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Although the one-dimensional repulsive Fermi-Hubbard model has been intensively studied over many
decades, a rigorous understanding of many aspects of the model is still lacking. In this work, based on the
solutions to the thermodynamic Bethe ansatz equations, we provide a rigorous study on the following. (1) We
calculate the fractional excitations of the system in various phases, from which we identify the parameter regime
featuring the spin-incoherent Luttinger liquid (SILL). We investigate the universal properties and the asymptotic of
correlation functions of the SILL. (2) We study the interaction-driven phase transition and the associated
criticality, and build up an essential connection between the contact susceptibilities and the variations of density,
magnetization, and entropy with respect to the interaction strength. As an application of these concepts, which
hold true for higher-dimensional systems, we propose a quantum cooling scheme based on the interaction-driven
refrigeration cycle.

DOI: 10.1103/PhysRevB.107.L201103

One-dimensional (1D) Fermi-Hubbard model, describing
strongly correlated electrons in a 1D lattice, has become in-
creasingly important in ultracold atoms, condensed matter,
and quantum metrology. Owing to the Bethe ansatz exact
solution of the model [1,2], a variety of strongly correlated
many-body phenomena have been extensively studied for over
40 years, including Tomonaga-Luttinger liquid (TLL) [3–5],
spin-charge separation [6–9], thermal and magnetic proper-
ties [10–16], the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
[17,18] pairing correlation [19–24], etc. On the experimen-
tal side, 1D exactly solvable models have been successfully
realized in the laboratory, allowing us to compare elegant
and sophisticated exact solutions directly with experimen-tal
measurements [25–28], Significant new experimental
developments cover a broad range of physics such as the gen-
eralized hydrodynamics [29–31], dynamical fermionization
[32], TLL [33–35], fractional exclusion statistics [36], quan-
tum holonomy [37,38], p-wave interacting fermions [39–41],
high spin symmetry magnetism [42,43], etc.. For a recent
review, see Ref. [44].

Despite these tremendous efforts, many aspects of the
model still lack rigorous understanding. In particular, phase
transitions have been extensively studied in the context of
varying external potentials such as chemical potential and
magnetic field. However, interaction-driven phase transitions
have not received sufficient attention even though interaction
plays an essential role in many-body systems. Although there
are some previous studies along this line (see, for example,
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Refs. [45–47]), the important quantum critical scaling func-
tions for interaction-driven phase transitions have not been
systematically studied. This can be attributed to the fact that
interaction strength is hardly tunable in traditional solid ma-
terials. The advent of cold atoms completely changed this
situation as interaction strengths in atomic systems have been
routinely controlled via Feshbach resonance. A notable recent
example is the demonstration of the spin-charge separation
[48–52] in a 1D continuum Fermi gas where the spin and the
charge velocities are shown to exhibit distinct dependence on
the interaction strength [53].

Motivated by this, in this Letter, we show that the tun-
ability of interaction strength allows further exploration of
the spin-incoherent Luttinger liquid (SILL) [54–57] and
interaction-driven quantum phase transitions in the Hubbard
model. Specifically, we present rigorous results of fractional
charge and spin excitations, analytical results on the asymp-
totic of single-particle Green’s function and pair correlation
functions of the SILL, and interaction-driven criticality. Fur-
thermore, inspired by the notion of the partial wave contact in
ultracold Fermi gas [58,59], we build up general relations
between contact susceptibilities and the variation of density,
magnetization, and entropy with respect to the interaction
strength, using which we propose a quantum cooling scheme
based on the interaction-driven refrigeration cycle.

1D Hubbard model. The 1D single-band Hubbard model is
described by the Hamiltonian [1,5]

H =  − t  
X

(c j,ac j+1,a +  H.c.) +  u
X

(2n j ,↑  −  1)
j=1,a=↑,↓                                                            j =1

×  (2nj,↓ −  1) −  μn̂ −  2BSz , (1)
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where c†      (c j,a) is the creation (annihilation) operator of an
electron with spin a (a =↑ or ↓) at site j on a 1D lattice of
length L, satisfying the standard anticommutation relations. t ,
μ,  and B are hopping amplitude, chemical potential, and
magnetic field, respectively. In this work, we will only con-
sider repulsive interaction with u >  0 and take t =  1 as the
unit of the system. μ  and B are renormalized accordingly
and become dimensionless. Meanwhile, n j,a =  c j,ac j,a and n̂

