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The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a
single-mode photonic field and exhibits a quantum phase transition as a function of light-matter
coupling strength. Extending this model by incorporating short-range atom-atom interactions makes
the problem intractable but is expected to produce new physical phenomena and phases. Here, we
simulate such an extended Dicke model using a crystal of ErFeOg, where the role of atoms (photons) is
played by Er** spins (Fe** magnons). Through terahertz spectroscopy and magnetocaloric effect
measurements as a function of temperature and magnetic field, we demonstrated the existence of a
novel atomically ordered phase in addition to the superradiant and normal phases that are expected
from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the
temperature-magnetic-field phase diagram, identifying both first-order and second-order phase
transitions. These results lay the foundation for studying multiatomic quantum optics models using

well-characterized many-body solid-state systems.

The Dicke model in quantum optics describes the cooperative, coherent
coupling of an ensemble of two-level atoms with a single-mode light field".
Despite its simplicity, the model hosts a rich variety of phenomena that are
significant in diverse contexts, such as cavity quantum electrodynamics’,
condensed matter physics’, and quantum information science*’. A pro-
minent feature of the model is a second-order quantum phase transition
(QPT), known as the superradiant phase transition (SRPT), which occurs
when the light-matter coupling strength, g, exceeds a threshold®”. When the
system enters the superradiant phase, atomic and photonic polarizations
spontaneously emerge, producing a unique many-body ground state that
enables studies of unusual light-matter entanglement®, two-mode squeezed
states”", and quantum chaos'”.

Although the atomic ensemble in the original Dicke model was
assumed to be noninteracting, it has been known from the early days that
atom-atom interactions are important for explaining, for example, the
dephasing and intensity correlation functions of fluorescent spectra'>'.
Hence, there has long been interest in extending the Dicke model to include
an atom-atom interaction (represented by strength J); see Fig. 1. Such an
extended Dicke model, or the g-J model, should display an interplay of two
types of interatomic interactions - i.e., the photonic-field-mediated long-
range interaction, and the direct short-range interaction. Intuitively, one can
expect the ground state of the system to crucially depend on the ratio g/J,
with a superradiant phase (an atomically ordered phase) favored for large
(small) g/J. However, no analytical solutions can be obtained for the g-J

"Department of Physics and Astronomy, Rice University, Houston, TX, USA. 2Department of Physics, California Institute of Technology, Pasadena, CA, USA.
3Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX, USA. “Division of Applied Physics, Graduate School of Engineering,
Hokkaido University, Hokkaido, Japan. *Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA. ®Department of Physics,
International Center of Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University, Shanghai, China. "Department of Physics and
Center for Quantum Frontiers of Research and Technology, National Cheng Kung University, Tainan, Taiwan. ®Department of Chemistry, Rice University, Houston,
TX, USA. °Department of Physics |, Kyoto University, Kyoto, Japan. '“The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan. "'PRESTO,
Japan Science and Technology Agency, Saitama, Japan. '?Department of Physics, Yokohama National University, Yokohama, Japan. '*Department of Materials
Science and NanoEngineering, Rice University, Houston, TX, USA. “These authors contributed equally: Nicolas Marquez Peraca, Jaime M. Moya, Kenji Hayashida.
e-mail: xinweili@caltech.edu; sxcao@shu.edu.cn; bamba.motoaki.y13@kyoto-u.jp; kono@rice.edu

Communications Materials | (2024)5:42 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s43246-024-00479-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43246-024-00479-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43246-024-00479-3&domain=pdf
http://orcid.org/0000-0003-0555-2624
http://orcid.org/0000-0003-0555-2624
http://orcid.org/0000-0003-0555-2624
http://orcid.org/0000-0003-0555-2624
http://orcid.org/0000-0003-0555-2624
http://orcid.org/0000-0003-1241-9493
http://orcid.org/0000-0003-1241-9493
http://orcid.org/0000-0003-1241-9493
http://orcid.org/0000-0003-1241-9493
http://orcid.org/0000-0003-1241-9493
http://orcid.org/0000-0002-2331-4526
http://orcid.org/0000-0002-2331-4526
http://orcid.org/0000-0002-2331-4526
http://orcid.org/0000-0002-2331-4526
http://orcid.org/0000-0002-2331-4526
http://orcid.org/0000-0002-4000-5733
http://orcid.org/0000-0002-4000-5733
http://orcid.org/0000-0002-4000-5733
http://orcid.org/0000-0002-4000-5733
http://orcid.org/0000-0002-4000-5733
http://orcid.org/0000-0001-7399-7014
http://orcid.org/0000-0001-7399-7014
http://orcid.org/0000-0001-7399-7014
http://orcid.org/0000-0001-7399-7014
http://orcid.org/0000-0001-7399-7014
http://orcid.org/0000-0002-6088-3170
http://orcid.org/0000-0002-6088-3170
http://orcid.org/0000-0002-6088-3170
http://orcid.org/0000-0002-6088-3170
http://orcid.org/0000-0002-6088-3170
http://orcid.org/0000-0002-8684-7979
http://orcid.org/0000-0002-8684-7979
http://orcid.org/0000-0002-8684-7979
http://orcid.org/0000-0002-8684-7979
http://orcid.org/0000-0002-8684-7979
http://orcid.org/0000-0002-0018-3076
http://orcid.org/0000-0002-0018-3076
http://orcid.org/0000-0002-0018-3076
http://orcid.org/0000-0002-0018-3076
http://orcid.org/0000-0002-0018-3076
http://orcid.org/0000-0002-6076-9204
http://orcid.org/0000-0002-6076-9204
http://orcid.org/0000-0002-6076-9204
http://orcid.org/0000-0002-6076-9204
http://orcid.org/0000-0002-6076-9204
http://orcid.org/0000-0002-3915-2621
http://orcid.org/0000-0002-3915-2621
http://orcid.org/0000-0002-3915-2621
http://orcid.org/0000-0002-3915-2621
http://orcid.org/0000-0002-3915-2621
http://orcid.org/0000-0001-9811-0416
http://orcid.org/0000-0001-9811-0416
http://orcid.org/0000-0001-9811-0416
http://orcid.org/0000-0001-9811-0416
http://orcid.org/0000-0001-9811-0416
http://orcid.org/0000-0002-4195-0577
http://orcid.org/0000-0002-4195-0577
http://orcid.org/0000-0002-4195-0577
http://orcid.org/0000-0002-4195-0577
http://orcid.org/0000-0002-4195-0577
mailto:xinweili@caltech.edu
mailto:sxcao@shu.edu.cn
mailto:bamba.motoaki.y13@kyoto-u.jp
mailto:kono@rice.edu

