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ABSTRACT: Recoveries of populations that have suffered severe
disease-induced declines are being observed across disparate taxa.
Yet we lack theoretical understanding of the drivers and dynamics
of recovery in host populations and communities impacted by in-
fectious disease. Motivated by disease-induced declines and nascent
recoveries in amphibians, we developed a model to ask the following
question: How does the rapid evolution of different host defense
strategies affect the transient recovery trajectories of hosts following
pathogen invasion and disease-induced declines? We found that
while host life history is predictably a major driver of variability in
population recovery trajectories (including declines and recover-
ies), populations that use different host defense strategies (i.e., tol-
erance, avoidance resistance, and intensity-reduction resistance)
experience notably different recoveries. In single-species host pop-
ulations, populations evolving tolerance recovered on average four
times slower than populations evolving resistance. Moreover, while
populations using avoidance resistance strategies had the fastest
potential recovery rates, these populations could get trapped in long
transient states at low abundance prior to recovery. In contrast, the
recovery of populations evolving intensity-reduction resistance
strategies were more consistent across ecological contexts. Overall,
host defense strategies strongly affect the transient dynamics of
population recovery and may affect the ultimate fate of real popu-
lations recovering from disease-induced declines.
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Introduction

Over the past two decades, severe declines in amphibians,
bats, sea stars, Tasmanian devils, and other taxa have high-
lighted the sometimes devastating effects that pathogens
can have on host populations (Blehert et al. 2008; Vreden-
burg et al. 2010; Langwig et al. 2016; Scheele et al. 2019;
Cunningham et al. 2021; Hoyt et al. 2021). Stories of dev-
astating declines have recently been interspersed with
stories of recovery, where host populations and commu-
nities are rebounding following disease-induced declines
(Voyles et al. 2018; Gignoux-Wolfsohn et al. 2021). The
potential mechanisms leading to these recoveries include
changes in host reproductive strategies (Brannelly et al.
2021), changes in host resistance or tolerance (Epstein
et al. 2016), changes in pathogen virulence (Berngruber
etal. 2013; Osnas et al. 2015), and density-driven changes
in transmission rates (Tobler et al. 2012), but mechanisms
of recovery in epizoological systems are only beginning to
be explored. Questions of immediate relevance for ecol-
ogy and conservation are as follows: When will popula-
tions and communities start recovering following disease-
induced declines? What is the rate of population and
community recovery? And will populations or communi-
ties recover to predecline states?

The recovery of host populations in disease ecology is
often attributed to four processes: the evolution of the path-
ogen or the host (Kerr 2012), epidemic fade-out of the path-
ogen due to density-dependent reductions in transmission
(Ballard et al. 2016; Searle and Christie 2021), the migration
or assisted movement of resistant individuals to the focal
population (Mendelson et al. 2019), and compensatory re-
cruitment following disease-induced declines (Brannelly
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etal. 2021). Host evolution in the form of evolutionary res-
cue has recently been proposed as a mechanism of recovery
for populations following disease-induced declines (Golas
et al. 2021; Searle and Christie 2021). It posits that evolu-
tionary changes in the host population due to selection
pressure from the pathogen contribute to a reversal of
disease-induced declines and promote host recovery. While
previous evolutionary approaches in disease ecology have
often (but certainly not exclusively; Epstein et al. 2016;
Byrne et al. 2021) focused on the evolution of the patho-
gen (Anderson and May 1982; Alizon et al. 2009; Lion
and Metz 2018), evolutionary rescue of a host population
assumes that rescue occurs as a result of heritable changes
in the host while the pathogen is left relatively unchanged.
Evidence for evolutionary rescue has been putatively ob-
served in host taxa undergoing dramatic disease-induced
declines, such as amphibians due to chytridiomycosis (Di-
Renzo et al. 2018; Knapp et al. 2023), black-lipped abalone
affected by herpes virus (Holland et al. 2022), bats declin-
ing from white-nose syndrome (Gignoux-Wolfsohn et al.
2021), and prairie dogs suffering from plague epidemics
(Golas et al. 2021). Moreover, recent findings suggest that
vertebrate taxa may have substantially more additive ge-
netic variation in fitness-related traits than previously
thought (Bonnet et al. 2022), supporting the potential role
of host evolution in recovery dynamics.

