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Quantum simulation of an extended Dicke
model with a magnetic solid
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Motoaki Bamba 9,10,11,12 & Junichiro Kono 1,5,13

The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a

single-mode photonic field and exhibits a quantum phase transition as a function of light–matter

coupling strength. Extending this model by incorporating short-range atom–atom interactionsmakes

the problem intractable but is expected to produce new physical phenomena and phases. Here, we

simulate such an extendedDickemodel using a crystal of ErFeO3, where the role of atoms (photons) is

played by Er3+ spins (Fe3+ magnons). Through terahertz spectroscopy and magnetocaloric effect

measurements as a function of temperature and magnetic field, we demonstrated the existence of a

novel atomically ordered phase in addition to the superradiant and normal phases that are expected

from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the

temperature–magnetic-field phase diagram, identifying both first-order and second-order phase

transitions. These results lay the foundation for studying multiatomic quantum optics models using

well-characterized many-body solid-state systems.

The Dicke model in quantum optics describes the cooperative, coherent
coupling of an ensemble of two-level atoms with a single-mode light field1.
Despite its simplicity, the model hosts a rich variety of phenomena that are
significant in diverse contexts, such as cavity quantum electrodynamics2,
condensed matter physics3, and quantum information science4,5. A pro-
minent feature of the model is a second-order quantum phase transition
(QPT), known as the superradiant phase transition (SRPT), which occurs
when the light–matter coupling strength, g, exceeds a threshold6,7.When the
system enters the superradiant phase, atomic and photonic polarizations
spontaneously emerge, producing a unique many-body ground state that
enables studies of unusual light–matter entanglement8, two-mode squeezed
states9–11, and quantum chaos12.

Although the atomic ensemble in the original Dicke model was
assumed to be noninteracting, it has been known from the early days that
atom–atom interactions are important for explaining, for example, the
dephasing and intensity correlation functions of fluorescent spectra13,14.
Hence, there has long been interest in extending theDickemodel to include
an atom–atom interaction (represented by strength J); see Fig. 1. Such an
extendedDicke model, or the g–Jmodel, should display an interplay of two
types of interatomic interactions – i.e., the photonic-field-mediated long-
range interaction, and the direct short-range interaction. Intuitively, one can
expect the ground state of the system to crucially depend on the ratio g/J,
with a superradiant phase (an atomically ordered phase) favored for large
(small) g/J. However, no analytical solutions can be obtained for the g–J
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model, motivating one to simulate it using a well-characterized many-body
quantum system.

Computational studies of the g–Jmodel under various approximations
have revealed an array of new phenomena, such as a first-order QPT15–19, a
shift of the SRPT boundary20,21, amplification of the integrablity-to-chaos
transition22, modifications of matter–matter entanglement20,23, and altera-
tionof thenatureof an excited-stateQPT18,24. To examine thesephenomena,
several experimental platforms, including atomic Bose–Einstein
condensates25,26, superconducting qubits27,28, and quantumdots15, have been
proposed as quantum simulators, but successful simulations have not been
achieved.

Here, we present a novel protocol of using a crystal of erbium ortho-
ferrite (ErFeO3), an antiferromagnetic (AFM) insulator, as a solid-state
quantumsimulator of the g–Jmodel. Themagnetic properties of ErFeO3 are
governed by themoments carried by the Er3+ and Fe3+ spin subsystems and
their interplay29. A previous study has revealed Dicke cooperativity in the
Er3+–Fe3+ interaction30, demonstrating the resemblance of the magnetic
Hamiltonian of ErFeO3 to the Dicke Hamiltonian. Namely, the para-
magnetic Er3+ ions (the magnons of ordered Fe3+ spins) play the role of the
atomic ensemble (light field), and the spin–magnon interaction is formally
similar to the g-term in the Dicke model. What further strengthens this
analogy is a magnetic phase transition of the crystal that exhibits all traits
that would be expected for a Dicke SRPT. When the temperature (T)
becomes lower than 4K, the Er3+ lattice develops C-type AFMorder31 (with
the ferromagnetic chains along z), and a zone-boundary Fe3+magnonmode
condenses, displacing the staggered moments away from the x–z plane32,33;
this corresponds to the emergenceof atomic andphotonpolarizations in the
standard SRPT. In Bertaut’s notation, the magnetic transition is of the
Γ2→ Γ12 type (Fig. 2a). Mean-field calculations using a realistic spin model
captures the simultaneous order parameter (OP) onset of both the Er3+ and
Fe3+ spin components, hΣ�

z i and 〈Sy〉, respectively (Fig. 2b), indicating that
the Γ2→ Γ12 transition is a magnonic SRPT34, with the Γ2 and Γ12 phases
corresponding to the normal (N) and superradiant (S) phases, respectively.

Results
One way to observe the OP onset is tomonitor the quasi-antiferromagnetic
(qAFM)magnonmode of Fe3+ spins through terahertz (THz) time-domain
spectroscopy,whichhasbeenutilized to reveal the configurationof Fe3+ ions
in rare-earth orthoferrites35. By performing THz transmission measure-
ments on a z-cut ErFeO3 crystal in the Faraday geometry, we obtained
absorption coefficient (α) spectra, derived from the imaginary part of
the refractive index (see Methods), as a function of T, as shown in Fig. 2c.