https://doi.org/10.1038/s43246-024-00479-3

Article

S / - / g: atom—field

J: atom—-atom

Fig. 1 | The extended Dicke model, or the g-J model, where an ensemble of
interacting two-level atoms collectively couples with a bosonic field. The coop-
erative boson-atom interaction, with strength g, mediates long-range atom-atom
interactions, whereas the direct atom-atom interaction, with strength J, is short-
ranged.

model, motivating one to simulate it using a well-characterized many-body
quantum system.

Computational studies of the g-J model under various approximations
have revealed an array of new phenomena, such as a first-order QPT" ™, a
shift of the SRPT boundary**”', amplification of the integrablity-to-chaos
transition”, modifications of matter-matter entanglement™*”, and altera-
tion of the nature of an excited-state QPT'**, To examine these phenomena,
several experimental platforms, including atomic Bose-Einstein
condensates”*, superconducting qubits”"*, and quantum dots', have been
proposed as quantum simulators, but successful simulations have not been
achieved.

Here, we present a novel protocol of using a crystal of erbium ortho-
ferrite (ErFeO;), an antiferromagnetic (AFM) insulator, as a solid-state
quantum simulator of the g-J model. The magnetic properties of ErFeO; are
governed by the moments carried by the Er’* and Fe’* spin subsystems and
their interplay”. A previous study has revealed Dicke cooperativity in the
Er**-Fe’" interaction’, demonstrating the resemblance of the magnetic
Hamiltonian of ErFeO; to the Dicke Hamiltonian. Namely, the para-
magnetic Er’* ions (the magnons of ordered Fe*" spins) play the role of the
atomic ensemble (light field), and the spin-magnon interaction is formally
similar to the g-term in the Dicke model. What further strengthens this
analogy is a magnetic phase transition of the crystal that exhibits all traits
that would be expected for a Dicke SRPT. When the temperature (T)
becomes lower than 4 K, the Er** lattice develops C-type AFM order’' (with
the ferromagnetic chains along z), and a zone-boundary Fe’* magnon mode
condenses, displacing the staggered moments away from the x-z plane’”;
this corresponds to the emergence of atomic and photon polarizations in the
standard SRPT. In Bertaut’s notation, the magnetic transition is of the
I, — I}, type (Fig. 2a). Mean-field calculations using a realistic spin model
captures the simultaneous order parameter (OP) onset of both the Er’* and
Fe’" spin components, (£ ) and (S,), respectively (Fig. 2b), indicating that
the I, — Iy, transition is a magnonic SRPT*, with the I, and T}, phases
corresponding to the normal (N) and superradiant (S) phases, respectively.

Results

One way to observe the OP onset is to monitor the quasi-antiferromagnetic
(QAFM) magnon mode of Fe’* spins through terahertz (THz) time-domain
spectroscopy, which has been utilized to reveal the configuration of Fe** ions
in rare-earth orthoferrites”. By performing THz transmission measure-
ments on a z-cut ErFeOs crystal in the Faraday geometry, we obtained
absorption coefficient () spectra, derived from the imaginary part of
the refractive index (see Methods), as a function of T, as shown in Fig. 2c.
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Fig. 2 | The I'; > Ty, transition in ErFeO; as a magnonic analog of the SRPT.

a Lattice structure and spin configurations within the I';, and I, phases. Brown
polyhedra represent octahedrally coordinated FeOg cages. b Temperature depen-
dence of the Er’* and Fe’* spin components (normalized) across the phase transition
at0T. %, where P € {x, 7,2}, is the collective Er’* spin operator, with its superscript
“+” (“ —”) denoting the sum (difference) of the two sublattices. SP are the com-
ponents of Fe** spins. ¢ Temperature dependence of THz absorption spectra taken at
zero magnetic field. The bright line, corresponding to the gQAFM magnon mode of
Fe’* spins, shows a kink at 4 K, which is the superradiant-normal phase boundary at
zero magnetic field.

