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ABSTRACT
This work presents a new, original document classification dataset,
BioSift, to expedite the initial selection and labeling of studies for
drug repurposing. The dataset consists of 10,000 human-annotated
abstracts from scientific articles in PubMed. Each abstract is labeled
with up to eight attributes necessary to performmeta-analysis utiliz-
ing the popular patient-intervention-comparator-outcome (PICO)
method: has human subjects, is clinical trial/cohort, has population
size, has target disease, has study drug, has comparator group, has
a quantitative outcome, and an "aggregate" label. Each abstract was
annotated by 3 different annotators (i.e., biomedical students) and
randomly sampled abstracts were reviewed by senior annotators
to ensure quality. Data statistics such as reviewer agreement, label
co-occurrence, and confidence are shown. Robust benchmark re-
sults illustrate neither PubMed advanced filters nor state-of-the-art
document classification schemes (e.g., active learning, weak super-
vision, full supervision) can efficiently replace human annotation.
In short, BioSift is a pivotal but challenging document classifica-
tion task to expedite drug repurposing. The full annotated dataset is
publicly available and enables research development of algorithms
for document classification that enhance drug repurposing.

CCS CONCEPTS
• Applied computing→ Life and medical sciences; • Informa-
tion systems → Information retrieval; Document filtering.
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1 INTRODUCTION: DRUG REPURPOSING VIA
NATURAL LANGUAGE PROCESSING

The development of clinical drugs is an expensive process requiring
billions of dollars in research and development to bring a new drug
to market [7, 46, 55]. Drug repurposing seeks to reduce the cost
of discovering new treatments by identifying currently approved
drugs with therapeutic value for other diseases [2]. Doing so relies
on aggregating clinical studies and data to identify therapeutic
combinations of the highest value [3].

Drug repurposing (sometimes called drug repositioning) is the
use of an existing drug for a different disease or indication other
than the one for which it was initially developed or marketed [39].
Drug repurposing is a safe and cost-effective way to expedite treat-
ment discovery. It is particularly effective for novel, rare, or in-
tractable diseases where current standard-of-care treatments are
inadequate. For example, repurposed drugs were critical during the
initial onset of the SAR-CoV-2 (COVID-19) pandemic [40]. Even if a
repurposed drug may not fully ameliorate a new disease, it could be
a powerful adjuvant therapy that enhances the efficacy of existing
standard-of-care treatments or decreases adverse events or side
effects. Drug repurposing may be done by evaluating molecular
similarities; comparing shared biochemical targets; examining asso-
ciations with adverse event profiles; examining the effect of popular
therapeutics for common antecedent diseases or co-morbidities; or
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Figure 1: Overall annotation pipeline

other forms of measured association between a drug and a specific
patient attribute. Once a repurposed drug candidate is identified,
it can undergo expedited clinical testing due to the existing safety
profiles. If the repurposed drug candidate is deemed successful, it
may undergo standard regulatory approval for the new indication
or be prescribed off-label if the new indication is too rare for a
standard clinical trial.

Searching, filtering, reviewing, and analyzing large volumes of
scientific literature is critical to the drug repurposing process. On
average, 75+ clinical trials are published each day [6]. Traditional
efforts to synthesize data from the literature for drug repurposing,
systematic review, or meta-analysis primarily rely upon PubMed
advanced search filters to index and retrieve candidate documents.
Unfortunately, neither standard nor advanced PubMed search fil-
ters enable efficient filtering of critical attributes for meta-analysis.
Typically only a very small proportion of retrieved PubMed docu-
ments meet inclusion criteria [12, 38] for meta-analysis. Document
filtering remains a pivotal bottleneck in drug repurposing meta-
analysis [1]. Improved automatic document filtering is needed to
remove irrelevant documents and improve downstream processes
for curating data necessary for drug repurposing.

To this end, we construct and release an extensive annotated data
set, BioSift, that enables improved filtering based on attributes
utilized for meta-analysis in drug repurposing. Namely, most meta-
analyses employ the patient-intervention-comparator-outcome or
PICO method when determining if a document has the elements
necessary for study inclusion: P: What are the patient population
and quantitative sample size? I: What is the defined intervention
or study drug? C: Is there a comparator population, and how is
it defined? O: What is the quantitative clinical outcome? BioSift
consists of 10,000 biomedical abstracts labeled with up to eight
attributes necessary to perform meta-analysis for drug repurposing:
has human subjects, is clinical trial/cohort study, has population
size, has target disease, has study drug, has comparator group, has
a quantitative outcome, and an "aggregate" label. Each abstract was
annotated by 3+ different annotators (i.e., biomedical students),
and a sample was reviewed for quality/correction by senior quality
control.

Experiments demonstrate that our dataset enables more nuanced
document inclusion/exclusion than is available in PubMed advanced
search alone. BioSift enables users to screen out 70+% of returned
articles not containing relevant data. Thus, BioSift significantly
decreases the research time required for filtering articles for biomed-
ical evidence synthesis. Current results illustrate that current active
learning, weak supervision, and full supervision algorithms are

not able to fully automate the filtering process for drug repurpos-
ing. However, BioSift is an extremely valuable open resource for
continued machine learning development of improved document
filtering algorithms for drug repurposing.

This paper makes the following contributions:
• We develop a protocol for filtering documents relevant to drug
discovery using defined attributes that better emulate the PICO
review process utilized by clinical scientists.

• We present a human-annotated dataset of 10,000 PubMed ab-
stracts with eight unique filtering attributes or labels than in-
dicate an article’s likely utility for inclusion in a clinical meta-
analysis.