The observed bright absorption line is the qAFM mode, which has been
thoroughly studied in previous studies35. It is the evolution of this mode in
distinct phases of the g–Jmodel that is of interest throughout this study. A
continuous OP-like onset, or a kink, is observed at the N→ S transition
boundary (<4 K, blue dashed line). The frequency shift of the qAFM
magnon mode in the S phase from that in the N phase is thus a sensitive
reporter of the qAFMmagnon condensate density, namely, the Fe3+OP of
the S phase.

The J-term is inherently built into themagneticHamiltonianofErFeO3

since the Er3+–Er3+ exchange interaction, albeit being weak, is known to be
present36. Spectroscopic measurements have also revealed a fine frequency
splitting within the Er3+ electron paramagnetic resonance lines30, which is
attributable to the Er3+–Er3+ exchange interaction. The presence of both the
g- and J-terms sets the stage for ErFeO3 to simulate the g–J model. In the
limit of strong interatomic interaction J≫ g, one expects to find an atomic
(A) phase characterized by an interatomic OP, without the superradiant
order. Nonetheless, although the g-term-driven S phase can find

: atom–field

J: atom–atom

J

Fig. 1 | The extended Dicke model, or the g–J model, where an ensemble of

interacting two-level atoms collectively couples with a bosonic field. The coop-

erative boson–atom interaction, with strength g, mediates long-range atom–atom

interactions, whereas the direct atom–atom interaction, with strength J, is short-

ranged.

Fig. 2 | The Γ2 → Γ12 transition in ErFeO3 as a magnonic analog of the SRPT.

a Lattice structure and spin configurations within the Γ12 and Γ2 phases. Brown

polyhedra represent octahedrally coordinated FeO6 cages. b Temperature depen-

dence of the Er3+ and Fe3+ spin components (normalized) across the phase transition

at 0 T. Σ̂p , where p∈ {x, y, z}, is the collective Er3+ spin operator, with its superscript

“+” (“− ”) denoting the sum (difference) of the two sublattices. Ŝp are the com-

ponents of Fe3+ spins. cTemperature dependence of THz absorption spectra taken at

zero magnetic field. The bright line, corresponding to the qAFM magnon mode of

Fe3+ spins, shows a kink at 4 K, which is the superradiant-normal phase boundary at

zero magnetic field.
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correspondence to the Γ12 phase in ErFeO3, the g/J ratio set for the crystal
stipulates that a pure atomic (A) phase, which is driven exclusively by the J-
term,wouldnot appear in equilibrium.ForErFeO3, theAphasewouldbe an
Er3+ ordered phase without involving any OP onset in the Fe3+ subsystem.
Therefore, to achieve quantum simulation of the g–Jmodel, wemust search
for a way to invoke an explicit A phase through an S→A transition.

Our theoretical consideration suggests that subjecting ErFeO3 to a
static magnetic field (H) along the z axis can potentially induce an S→A
transition. This can be understood by writing the simplified magnetic
Hamiltonian (see Methods) in the second-quantized form as

Ĥ=_ ¼ ωπ â
y
π âπ þ ωErΣ̂

þ
x þ ωzΣ̂

þ
z þ g

ffiffiffiffiffi

2
N0

q

iðâyπ � âπÞΣ̂
�
z

þJ 6
N0_

�

Σ̂
þ
x

�2
þ

�

Σ̂
þ
z

�2
�

�

Σ̂
�
x

�2 �
�

Σ̂
�
z

�2
h i

;
ð1Þ

where a two-sublattice approximation is adopted for bothEr3+ andFe3+ for a
total of N0 unit cells. Here, ωπ, â

y
π , and âπ are the energy, creation, and

annihilationoperators for the Fe3+qAFMmagnonmode, respectively;ωEr is
the frequency of Er3+ spins as two-level systems at H = 0;
ωz ¼ jgzμBμ0Hj=_, where gz is the Landè g factor, μB is the Bohr
magneton, and μ0 is the vacuum permeability, is the H-induced Zeeman
frequency of Er3+; and g and J are the Er3+–magnon and Er3+–Er3+ coupling
strengths, leading to the g- and J-terms of the g–JHamiltonian, respectively.
Σ̂p ¼

P2N0

i¼1 σ̂ i;p=2, where σ̂p are Pauli matrices and p∈ {x, y, z}, is the
collective Er3+ spin operator, with its superscript “+” ("− ”) denoting the
sum (difference) of the two sublattices. The way these operators appear in
Eq. (1) is crucial for interpreting the ground-state energetics. Specifically, the
g-term features a product of the Fe3+magnon field operator iðâyπ � âπÞ and
the Σ̂

�
z component of Er3+ spins, thereby favoring antiparallel alignment of

Er3+ sublattices and Fe3+magnon condensation in the S phase (the onsets of
hΣ̂�

z i and 〈Sy〉 in Fig. 2b), whereas the J-term couples Er3+ antiferromagne-
tically; larger hΣ̂�

x i and hΣ̂�
z i, where 〈. . . 〉 denotes expectation values, are

energetically more favorable.