The observed bright absorption line is the QAFM mode, which has been
thoroughly studied in previous studies™. It is the evolution of this mode in
distinct phases of the g—J model that is of interest throughout this study. A
continuous OP-like onset, or a kink, is observed at the N — S transition
boundary (<4 K, blue dashed line). The frequency shift of the qAFM
magnon mode in the S phase from that in the N phase is thus a sensitive
reporter of the gAFM magnon condensate density, namely, the Fe** OP of
the S phase.

The J-term is inherently built into the magnetic Hamiltonian of ErFeO5
since the Er’ "—Er** exchange interaction, albeit being weak, is known to be
present™. Spectroscopic measurements have also revealed a fine frequency
splitting within the Er’* electron paramagnetic resonance lines™, which is
attributable to the Er’**~Er’* exchange interaction. The presence of both the
g- and J-terms sets the stage for ErFeO; to simulate the g—J model. In the
limit of strong interatomic interaction J >> g, one expects to find an atomic
(A) phase characterized by an interatomic OP, without the superradiant
order. Nonetheless, although the g-term-driven S phase can find
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Fig. 3 | Mean-field solution for the spin Hamiltonian of ErFeO; in H||z.

a Theoretical T-H phase diagram mapped by Er** spin components. b H-dependent
evolution of the Er’* and Fe’* spin components (normalized) at T = 0 K. ¢ Schematic
diagrams of the spin configuration in each phase.

correspondence to the I';, phase in ErFeOs, the g/] ratio set for the crystal
stipulates that a pure atomic (A) phase, which is driven exclusively by the J-
term, would not appear in equilibrium. For ErFeO;, the A phase would be an
Er** ordered phase without involving any OP onset in the Fe** subsystem.
Therefore, to achieve quantum simulation of the g-J model, we must search
for a way to invoke an explicit A phase through an S — A transition.

Our theoretical consideration suggests that subjecting ErFeO; to a
static magnetic field (H) along the z axis can potentially induce an S — A
transition. This can be understood by writing the simplified magnetic
Hamiltonian (see Methods) in the second-quantized form as

A= ol + oSS + 0S5 + gy - 57
a2 a2 am e
H )+ ) - @) - 6]

where a two-sublattice approximation is adopted for both Er’* and Fe’* fora
total of Ny unit cells. Here, w,, a!, and @, are the energy, creation, and
annihilation operators for the Fe** QAFM magnon mode, respectively; w, is
the frequency of Er’t spins as two-level systems at H=0;
w, = |g, gt H|/h, where g, is the Landé g factor, yp is the Bohr
magneton, and y is the vacuum permeability, is the H-induced Zeeman
frequency of Er’*; and g and ] are the Er**~magnon and Er’"-Er’* coupling
strengths, leading to the g- and J-terms of the g—] Hamiltonian, respectively.
ﬁlp = leNl al »/2, where G, are Pauli matrices and p € {x,y,2}, is the
collective Er’* spin operator, with its superscript “+” (" — ”) denoting the
sum (difference) of the two sublattices. The way these operators appear in
Eq. (1) is crucial for interpreting the ground—state energetics. Specifically, the
g-term features a product of the Fe** magnon field operator i(a) — a,) and
the . component of Er’* spins, thereby favoring antiparallel alignment of
Er’ sublattlces and Fe’* magnon condensation in the S phase (the onsets of
(%) and (S ,) in Fig, 2b), whereas the J-term couples Er’* antiferromagne-
tically; larger ( y and (X ( . ), where (...} denotes expectation values, are
energetically more favorable

¢y

It is important to note that supplying the Zeeman term H.,,,..../h =

wzij provides quantum controllability. The term promotes | (ﬁl:) |, the net
moment of Er’* sublattices, through Zeeman coupling to H||z. Due to the
commutation relation

[2*,2*} :oi[i* 2*], @)

modification to (Z ) would impact ( ) much more than ( _ ). Thiswould
tip the balance between the g-term and the J-term, since 3 appears only in
the J-term but not in the g-term.

As shown in Fig. 3a, an S — A transition is indeed recovered in the
calculated mean-field phase diagram of the spin Hamiltonian (see Methods)
within the T-H parameter space, for T < 2.8 K, with a critical field ranging
from 0.35 T to 0.5 T, depending on T. Increasing the field to above 1 T and
elevating T to above 4 K would both push the system across the thermo-
dynamic phase boundary into the N phase. A triple point (at 2.8 Kand 0.5 T,
decorated by a yellow star) marks the location where the S, A, and N phases
converge. Figure 3b shows the calculated normalized spin components as
the OPs of the magnetic phases, for a line cut along the H axis at T=0 K,
traversing sequentially the S — A and the A — N boundaries. We identify
that the Fe** OP, represented by (S,), is finite in the S phase but near-zero in
the A phase. The Er** OP, on the other hand, is finite in both the S and A
phases, but undergoes a switch from the (X ( V=0, ( . )= 0type (S phase) to
the (53;): 0, (ﬁl;) #0 type (A phase). Further, the OP evolution indicates
that the S — A boundary is an abrupt-type, first-order phase transition,
while the A — N boundary is a continuous-type, second-order phase
transition.

