thermal images showing a
complete spatter pattern. The noisy frames in a video do not provide
meaningful information about LBMAM and are not good for demon-
strating personalized feature extraction. By examining the data, we find
that these frames usually correspond to some sparse noise, and their
total temperature is low. Therefore, we use a thresholding criterion
to filter the noisy frames and only retain the “complete” frames:
we calculate the summation of temperature recorded on each pixel
and only keep frames with total temperature larger than 10°. Such a
thresholding procedure will remove the pictures that only contain weak
signals like background noise.

We use thermal images from Layer 361 from build 1 in Fig. 4 as an
example of our layer-wise analysis. One can see that the comet-shaped
high-temperature region only occupies one small part of the entire
domain of measurement. To focus our analysis on the high-temperature
region, we first clip the entire thermal image to a smaller 100 x 200
image that contains the high-temperature region.

To focus on the spatial patterns in the clipped thermal images, we
adopt the image patching technique [60,61]. The 100 x 200 image is
separated into 200 10 x 10 block patches. We then flatten all pixels
in one patch into a row vector and stack all row vectors to construct
the folded matrix. It is straightforward to calculate that the folded
matrix has dimensions 200 by 100. The construction of a folding matrix
essentially permutes all the pixels in the clipped thermal image. The
image patching allows us to extract several features from an image
that can characterize the spatial patterns of the frame. As one folded
column vector is constructed by concatenating pixels in one specific
position in each block patch, it distills the high-level information from
the entire image. Such information is descriptive of the common and
unique patterns in the image, thus suitable for the analysis of person-
alized modeling. It is worth noting that the image patching mechanism
is essentially a permutation of pixels, thus deterministic and easily
invertible. We call the inverse of matrix folding unfolding. Fig. 5 is an
illustration of the folding procedure.
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Fig. 3. Left: Loss to iteration. Middle: Wall clock time (second) per iteration. Right: Loss to wall clock time.
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Fig. 5. An illustration of the folding process. The left figure is an example of a thermal
image. It is subdivided into 4 2 x 2 blocks. The right figure is the folded matrix. Unique
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Such construction procedure exploits the philosophy of subsam-
pling [62] and dilation [63,64], thus can encode rich knowledge about
the geometric properties of high radiant temperature region. Notice
that after the matrix folding, the resulting Y, has dimension d by n,
where d is the number of patches, and » is the number of pixels in each
block patch.

4.2.3. Unique features vs. Shared features

With the folded matrices, we can follow the procedures in Sec-
tion 3.2 to extract shared and unique features. We first normalize the
folded matrices by row, then apply Algorithm 1 with constant stepsize
7, = 0.05 and R = 400. We choose r; = 15 and r, = 50. The rank of
the unique feature matrix is higher as unique features should capture
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Fig. 6. The shared and unique components of three sample thermal images.

the detailed structure of spattering patterns, which often have irregular
shapes.

One result is visualized in Fig. 6. The first row shows the clipped
thermal image. The second row shows the recovered USVTi),s after
unfolding. And the third row shows the recovered U Y iyu
unfolding.

It is natural to see that the shared components capture the shape
information about the comet-shaped high radiant temperature region in

after
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Fig. 8. t-SNE based on the top eigenvectors of each individual thermal image.

the middle, while the unique components can find the spatter patterns
scattered around the image.

4.2.4. Anomaly detection performance

In this section, we present the results of using the extracted unique
features to understand the similarity of spatter patterns and detect the
outliers. We calculate the pairwise principal angle distance d;; between
time frame i and j defined in (6). Then, we use t-SNE to embed the
high-dimensional distance information onto a 2-dimensional plane and
visualize the results in Fig. 7. The perplexity of t-SNE is set to 200.

In Fig. 7, every point represents a thermal image. The closeness of
the two points indicates the similarity between the unique features of
the two thermal images. One can tell that the points close to each other
have similar spatter patterns, and the points that are far from other
points have spattering patterns different from other thermal images.
The similarity structure shown in Fig. 7 can justify the outlier detection
procedures discussed in Section 3.6.