It is important to note that supplying the Zeeman term ĤZeeman=_ ¼
ωzΣ̂

þ
z provides quantum controllability. The term promotes jhΣ̂þ

z ij, the net
moment of Er3+ sublattices, through Zeeman coupling to H∥z. Due to the
commutation relation

Σ̂
þ
z ; Σ̂

�
z

h i

¼ 0≠ Σ̂
þ
z ; Σ̂

�
x

h i

; ð2Þ

modification to hΣ̂þ
z iwould impact hΣ̂�

x imuchmore than hΣ̂�
z i. Thiswould

tip the balance between the g-term and the J-term, since Σ̂
�
x appears only in

the J-term but not in the g-term.
As shown in Fig. 3a, an S→A transition is indeed recovered in the

calculatedmean-field phase diagramof the spinHamiltonian (seeMethods)
within the T–H parameter space, for T < 2.8 K, with a critical field ranging
from 0.35 T to 0.5 T, depending on T. Increasing the field to above 1 T and
elevating T to above 4 K would both push the system across the thermo-
dynamic phase boundary into theNphase.A triple point (at 2.8K and 0.5T,
decorated by a yellow star)marks the location where the S, A, andN phases
converge. Figure 3b shows the calculated normalized spin components as
the OPs of the magnetic phases, for a line cut along the H axis at T = 0 K,
traversing sequentially the S→A and the A→N boundaries. We identify
that the Fe3+OP, represented by 〈Sy〉, is finite in the S phase but near-zero in
the A phase. The Er3+ OP, on the other hand, is finite in both the S and A
phases, but undergoes a switch from the hΣ̂�

z i≠ 0, hΣ̂�
x i≈ 0 type (S phase) to

the hΣ̂�
z i≈ 0, hΣ̂�

x i≠ 0 type (A phase). Further, the OP evolution indicates
that the S→A boundary is an abrupt-type, first-order phase transition,
while the A→N boundary is a continuous-type, second-order phase
transition.

Summarizing the mean-field calculation results, Fig. 3c pictorially
shows the predicted Fe3+ and Er3+ spin order in each phase. Starting from
the N phase, the two sublattices of Fe3+ are antiparallel along z with zero y-
component, while Er3+ spins remain paramagnetic (no order). The A phase
is characterized by Fe3+ order that is identical to that of the N phase, but the
Er3+ subsystem develops canted AFM order where the sublattice moments
are antiparallel along x (hΣ̂�

x i≠ 0), with canting along z (hΣ̂
þ
z i≠ 0). In the S

phase, the Er3+ order takes the hΣ̂þ
x i≠ 0, hΣ̂�

z i≠ 0 configuration, and the
staggered moment of the Fe3+ sublattices undergoes a rotation about the x
axis, bringing its y-component to nonzero.

The S→A transition can be considered as a spin-flop transition in
terms of Er3+ ions. One conventional way to characterize the transition is
to monitor the magnetic susceptibility through which the existence of the
AFM ordering of Er3+ spins in the A phase has been previously
observed37, although the configuration of Fe3+ spins was left ambiguous.
Our magnetization measurements showed clear S→A and S→N phase
boundaries (squares in Fig. 4a and Supplementary Fig. 1). However, a
strong and non-uniform demagnetizing effect that broadens the phase
boundary38 likely prevented us from clearly identifying the A→N phase
boundary. This is because the shape of our sample for magnetization
measurements was a thin irregularly shaped disk cut from the sample
used for THz measurements, rather than a sphere, which would have
produced a uniform demagnetizing field inside the sample37. None-
theless, a disk-shaped sample with a large lateral size was necessary for
performing THz transmission measurements.

To demonstrate the A→Nphase boundary, i.e., the breakdown of the
AFM order of Er3+ spins, we performed magnetocaloric effect (MCE)
experiments which are sensitive to the magnetic entropy landscape of a
material. Namely, the Grüneisen ratio39

ΓH ¼ � ð∂S=∂HÞT
CH

¼ 1

T

∂T

∂H

�

�

�

�

S

; ð3Þ

measures the slope of isentropes in theT−H plane40. Since the heat capacity
CH is always a positive quantity, the sign of ð∂T

∂H
Þ
S
is always opposite to ð ∂S

∂H
Þ
T
.

Furthermore, sharp changes in entropy S due to phase transitions will
appear as step functions in ð∂T

∂H
Þ
S
40, or peaks if ð∂T

∂H
Þ is measured in a quasi-

Fig. 3 | Mean-field solution for the spin Hamiltonian of ErFeO3 in H∥z.

aTheoreticalT–H phase diagrammapped by Er3+ spin components. bH-dependent

evolution of the Er3+ and Fe3+ spin components (normalized) atT = 0K. c Schematic

diagrams of the spin configuration in each phase.
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adiabatic environment41. Thus, by measuring the differential change in
sample temperature with respect to the magnetic field, ð∂T

∂H
Þ
S
, the T−H

magnetic phase diagram can be measured. We note that the demagnetiza-
tion factor can have a small effect on theMCEmeasurements42, namely that
temperature and field shifts can occur, but the qualitative features should be
present.

The T–H phase diagram of ErFeO3, and the obtained results are
summarized in Fig. 4a. We configured a MCE measurement in a Physical
Property Measurement System in the quasi-adiabatic condition43, and took
raw data traces of sample temperature variation versus magnetic field at a
ramping rate of 5 × 10−3 T/s with dH > 0 (Supplementary Fig. 2a); the
sensitivity of temperature variation of our instrument reached 5 × 10−4 K.
To identifyH-induced phase transitions, the first-order derivative ð∂T

∂H
Þ
S
was

approximated as dT/d(μ0H) (Supplementary Fig. 2b), whose local extremes
correspond to the transition boundaries41. The traces clearly exhibit two
maxima for T < 2.8 K, corresponding to the S→A (red dashed line in
Fig. 4a) and A→N (blue dashed line) boundaries, and one maximum for
2.8 K < T < 4 K, corresponding to the S→N (blue dashed line) boundary.
These results are qualitatively consistent with the T–H phase diagram
reported previously37, where quantitative shifts likely come from demag-
netization effects.