There are two general defense strategies that host pop-
ulations could evolve to combat disease and recover from
disease-induced declines: resistance and tolerance (Raberg
et al. 2009). Resistance defines the ability of a host to re-
duce, remove, or prevent infection and includes processes
such as increased recovery rate from infection, reduction
of pathogen intensity once infected, and avoidance of in-
fection (Miller et al. 2007; Boots et al. 2009). In contrast,
tolerance defines the ability to limit the negative fitness ef-
fects of infection without directly affecting infection itself
(Raberg et al. 2009). Tolerance mechanisms could include
controlling cellular damage induced by a host immune
response to reduce host mortality rate (Medzhitov et al.
2012) or compensating for disease-induced mortality on
host fitness by increasing reproductive rates (Gandon
et al. 2002). The long-term outcomes of resistance and
tolerance evolution have been extensively explored, and
we summarize some key findings here (for a thorough re-
view, see Boots et al. 2009).

Resistance and tolerance strategies result in different
degrees of long-term genetic polymorphism in host de-
fense traits. While tolerance strategies can become fixed
within a population, resistance strategies tend to main-
tain variability (Antonovics and Thrall 1994; Boots and
Bowers 1999; Roy and Kirchner 2000). Moreover, the de-
gree of polymorphism in resistance traits following selec-
tion depends strongly on host life history, with longer-

lived hosts generally having less polymorphism than
shorter-lived hosts (Bruns et al. 2015). In addition, trade-
offs between host defense and other aspects of host fitness,
such as reproduction, have drastic affects on the evolution-
ary dynamics of host defense (Boots et al. 2009; Duffy and
Forde 2009). For example, trade-offs between host resis-
tance and fecundity (e.g., increases in host resistance de-
crease fecundity) tend to promote polymorphism in resis-
tance traits (Boots and Haraguchi 1999; Roy and Kirchner
2000). This can lead to dynamic fluctuations in pathogen
prevalence, as high-resistance and low-resistance phenotypes
experience different fitness advantages in high-prevalence
compared with low-prevalence environments (Roy and
Kirchner 2000). Despite the substantial theoretical prog-
ress made on the long-term evolutionary dynamics of resis-
tance and tolerance strategies, we know little about how the
rapid transient evolution of host defense drives host recov-
ery dynamics following the invasion of a pathogen (but for
work on rapid evolutionary dynamics of resistance and tol-
erance, see Gandon and Day 2009). Thus, our motivating
question for this study is the following: How does the rapid
evolution of different host defense strategies affect the
transient recovery trajectories of hosts following pathogen
invasion and disease-induced declines?

Recovery is a component of a system’s resilience (Neubert
and Caswell 1997; Hodgson et al. 2015; Ingrisch and Bahn
2018). There are at least four characteristics of resilience
that relate to the dynamics of population recovery in host-
pathogen systems (Ingrisch and Bahn 2018; fig. 1): (i) the
time it takes a population to reverse ongoing disease-
induced declines, (ii) the magnitude of decline at this re-
versal, (iii) the time it takes a population to reach a new
endemic attractor following this reversal, and (iv) the time-
averaged magnitude of this new attractor relative to the
predecline attractor. Versions of these metrics have been
described previously to understand the resilience of ecolog-
ical systems and have been broadly defined as related to ei-
ther resistance (i, ii; different from “resistance” defined in
terms of host defenses sensu Raberg et al. 2009) or recovery
(iii, iv) that together define a system’s resilience (Neubert
and Caswell 1997; Hodgson et al. 2015; Ingrisch and Bahn
2018; Capdevila et al. 2020). By recognizing the parallels
between host recovery following disease-induced declines
and resilience, we precisely define “host population recov-
ery trajectories” as the four measurable characteristics de-
scribed above (fig. 1) and quantitatively explore the impact
of rapid evolution of resistance and tolerance on these
dimensions of host population recovery.

While our focus is on the effects of host defense strate-
gies on recovery trajectories following pathogen invasion,
previous theory on demographic resilience has emphasized
the importance of host life history on the transient dynamics
of population recovery following perturbations (Capdevila
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Figure 1: Example recovery trajectory (black line) of a host popu-
lation with initial variability in tolerance. The dashed line indicates
the recovery of a population that experienced an equivalent decline
in the absence of disease. The blue line indicates when host recovery
begins. The orange line indicates the time it takes a population to
recover to its predecline population size (or some prespecified pop-
ulation size). The green vertical line gives the relative magnitude of
the population decline before recovery begins. Together, these three
attributes define the recovery trajectory. Our goal is to understand
how host life history, pathogen life history, variability in host
defenses, and defense-fecundity trade-offs affect population recov-
ery trajectories in the presence of a pathogen.