In comparison, we also run standard PCA on each individual ther-
mal image independently to extract the top eigenvectors, calculate the
distance between different images similarly, and then draw the t-SNE
of the estimated distance. Results are shown in Fig. 8.

Points in Fig. 8 are more concentrated in the middle area, sug-
gesting that PCA-extracted features are less discriminating in analyzing
the spattering patterns. Also, adjacent points in Fig. 8 are less alike
compared to Fig. 7. To highlight the disparities between the PFE and
PCA approaches, we pick two close images from t-SNE of each method.
Results are plotted in Fig. 9.

In the first row of Fig. 9, the two neighbors found by PFE have
similar spatter patterns, with consistent placement and orientation
in the top right corner. However, the two neighbors found by PCA
exhibit quite distinct spatter patterns. Notably, one image contains a
large spatter in the lower section, while its close neighboring image
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Neighbors
found by PFE

Neighbors
found by PCA

Fig. 9. Two neighbors found by PFE and PCA. One image has a spatter in the circled
region. Its close neighbor does not have any spatter at the same location.

Table 1
The average spattering pattern on eight different layers.

361 363 365 367
411 413 415 417

lacks any spatter at that location. The comparison again highlights the
importance of unique features extracted from PFE.

4.2.5. Layer-wise benchmark process signatures

As described in Section 3.5, the shared features recovered by Algo-
rithm 1 contain the archetypal spatter patterns for the specific layer. We
thus calculate the average spatter pattern to construct the layer-wise
benchmark process signature as introduced in Section 3.5. The results
from different layers are plotted in Table 1.

The process signature data were selected from adjacent layers of the
bridge body from build 1. In Table 1, one can see that the benchmark
process signatures from these layers are similar, indicating a notable
but relatively small variation among these layers. The result indicates
region-wise stability of the benchmark process signatures during L-PBF
printing.

4.2.6. Kernel version

Though formulation (1) models linear features, it is straightforward
to extend to nonlinear ones by exploiting kernel methods. We use
the Gaussian kernel to construct the kernel covariance matrices. More
specifically, for two matrices X; € R and X, € R, we define
K(X;,X;) € R"*" to be a matrix whose ij-th entry is K(X;,X,);; =

exp (— ”(Xl),- - (X2)jH2 /(26?) |, where (X, ); is the ith row of X,. We use

inducing points to characterize the spatial features in each frame. The
inducing points serve as representatives of thermal image frames. In
this experiment, we generate 10000 random sparse inducing points Y, €
R10000x200 5 that each inducing point has only 1 nonzero element. The
sparse inducing points capture localized features in video frames. Then
we calculate Y, = K(Y,, Y ;) € R10000x190_ Next, we run Algorithm 1 on
{S?(l-)}, and retrieve the estimates of shared and unique features, then
apply the technique in [65] to reconstruct the pre-images associated
with the features. We show two frames and the reconstructed shared
and unique components in Fig. 10.

In Fig. 10, it is clear that the shared components recovered by
kernel PFE have fewer artifacts compared with the standard PFE. Also,
the unique components in kernel PFE have smoother boundaries, thus
better reflecting the geometric properties of the spatters. The results
are understandable as the kernel version of Algorithm 1 relaxes the
implicit assumption of linear feature decomposition in (1) and thus is
less restrictive for real data when the “feature linearity” assumption
unnecessarily holds.
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Fig. 10. Two frames and the recovered shared and unique components from linear
PFE and kernel PFE with a Gaussian kernel.

1700 1800

1000 1100 1200 1300 1400 1500 1600

Fig. 11. A sample of thermal-image from the dataset [58].