Once we experimentally investigated the evolution of the atomic
ensemble (or the Er3+ spins) in the extendedDicke Hamiltonian, we turned
to elucidate the photonic counterpart (or the Fe3+ spins). The ambiguity of
the configuration of Fe3+ spins and the nature of the transition boundaries
require us to monitor the qAFM magnon mode of Fe3+ spins in THz
magnetospectroscopy experiments. Unlike the static measurements,
responses fromdifferent domains in theAphase can be distinguished in the
frequency domain, illuminating the nature of the phase transition. The
measurements were performed within the same T–H parameter space as
that of theMCEexperiments. Figure 4b–dande–g shows theH-dependence
ofα spectra at selectT values and theT-dependenceofα spectra at selectμ0H
values, respectively. We found that the bright absorption lines can be
assigned to either the quasi-ferromagnetic (qFM) mode or the qAFM
mode35, the latter of which can be an OP for the Fe3+ spins.

In the H-dependent color map at 1.4 K (Fig. 4b), three lines are
observed. The lowest frequency line, which does not pick up intensity until
0.8 T, is the qFMmode, while the other two are both qAFMmagnons, albeit

belonging to distinct phases. Themiddle (upper) line, which is located at 0.8
THz at 0 T (1 THz at 0.5 T), is the qAFMmode of the S (A&N) phase. The
S→A transition can be identified to occur at 0.5 T (red dashed line), where
the upper line emerges. The qAFM magnons belonging to the S and A
phases coexist within 0.5 T < μ0H < 1 T, consistent with the prediction that
the S→A transition is of first order and is thus inhomogeneous, until the
middle line vanishes at > 1T (blue dashed line) owing to entrance into theN
phase. The 3.2 K map (Fig. 4c) shows a different behavior; the qAFM
magnon (0.88THz at 0 T) of the S phase continuously shifts to connect with
that of the N phase in frequency, forming an OP-like onset for μ0H < 0.7 T
(blue dashed line), signaling a second-order N→ S transition boundary.
Such a frequency shift is absent in the 4.4 Kmap (Fig. 4d) since the N phase
persists throughout the whole H range.

T-dependent color maps at constant H further corroborate our
assignments of the phase transitions. Again from the 0 T map (Fig. 4e), a
continuous OP-like onset of the qAFM mode shift is observed (<4 K, blue
dashed line). This echoes Fig. 4c in showing the continuous nature of the
N→ S transition, and establishes that the frequency shift of the qAFM
magnon in the S phase from that in the N phase can be the Fe3+OP of the S
phase. Intriguingly, this OP is demonstrated to be zero in the A phase. We
read this fact from the 0.75Tmap (Fig. 4f), forwhich anN→A transition is
expected upon lowering T. Although a residual mode pertaining to the S
phase exists (asmentioned earlierwhendiscussingFig. 4b), the qAFMmode
(unlabeled line) frequency does not undergo any noticeable OP-like
anomaly across the N→A transition; it is as featureless as the qAFMmode
within the 1.25 T map (Fig. 4g), for which the N phase persists throughout
the wholeT range. This unambiguously demonstrates that the spin order in
theAphase only involvesEr3+ ordering butnot anyFe3+OP, consistentwith
our expectation depicted in Fig. 3. Finally, phase boundaries determined by
the THz experiments are overlaid (as solid circles) on top of theMCE phase
diagram in Fig. 4a, showing overall agreement.

Discussion
Apotential impact of this analogy is the possibility of being applied to other
members of the rare-earth orthoferrite family or orthochromite com-
pounds. For example, spin-reorientation phase transitions44,45 (Γ4→ Γ2) in
RFeO3 (R=Yb, Er, and Tb) would mimic the SRPT. In YbFeO3, where the
Yb3+–Yb3+ interaction (J) is negligible, itwouldbe apotential playground for

Fig. 4 |Mapping out theT–Hphase diagramof ErFeO3 inH∥z. aPhase boundaries

determined by THz measurements (solid circles) and magnetization measurements

(squares) overlaid on the dT/d(μ0H) color map determined from MCE measure-

ments. Red (blue) dashed line denotes a first- (second-) order phase boundary.

b–d THz absorption spectra mapped vs μ0H for select T values. e–g THz absorption

spectra mapped vs T for select μ0H values. Red and blue dashed lines mark the same

boundaries as those in (a). All features except for those labeled “qFM” are qAFM

magnon modes of Fe3+ spins.
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studying the standard Dicke model (g model). At the boundaries of the
phase transition of YbFeO3, the qFM mode of Fe3+ shows a kink, and a
transition inside the ground doublet of Yb3+ ions shows a softening46. This
simultaneous kink and softening is one of the hallmarks of a magnonic
SRPT47. It was also suggested that TbFeO3 can be regarded as the magnetic
phase transition of the Jahn-Teller type48,49 that would resemble amagnonic
SRPT. In ErFeO3, where a crystal field transition (~1.5 THz) is responsible
for the spin-reorientation transition (T= 87K), the crystal field levels would
play the role of an ensemble of two-level atoms in theDickemodel. Toprove
that Dicke physics is at work, however, onemust showDicke cooperativity,
i.e., the coupling strength gmust exhibit cooperative enhancement g /

ffiffiffiffi

N
p

,
where N is the number of two-level atoms. In addition, mapping their spin
Hamiltonians into theDickemodels is required to establish this analogy.No
attempts have been made to develop an analogy between the spin-
reorientation transition and the Dicke superradiant phase transition.