Summarizing the mean-field calculation results, Fig. 3c pictorially
shows the predicted Fe** and Er’* spin order in each phase. Starting from
the N phase, the two sublattices of Fe’" are antiparallel along z with zero y-
component, while Er’* spins remain paramagnetic (no order). The A phase
is characterized by Fe’* order that is identical to that of the N phase, but the
Er’* subsystem develops canted AFM order where the sublattlce moments
are antiparallel along x ((ZX )y #0), with canting along z ((Z y#0). Inthe S
phase, the Er’™ order takes the (3 :) #0, (¥, ) #0 configuration, and the
staggered moment of the Fe** sublattices undergoes a rotation about the x
axis, bringing its y-component to nonzero.

The S — A transition can be considered as a spin-flop transition in
terms of Er’" ions. One conventional way to characterize the transition is
to monitor the magnetic susceptibility through which the existence of the
AFM ordering of Er’" spins in the A phase has been previously
observed”, although the configuration of Fe** spins was left ambiguous.
Our magnetization measurements showed clear S — A and S — N phase
boundaries (squares in Fig. 4a and Supplementary Fig. 1). However, a
strong and non-uniform demagnetizing effect that broadens the phase
boundary™ likely prevented us from clearly identifying the A — N phase
boundary. This is because the shape of our sample for magnetization
measurements was a thin irregularly shaped disk cut from the sample
used for THz measurements, rather than a sphere, which would have
produced a uniform demagnetizing field inside the sample”. None-
theless, a disk-shaped sample with a large lateral size was necessary for
performing THz transmission measurements.

To demonstrate the A — N phase boundary, i.e., the breakdown of the
AFM order of Er’* spins, we performed magnetocaloric effect (MCE)
experiments which are sensitive to the magnetic entropy landscape of a
material. Namely, the Griineisen ratio™

_ (3S/0H); _

B 19T
H — CH

Faml 3)
measures the slope of isentropes in the T—H plane’ Since the heat capacity
Cyris always a positive quantity, the sign of (% ) is always opposite to (25 )
Furthermore, sharp changes in entropy S due to phase transitions will
appear as step functions in (35) ", or peaks if (§5) is measured in a quasi-
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Fig. 4| Mapping out the T-H phase diagram of ErFeO; in H||z. a Phase boundaries
determined by THz measurements (solid circles) and magnetization measurements
(squares) overlaid on the dT/d(uyH) color map determined from MCE measure-
ments. Red (blue) dashed line denotes a first- (second-) order phase boundary.

0 0.8 1.6
Magnetic field (T) 60

Temperature (K)

b-d THz absorption spectra mapped vs poH for select T values. e-g THz absorption
spectra mapped vs T for select yoH values. Red and blue dashed lines mark the same
boundaries as those in (a). All features except for those labeled “qFM” are QAFM
magnon modes of Fe’* spins.

adiabatic environment''. Thus, by measuring the differential change in
sample temperature with respect to the magnetic field, (3—};)5, the T-H
magnetic phase diagram can be measured. We note that the demagnetiza-
tion factor can have a small effect on the MCE measurements™*”, namely that
temperature and field shifts can occur, but the qualitative features should be
present.

The T-H phase diagram of ErFeOs, and the obtained results are
summarized in Fig. 4a. We configured a MCE measurement in a Physical
Property Measurement System in the quasi-adiabatic condition®, and took
raw data traces of sample temperature variation versus magnetic field at a
ramping rate of 5x 10~° T/s with dH >0 (Supplementary Fig. 2a); the
sensitivity of temperature variation of our instrument reached 5 x 10™* K.
To identify H-induced phase transitions, the first-order derivative (377;)  was
approximated as dT/d(uoH) (Supplementary Fig. 2b), whose local extremes
correspond to the transition boundaries*. The traces clearly exhibit two
maxima for T<2.8 K, corresponding to the S— A (red dashed line in
Fig. 4a) and A — N (blue dashed line) boundaries, and one maximum for
2.8 K< T<4K, corresponding to the S — N (blue dashed line) boundary.
These results are qualitatively consistent with the T-H phase diagram
reported previously”’, where quantitative shifts likely come from demag-
netization effects.

Once we experimentally investigated the evolution of the atomic
ensemble (or the Er’* spins) in the extended Dicke Hamiltonian, we turned
to elucidate the photonic counterpart (or the Fe’* spins). The ambiguity of
the configuration of Fe’" spins and the nature of the transition boundaries
require us to monitor the QAFM magnon mode of Fe** spins in THz
magnetospectroscopy experiments. Unlike the static measurements,
responses from different domains in the A phase can be distinguished in the
frequency domain, illuminating the nature of the phase transition. The
measurements were performed within the same T-H parameter space as
that of the MCE experiments. Figure 4b—d and e-g shows the H-dependence
of a spectra at select T'values and the T-dependence of « spectra at select yoH
values, respectively. We found that the bright absorption lines can be
assigned to either the quasi-ferromagnetic (QFM) mode or the gQAFM
mode”, the latter of which can be an OP for the Fe’* spins.