• We present three low-resource and one fully-supervised baseline
to compare different automated strategies for biomedical abstract
filtering in the absence of annotation resources.

2 DATASET
We present, BioSift, a collection of 10,000 documents labeled with
multiple criteria to filter clinical studies containing relevant in-
formation for drug repurposing. Inclusion criteria were chosen
based on collaboration with epidemiological experts to retain only
abstracts containing sufficient information to be used in a meta-
analysis on drug repurposing potential. Inclusion criteria and other
document statistics are shown in Table 1. Three or more curators
annotated each document, with expert curators checking a sample
of disagreeing labels during a quality control phase. A depiction
of the end-to-end document selection, filtering, and annotation
process is shown in Figure 1, and the relative co-occurrence of the
seven labels in BioSift is shown in Figure 2.

Table 1: Dataset Statistics

Total documents 10,000
Avg. words/doc 253.6
Avg. substances/doc 4.62
Year range 1969 - 2022

Has Human Subjects 9,337
Has Target Disease 9,316
Cohort Study or Clinical Trial 8,898
Has Quantitative Outcome 6,913
Has Study Drug 9,276
Has Population Size 8,698
Has Comparator Group 5,255
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Figure 2: Chord Co-occurrence Diagram

Table 2: Examples of included drugs in pre-filtering PubMed
queries for cancer drug repurposing

Comorbid Condition Drug Example(s)

Diabetes Metformin
Hypertension Lisinopril, Beta-blockers
Asthma Adrenergic beta agonists
Hypothyroidism Levothyroxine
Sleep disorders Zolpidem
Neuropathy Gabapentin
Hyperlipidemia Atorvastatin, Simvastatin
Depression Fluoxetine

2.1 Document Selection
Candidate documents for annotation were selected from PubMed
to target research abstracts focused on drug repurposing for cancer.
Initial PubMed queries were designed to include only cohort studies
and clinical trials satisfying at least one of two inclusion criteria:

• Abstract addresses at least one type of cancer.
• Abstract includes at least one treatment for common can-
cer comorbidities or antecedent diseases such as diabetes,
hypertension, asthma, hypothyroidism, sleep disorders, neu-
ropathy, hyperlipidemia, depression, etc.

We performed preliminary document filtering by creating a pool
of documents from PubMed queries of the form "𝑐𝑎𝑛𝑐𝑒𝑟𝑡𝑦𝑝𝑒" AND
(neoplasm OR cancer OR tumour)) OR "𝑐𝑎𝑛𝑐𝑒𝑟𝑡𝑦𝑝𝑒"[MeSH])
AND ("𝑑𝑟𝑢𝑔1" OR "𝑑𝑟𝑢𝑔1"[MeSH] OR "𝑑𝑟𝑢𝑔2" OR "𝑑𝑟𝑢𝑔3"
OR . . .) AND ("clinical trial" OR "retrospective" OR
"prospective" OR "case control" OR "case-control"), where
entities 𝑐𝑎𝑛𝑐𝑒𝑟𝑡𝑦𝑝𝑒 and 𝑑𝑟𝑢𝑔𝑖 are replaced with names and/or Med-
ical Subject Headings (MeSH) titles of cancer types and drug respec-
tively. The objective of this query was to gather clinical evidence of
whether drugs used to treat comorbidities or antecedent diseases
had a positive or negative effect on cancer outcomes. The pool of
documents was taken as the union of results for these queries for
8 different types of cancer and 94 non-cancer drugs. Following a

PubMed search, abstracts were further filtered by removing those
that did not have any chemical entities in their MeSH terms or had
5 or fewer words in the text of the abstract. The final post-filtering
pool of documents contained 58,720 unique abstracts, from which
we randomly selected 10,000 for annotation.

2.2 Annotator Selection and Training
The dataset was annotated by a cohort of 58 university undergradu-
ate students selected from biology, computer science, neuroscience,
and biomedical engineering majors. Additionally, 10 students with
prior annotation training and experience were recruited as quality
control managers. The BioSift student annotation program was
similar to our previous award-winning undergraduate biocuration
program [41].

The annotator recruiting process consisted of two rounds of
screening. First, a graded assessment was used to evaluate the can-
didates’ untrained "annotation aptitude" using a simplified schema
similar to the present study. Candidates who achieved a satisfac-
tory score were interviewed in small groups (less than 6 students).
Candidates were asked a series of questions regarding their interest
in the project and their problem-solving strategies. Of the 83 candi-
dates who applied for the position, 58 were ultimately recruited as
BioSift annotators.

Annotator training was conducted over a 6-week period. First,
students participated in live lectures designed to introduce them to
the annotation schema, annotation software, relevant vocabulary,
and context surrounding the project goals. Next, students were
given formal annotation training, including annotation guides and
worked examples that defined the labeling schema, live guidance in
labeling practice abstracts, self-paced practice annotation problems,
and graded practice annotation assessments.

Prior to annotating BioSift, a 2-week beta test was performed
to assess the developed schema and the success of the annotator
training. At the conclusion of the beta test, annotators were sur-
veyed for feedback regarding the study label schema and annotation
platform. Beta test results were used to refine the training resources
and final BioSift labeling schema to reduce error and improve
inter-annotator agreement.

During all stages (training, beta test, and final annotation of
BioSift) the students were given tools to openly communicate
directly with each other, the quality control managers, and research
coordinators via an electronic communication platform and live
virtual discussions.