The advantages of using the low-temperature phase transition, as
opposed to the ~80 K spin-reorientation phase transition, of ErFeO3 in
simulating the extendedDickemodel canbe summarized as follows. First, the
low-temperature phase transition allows us to simulate the first-order phase
transition into theAphase, which is themain point of thiswork and does not
exist in the spin-reorientation transition at 87 K. Second, since we deal with
the lowest two energy levels (Kramers doublet) of Er3+ ions in the low-
temperature phase transition, theoretical analysis is directly relevant to the
Dickemodel, compared to themultiple crystal-field energy levels involved in
the 87Kphase transition. Third, andmost importantly, at high temperatures,
thermally populatedmagnons are not negligible. Such thermal magnons will
prevent studies of the vacuum magnons responsible for the Dicke super-
radiant phase transition, which occurs in thermal equilibrium without any
external driving. For example, one consequence of the superradiant phase
transition induced by vacuum bosonic fields is a two-mode perfect squeezed
vacuum at the critical point34. A finite number of thermally excitedmagnons
will mask such interesting quantum phenomena.

Conclusion
In summary, through THz magnetospectroscopy and magnetocaloric effect
experiments, we studied a crystal of ErFeO3 to simulate the g–Jmodel, which
is an extendedDickemodel that includesnot only the bosonic-field-mediated
long-range interatomic interactions but also direct short-range interactomic
interactions. In addition to the superradiant and normal phases expected
from the standard Dicke model, we identified a new phase, an atomic phase,
which is driven by the short-range J-term in the Hamiltonian. Further, we
elucidated thenatureof the variousphase boundaries, distinguishingbetween
first-order and second-order transitions. These results demonstrated the
potential of ErFeO3 as a simulator of quantum optics Hamiltonians. More
specifically, in the context of Dicke physics, this condensed matter platform
may lead to the possibilities of assisting quantum chaos22 and modifying
matter–matter entanglement20,23 with tunability given through an external
magnetic field. Bridging the gap between quantum optics and many-body
correlated physics, our results will find broader application in the design of
hybridquantumsystemswith superior controllability, suchas theDicke-Ising
machine27,50 and the Dicke-Lipkin-Meshkov-Glick model18,23. Furthermore,
the ability to transition between the superradiant and atomic phases via a
nonthermal knob provides opportunities to study unconventional quantum
criticality51 and chaos-assisted thermalization52.

Methods
Spin Hamiltonian

Following the prior work34, the spinHamiltonian taking into account all the
spin subsystems and their mutual interactions is first introduced. We ana-
lyzed the ErFeO3 spin system from a microscopic model originally derived
in ref. 34. The total microscopic Hamiltonian is

H ¼ HFe þHEr þHFe�Er: ð4Þ

HFe,HEr, andHFe�Er areFe
3+, Er3+, andFe3+–Er3+ interactionHamiltonian,

respectively.As in ourprevious studies30,53 andHerrmann’smodel54, we take
the two-sublattice model both for Er and Fe spins.

The Fe3+ Hamiltonian is

HFe ¼
X

s¼A;B

X

N0

i¼1

μBμ0Ŝ
s

i � gFeH þ JFe
X

n:n:

Ŝ
A

i � ŜBi0

� DFe
y

X

n:n:

Ŝ
A

i;z Ŝ
B

i0;x � Ŝ
B

i;z Ŝ
A

i0;x

� �

�
X

N0

i¼1

AxŜ
A2

i;x þ Az Ŝ
A2

i;z þ Axz Ŝ
A

i;x Ŝ
A

i;z

� �

�
X

N0

i¼1

AxŜ
B 2

i;x þ Az Ŝ
B 2

i;z � Axz Ŝ
B

i;x Ŝ
B

i;z

� �

:

Ŝ
s

i is the Fe
3+ spin operator with S = 5/2 at the i-th site and s sublattice. JFe,

DFe
y , Ax(z, xz) are a Fe

3+ isotropic exchange constant, Dzyaloshinskii-Moriya
interaction for the y(b)-axis, and the single ion anisotropy for the x(z, xz)
spin components. ∑n.n. is a summation for the nearest neighbors and the
number of nearest neighbors is zFe = 6. N0 is the number of unit cells in
ErFeO3. The g-factor of Fe

3+ is

g
Fe ¼

g
Fe
x 0 0

0 g
Fe
y 0

0 0 g
Fe
z

0

B

@

1

C

A
:

μB is the Bohr magneton and H is an external magnetic field.
The Er3+ Hamiltonian is

HEr ¼
X

s¼A;B

X

N0

i¼1

μ0
2
σ̂si � gEr �H þ JEr

X

n:n:

σ̂Ai � σ̂Bi0 :

σ̂si is the Er
3+ spin operator at the i-th site and s sublattice. JEr represents

Er3+–Er3+ isotorpic exchange constant. The g-factor of Er3+ is

g
Er ¼

gx 0 0

0 gy 0

0 0 gz

0

B

@

1

C

A
:

Finally, the Fe3+–Er3+ interaction Hamiltonian is

HEr�Fe ¼
X

N0

i¼1

X

s;s0¼A;B

J σ̂si � Ŝ
s0 þ Ds;s0 � σ̂si × Ŝ

s0
� �h i

:

In our Fe3+–Er3+ interactionHamiltonian, Fe3+ and Er3+ interact within the
same unit cell. J is a Fe3+–Er3+ isotropic exchange constant. Ds;s0 is the
Dzyaloshinskii-Moriya interaction and