In the H-dependent color map at 1.4 K (Fig. 4b), three lines are
observed. The lowest frequency line, which does not pick up intensity until
0.8 T, is the gFM mode, while the other two are both qAFM magnons, albeit

belonging to distinct phases. The middle (upper) line, which is located at 0.8
THzat0 T (1 THz at 0.5 T), is the QAFM mode of the S (A & N) phase. The
S — A transition can be identified to occur at 0.5 T (red dashed line), where
the upper line emerges. The gQAFM magnons belonging to the S and A
phases coexist within 0.5 T < yoH < 1 T, consistent with the prediction that
the S — A transition is of first order and is thus inhomogeneous, until the
middle line vanishes at > 1 T (blue dashed line) owing to entrance into the N
phase. The 3.2 K map (Fig. 4c) shows a different behavior; the QAFM
magnon (0.88 THz at 0 T) of the S phase continuously shifts to connect with
that of the N phase in frequency, forming an OP-like onset for yoH < 0.7 T
(blue dashed line), signaling a second-order N — § transition boundary.
Such a frequency shift is absent in the 4.4 K map (Fig. 4d) since the N phase
persists throughout the whole H range.

T-dependent color maps at constant H further corroborate our
assignments of the phase transitions. Again from the 0 T map (Fig. 4e), a
continuous OP-like onset of the gQAFM mode shift is observed (<4 K, blue
dashed line). This echoes Fig. 4c in showing the continuous nature of the
N — S transition, and establishes that the frequency shift of the gAFM
magnon in the S phase from that in the N phase can be the Fe’* OP of the S
phase. Intriguingly, this OP is demonstrated to be zero in the A phase. We
read this fact from the 0.75 T map (Fig. 4f), for which an N — A transition is
expected upon lowering T. Although a residual mode pertaining to the S
phase exists (as mentioned earlier when discussing Fig. 4b), the qQAFM mode
(unlabeled line) frequency does not undergo any noticeable OP-like
anomaly across the N — A transition; it is as featureless as the gQAFM mode
within the 1.25 T map (Fig. 4g), for which the N phase persists throughout
the whole T range. This unambiguously demonstrates that the spin order in
the A phase only involves Er'* ordering but not any Fe’* OP, consistent with
our expectation depicted in Fig. 3. Finally, phase boundaries determined by
the THz experiments are overlaid (as solid circles) on top of the MCE phase
diagram in Fig. 4a, showing overall agreement.

Discussion

A potential impact of this analogy is the possibility of being applied to other
members of the rare-earth orthoferrite family or orthochromite com-
pounds. For example, spin-reorientation phase transitions**** ([, — I') in
RFeO; (R=YDb, Er, and Tb) would mimic the SRPT. In YbFeO3, where the
Yb**-Yb’" interaction (J) is negligible, it would be a potential playground for
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studying the standard Dicke model (g model). At the boundaries of the
phase transition of YbFeO;, the qFM mode of Fe*™ shows a kink, and a
transition inside the ground doublet of Yb*" ions shows a softening. This
simultaneous kink and softening is one of the hallmarks of a magnonic
SRPTY. It was also suggested that TbFeOs can be regarded as the magnetic
phase transition of the Jahn-Teller type***’ that would resemble a magnonic
SRPT. In ErFeO;, where a crystal field transition (~1.5 THz) is responsible
for the spin-reorientation transition (T = 87 K), the crystal field levels would
play the role of an ensemble of two-level atoms in the Dicke model. To prove
that Dicke physics is at work, however, one must show Dicke cooperativity,
i.e., the coupling strength g must exhibit cooperative enhancement g oc +/N,
where N is the number of two-level atoms. In addition, mapping their spin
Hamiltonians into the Dicke models is required to establish this analogy. No
attempts have been made to develop an analogy between the spin-
reorientation transition and the Dicke superradiant phase transition.

The advantages of using the low-temperature phase transition, as
opposed to the ~80 K spin-reorientation phase transition, of ErFeOs in
simulating the extended Dicke model can be summarized as follows. First, the
low-temperature phase transition allows us to simulate the first-order phase
transition into the A phase, which is the main point of this work and does not
exist in the spin-reorientation transition at 87 K. Second, since we deal with
the lowest two energy levels (Kramers doublet) of Er’* ions in the low-
temperature phase transition, theoretical analysis is directly relevant to the
Dicke model, compared to the multiple crystal-field energy levels involved in
the 87 K phase transition. Third, and most importantly, at high temperatures,
thermally populated magnons are not negligible. Such thermal magnons will
prevent studies of the vacuum magnons responsible for the Dicke super-
radiant phase transition, which occurs in thermal equilibrium without any
external driving. For example, one consequence of the superradiant phase
transition induced by vacuum bosonic fields is a two-mode perfect squeezed
vacuum at the critical point™. A finite number of thermally excited magnons
will mask such interesting quantum phenomena.