2.3 Final Annotation and Data Quality Control
Each abstract in BioSift was annotated by 3+ different students
using LightTag [45]. The annotators were encouraged to submit
comments with challenging or confusing abstracts to proactively
prevent errors due to semantic or lexical misunderstandings. All cu-
rated abstracts without inter-annotator disagreement and without
comments were accepted without manager-level quality control. If
there was inter-annotator disagreement, the abstract was reviewed
by a separate quality control manager to correct the abstract’s
annotations.

Quality control (QC) for BioSift data was conducted by a team
of 10 student managers with both formal annotation training and at
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least 6 months of previous annotation experience. The quality con-
trol team was directly involved in training the student annotators
and creating annotation resources for the project. The managers
received additional quality control training from the research study
coordinator. The quality control protocol required the managers:
1) to validate and/or fix potential annotation errors; 2) review and
resolve inter-annotator disagreement to discern a final "ground
truth" annotation for each abstract.

The final round of quality control involved ranking the articles
in descending order of disagreement levels between the three an-
notators across the seven classes. The articles with the highest
disagreement levels were assigned a final round of quality control
with two annotators for each article. First, confidence level of each
annotator was ranked based on the agreement with the ground
truth labels for a gold set of 25 articles. QC annotations with the
complete agreement were taken as ground truth. For QC anno-
tations with disagreement, the final label was determined as the
annotation of the annotator with higher confidence score. The sta-
tistics and results in this paper pre-date this final round of quality
control which affects < 1% of annotations. The data incorporating
this quality control will be available in the GitHub repository.

2.4 Dataset and Annotation Statistics
For the 10,000 annotated abstracts in BioSift, we evaluate the
positive annotation ratio for each label class, inter-annotator agree-
ment, and co-occurrence between positive label schema. Figure 3
shows the proportion of inter-annotator agreement for each class.
It demonstrates that more than 50% of all labels except Comparator
Group are annotated with positive labels by all three annotators.

Figure 3: Inter-Annotator Agreement for Each Class

Figure 4 shows the distribution of the number of labels with
complete agreement among annotators. It shows that 4 or more
labels are in complete agreement in most abstracts.

We define the annotation ratio = Number of positive annotations
Total number of annotations and

assign each category a positive binary label when the annotation
ratio exceeds 0.6. The aggregate label for an abstract is positive
when all category labels are positive. Figure 5 shows the Pearson
correlation coefficient between the binary labels, including the ag-
gregate label. It highlights that some labels are strongly correlated,
like Population Size with Quantitative Outcome, Human Subjects,
and Cohort Study/Clinical Trial. It also shows that the Quantitative

Figure 4: Count Agreement

Figure 5: Co-occurrence and aggregated effect

Outcome and Comparator Group have the most significant effect
on the aggregate label.

Figure 6: Inter-annotator Agreement

We additionally observe that positive labels have higher inter-
annotator agreement than negative labels, pictured in Figure 6.

3 METHODS
The document filtering/classification task presented in BioSift
is one that has normally been solved by carefully crafted queries
(e.g., Cochrane Highly Sensitive Search [11]), supplemented with
post-filtering based on rules, heuristics, and machine learning mod-
els [1, 37, 38, 53]. Since manual curation resources are often very
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limited due to the high cost of obtaining reviewers with sufficient
medical expertise, previous work has primarily relied upon ma-
chine learning methods that generalize well with little to no la-
beled data. We accordingly test a slate of models taken from active
learning, weak supervision, and prompt-based zero-shot learning
domains and compare them to fully-supervised transformer mod-
els fine-tuned on our data. We additionally compare these mod-
els with results from carefully crafted PubMed advanced search
queries. Results illustrate that document filtering for drug repurpos-
ing meta-analysis is a difficult task and that utilization of BioSift
data meaningfully improves document filtering.

3.1 Problem Formulation
We formulate the document filtering problem in BioSift as a multi-
label classification task with 7 independent labels + a binary aggre-
gate label as described in section 2. For each class, we report the
precision, recall, and F1-score of each evaluated model, defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 and the counts of true-positives, false-
positives, and false-negatives, respectively.

3.2 Weakly Supervised Learning
Weak supervision is the use of programmatic labeling to obtain
noisy estimates of labels on data points. Programmatic labeling
functions (LFs) generally take the form of heuristics, expert-defined
rules, lookups in dictionaries/databases, or outputs of other models
used to approximate labels for a given task. Since weak supervision
does not rely on ground truth labels, labeling functions can be
applied to both labeled and unlabeled documents to create a larger
pool of training documents than would otherwise be possible.

For our document filtering task, we develop (LFs) comprised of
keyword rules, regular expressions, and NER models to identify
evidence of each inclusion criterion. Rules were written with the
software package Snorkel [47] with LF outputs defined as ABSTAIN
= -1; EXCLUDE = 0; INCLUDE = 1. For categories where it is
difficult to craft rules that can precisely exclude documents (e.g.,
Has comparator group, Has population size), ABSTAIN labels were
labeled as EXCLUDE as done in [12] to avoid excessive LF imbalance.
We created a total of 32 LFs which collectively matched 99.1% of
the instances in our dataset. A comprehensive list of LFs grouped
by inclusion criterion can be found in Table 8.