DA;A ¼ Dx;Dy; 0
� �t

;

DA;B ¼ �Dx;�Dy; 0
� �t

;

DB;A ¼ �Dx;Dy; 0
� �t

;

DB;B ¼ Dx;�Dy; 0
� �t

:

The state of spins are determined by the equations of motion in which
we assume each individual spin experiences a uniform mean field supplied
by its surrounding magnetic ions. Assuming the dynamics within all unit
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cells are identical, we can replace spins dependent on unit cells, Ssi and σsi ,
with uniform spins, Ss and σs keeping the sublattice dependence. From the
Heisenberg equation from the Hamiltonian (Eq. (4)), the equations of
motion are

_
∂

∂t
σs ¼ �σs × μ0gμBH

s
ErðfσA=Bg; fSA=BgÞ; ð5Þ

_
∂

∂t
Ss ¼ �Ss × μ0gμBH

s
FeðfσA=Bg; fSA=BgÞ: ð6Þ

g is the free electron g-factor.Hs
Er andH

s
Fe are the mean-fields for Er3+ and

Fe3+ spins, respectively. The mean-fields are defined as derivatives of the
totalHamiltonian (Eq. (4)) with respect to the corresponding spin variables,
for example gμ0μBH

s
Er ¼ 2∂H=∂σs. The phase diagrams shown in

Figs. 2 and 3 are calculated by the following procedure.
From the equations of motion, the equilibrium spins (�σA=B and �S

A=B
)

are parallel to the mean-fields �H
s
Er ¼ Hs

Erðf�σA=Bg; f�S
A=BgÞ and

�H
s
Fe ¼ Hs

Feðf�σA=Bg; f�S
A=BgÞ. They are connected as

�σs ¼ hσ̂si ¼ hσ̂skiusEr; σ̂sk ¼ σ̂s � usEr; usEr ¼ �H
s
Er=j�H

s
Erj; ð7Þ

�S
s ¼ hŜsi ¼ hŜskiusFe; Ŝ

s

k ¼ Ŝ
s � usFe; usFe ¼ �H

s
Fe=j�H

s
Fej: ð8Þ

We determine the equilibrium spins (�σA=B and �S
A=B

) in the following self-
consistent equations

hσ̂ski ¼ � ∂

∂ys
lnZs

Er ¼ � tanhðysÞ; ð9Þ

hŜski ¼ � ∂

∂xs
lnZs

Fe ¼ �SBSðSxsÞ; ð10Þ

BJ(z) is the Brillouin function

BJ ðzÞ ¼
2J þ 1

2J
coth

2J þ 1

2J
z

� 	

� 1

2J
coth

z

2J

� 	

;

and the partition functions are

Zs
Er � Tr e�Ĥ

s

Er=kBT
h i

¼
X

m¼± 1

e�mys ¼ 2 coshðysÞ; ð11Þ

Zs
Fe � Tr e�Ĥ

s

Fe=kBT
h i

¼
X

S

m¼�S

e�mxs ¼ sinh½ðSþ 1=2Þxs�
sinhðxs=2Þ

; ð12Þ

ys ¼
gμ0μBj�H

s
Erj

2kBT
; xs ¼

gμ0μBj�H
s
Fej

kBT
:

kB is Boltzmann constant and T is temperature. Finally, the effective
Hamiltonians of given mean-fields �H

s
Er and

�H
s
Fe are

Ĥ
s

Er ¼
1

2
gμ0μBσ̂

s � �Hs
Er ¼

1

2
gμ0μBσ̂

s
kj�H

s
Erj;

Ĥ
s

Fe ¼ gμ0μBŜ
s � �Hs

Fe ¼ gμ0μBŜ
s

kj�H
s
Fej:

Here, σ̂s and Ŝ
s
are vectors of the Pauli operators and angular momentum

with the magnitude S.
To determine the ground state, we calculate free energy from the

partition functions, Eqs. (11) and (12), and pick the configuration with the

lowest energy. The free energies are defined as

Fs
Er ¼ �kBT lnZs

Er;

Fs
Fe ¼ �kBT lnZs

Fe:

The total free energy of Er3+ and Fe3+ spins are

F ¼
X

s¼A;B

Fs
Er þ Fs

Fe

� �

=2: ð13Þ

Extended Dicke model

Second quantization of the spinHamiltonianEq. (4) has been carried out by
ref. 34. We omit the derivation here since details can be found in the refer-
ence. For the sake of consistency, notationwill follow those in ref. 34, but will
be substituted by those used in Eq. (1) eventually. Ref. 34 expressed the total
Hamiltonian as

Ĥ≈

X

K¼0;π

_ωK â
y
K âK þ ωErΣ̂

þ
x þ

X

ξ¼x;y;z

g
Er
ξ μBB

DC
ξ Σ̂

þ
ξ

þ 8zErJEr
N

Σ̂
A � Σ̂B þ 2_gx

ffiffiffiffi

N
p ðâyπ þ âπÞΣ̂

þ
x

þ
i2_gy

ffiffiffiffi

N
p ðây0 � â0ÞΣ̂

þ
y þ

2_g 0y
ffiffiffiffi

N
p ðâyπ þ âπÞΣ̂

�
y

þ i2_gz
ffiffiffiffi

N
p ðâyπ � âπÞΣ̂

�
z þ 2_g 0z

ffiffiffiffi

N
p ðây0 þ â0ÞΣ̂

þ
z :