4.3. Ti-6Al-4V thin-walled structure

4.3.1. Data description

The dataset contains thermal measurements collected by a Stra-
tonics Dual-wavelength pyrometer during the direct energy deposition
(DED) process of a thin-walled structure [58]. The pyrometer captured
a top-down view of the melt pool, which was the heat-affected zone
under the deposition head during printing. The pyrometer thermal
images were provided in Comma Separated Values format centered
around the melt pool with temperatures > 1000 °C, indicative of
the shape and distribution of temperature values. After the printing
process, Nikon X-ray Computed Tomography (XCT) XT H225 captured
internal porosity reflective of a lack of fusion. XCT porosity labels of
sizes between 0.05 mm to 1.00 mm were registered within 0.5 mm
of the melt pool image coordinate, thus labeling a pyrometer thermal
image with its porosity records (i.e., “no porosity”/“porous”). Images
with a “porous” label were considered “abnormal”. The labeled thermal
images can be used to train supervised anomaly detection methods (see
Fig. 11).

4.3.2. Data preprocess
The shape of the original thermal image is 752 x 480. Still, it can be
seen that only a small portion of the entire thermal image contains the
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high-temperature melt pool. Thus, as a simple data dimension reduction
technique, we also clip the thermal image into a 200 x 200 sub-image
encapsulating the ROL Then, we also use the folding and unfolding
procedures described in Section 4.2.2 to build the folded matrices.

4.3.3. Visualization of extracted features

We then apply PFE on the folded matrices to extract the shared and
unique features. We set r; to 10 and r, to 20, and choose the stepsize
1, to be 1075, We choose a smaller stepsize than the NIST dataset as
the norm CIY(i) is larger. The extracted shared and unique components
are plotted in Fig. 12.

For each thermal image, we plot the original (processed) data and
the shared and unique components in one column. All images in one
row are plotted in one color scale. We plot 2 normal samples (not
porous) and 6 abnormal samples (porous) in Fig. 12. One can see
that the melt pools of normal samples tend to have regular shapes.
Also, the shared components can capture most information about the
thermal pattern, while the unique components do not have a strong
signal in the central region, suggesting that these images do not have
large “eccentricity”. In contrast, for the abnormal samples, the melt
pool shapes are more irregular in the original data. It can also be
seen that the variability is not well-represented by shared features. In
the central parts of the unique components, there are often regions
with high or low temperatures, suggesting that the melt pool’s thermal
behavior is very different from others in some instances. The irregular
thermal behavior is caused by process instability. The low temperature
or smaller size of abnormal melt pool is highly associated with unstable
laser input and results in a lack of fusion porosity [66] (or other less
common defects beyond the scope of this dataset).

4.3.4. Feature visualization

The recovered shared and unique features can also characterize
similar information among different frames. In this section, we per-
form a clustering analysis based on the distance metrics defined in
Section 3.6. We calculate the distance d;; between all pairs of images
i and j according to the Frobenius norm of difference metric in (7) to
build an N x N distance matrix D. From D, we perform t-SNE with
perplexity 40 to visualize the similarity structure on a 2D plane. The
result is shown in Fig. 14. As a benchmark, we also present the t-SNE
plot of the raw data in Fig. 13.

Fig. 13 has a clearer clustering structure than Fig. 14 as the ab-
normal samples are clustered on the left, and the normal samples
are more uniformly distributed on the right. While in Fig. 14, the
clustering pattern is less conspicuous. The comparison highlights the
discriminating power of features learned by Algorithm 1.

Also, we introduce a numerical metric to measure the quality of the
t-SNE results. As there are two groups of samples, the normal group
and the abnormal group, we can separate the total variance of t-SNE-
extracted embeddings into the summation of inter-group variance and
variance of each group.

Total variance = Inter-group variance + Variance within each group

Inspired by ANOVA, we introduce a t-SNE score that measures the
portion of inter-group variance in total variance,

Inter-group variance
Total variance

©)

Variance Ratio Score =

The score will take a value between 0 and 1. When the score is
higher, the two groups of samples are more distinct. Thus, the t-SNE
embeddings have higher quality.

The calculated VRS for PFE and several benchmark methods are
reported in the last column of Table 2. PFE stands out with the highest
VRS, demonstrating the better quality of its t-SNE embeddings.
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Normal samples

Original data
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Abnormal samples

Fig. 12. The shared and unique components of two normal and six abnormal thermal images. Red denotes high temperature, and purple-blue denotes low temperature. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. t-SNE of the extracted features.
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Fig. 14. t-SNE of raw images.