The LFs were used to generate weak labels for the entire labeled
BioSift corpus as well as the remaining 46,720 unlabeled docu-
ments. For each inclusion criterion, LF outputs were aggregated by
majority voting (MV) to form a higher-confidence weak label for the
document. We also tried aggregating weak labels with the genera-
tive label model described in [47] but found that it produced inferior
results to MV. Aggregated weak labels were used to fine-tune a
pre-trained biomedical language model to allow prediction on doc-
uments unmatched by some or all LFs. The model was fine-tuned

Table 3: Labeling functions for each category

Class Rules

Has Comparator INCLUDE ["control group", "placebo", "compared
to/with control", "double/single blind", "group A", "in-
tervention arm"]

Cohort Study /
Clinical Trial

INCLUDE ["randomized controlled trial(s)", "clinical
trial(s)", "cohort study(s)"], EXCLUDE "meta analysis"

Has Pop. Size INCLUDE ["[number]" + max of 20 chars + "patients",
"n = [number]", "population size", "sample size", "[num-
ber]" + "volunteers", "[number]" + "subjects"]

Has Quant. Outcome INCLUDE [p-val, OR, CI, HR, RR], EXCLUDE lack of
any number

Has Human Subjects INCLUDE ["hospital stay", "admission", "discharge",
"subjects", "participants", "volunteers", "patients"], EX-
CLUDE ["rats", "mice"]

Has Study Drug INCLUDE compare with list of FDA approved drugs,
"study drug(s)", EXCLUDE if scispacy’s en_ner_-
bc5cdr_md cannot detect entities of type CHEMICAL

Has Target Disease INCLUDE "disease", "cancer", EXCLUDE if scispacy’s
en_ner_bc5cdr_md cannot detect entities of type DIS-
EASE

using masked binary cross entropy (BCE) loss:

𝐻𝑝 (𝑞)′ = − 1
𝑁

𝑁∑︁
𝑖=1

1𝑦≠−1
(
𝑦𝑖 ·𝑙𝑜𝑔(𝑝 (𝑦𝑖 )+(1−𝑦𝑖 )·𝑙𝑜𝑔(1−𝑝 (𝑦𝑖 ))

)
(4)

where the mask is applied to prevent the loss from being computed
on categories for which an instance is not labeled. Once trained, the
model was evaluated by picking the threshold that maximizes 𝐹1
score on the validation set for each label and using these thresholds
to predict labels for the seven classes. An aggregate label of 1 was
assigned when all predicted classes were positive and 0 otherwise.

3.3 Zero-Shot Filtering
Zero-shot classification methods enable document filtering without
requiring significant computational resources for model training
or data labeling. Prior works have used natural language inference
(NLI) based methods for zero-shot text classification by modeling it
as a textual entailment task. Such models are trained to determine
if one statement naturally follows from another.

We utilized an NLI-based method for zero-shot text classification
by adapting pre-trained large language models such as BART [33],
RoBERTa [35], XLM-RoBERTa [8], and DeBERTa [27], which were
fine-tuned on NLI tasks.

For each label, we created a set of hypothesis templates, which
are text statements indicating that an abstract did or did not meet
the given inclusion criterion. Classification was performed by con-
catenating a document with the positive and negative hypothesis
templates, passing it through the pre-trained model, and comparing
the relative entailment probabilities of the positive and negative
hypotheses. We experimented with multiple templates for each
class, and the best-performing templates are given in Table 4.

The training data was used only to determine the optimal proba-
bility threshold for classifying an input as the positive class. This
threshold is selected by computing the precision-recall curve and
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Table 4: Hypothesis template and candidate labels used for each of the 7 tasks on Zero-Shot Learning

Hypothesis template: "This study { }."

Target label Positive candidate Negative candidate

Cohort Study / Clinical Trial has a cohort study or clinical trial does not have any cohorts or clinical trial
Has Comparator Group has a control, double-blind, or comparison patient group does not have any comparison patient group
Has Human Subjects has human subjects does not have human subjects
Has Population Size contains population size or sample size information does not contain population size information
Has Quant. Outcome has quantitative outcomes like numbers, P-value, OR,

CI, HR, RR, or patient ratios
does not have any quantitative outcomes

Has Study Drug(s) has a target drug does not have a target drug
Has Target Disease has a target disease does not have a target disease

selecting the threshold where precision is equal to recall on the
training data. This threshold is then fixed for evaluation on the test
data. Predictions were made separately for each label. An aggregate
label of 1 was assigned when all class-wise labels were 1.

3.4 Active Learning
Labeling documents for drug repurposing is a complex task requir-
ing a certain level of medical expertise, making documents more
difficult and expensive to label. Active learning (AL) proposes to it-
eratively select the most informative unlabeled instances for human
labeling based on a mathematical query strategy. Newly labeled
data is then used to update the model, and the process repeats until
a stopping criterion is met. This process aims to maximize model
performance given a limited labeling annotation budget. In theory,
this process allows for the annotation of a smaller volume of data
to achieve a similar level of predictive quality.

For our study, we used AL to finetune PubMedBERT [25] and
compared three well-known query strategies described in a recent
review by Schroeder et al. [51] along with a random sampling
baseline. Query strategies used a pool-based approach, where a
batch of 𝑘 samples is selected for annotation at each iteration. All
query strategies used implementations from the small-text AL
library [52] with batches of 𝑘 = 20 samples.

For our query strategies, we denote instances by 𝑥1, 𝑥2, ..., 𝑥𝑛 ,
and the respective label for each instance 𝑥𝑖 is𝑦𝑖 , where ∀𝑖, 𝑦𝑖 ∈ 0, 1.
The predicted class distribution is denoted by 𝑃 (𝑦𝑖 |𝑥𝑖 ). Our query
strategies are as follows:

(1) Random Sampling (RS) selects the samples uniformly from
the unlabeled data pool. This is the most commonly used
baseline against which other query strategies are compared.