Conclusion

In summary, through THz magnetospectroscopy and magnetocaloric effect
experiments, we studied a crystal of ErFeOj to simulate the g—J model, which
is an extended Dicke model that includes not only the bosonic-field-mediated
long-range interatomic interactions but also direct short-range interactomic
interactions. In addition to the superradiant and normal phases expected
from the standard Dicke model, we identified a new phase, an atomic phase,
which is driven by the short-range J-term in the Hamiltonian. Further, we
elucidated the nature of the various phase boundaries, distinguishing between
first-order and second-order transitions. These results demonstrated the
potential of ErFeO; as a simulator of quantum optics Hamiltonians. More
specifically, in the context of Dicke physics, this condensed matter platform
may lead to the possibilities of assisting quantum chaos” and modifying
matter-matter entanglement™” with tunability given through an external
magnetic field. Bridging the gap between quantum optics and many-body
correlated physics, our results will find broader application in the design of
hybrid quantum systems with superior controllability, such as the Dicke-Ising
machine” and the Dicke-Lipkin-Meshkov-Glick model'**’. Furthermore,
the ability to transition between the superradiant and atomic phases via a
nonthermal knob provides opportunities to study unconventional quantum
criticality”” and chaos-assisted thermalization™.

Methods

Spin Hamiltonian

Following the prior work™, the spin Hamiltonian taking into account all the
spin subsystems and their mutual interactions is first introduced. We ana-
lyzed the ErFeOj; spin system from a microscopic model originally derived
in ref. *. The total microscopic Hamiltonian is

H= HFe + HEr + HFe—Er' (4)

Hyer Hpyp»and Hy,_p, are Fe’", Er'", and Fe’*~Er’™ interaction Hamiltonian,
respectively. As in our previous studies”” and Herrmann’s model™, we take
the two-sublattice model both for Er and Fe spins.

The Fe* Hamiltonian is

No
LOED DD IR 2 S M AR

s=AB i=1

Fe ~A ~B AB A
- Dy Z (Si‘zsi/,x - Si,zsi/,x>

n.n.

NO
~A2 ~A2 ~A -
- E (Axsi,x +Azsi,z +sz ix s?z)
i=1

xVix zViz

NO
=3 (A8 A8 - a8, 8.
i=1

:9: is the Fe’* spin operator with S=5/2 at the i-th site and s sublattice. Jg,
D;e, A, xz) are a Fe’" isotropic exchange constant, Dzyaloshinskii-Moriya
interaction for the y(b)-axis, and the single ion anisotropy for the x(z, xz)
spin components. Y, , is a summation for the nearest neighbors and the
number of nearest neighbors is zg. = 6. Ny is the number of unit cells in
ErFeQ;. The g-factor of Fe’" is

g 0 0
gFe = 0 gie 0
0 o g

pp is the Bohr magneton and H is an external magnetic field.
The Er'" Hamiltonian is

N,
Hy, = Z Zo%éi'gEr'H'f']ErE&?'&?'
n.n.

s=AB i=1

6} is the Er’* spin operator at the i-th site and s sublattice. Jg, represents
Er’*-Er’" isotorpic exchange constant. The g-factor of Er’" is

g, 0 0
gEr — 0 gy 0
0 0 g,

Finally, the Fe**~Er’* interaction Hamiltonian is

NO
oo D (s
Here=), O []0?-85 + D% . (gjxs )]
i=1 s,s=AB

In our Fe*'-Er’" interaction Hamiltonian, Fe*" and Er*" interact within the
same unit cell. J is a Fe*"-Er’" isotropic exchange constant. D™ is the
Dzyaloshinskii-Moriya interaction and
t
A
DAA = (Dx, D,. o) ,
'
B
DMB = (—Dx, D, 0) ,
t
B.A
DBA — (—Dx7Dy7 0) ,
t
B.B
DPB = <Dx, D, 0) .
The state of spins are determined by the equations of motion in which

we assume each individual spin experiences a uniform mean field supplied
by its surrounding magnetic ions. Assuming the dynamics within all unit
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cells are identical, we can replace spins dependent on unit cells, S} and o3,
with uniform spins, S and ¢° keeping the sublattice dependence. From the
Heisenberg equation from the Hamiltonian (Eq. (4)), the equations of
motion are

)
hso' = —o'x poaupHE ({02}, (SA/B), &)
9w oy s ((~A/By (GA/B 6
h=. S = =8 XpogupHz ({07}, (SY7)). (6)

g is the free electron g-factor. Hj, and H}, are the mean-fields for Er’* and
Fe’" spins, respectively. The mean-fields are defined as derivatives of the
total Hamiltonian (Eq. (4)) with respect to the corresponding spin variables,
for example guoupH}, = 20H/do°. The phase diagrams shown in
Figs. 2 and 3 are calculated by the following procedure.

From the equations of motion, the equilibrium spins (¢4/% and Sy
are paralll to the mean-fields Hy, = Hj ({67}, (s "} and
Hy, = H; ({6}, (S*B). They are connected as
g = Hy /|y, (7)

o = (&) = (6))uyy, ) =5 - up,

oS a8
I

S=&) =8, 8 =5 up, up=Hy/|Hl. (8

We determine the equilibrium spins (6*/® and s ") in the following self-
consistent equations

~s d s
(o)) = —gln Zy, = — tanh(y,), ©9)

0
() = —5-InZy, = —SBy(Sx,),

o, (10)
Bj(z) is the Brillouin function
2 1 2 1 1
By(z) = Jy+1 coth (]—+ z) — —coth (i) ,
2] 2] 2] 2]
and the partition functions are
Zy, =Tr [efﬂ;f/kBT] = Z e ™ = 2 cosh(y,), (11)
m=x=1
s .
gy leHbt] _ N o, _ SORIS /2]
Zre =T [e ' ] Z ¢ sinh(x,/2) ' (12)

m=—S§

lowest energy. The free energies are defined as

F, = —k,TInZ,,
F, = —k,TInZ,.