4.3.5. Porosity prediction

Since the anomaly labels are available, we can train classifiers to
predict the anomalies. As described in Section 3.7, we concatenate
the learned shared and unique components with the original data to
construct the input matrix for image i as [Y;, USVZ;),s’U(f)suV(Ti),u]' Then,
we randomly split the entire dataset into a 90% training set and a
10% test set. We train a random forest classifier from the input matrix
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Table 2
Anomaly detection and clustering performance of different algorithms. VRS stands for
Variance Ratio Score introduced in (9).

Precision Recall F- score VRS
Dual control charts [59] 0.97 0.62 0.76 -
Boundary feature [17] 0.78 +£0.08 0.17 £ 0.02 0.27 £0.03 0.0009
Original data 0.85 +0.02 0.74 + 0.02 0.78 +0.03 0.08
PCA 0.84 +0.02 0.88 +0.02 0.85 +0.02 0.05
JIVE [27] 0.82 +0.02 0.94 +0.02 0.87 +0.02 0.13
PFE 0.81 +0.02 0.95 +0.02 0.87 +0.02 0.15
Table 3
Wall clock time for two feature extraction algorithms.
Method JIVE PFE
Time (s) 755 275

to the anomaly label on the training set, then evaluate the predicting
performance on the test set.

As the dataset consists of 1493 normal images and 71 abnormal
images, the proportions of normal and abnormal images are highly
unbalanced. Classification accuracy is not a good metric for evaluating
the predictive performance of such unbalanced data. Thus, we exploit
a confusion matrix and report recall, precision, and the F-score. The
higher recall and precision are, the better performance the classifier
has. F-score is the harmonic mean of recall and precision, hence serving
as a comprehensive metric for classification performance. We run each
experiment from 18 different random seeds and calculate the evaluation
metrics for each experiment. For benchmarks, we also extract features
using boundary feature extraction [17], JIVE [27], standard PCA, and
exact original images and train a random forest classifier on these
features to predict anomaly labels.

A summary table was added for a quantitative demonstration of
the performance. The Variance Ratio Score is a deterministic metric
that does not involve randomness, so we do not report its standard
deviation.

Table 2 shows that among all the algorithms, PFE has the high-
est F-score, validating its superior performance in anomaly detection.
Also, in terms of clustering, PFE achieves the highest variance ratio.
This effectively emphasizes the discriminative power of the extracted
features.

We run another analysis on the computational costs of PFE and
JIVE. As a simple comparison, we implement both methods on the same
desktop with NVIDIA GeForce RTX 3080 and collect the wall clock time
of each method. Results are reported in Table 3.

Table 3 shows significant improvement of PFE: compared with JIVE,
PFE saves 64% runtime. The huge decrease in runtime highlights the
computational efficiency of PFE.

Therefore, the comparisons showcase PFE’s superior statistical and
computational performance.
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4.4. Method generalization

Results in this section advocate the use of Algorithm 1 (or its
kernel version) for shared and unique feature decoupling for man-
ufacturing process signature characterization and anomaly detection.
In addition to imaging data, PFE techniques can also be applied to
other data forms for manufacturing process signatures where common
properties/requirements and personalized characteristics coexist. In
manufacturing fields, such a situation is frequently confronted. For
example, a number of AM processes can leverage Algorithm 1 and
the proposed anomaly detection methods for process monitoring and
quality control. Their printing mechanism, which is layer-by-layer ac-
cumulation (or line-by-line accumulation [67,68]), naturally creates
the coexistence of layer-wise (or line-wise) shared features and unique
features in in-situ process signatures. Personalized models may as well
become a useful tool for constructing the layer-wise (or line-wise)
benchmark process signatures for various AM processes.

5. Conclusion & discussion of future work

This study adopted a new statistical dimensional reduction method
for finding shared and unique feature extraction from manufacturing
imaging data. It developed a novel PFE method for process signature
characterization and anomaly detection. The method has a distinctive
capability of extracting the process-wise shared features and unique
features simultaneously and separately. Therefore, the extracted fea-
tures are more interpretable and respect the fundamental physics,
i.e., the evaluation of process signatures during manufacturing. The
unsupervised anomaly detection strategy proposed upon the recovered
shared and unique features achieved remarkable performance on the
2018 AM Benchmark Test Series.