(2) Prediction Entropy (PE) [48, 50] selects unlabeled samples
highest entropy to minimize the overall entropy.

𝑎𝑟𝑔𝑚𝑎𝑥
𝑥𝑖

[
−

1∑︁
𝑗=0

𝑃 (𝑦𝑖 = 𝑗 |𝑥𝑖 )𝑙𝑜𝑔(𝑃 (𝑦𝑖 = 𝑗 |𝑥𝑖 ))
]

(5)

(3) Least Confidence (LC) [9] picks the sample whose top pre-
diction 𝑘∗ from the current model has the least confidence.

𝑎𝑟𝑔𝑚𝑎𝑥
𝑥𝑖

[
1 − 𝑃 (𝑦𝑖 = 𝑘∗1 |𝑥𝑖 )

]
(6)

(4) Breaking Ties (BT) [36, 49] takes the samples with the mini-
mum gap between the top two most likely probabilities.

𝑎𝑟𝑔𝑚𝑖𝑛
𝑥𝑖

[
𝑃 (𝑦𝑖 = 𝑘∗1 |𝑥𝑖 ) − 𝑃 (𝑦𝑖 = 𝑘∗2 |𝑥𝑖 )

]
(7)

where 𝑘∗1 is the most likely label and 𝑘∗2 is the second most
likely label.

We evaluated all the above query strategies for seven labels
separately and classified the aggregate label as 1 if all the seven
labels are 1 otherwise, 0.

3.5 Supervised Learning
Given the performance of large, transformer-based languagemodels
on document classification, we fine-tuned a diverse collection of
biomedical language models on BioSift. All models were fine-
tuned for 5 epochs with a batch size of 16 and weight decay of 0.01.
The model from the best-performing epoch (as determined by the
validation set) was evaluated on the test set at the end of training.
Models included are PubMedBERT [25], BioBERT [31], RoBERTa
[35], KRISSBERT [58], SapBERT [34], BART [33], BigBird [57], and
BioELECTRA [28].

4 RESULTS & DISCUSSION
4.1 Overall Results
The results of all tested models’ ability to predict the multi-class
labels of BioSift are shown in Table 5.

Fully supervised transformermodels outperform other low-resource
strategies for predicting each individual label and the aggregate
document label.

Weakly supervised models have high recall but low precision.
This result is likely due to the high propensity of LFs to label posi-
tive, which exaggerates the class imbalance beyond what is actually
present in the dataset. Thus, weak supervision tends to under-filter
documents for drug repurposing.

AL methods generally have lower recall than methods that learn
from more samples. Here, the AL methods are often more pre-
cise than other low-resource methods but are more likely to miss
documents with positive labels that should be included for drug
repurposing.

PubMed filters tend to be more precise than other filtering met-
rics, sometimes even exceeding fully-supervised precision. PubMed
often excludes a more significant proportion of documents that
should be included for drug repurposing.

Our overall results illustrate that document filtering for drug
repurposing is a very challenging task. Despite being widely known
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Table 5: Multi-label Classification Results

Model Aggregate Cohort/Clinical Study Comparator Group Human Subjects Population Size Quantitative Outcome Study Drug Target Disease
F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R

PubMed Filtering 0.463 0.704 0.345 0.792 0.939 0.684 0.649 0.704 0.602 0.950 0.960 0.941 0.861 0.897 0.828 0.847 0.977 0.748 - - - - - -

W
ea
k
Su

pe
rv
is
io
n BART [22] 0.498 0.348 0.868 0.942 0.890 1.000 0.749 0.709 0.794 0.972 0.948 0.997 0.943 0.923 0.965 0.831 0.714 0.993 0.966 0.935 1.000 0.974 0.961 0.987

RoBERTa [23] 0.500 0.351 0.871 0.942 0.890 1.000 0.740 0.730 0.751 0.970 0.946 0.996 0.936 0.880 1.000 0.831 0.727 0.970 0.967 0.936 1.000 0.971 0.945 0.999
KRISSBERT [19] 0.501 0.341 0.944 0.943 0.893 0.999 0.727 0.644 0.836 0.971 0.946 0.997 0.945 0.922 0.969 0.842 0.756 0.949 0.966 0.935 1.000 0.972 0.960 0.985
BioBERT [21] 0.503 0.342 0.954 0.944 0.896 0.998 0.763 0.724 0.806 0.973 0.947 1.000 0.942 0.905 0.982 0.830 0.725 0.971 0.966 0.935 1.000 0.974 0.956 0.994
BlueBERT [13] 0.511 0.387 0.749 0.945 0.898 0.997 0.774 0.732 0.823 0.973 0.947 1.000 0.937 0.886 0.994 0.834 0.749 0.941 0.966 0.934 1.000 0.974 0.958 0.990
PubMedBERT [20] 0.515 0.371 0.838 0.943 0.895 0.997 0.753 0.702 0.813 0.971 0.943 1.000 0.939 0.927 0.951 0.861 0.792 0.942 0.967 0.938 0.998 0.974 0.963 0.985
SapBERT [14] 0.528 0.397 0.785 0.944 0.894 0.999 0.746 0.740 0.753 0.973 0.947 0.999 0.938 0.903 0.975 0.831 0.711 1.000 0.967 0.934 0.998 0.973 0.948 0.999
BioELECTRA [18] 0.537 0.403 0.805 0.942 0.890 1.000 0.738 0.775 0.704 0.972 0.946 0.999 0.945 0.915 0.977 0.862 0.787 0.952 0.967 0.937 0.999 0.973 0.947 0.999