ð14Þ

Here,K = 0 andπ corresponds to the qFMandqAFMmagnonmodes. Σ̂
A=B

is a spin-N
4
operator representing the rare-earth spins in the A/B sublattice,

satisfying

Σ̂
A=B � 1

2

X

N0

i¼1

R̂
A=B

i ; ð15Þ

where ð1=2ÞR̂A=B

i is a spin-1
2
operator for anEr3+ ion.We also define the sum

and difference of the two sublattice spins as

Σ̂
± � Σ̂

A
± Σ̂

B
: ð16Þ

The total number of spin-1
2
spins (Er3+ spins) in the two sublattices is

N � 2N0: ð17Þ

The five Er3+–magnon coupling terms were rewritten in terms of the
annihilation (creation) operators âK (â

y
K ) of amagnon, with their respective

coupling strengths defined as

_gx ¼
ffiffiffiffiffi

2S
p

ðJ cos β0 � Dy sin β0Þ
bþ a

d � c

� 	1=4

¼ h× 0:051 THz;

ð18aÞ

_gy ¼
ffiffiffiffiffi

2S
p

J
d þ c

b� a

� 	1=4

¼ h× 0:041 THz;

ð18bÞ

_g 0y ¼
ffiffiffiffiffi

2S
p

ðDx sin β0Þ
bþ a

d � c

� 	1=4

¼ h× 3:1× 10�5 THz;

ð18cÞ
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_gz ¼
ffiffiffiffiffi

2S
p

Dx

d � c

bþ a

� 	1=4

¼ h× 0:116 THz;

ð18dÞ

_g 0z ¼
ffiffiffiffiffi

2S
p

ð�J sin β0 � Dy cos β0Þ
b� a

d þ c

� 	1=4

¼ h× ð�0:040 THzÞ:
ð18eÞ

The numerical values of these coupling strengths are evaluated by the
set of parameters, a, b, c, d, J, β0,Dx,Dy, which are defined and quantitatively
given in ref. 34. We found that the ℏgz is the dominant term, for which we
retain in Eq. (1) and all other Fe3+–Er3+ coupling terms are dropped as an
approximation.

Regarding theEr3+–Er3+ interaction term,while theEr3+ spin ensemble
is described by six operators, Σ̂

þ
x;y;z and Σ̂

�
x;y;z , in the extended Dicke

Hamiltonian, only Σ̂
þ
x and Σ̂

�
z are relevant to the low-temperature phase

transition. Σ̂
þ
x corresponds to the paramagnetic alignment by the Fe3+

magnetization along the a axis, and Σ̂
�
z corresponds to the anti-

ferromagnetic ordering along the c axis. Then, for analyzing the thermal-
equilibriumvaluesof the spins,weneed to consider only the following terms
in the Er3+–Er3+ exchange interactions:

8zErJEr
N

Σ̂
A � Σ̂B ¼ 2zErJEr

N

X

ξ¼x;y;z

Σ̂
þ
ξ

� �2

� Σ̂
�
ξ

� �2

 �

! 2zErJEr
N

Σ̂
þ
x

� �2

þ Σ̂
þ
z

� �2

� Σ̂
�
x

� �2 � Σ̂
�
z

� �2

 �

:

ð19Þ

After this substitution, a notation substitution of gz→ g and JEr→ J, and
incorporating the aforementioned simplification about the coupling terms,
Eq. (14) becomes Eq. (1). Numerical values of the material parameters
therein are:

J ¼ 0:037meV ð20Þ

g ¼ 0:48meV ð21Þ

ωπ ¼ 2π × 0:896 THz ð22Þ

ωEr ¼ 2π × 0:023 THz: ð23Þ

Sample preparation

Polycrystalline ErFeO3 was first synthesized by a conventional solid state
reaction method using Er2O3 (99.9%) and Fe2O3 (99.98%) powders.
According to the stoichiometric ratio, the original reagents were weighted
carefully and pulverized with moderate anhydrous ethanol in an agate
mortar. Mixtures were sintered at 1300 ∘C for 1000min and then cooled
down to room temperature. The sintered powders were thoroughly
reground and pressed into a rod that is 70mm in length and 5–6mm in
diameter by aHydrostatic Press System (RikenSeiki CO. Ltd,modelHP-M-
SD-200) at 70 MPa, and then sintered again at 1300 ∘C for sufficient reac-
tion. Single crystal samples were then grown by an optical floating zone
furnace (FZT-10000-H-VI-P-SH, Crystal Systems Corp; heat source: four 1
kW halogen lamps). The polycrystalline samples were melted in an airflow.
Conditions like the melting power and the rate of sample rotation were
stabilized and controlled in the molten zone.

Magnetization measurements

We measured iso-field (Supplementary Fig. 1a, left axis, blue circles) and
isothermal (Supplementary Fig. 1b, left axis, blue circles) magnetizationM
to determine the phase transitions in theT–H plane of ErFeO3 formagnetic

fieldH∥c. The transition from theN→ S states is marked by themaximum
in the derivative d(MT)/dT55 (Supplementary Fig. 1a right axis, red squares).
The transition from the S→A states in the isothermalMmeasured at T =
1.5 K (Supplementary Fig. 1b, left axis, blue circles) is clearly marked by the
maximum in dM/dH (Supplementary Fig. 1b right axis, red triangles). The
transition from the A→N states is much less obvious, marked by a small
kink in dM/dH (Supplementary Fig. 1b right axis, red triangles) marked by
the gray dashed lane. This may be due to demagnetization effects due to the
irregularity of the sample shape we measured. Nonetheless, we are able to
use MCE measurements that clearly exhibit signatures of the A→N
transition. It is noted that transitions shown here from magnetization
measurements are consistent within error bars with theT–H phase diagram
presented in Fig. 4a.