The total free energy of Er'* and Fe’" spins are

F= Y (F+F)/2

s=AB

(13)

Extended Dicke model

Second quantization of the spin Hamiltonian Eq. (4) has been carried out by
ref. **. We omit the derivation here since details can be found in the refer-
ence. For the sake of consistency, notation will follow those in ref. **, but will
be substituted by those used in Eq. (1) eventually. Ref. ** expressed the total
Hamiltonian as

~ ~ ~ A + A +
H~ § thaIT(aK + w2, + E Q?#BB?CZE
K=0,m7 E=xy,z

+%f\ 2y 25% @l +a,)%;
+ m’%(ag — a2, + %(&;ﬁ +a,)%,
izj’]% @l — a5, + 25% (@) + )5
Here, K = 0 and 7z corresponds to the gFM and QAFM magnon modes. P
is a spin-If operator representing the rare-earth spins in the A/B sublattice,

satisfying

(14)

+

(15)

i I

<A/B 1 o ~A/B
Yy = EZR
i=1

where (1/ 2)1}?/]3 is a spin-1 operator for an Er*" ion. We also define the sum
and difference of the two sublattice spins as

£t =5"es (16)
The total number of spin-} spins (Er’* spins) in the two sublattices is
N =2N,. (17)

The five Er’*-magnon coupling terms were rewritten in terms of the
annihilation (creation) operators ay (&2) of a magnon, with their respective
coupling strengths defined as

s s
5= gﬂoz;;flerl k= guozBITHpel ‘ N
B B hg, = V28(J cos By — D, sin ) (d — C> (182)
kg is Boltzmann constant and T is temperature. Finally, the effective = hx0.051 THz,
Hamiltonians of given mean-fields Hy, and Hy, are
Vf' d'+C /4
. 1 o 1 o hg, = V28] < )
Hu = 5 0tott0” - Hy = 5 aphopt0) | el ’ b—a (18b)
s o - = hx0.041 THz,
Hye = gpouipS - Hg = oSy [ Hpel-
. 1/4
Here, &° and S are vectors of the Pauli operators and angular momentum he' = /28 . <b + a)
> = +/28(D, sin
with the magnitude S. Sy (Dy sinfy) d—c (18¢c)
To determine the ground state, we calculate free energy from the = hx3.1x1075 THz,
partition functions, Eqgs. (11) and (12), and pick the configuration with the
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s do o\
- 25D"(b+a> (18d)
= hx0.116 THz,
o\ V4
hg, = v28(— Jsin B, — D, cos f3)) <d+c) (18¢)

= hx(—0.040 THz).

The numerical values of these coupling strengths are evaluated by the
set of parameters, a, b, ¢, d, ], Bo, Dy, Dy, which are defined and quantitatively
given in ref. **. We found that the hgz is the dominant term, for which we
retain in Eq. (1) and all other Fe**~Er’* coupling terms are dropped as an
approximation.

Regarding the Er’*-Er*" interaction term, while the Er’* spin ensemble
is described by six operators, iry ,and 3 . in the extended Dicke
Hamiltonian, only Z+ and 3 are relevant to the low-temperature phase
transition. 3 corresponds to the paramagnetic alignment by the Fe'*
magnetization along the a axis, and ¥ corresponds to the anti-
ferromagnetic ordering along the ¢ axis. Then, for analyzing the thermal-
equilibrium values of the spins, we need to consider only the following terms

N2

in the Er**~Er’* exchange interactions:
N2 fan2
(5) - ()]
E=xy,2

- Bl (1) (21) - 607 - 7]

After this substitution, a notation substitution of g, — g and J, — J, and
incorporating the aforementioned simplification about the coupling terms,
Eq. (14) becomes Eq. (1). Numerical values of the material parameters
therein are:

8ZElr]Er NS EB 2ZEr]Er

—EE ¥
(19)

J = 0.037 meV (20)

g =0.48meV (21)
w, = 21 x0.896 THz (22)
& = 27%0.023 THz. (23)

Sample preparation

Polycrystalline ErFeO; was first synthesized by a conventional solid state
reaction method using Er,O; (99.9%) and Fe,O; (99.98%) powders.
According to the stoichiometric ratio, the original reagents were weighted
carefully and pulverized with moderate anhydrous ethanol in an agate
mortar. Mixtures were sintered at 1300 °C for 1000 min and then cooled
down to room temperature. The sintered powders were thoroughly
reground and pressed into a rod that is 70 mm in length and 5-6 mm in
diameter by a Hydrostatic Press System (Riken Seiki CO. Ltd, model HP-M-
SD-200) at 70 MPa, and then sintered again at 1300 °C for sufficient reac-
tion. Single crystal samples were then grown by an optical floating zone
furnace (FZT-10000-H-VI-P-SH, Crystal Systems Corp; heat source: four 1
kW halogen lamps). The polycrystalline samples were melted in an airflow.
Conditions like the melting power and the rate of sample rotation were
stabilized and controlled in the molten zone.