The work has demonstrated the superiority and feasibility of using
PFE to improve the performance of manufacturing process monitoring
and quality control. Specifically, decoupled features can help uncover
insightful knowledge, whether in shared or unique parts. The features
enable classification and clustering analysis on unique features, thus
yielding better accuracy since differences are more explicit when shared
features are removed. By monitoring changes in the unique features,
anomalies can be detected better and faster when data is collected over
time. Furthermore, PFE will underlie personalized predictive modeling
by selectively transferring common knowledge from one data source
to another, reducing the negative transfer of knowledge and enhancing
personalized models.

In the future, this work will be extended in several directions. First,
with the availability of defect records, the detected anomalies can be
connected with defect occurrences and build a relationship between the
process signatures and the finished parts’ quality. This exploration will
be our next step on the data availability. Second, PFE and the anomaly
detection strategy can be generalized to both machining processes
and AM processes, especially AM processes for polymers/ceramics, by
replacing process signature data and applications. Third, broader ap-
plications of personalized models and the proposed anomaly detection
methods will be explored for manufacturing systems, where there are
multiple manufacturing processes generating local data and meanwhile
fulfilling common requirements or given common resources.
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Appendix A. Proof of Theorem 1

In this section, we present the proof of Theorem 1. The proof
consists of three steps. We will firstly show that the objective f is
gradient Lipschitz continuous. Then, based on Lipschitz continuity, we
will show a sufficient decrease inequality with the help of a special
property of objective f. Eventually, we will prove Theorem 1.

Gradient Lipschitz continuity is the key property of the objective
(3) that leads to the convergence of Algorithm 1. We first review its
definition. We use C C R”" to denote a convex set. A differentiable
function f : C - R is L-gradient Lipschitz continuous [69] if for any
x,y € C, the following holds,

IVF) = VSO < Llx =yl (A1)

The Lipschitz constant L signifies the rate of gradient change for the
function f caused by unit changes in its inputs. It is proved as Lemma
1.2.3 in [69] that if f is L-Lipschitz continuous, then

FO 2 f)+(Vf(x).y—x) + % ly=xI*, vx,yec (A.2)

The property (A.2) will play a critical role in establishing Theorem 1.
Throughout this section, we use B(¢},{,) to denote the set of
solutions with bounded norms:

B(¢1:6) ={Uy, (Ugy s A Vs b V)
1Us]]» ”Um,u <& HVU),s "“Vm.u” <G}

It is easy to see that B (¢},(,) is a convex set.
The following lemma gives an upper bound on the Lipschitz con-
stant when all iterates are bounded.

(A.3)

Lemma A.1 (Lipschitz Continuity). In region B (B, B,) as defined in
(A.3), f;’s are Lipschitz continuous:

||Vf[(U./\-’ Vip.so UE:),u’ V:i).u

(i)

)= ViU Ve Ui Yy F

o+l

2 , 2
(D F + “V(i),u - V(,),u”F

2
< 1y/JU - U+ |V, - U,

(A.4)
fOr {Uly {Véi),:}’ {Uzi),u}’ {Vzi),u}}’ {Ux’ {V(i),s}s {U(i).u}9 {V(i),u}} €EB (Bla

Bz), where L, and L are constants dependent on By, B,, G,

— 2 2 p2 4 4 4
L=2/(G+3B,B,)? + BB} + 2B} + B! + B!

Proof. The Lipschitz continuity of f; can be proved by direct calcula-
tion. We will calculate the gradient of f; over each variable and bound
the norm of the difference of the gradients.