Ze
ro
-S
ho

t XLM-RoBERTa [17] 0.409 0.344 0.505 0.900 0.897 0.903 0.577 0.585 0.570 0.947 0.953 0.941 0.887 0.891 0.884 0.696 0.691 0.702 0.935 0.939 0.930 0.943 0.946 0.939
DeBERTa (NLI) [30] 0.413 0.410 0.416 0.891 0.895 0.886 0.664 0.682 0.647 0.945 0.951 0.939 0.893 0.900 0.886 0.775 0.778 0.771 0.934 0.939 0.928 0.953 0.951 0.955
ROBERTa (MNLI) [24] 0.420 0.341 0.548 0.893 0.894 0.892 0.584 0.585 0.583 0.952 0.955 0.950 0.870 0.876 0.863 0.717 0.713 0.721 0.941 0.940 0.942 0.940 0.944 0.935
BART (MNLI) [15] 0.549 0.534 0.564 0.923 0.919 0.926 0.735 0.721 0.749 0.968 0.975 0.961 0.930 0.926 0.934 0.791 0.785 0.797 0.956 0.968 0.944 0.966 0.962 0.970

A
ct
iv
e
Lr
ng PubMedBERT [25]-RS 0.258 0.462 0.225 0.947 0.915 0.982 0.529 0.420 0.901 0.856 0.746 0.972 0.946 0.947 0.936 0.816 0.756 0.874 0.937 0.987 0.882 0.972 0.973 0.961

PubMedBERT [25]-LC 0.301 0.491 0.175 0.635 0.951 0.472 0.646 0.649 0.636 0.680 0.959 0.527 0.738 0.892 0.621 0.526 0.674 0.435 0.758 0.971 0.625 0.651 0.962 0.491
PubMedBERT [25]-BT 0.314 0.476 0.267 0.846 0.935 0.773 0.697 0.642 0.749 0.586 0.941 0.429 0.658 0.875 0.528 0.746 0.705 0.791 0.701 0.982 0.556 0.824 0.951 0.735
PubMedBERT [25]-PE 0.446 0.452 0.435 0.799 0.679 0.976 0.535 0.389 0.866 0.863 0.758 0.989 0.871 0.793 0.983 0.723 0.596 0.946 0.937 0.897 0.977 0.921 0.864 0.980

Su
pe
rv
is
ed

Le
ar
ni
ng

BigBird [16] 0.634 0.612 0.657 0.950 0.922 0.980 0.766 0.759 0.773 0.968 0.950 0.988 0.954 0.929 0.981 0.859 0.828 0.893 0.965 0.933 0.999 0.970 0.943 0.998
BioBERT [21] 0.646 0.605 0.693 0.949 0.916 0.984 0.783 0.775 0.791 0.978 0.969 0.986 0.972 0.962 0.982 0.864 0.828 0.904 0.971 0.954 0.990 0.974 0.957 0.992
RoBERTa [23] 0.653 0.588 0.735 0.950 0.914 0.988 0.774 0.749 0.801 0.980 0.967 0.993 0.978 0.975 0.982 0.869 0.846 0.893 0.966 0.946 0.987 0.971 0.947 0.997
BART [22] 0.658 0.585 0.753 0.950 0.920 0.982 0.797 0.757 0.843 0.981 0.971 0.991 0.976 0.964 0.988 ‘ 0.881 0.847 0.918 0.966 0.944 0.989 0.974 0.955 0.993
KRISSBERT [19] 0.677 0.597 0.781 0.949 0.913 0.987 0.805 0.774 0.839 0.983 0.971 0.994 0.983 0.976 0.990 0.888 0.852 0.927 0.972 0.947 0.998 0.972 0.953 0.992
SapBERT [14] 0.681 0.624 0.749 0.950 0.921 0.981 0.808 0.780 0.839 0.983 0.974 0.992 0.980 0.968 0.993 0.890 0.874 0.907 0.968 0.947 0.991 0.973 0.959 0.986
BioELECTRA [18] 0.682 0.636 0.735 0.950 0.912 0.992 0.802 0.793 0.811 0.973 0.956 0.991 0.975 0.961 0.990 0.894 0.878 0.912 0.965 0.933 1.000 0.970 0.941 1.000
PubMedBERT [20] 0.696 0.620 0.792 0.947 0.913 0.984 0.806 0.762 0.855 0.983 0.974 0.991 0.987 0.982 0.992 0.898 0.879 0.919 0.971 0.952 0.991 0.974 0.960 0.989

for inefficiently filtering abstracts for drug repurposing, carefully
crafted PubMed queries often outperform the filtering ability of
state-of-the-art low-resource machine learning algorithms. Our re-
sults highlight the need for new algorithms to improve the accuracy
of document filtering tasks for drug repurposing.

4.2 Comparison with PubMed Filtering
PubMed advanced search filtering is the primary method biomed-
ical researchers use to identify and select relevant abstracts for a
particular research area. For each category annotated in our dataset,
we used multiple advanced queries to replicate the results in our
annotated dataset. Table 6 shows the PubMed filtering arguments
that produced the best 𝐹1 score for each category. While some
PubMed filters can be quite precise, they often omit large numbers
of documents that would be otherwise desirable to include in a
meta-analysis. Notably, each PubMed filter can throw out up to
40% of results with each desirable property, which compounds with
aggregation. Moreover, PubMed does not provide any means of
filtering for drug/disease focused studies beyond the MeSH terms
included in our initial query.