=  ˆ =  1 n j,a are the density operator and the average
fermion number per lattice site, respectively. We denote the
magnetization Sz = (nj,↑ −  nj,↓)/2. For vanishing exter-
nal potentials (μ  =  0, B =  0) and even L, Hamiltonian (1)
possesses SO(4) =  SU(2) ×  SU(2)/Z2 symmetry, preserv-
ing spin rotational and η-pairing symmetries [5,60,61], i.e.,
[H, Sα] =  0 =  [H, ηα] with α =  x, y, z. The spin and η-pair
operators can be transformed to each other via Shiba transfor-
mation, showing the connection between spin and charge [5];
also see the Supplemental Material (SM) [62]. We will use
spin and η-pair magnetizations Sz, ηz =  1 (N −  L) to charac-
terize the fractional spin and charge excitations.

In 1968 Lieb and Wu [1] derived the BA equations for
the 1D Hubbard model by means of Bethe’s hypothesis [64].
Takahashi [65] later found the root patterns of the BA equa-
tions, i.e., real k, length-n 3  string (known as spinon bound
state) composed of n spin-down electrons, length-m k -3
string containing m down-spin and m up-spin particles, which
determine both the ground and the excited states of the model.
Building on Takahashi’s string hypothesis, and using the
Yang-Yang method [66], one can obtain the thermodynamic
Bethe ansatz (TBA) equations of the model [65] (for conve-
nience, see [62]). In principle, all thermodynamic properties
of the model can be obtained from the TBA. However, solving
the infinite number of nonlinear integral TBA equations poses a
tremendous theoretical challenge. Therefore, many impor-tant
questions remain to be answered.

Low-temperature phase diagram and fractional excita-
tions. A rich phase diagram of the 1D Hubbard model (1) in
magnetic field-chemical potential plane can be obtained from
either the BA or the TBA equations at zero temper-ature.
We find that the dimensionless Wilson ratio (WR)
Rχs =  3 ( μ

k
g )2 

C /T , where χs  is the spin susceptibility and
Cv the specific heat, conveniently characterizes the TLLs.
Here kB, μB , and g are the Boltzmann constant, the Bohr
magneton, and the Landé factor, respectively, which we set to
be unity in our calculation. The value of the WR is tem-
perature independent at low energy and exhibits a sudden
change in the vicinities of the phase boundaries. Such a finite
temperature feature naturally maps out the full phase diagram
of the 1D repulsive Hubbard model at zero temperature, as
we show in Fig. 1. Specifically, we observe that the values of
the WR in Fig. 1 confirm the bosonization result [56] of Rχs

=  2vcKs/(vs +  vc ), 2 and 4Ks for the TLLs in Phase IV, II and
V, respectively, where Ks is the Luttinger parameter for spin,
and vc,s are sound velocities for charge and spin,
respectively. The WR is zero for phases I and III; see SM [62]
for more details.

Figures 2(a) and 2(b) demonstrate excitations at zero
magnetic field in charge and spin degrees of freedom near
the half-filled lattice and the dilute limit, respectively. The
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FIG. 1. Phase diagram represented by the contour plot of the
Wilson ratio Rw     at temperature T =  0.005 and u =  1. The cor-
responding phases are empty lattice I, partially filled and fully
polarized phase II, fully filled and polarized phase III, partially filled
and polarized phase IV, and fully filled and partially polarized phase V
(Mott insulator). The dotted lines represent analytic solution of BA
equations obtained at zero temperature. The orange symbols indicate
the locations of excitations plotted in Fig. 2.

particle-hole excitation of charge (orange) forms continuum
spectra within the first Brillouin zone. Flipping one spin leads
to excitation spectrum (green) of two deconfined spinons with a
fractional spin- 1 . In the long wavelength limit, i.e., 1 K  →