THz magnetospectroscopy

We performed time-domain THz transmission magnetospectroscopy
measurements in the Faraday geometry. The sample is placed in a
liquid-helium-cooled magneto-optical cryostat (Oxford Instruments
Spectromag-10T) with variable temperatures T between 1.4 and 300 K
and static magnetic fields μ0H up to 10 T. We generate THz pulses via
optical rectification using a Ti:sapphire regenerative amplifier (775 nm,
0.7 mJ, 150 fs, 1 kHz, Clark-MXR, Inc., CPA2001) as a laser source that
pumps a (110) zinc telluride (ZnTe) crystal, while detection is accom-
plished through electro-optical sampling in another ZnTe crystal.

Index of refraction and absorption coefficient

In this sectionwe derive the standard equations used in the extraction of the
complex index of refraction of a sample using THz-TDS. Let ~E0ðωÞ be the
Fourier transform of an incoming THz pulse E0(t) incident on two linear
media surrounding a homogeneous dielectric slab of thickness d (the
sample). We assume that trailing pulses due to multiple reflections within
the sample (the Fabry-Pérot effect) arewell separated in time from themain
transmitted THz pulse and that the incidence is normal to the sample
surfaces (assumed parallel and flat). Experimentally, two separate mea-
surements are consecutively carried out. First, the THz electric field trans-
mittingwithout a sample in place ismeasured and the reference electricfield
~ErðωÞ is obtained. Second, both the sample and its surroundings ismeasured
and ~EsðωÞ is extracted. Under these assumptions, each transmitted electric
field can be written as56,57:

~ErðωÞ ¼ ~t13ðωÞ~Pvacðω; dÞ~E0ðωÞ ð24Þ

~EsðωÞ ¼ ~t12ðωÞ~Psðω; dÞ~t23~E0ðωÞ ð25Þ

where ~tjk ¼
2~nj

~njþ~nk
is the complex Fresnel transmission coefficient between

mediums j and k, ~Pjðω; djÞ ¼ eik0dj~nj ¼ eiðωdj=cÞ~nj is the propagator through

medium j, and the subscripts vac, r, and s refer to vacuum, reference, and

sample, respectively. The ratio between ~ErðωÞ and ~EsðωÞ is the transfer

function ~HðωÞ, and it follows from Eqs. (24) and (25) that:

~HðωÞ ¼
~EsðωÞ
~ErðωÞ

¼
~t12~t23
~t13

~Psðω; dÞ
~Pvacðω; dÞ

¼ 2~n2ð~n1 þ ~n3Þ
ð~n1 þ ~n2Þð~n2 þ ~n3Þ

eiðωd=cÞð~ns�1Þ

ð26Þ

The bulk samples characterized in this work are single crystals grown
without a substrate, and therefore, the surroundingmediumscanbe takenas
vacuum by setting ~n1 ¼ ~n3 ¼ 1 in Eq. (26). With this simplification, the
coefficient in front of the exponential becomes

4~ns
ð~nsþ1Þ2, wherewehave change

the subscript ~n2 to ~ns for convenience. Furthermore, we can set ~ns ¼ nsðωÞ
for~tjk and solve Eq. (26) for ~ns ¼ nsðωÞ þ iκsðωÞ in the exponential. Here,
ns(ω) is the index of refraction of the sample, and κs(ω) its extinction
coefficient. This approximation is justified by the fact that the sample
absorption is negligible in the Fresnel transmission coefficient compared to
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the exponential termand is thus used in thedata analysis here described.We
obtain:

~HðωÞ ¼ 4nsðωÞ
ðnsðωÞ þ 1Þ2

eiðωd=cÞð~ns�1Þ ¼ 4nsðωÞ
ðnsðωÞ þ 1Þ2

eiðωd=cÞðnsðωÞ�1Þe�ðωd=cÞκsðωÞ

ð27Þ

Taking the modulus and phase of Eq. (27) leads to:

Φ½~HðωÞ� ¼ ωd

c

� 	

ðnsðωÞ � 1Þ ! nsðωÞ ¼ 1þ c

ωd
Φ½~HðωÞ� ð28Þ

j~HðωÞj ¼ 4nsðωÞ
ðnsðωÞ þ 1Þ2

e�ðωd=cÞκsðωÞ ! κsðωÞ ¼ � c

ωd
ln

ðnsðωÞ þ 1Þ2

4nsðωÞ
j~HðωÞj


 �

ð29Þ

We can also re-write this result in terms of the absorption coefficient
α(ω) of the sample as:

nðωÞ ¼ 1þ c

ωd
Φ½~HðωÞ� ð30Þ

αðωÞ ¼ 2ω

c
κðωÞ ¼ � 2

d
ln

ðnðωÞ þ 1Þ2

4nðωÞ j~HðωÞj

 �

ð31Þ

where we have dropped the subscript s for convenience. In conclusion, by
Fourier transforming ~ErðtÞ and ~EsðtÞ, which are obtained experimentally,
the transfer function ~HðωÞ can be calculated as ~EsðωÞ=~ErðωÞ, and n(ω) and
α(ω) follow from Eqs. (30) and (31), respectively.

Data availability
Data that support the findings of this study are available from the corre-
sponding author upon reasonable request.

Code availability
Codes that support the findings of this study are available from the corre-
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