Table 7 gives examples of documents that were incorrectly in-
cluded. Here, keyword-based PubMed searches fail to filter out
abstracts that do not meet inclusion criteria. Similarly, Table 8
shows documents incorrectly excluded based on PubMed filtering.
Here, very clear examples of clinical trials with carefully delineated
comparator groups and quantified results were removed that should
have been included.

4.3 Weakly Supervised Learning Results
Weak supervision has the potential to make learning significantly
more efficient by reducing the need for annotators to label abstracts
individually. We evaluate the extent to which weak supervision
can label each class by post hoc computation of coverage, preci-
sion, recall, and other metrics on the train set of BioSift. These

results are summarized in Table 9. LF evaluation shows substantial
disparities in coverage between classes, with Cohort Study/Clinical
Trial and Comparator Group having the lowest coverage, and Study
Drug, Target Disease, and Human Subjects having the highest cov-
erage. We also see that majority voting consistently outperforms
the Snorkel label model by a small margin. This may be due to the
large class imbalance present in the LF outputs due to the difficulty
of creating exclusion rules.

4.4 Utility of Active Learning

Figure 7: Classification Accuracy vs. Number of AL Samples

Due to the relatively high cost of annotating examples in the
biomedical domain, we evaluatewhether active learning can be used
to annotate a smaller pool of abstracts while achieving comparable
accuracy. The active learning section of Table 5 shows that the best
AL method with 50 query batches (1,000 total samples) has better
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Table 6: Best performing PubMed Advanced Search arguments

Category Pos.
Ratio F1 P R Best Filtering Args

Has Comparator 0.521 0.649 0.704 0.602 AND ("control"[All Fields] OR "comparator"[All Fields] OR "double blind"[All Fields] OR "double-
blind"[All Fields] OR "study arm"[All Fields])

Cohort Study /
Clinical Trial 0.887 0.792 0.939 0.684 AND (clinicalstudy[Filter] OR clinicaltrial[Filter] OR controlledclinicaltrial[Filter] OR multi-

centerstudy[Filter] OR observationalstudy[Filter] OR randomizedcontrolledtrial[Filter])
Quant. Outcome 0.690 0.847 0.977 0.748 AND ("odds ratio"[Title/Abstract] OR "hazard ratio"[Title/Abstract] OR "p ="[Title/Abstract]

OR "95% CI"[Title/Abstract] OR "risk ratio"[Title/Abstract])
Has Pop. Size 0.869 0.861 0.897 0.828 AND "patients"[Title/Abstract]
Human Subjects 0.932 0.971 0.946 0.997 AND (humans[Filter])
Has Study Drug 0.928 - - - -
Has Target Disease 0.933 - - - -

Table 7: False Positives produced by PubMed search

Class PMID Reason for Exclusion

Has Comparator 34822104 Study does not describe any patient treatment/comparator groups.
6108780 Clinical trial has a single group of patients with no comparison.

Cohort Study / Clinical Trial 8198018 Describes biopharmaceutical properties of fluvastatin; no study done in patient popluation.
13129875 Study design is a “retrospective, noncomparative, interventional case series.”

Has Pop. Size 6369972 Does not mention a number of patients.
19897698 Review paper; does not list number of patients.

Has Quant. Outcome 31258919 Does not quantify study outcomes in abstract.
8877074 Comparison of elanopril and losartan is not explicitly quantified.

Has Human Subjects 7015670 Does not explicitly identify humans in discussion of cinoxacin.
31142401 This study is an animal model in prarie dogs.

Table 8: Articles incorrectly excluded by PubMed filtering

Class PMID Evidence for Inclusion

Has Comparator 32506444 “...we enrolled 708 patients with ACS treated with clopidogrel (n = 137), ticagrelor (n = 260) or prasugrel (n = 311)...”
33439469 “...Patients were divided into two uric acid categories, with uric acid ≤ 0.36 mmol/L and > 0.36 mmol/L...”

Cohort Study / Clinical Trial 25857447 “...medical charts of 59 patients with total loss of hearing, defined as pure tone thresholds in the profound range (> 90
dB) with an unobtainable speech reception threshold (SRT) that were treated with OP (𝑛 = 20), ITD (𝑛 = 13), or OP
followed by salvage ITD (𝑛 = 26) were analyzed...

12772798 “134 patients tested for Helicobacter pylori infection were infected, and 65/66 (98%) had inflammation...”

Has Pop. Size 10513459 “...Thirty-one children with ADHD participated in a double-blind crossover study...”
27824554 “...We compared behavioral performance in 58 healthy humans treated during 8 weeks with either placebo or the

selective serotonin reuptake inhibitor escitalopram...”

Has Quant. Outcome 8688757 “...Simvastatin reduced total cholesterol by 1.9 mmol/l (26.7%) at the time of follow up...”
16358864 “...totally cured patients with (A+S) is 3.4% better that cured only with antibiotics in the same time...”

Has Human Subjects 7105533 “...this study was performed on a relatively small number of patients undergoing total hip arthroplasty...”
7297143 “...We gave intravenously both 0.4 mg pindolol and placebo to 24 mild to moderate asthmatic subjects in remission...”

precision than weak supervision but lags behind all other models
in recall.

We also evaluated how much each AL model continues to im-
prove model performance as the total number of samples increases.
Figure 7 shows accuracy vs. number samples for prediction entropy,
the query strategy with the highest 𝐹1 score. This figure illustrates
that model performance rapidly improves near the beginning of
training but slows considerably for most classes between 200 and
400 samples.