FIG. 2. Elementary fractional spin and charge excitations. The
orange areas in (a) and (b) represent particle-hole excitations of
charge, whereas the green parts show the two-spinon excitations
with quantum numbers (1η z , 1S z ) =  (0, 1) induced from spin flip-
ping. The inset in (a) shows the excitation for small momentum,
while the inset in (b) shows the excitation for the momentum within
the first Brillouin zone, whose zero energy modes are situated at
0, 2πnc, 2π (1 −  nc ), 2π . (c) Fractional antiholon-spinon excitations
( 1 , − 1  ), i.e., adding an extra spin-down electron to create an anti-
holon and a spinon. (d) Gapped excitation spectra for length-1 k -3
string and a length-2 3  string. All graphs are drawn in the first Bril-
louin zone with interaction u =  1 and the parameters (a) B =  0 , μ  =
−0.6619, density n =  0.9801 (near half-filled band), (b) B =  0 , μ  =
−3.8508, density n =  0.1389 (dilute limit), (c) B =  0.555, μ =  −1,
and (d) B =  0.555, μ =  −1.32.
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0, both charge and spin excitations exhibit linear dispersion:
1Ec ,s  =  vc,sh̄ |1K|, where vc =  0.5995, vs =  1.2403 in (a)
and vc =  0.7206, vs =  0.1454 in (b), showing spin and charge
separated excitations. However, subtle differences between
these two limits are observed, i.e., for (a), the charge excitation
displays a single-particle nature due to the vanishing of the
charge Fermi sea; for (b), the spin and charge excitations are
significantly separated, making this preferred region observe
spin-charge separation [62]. Later, we will further demon-
strate the existence of the SILL in region (b) for temperature
Es ¿  kBT ¿  EF , where Es,c � kF vs,c with kF =  πnc are the
spin and charge energies, respectively. Figure 2(c) shows the
fractional antiholon-spinon excitation spectra with the η-pair
and spin magnetization (1η z , 1S z ) =  ( 1 , − 1 ) by adding an
antiholon particle Ne =  N +  1 superposed with one spinon
particle in M1 sector, which is outside of the spin-charge
separated TLL regime [62]. Figure 2(d) shows the two gapped
excitations, i.e., length-1 k -3 string and length-2 3  spinon
bound states, forming a gapped continuum band.

Universal scaling laws, SILL, and correlation functions.
Rigorous results on quantum criticality of the repulsive Hub-
bard model remain largely unknown. At zero temperature,
the phase transition occurs at a quantum critical point (QCP)
where a degree of freedom appears, disappears, or reaches
saturation. At finite temperature, the QCP fans out into the V-
shaped quantum critical regime, in which the free energy
takes universal form. By considering the relevant degrees of
freedom, we can simplify the TBA equations and find such
universal forms. In the SM [62], we have derived analytically
the free energies of all quantum critical regions associated
with various phase transitions of the 1D Hubbard model. Here,
we only write down the free energy at quantum criticality for
the II-IV and V-IV transitions:

f =  f0 −  
πT 2 

+  T 2 π 2 σ1(0)
µ
ε00(0)

¶− 2 

Li 3 

¡
−e

−ε
T

(0 )  ¢
,

c

f =  f0 −  
πT 2 

+  T 2 π 2 ρ (π )
µ
−κ

2
(π )

¶− 2 

Li 3 

¡
−e

κ (π )  ¢
,

(2)

where Lin denotes the polylog functions, f0 is the ground-state
energy, the T 2 terms represent the contributions from the
collective excitations of the background degree of freedom
near the QCP, σ1(0) denotes the spin density at 3  =  0, ε1 (3) is
the dressed energy of length-1 string, ε00(0) ≡  d2ε1 |3=0 , ρ(π )
denotes the charge density at k =  π , and κ (π ) ≡  dk

κ |k=π ,
with

ε1(0) =  −αB 1B −  αμ 1μ  −  αu 1u ,

κ (π ) =  βB 1B +  βμ 1μ  +  βu 1u (3)

denoting the charge and spin dressed energy gaps away from
the QCP, where 1 B  =  B −  Bc , 1 μ  =  μ  −  μc ,  and 1 u  =
u −  uc are distances away from the QCP (Bc , μc ,  uc). The an-
alytic expressions of the factors αB,μ,u are rather cumbersome
and can be found in the SM [62]. As we will show below, the
free energy in Eq. (2) elegantly leads to and provides a
rigorous understanding of the universal thermodynamic prop-
erties of the TLL, the SILL, and the quantum scaling laws at
criticality.
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FIG. 3. Contour plot of specific heat in the T -u plane at μ  =
−2 , B =  0.55 for II-IV transition. The blue dashed lines present
the critical temperatures determined by the maximum values of the
specific heat [Eq. (4)]. The yellow lines with square symbols mark
the TLL phase boundary, below which the specific heat shows a
linear temperature dependence. Crossover regimes between the blue
dashed and the yellow lines denote the spin-gapped phase (on the
left) and the SILL phase (on the right).