Vzi),u) - VU}Y fi(Us* V(i),m U(i),u’ V(i),u)
_ T
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Also by triangle inequalities, when (U, V/ U

!
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Thus by similar calculations, we have,

”vasf’(U/ VE,); UZ!)u Vzi)u)_ VV(:)sf"(US’V(")vS’U(")v“’V(")*”) F
<2G+3B,By) U = Uyl . + 2B} | Vi, = Vel .
+ 28,8, U}, — Vg, + 2B | Vi = Vaoru,

And,
900 A1V Vi 0 Ui Vi) = Vi, /iU Voo U Vo
<2B}||U} = U, || +2B, B, |V}, ~ Vo,
+ 2B HUW Ugu|, +2(G +3B,By) | Vi = Vo,

Also,
9900 PO Vi Vi Vi) = Vi 00 Vi Vo Vo
<2B,B, |U -U,||, +2B ”V(‘)S Vo

Ulpu = Ui +2B7 | Viou = Vol

Combining the four inequalities, we have:
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where L is a constant defined as,

L :2\/(G+3B]Bz)2 +B2B2+2B!+ B, + B, [

Now, we can proceed to prove the sufficient decrease in inequality.

An important equality about the objective f; is that,

fi(Us,T+1 ’ V(i),s,r+1 ’ U(i),u,r+1 > V(i),u,r+l)

2
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Therefore, considering the gradient descent step and the inequality
(A.2), we have,
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Summing both side for i from 1 to N, we have:
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Therefore, when 5 < %, we have:
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Summing up both sides for z from 1 to R, we have,
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Since the objective f is apparently nonnegative, the right-hand side
is upper bounded by

2
1
—Vy,f

N
2
St KT
2
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This completes the proof of Theorem 1.

min
re{l,...,

[Vl vl

R}

Appendix B. Connection of (3) to PerPCA

In this section we will show that the formulation in (3) is essentially
equivalent to the formulation (5) in [24]. To see this we can first opti-
mize V;) ,’s and V; ’s when U; and U, ,’s are given (and orthogonal).
The solution is:

T Ty \~ T
V*(l) s (UA US) U Y(f)

r (B.1)

*T  _
v Hu — (U(t) uU(i),u) U(l) uY(i)
Plugging this into (3), the objective becomes
2
Ty \~ T

‘Ym -0, (U{U,)  UTY() = U, <U<,)uU(i>,u) Ul Yo . (8.2)

If we define U, = U, (USTUS)_2 and U, = Ug, (U(I)MU(,-)Y,,) ?, then
INJS and INJM are orthonormal, and (B.2) transforms to the objective (5)
in [24].

It is proved in [24] that the optimal solutions are statistically
consistent estimators of true shared and unique subspaces under mild
identifiability assumptions. As a result, the column spaces of optimal INJS
and ﬁ(i)qu’s, thus U and Uy;),’s in (3), are also close to the true shared
and unique subspaces. This justifies the formulation (3).

Appendix C. Sensitivity analysis

The stepsize n is an important hyper-parameter in Algorithm 1.
Theorem 1 in the main paper provides an upper bound of the stepsize: it
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Fig. C.15. Loss curves under different stepsizes (Ir in the figure).

should not be larger than the inverse of the maximum operator norm of

Y, i.e, n=0 ) Such an upper limit of stepsize is needed

1
max; |[Yep |l
to ensure the convergence of Algorithm 1.

We perform a sensitivity analysis on stepsize n to demonstrate its
effects on convergence and statistical error. In the experiment, we run
Algorithm 1 with different n from the same initialization on the NIST
data and collect the fitting error at each iteration. The results are
plotted in Fig. C.15.

There are a few interesting observations in Fig. C.15. First, a larger
stepsize often corresponds to a faster convergence. However, if the
stepsize 7 is set too large (0.5), the algorithm will diverge. Therefore,
one should choose an appropriate stepsize to achieve fast and stable
convergence. Second, when the stepsize is not too large, the fitting
loss will eventually converge to 0, though at speed dependent on the
stepsize. Such a result indicates that the final outcome of the algorithm
is not sensitive to the choice of stepsize.

In practice, we recommend practitioners choose the stepsize accord-
ing to the norm of data ”Y([) . One can also use cross-validation to find
the most appropriate stepsize for fast convergence.
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