5 RELATED WORK
5.1 NLP Drug Repurposing & Meta-Analysis
Natural language processing has recently shown strong potential
for synthesizing evidence for systematic reviews of biomedical lit-
erature [1, 38]. However, these reviews rely upon PubMed filtering
to select data articles to be included in such reviews [4, 53]. This
results in systems that are either highly restrictive in the types of
evidence that can be included or that require further manual cura-
tion or rule-based filtering [12, 38]. While some published works
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Table 9: Label Model and Majority Voter Performance

Metric Cohort Study Comp. Group Human Subjects Population Size Quant. Outcome Study Drug(s) Target Disease
MV LM MV LM MV LM MV LM MV LM MV LM MV LM

Accuracy 0.890 0.869 0.884 0.861 0.969 0.964 0.965 0.864 0.972 0.972 0.938 0.936 0.887 0.884
F1 Score 0.941 0.930 0.939 0.925 0.984 0.982 0.982 0.926 0.985 0.985 0.968 0.967 0.935 0.933
Precision 0.899 0.869 0.885 0.884 0.969 0.969 0.965 0.968 0.971 0.971 0.957 0.957 0.988 0.988
Recall 0.987 1.00 1.00 0.969 1.00 0.995 1.00 0.888 1.00 1.00 0.979 0.976 0.886 0.883
Coverage 0.173 0.176 0.331 0.331 0.898 0.902 0.751 0.751 0.465 0.466 0.944 0.946 0.320 0.321
False Positive Rate 0.131 0.098 0.112 0.115 0.031 0.031 0.028 0.035 0.028 0.028 0.041 0.041 0.009 0.008
False Negative Rate 0.0 0.012 0.027 0.0 0.004 0.0 0.108 0.0 0.0 0.0 0.022 0.020 0.106 0.103
False Abstain Rate 0.736 0.736 0.238 0.238 0.069 0.073 0.155 0.155 0.256 0.256 0.040 0.042 0.649 0.650

construct filtering datasets for specific diseases such as cancer [4],
the developed datasets are proprietary and not accessible for use
by the general research community. BioSift makes this task more
accessible by open-sourcing such data for public, unrestricted use.

A few recent datasets seek to enable the extraction of PICO ele-
ments from clinical trials to facilitate evidence-based medicine. Nye
et al. [43] use crowd workers to provide detailed annotations of
patients, interventions, and outcomes in a corpus of clinical trials.
Similarly, Zlabinger et al. develop a PICO annotation protocol that
leads to improved annotation outcomes and use this to present
an additional corpus with token-level PICO tags. Thomas et al.
[54] develops a machine learning model for classifying whether or
not a clinical study is a randomized controlled trial. BioSift com-
plements these projects in enabling researchers to filter based on
additional inclusion criteria to facilitate the automation of medical
evidence synthesis.

5.2 Weakly Supervised Learning
Dua et al. [12] build a weakly supervised pipeline to filter docu-
ments for repurposing non-cancer drugs for cancer treatment. The
authors develop a set of labeling functions targeted at excluding
abstracts that are about cancer-related genes, cancer prevention,
and premalignant patients. Similar to our weak supervision sources,
they also create LFs using SciSpacy to determine if relevant diseases
and drugs are present in documents. However, BioSift presents
LFs aimed at a more general goal and provides an open-source
resource for the development and evaluation of weak supervision
for drug repurposing, which Dua et al. do not.

Dhrangadhariya and Müller develop a weak supervision pipeline
for recognizing token-level PICO elements in text using expert-
defined heuristics and alias matching to biomedical ontologies.
BioSift differs from their work by presenting a new dataset and
focusing on document filtering instead of token classification.

5.3 Zero-Shot Filtering
Yin et al. [56] first propose approaching zero-shot text classification
as a textual entailment problem. They train a BERT[10] model on
mainstream entailment datasets to learn the relationships between
premises and hypotheses. For zero-shot classification, they convert
labels into hypotheses and then use the previously pre-trained
model to get an entailment decision.

In the biomedical domain, Barker et al. [5] propose a hybrid
architecture that pairs a supervised text classificationmodel with an

NLI reranker to improve classification performance when training
data is abundant for some classes but scarce or even nonexistent for
others. Koutsomitropoulos [29] also suggests validating the quality
of ontology-based annotations of biomedical resources using NLI
models such as BART [33] and XLM-R [8], to overcome training
barriers posed by large label sets and scarcity of data.

5.4 Active Learning
Active learning was first introduced by David and Gale [32], where
they introduced uncertainty sampling to text classification. They
iteratively sample low-confidence examples for labeling until a
target accuracy is reached. In the biomedical domain, Guo et al.
[26] used SVM-based active learning to annotate biomedical articles
and achieved 82% accuracy with 2% of the examples used to train a
similar fully supervised model. Active learning is frequently used
in annotation pipelines to accelerate the work of human labelers
[42] and is a common component of many commercial annotation
platforms [44, 45].

6 CONCLUSION
This paper presents a new, original document classification dataset,
BioSift, consisting of 10,000 human-annotated abstracts to expe-
dite the initial selection and labeling of studies for drug repurposing.
Each abstract is annotated by at least three human annotators and
undergoes subsequent quality control. Robust benchmark results
on the dataset illustrate neither PubMed advanced filters nor state-
of-the-art document classification algorithms can efficiently replace
human annotation. Thus, the publicly available dataset, BioSift,
facilitates the future development of improved algorithms for doc-
ument filtering aimed at drug repurposing.

7 DATA AVAILABILITY
BioSift is publicly available on GitHub: https://github.com/pat
hology-dynamics/biosift/. It will also be uploaded to the Hugging
Face Hub.
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