In the quantum critical regime, T À  1u ,  and from Eq. (2),
the specific heat can be readily derived as

Cv/T =  c0 +  c1T −1/2
£

3 Li 3 (−ex ) −  x Li 1 (−ex )

+ x2 Li− 1  (−ex )
¤ 

+  O((1u/T )5/2 ), (4)

where x ≡  αu 1u/T and c0,1 denote the regular part and a
constant depending on the critical point uc, respectively. In
Fig. 3, we display the contour plot of the specific heat in the
plane spanned by T and u at μ  =  −2 ,  B =  0.55. The specific
heat shows a bimodal structure, whose local maxima mark the
crossover temperatures. The local maxima can be determined
by ∂Cv/∂u =  0, leading to x1 =  −1.5629 and x2 =  3.6205,
corresponding to the two blue dashed lines in Fig. 3. These
two lines join at uc =  1 at T =  0 and the quantum criti-cal
regime resides between them, displaying a universal free
fermion criticality, i.e., dynamical and correlation critical ex-
ponents Z =  2, ν =  1/2, respectively.

The yellow line with square symbols in Fig. 3 represents
the boundary of the TLL region which lies below the line. In
the TLL, Cv is linear in T . To the left of uc, the TLL (labeled as
TLLC) contains only the charge component and Cv = . To
the right of u , the TLL (labeled as TLL ) contains both the
spin and the charge component with Cv =  π ( 1 +  1 )T . This is
the regime where spin-charge separation [48–52] can be
observed. Above TLL , the spin sector is gapped and the spe-
cific heat is given by Cv ≈  α1T +  α2T 1/2eα31u/T , where α1, 2, 3

are constants. By contrast, above TLLSC , we find a region of
SILL in the temperature range given by kF vs ¿  kBT ¿  kF vc,
exhibiting a propagating charge mode but not a spin mode
with the corresponding specific heat Cv ≈  β1T +  β2T 3 with
β1,2 being constants [62], showing a gas-liquid coexistence in
the SILL.

In the SILL regime, the spin excitation is suppressed and
hence the spin sector is nondynamic, while charge main-
tains relevant at low energy. Taking the reasonable limits
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|x ±  ivct| ¿  vc/T and |x ±  ivst| À  vs/T , we can calculate
the finite-temperature single-particle Green’s function and
pair correlation function

G↑ ≈  e−i
k

F,↑xC− (x −  ivct )hS+(x, t )SR(0, 0)i +  H.c.,

Gp
 ≈  e−i(

k
F,↑+

k
F,↓ )x C− (x −  ivct )C+(x +  ivct )

× hSR (x, t )SR(0, 0)i +  H.c., (5)

where the charge correlations C↑ (Z ) � 1/Z 21c ,

C± (Z ) � 1/Z 21�         
decay as a power law of distance,

whereas the spin mode correlation hS+(x, t )SR (0, 0)i �
(2παk ) 2 1 + + 2 1 −  

e−π α (21 + +21− )kF  x decays exponentially. Here
1 ±  are the conformal dimensions which can be calculated
analytically and numerically [62]; α is a constant. For the
particular case B =  0, our results agree with those given in
Ref. [57]. We comment that the SILL has been theoretically
studied under the framework of bosonization [55–57]. Our
work here provides a rigorous underpinning of the SILL
based on the TBA.

Contact susceptibilities and quantum cooling. In analogy
to the contact for quantum gases [58,59], here we define
the lattice version of the contact C =  ∂ f /∂u =  4d −  2n +  1,
where n =  hn̂i, and d =  1 hni,↑ni,↓i is the average double
occupancy, a quantity which can also depict the phase diagram
[62]. It is, however, more essential to define contact suscep-
tibilities with respect to the external potentials. Using the
Maxwell relations, we may build up general relations between
contact susceptibilities and interaction-driven variations of
entropy, density, and magnetization [62]:

FIG. 4. (a) Contour plot of the entropy in the T −  u plane for B =
0.15, μ  =  −2.5. Black dotted curve is the isentropic line for s =
0.01. When the interaction increases, the system enters sequentially
into phases II, IV, and V. (b1) Contour plot of density n near the IV-V
phase transition with u =  1, μ  =  −0.82724, and Bc =  0.82714. (b2)
Scaling behavior of charge susceptibilities near phase transition from
IV to V driven by interaction.

entropy in the Luttinger liquid phases TTLC and TTLS are
given by sL1 =  πTL1/3vc and sL2 =  πTL2/3vs, respectively.
Therefore, through an interaction-driven refrigeration cycle
near phase transitions from II to IV and from V to IV in the
T -u plane, we can show that the reachable minimum
temperatures are given by

∂u 
=  −

∂ T 
,

∂n ∂C ∂m ∂C

∂u ∂ μ ∂u ∂ (2B)
(6)

T 1/2 π1/2[ε00(0)/2]1/2

TL1 3λ1vcσ1(0)
(7)

These relations provide deep insights into the interaction ef-
fects and universal behavior of phase transitions.

As a specific example, we now use the first relation in
Eqs. (6) to investigate interaction-driven quantum cooling.
Figure 4(a) shows a contour plot of entropy in the T -u plane
for fixed B and μ.  The interaction-driven phase transitions
from I to II, II to IV, and IV to V occur sequentially with in-
creasing interaction strength. We observe a single-component
charge TLLC in II, a spin and charge separated TLLSC in IV,
and a spin TLLS in the Mott phase V. Conducting the total
derivative of entropy with respect to the interaction u, the
phase points on the isentropic line in the T -u plane admit
the relation T ∂u =  ∂T . Thus the interaction-driven

Grüneisen parameter [67] defined by 0int = quantifies
the efficiency of interaction-driven refrigeration. Near a crit-
ical point, local maximum of the entropy leads to a local
temperature minimum in an isentropic process and, using
the condition ∂

C
 =  0, we have 1 Li 1 (−ex ) −  x Li− 1 (−ex ) =

0, which gives a general solution x ≡ :  αu 1u/T ≈  1.3117.
Using the free energy Eq. (2), we can obtain the explicit
expression of the maximum entropy near the transition
point from II to IV sc1 ≈  λ1π 1/2σ1(0)[ε00(0)/2]−1/2T 1/2,
where λ1 =  x Li1/2 (−ex ) −  3/2 Li3/2 (−ex ) ≈  1.3467. Simi-
larly, for phase transition from the Mott phase V to the
phase IV, the maximum entropy is given by s ≈
λ1π 1/2ρ (π )[−κ00(π )/2]−1/2T 1/2. On the other hand, the

T 1/2 π1/2[−κ00(π )/2]1/2

TL2                     3λ1vsρ(π )

respectively. The minimum temperature in the T -u plane is
governed by the relation αu 1u/T ≈  1.3117 [62]. We remark
that efficient cooling in lattice is a significant experimental
challenge in ultracold atomic gases, the lack of which poses as
a roadblock for realizing some exotic quantum phases.

On the other hand, the other two relations in Eqs. (6)
provide essential insights for charge (IV-V) and spin (II-IV)
phase transitions, respectively. Using these, we find two useful
relations among the parameters αu,μ,B in Eq. (3),

α
u =  −  

∂u 
,

α
u =  −

∂ u
, (9)

that provide us deep insights into the quantum criticality
driven by dynamical interaction and external potentials. For
example, Fig. 4(b1) shows the phase transition from phase
IV to the Mott phase V in the μ  −  u plane, where ∂ μ  is the
slope along the transition line n =  1. From Eq. (9) with fixed
Bc =  0.82714 around uc =  1, μc  =  −0.8272 in Fig. 4(b1),
we may numerically get αu ≈  −1.9627. With this and using
the scaling form of free energy given in Eq. (2), we can obtain
the scaling behavior of the compressibility in terms of u,
which is in excellent agreement with numerical calculation
from TBA equations; see Fig. 4(b2).
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Summary. We have presented rigorous results of the 1D
repulsive Hubbard model. We focus on the interaction-driven
quantum criticality which has been largely ignored in pre-
vious studies. We studied the fractional excitations from
which the SILL regime is identified and carefully inves-
tigated. We introduced several contact susceptibilities and
show how they provide crucial insights into the system. Fi-
nally, we proposed a quantum cooling scheme based on the
interaction-driven refrigeration cycle, which can potentially
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