Magnetization measurements

We measured iso-field (Supplementary Fig. 1a, left axis, blue circles) and
isothermal (Supplementary Fig. 1b, left axis, blue circles) magnetization M
to determine the phase transitions in the T-H plane of ErFeO; for magnetic

field H||c. The transition from the N — § states is marked by the maximum
in the derivative d(MT)/dT* (Supplementary Fig. 1a right axis, red squares).
The transition from the S — A states in the isothermal M measured at T =
1.5 K (Supplementary Fig. 1b, left axis, blue circles) is clearly marked by the
maximum in dM/dH (Supplementary Fig. 1b right axis, red triangles). The
transition from the A — N states is much less obvious, marked by a small
kink in dM/dH (Supplementary Fig. 1b right axis, red triangles) marked by
the gray dashed lane. This may be due to demagnetization effects due to the
irregularity of the sample shape we measured. Nonetheless, we are able to
use MCE measurements that clearly exhibit signatures of the A — N
transition. It is noted that transitions shown here from magnetization
measurements are consistent within error bars with the T-H phase diagram
presented in Fig. 4a.

THz magnetospectroscopy

We performed time-domain THz transmission magnetospectroscopy
measurements in the Faraday geometry. The sample is placed in a
liquid-helium-cooled magneto-optical cryostat (Oxford Instruments
Spectromag-10T) with variable temperatures T between 1.4 and 300 K
and static magnetic fields poH up to 10 T. We generate THz pulses via
optical rectification using a Ti:sapphire regenerative amplifier (775 nm,
0.7 mJ, 150 fs, 1 kHz, Clark-MXR, Inc., CPA2001) as a laser source that
pumps a (110) zinc telluride (ZnTe) crystal, while detection is accom-
plished through electro-optical sampling in another ZnTe crystal.

Index of refraction and absorption coefficient
In this section we derive the standard equations used in the extraction of the
complex index of refraction of a sample using THz-TDS. Let Eo(w) be the
Fourier transform of an incoming THz pulse Ey(f) incident on two linear
media surrounding a homogeneous dielectric slab of thickness d (the
sample). We assume that trailing pulses due to multiple reflections within
the sample (the Fabry-Pérot effect) are well separated in time from the main
transmitted THz pulse and that the incidence is normal to the sample
surfaces (assumed parallel and flat). Experimentally, two separate mea-
surements are consecutively carried out. First, the THz electric field trans-
mitting without a sample in place is measured and the reference electric field
E_(w) is obtained. Second, both the sample and its surroundings is measured
and E (w) is extracted. Under these assumptions, each transmitted electric
field can be written as®*:

E(w) = 213(w)P

vac ((U7 d)EO(w) (24)

E(w) = t5(0)Py(w, )iy Ey(w) (25)

where £ =

mediums j and k, Pj(w, d) = e = ¢4/ is the propagator through
medium j, and the subscripts vac, r, and s refer to vacuum, reference, and
sample, respectively. The ratio between E, (w) and E (w) is the transfer

function H(w), and it follows from Egs. (24) and (25) that:

E(w) _
E(w)

212223 P J(w,d) _
t13 P (w,d)

vac

2n,(ny + 113)

ei(wd/c)(?ls—l)
() + ny)(1, + 713)

H(w) =

(26)

The bulk samples characterized in this work are single crystals grown
without a substrate, and therefore, the surrounding mediums can be taken as
vacuum by setting 71, = n; = 1 in Eq. (26). Wlth this simplification, the
coefficient in front of the exponential becomes —. (~ 1)2, where we have change
the subscript 72, to 71, for convenience. Furthermore, we can set 71, = n,(w)
for t]k and solve Eq. (26) for ny, = ny(w) + ix,(w) in the exponentlal. Here,
ny(w) is the index of refraction of the sample, and x (w) its extinction
coefficient. This approximation is justified by the fact that the sample
absorption is negligible in the Fresnel transmission coefficient compared to
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the exponential term and is thus used in the data analysis here described. We
obtain:

4715(&))

ei(wd/c)(?tsfl) —
(n(w) +1)*

I:I((U) — 4715((4)) ei(wd/c)(ns(w)fl)ef(wd/c)xs(w)
(ny(w) +1)°

(27)

Taking the modulus and phase of Eq. (27) leads to:
- wd c ~
o] = (“4) om0 - 1 = n @) =1+ Sotf@] @9

o [O@ + 1)’
(ny(w) + 1)

e—(wd/c)xs(m)
wd 4ny(w)

|H(w)| = - K (w) = — |H(w)l

(29)

We can also re-write this result in terms of the absorption coefficient
a(w) of the sample as:

n(w) =1+ j O[H(w)] (30)
2
a(w) = 2Tw;c(w) = —gln % |H(w)| (31)

where we have dropped the subscript s for convenience. In conclusion, by
Fourier transforming E,(¢) and E,(t), which are obtained experimentally,
the transfer function H(w) can be calculated as E,(w)/E, (), and n(w) and
a(w) follow from Egs. (30) and (31), respectively.

Data availability
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sponding author upon reasonable request.
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