etal. 2020; White et al. 2022). However, this theory was de-
veloped for nonevolving hosts and pulse disturbances,
making it less applicable to our study, which involves
evolving hosts and press disturbances. Nevertheless, we
still expect host life history strategy (e.g., slow vs. fast hosts,
where “slow” refers to hosts with long life spans and slow
reproductive rates and “fast” refers to hosts with short life
spans and fast reproduction; Valenzuela-Sanchez et al.
2021) to play a central role in the recovery trajectories of
rapidly evolving host populations after disease-induced
declines. Therefore, we aim to confirm this intuition and
control for host life history when assessing the role of de-
fense strategies on recovery trajectories. While incorporat-
ing disease and evolution into demographic resilience
theory is beyond the scope of this study, our findings set
the stage for its future integration.

Here, we use an epidemiological-evolutionary model
motivated by an empirical host-pathogen system to test
how different forms of host defense affect the recovery tra-
jectories in rapidly evolving host populations following dis-
ease invasions and declines. We ask three questions. First,
does host life history consistently affect recovery trajecto-
ries under different host defense strategies? Second, how
do recovery trajectories differ between host populations
evolving resistance or tolerance defense strategies? Third,
do trade-offs between host defense and host fitness alter the
effects of host defense strategies on recovery trajectories?
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Empirical Motivation: Amphibian Declines
and Recoveries following Disease-Induced
Declines from a Fungal Pathogen

The biological motivation for our analyses are amphib-
ian populations and communities that have experienced
disease-induced declines due to the amphibian chytrid
fungus Batrachochytrium dendrobatidis (Bd). Bd is a fun-
gal pathogen that has caused the declines and extinctions
of hundreds of amphibian species around the world
(Scheele et al. 2019). However, some amphibian popu-
lations and species feared doomed to disease-induced ex-
tinction have persisted and begun to recover (Tobler et al.
2012; Knapp et al. 2016; Voyles et al. 2018). In at least two
recovering systems in California and in El Cope, Panama,
amphibian populations and communities have begun to
recover in the presence of Bd, and there is little evidence
that Bd has experienced a reduction in virulence, sug-
gesting that some form of evolved host defense may be
driving recovery (Knapp et al. 2016, 2023; Joseph and
Knapp 2018; Voyles et al. 2018; Byrne et al. 2021).
Motivated by amphibian-Bd systems, we make five key
assumptions in our models. First, we focus our analyses
on host evolution while assuming that the pathogen re-
mains unchanged throughout the recovery trajectory,
consistent with empirical findings in California and Pan-
ama. Second, we model pathogen transmission through
an environmental pathogen pool, which accounts for the
transmission biology of amphibian-Bd systems where Bd
zoospores are shed from the skin of infected amphibian
hosts, travel through the water, and infect other amphibian
hosts (Kilpatrick et al. 2010). This also allows us to implic-
itly consider the effects of pathogen infection intensity on
host recovery dynamics (Vredenburg et al. 2010; Knapp
et al. 2016)—an important characteristic in amphibian-Bd
dynamics—by modeling pathogen shedding rate. Third,
we consider resistance and tolerance traits to be massively
polygenic, reflecting our understanding of resistance and
tolerance in amphibian-Bd systems (namely, that we have
not found a single gene highly predictive of resistance or tol-
erance; Byrne et al. 2021; Knapp et al. 2023). Thus, we use
continuous trait space and do not consider bimorphic traits,
dominance, or gene-for-gene models (Roy and Kirchner
2000; Agrawal and Lively 2002). Fourth, as Bd is highly vir-
ulent, we assume that host mutation does not play a signif-
icant role in rescue dynamics (from theory, given a larger
reduction in host fitness in a new environment, the more
likely standing variation is to rescue a population; Orr
and Unckless 2014). Instead, we consider existing stand-
ing variation in host defense as the basis for selection (Bon-
net et al. 2022). However, our approach can easily be ex-
tended to account for host mutation. Finally, Bd infects
multiple amphibian species. We initially develop a model
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with a single host species but return to amphibian com-
munities in the discussion section.

Given these assumptions, we develop a simple model
to (i) gain semianalytical understanding of the drivers of
host recovery trajectories and (ii) extensively explore pa-
rameter space to compare recovery trajectories under
different host defense strategies. Although our model ig-
nores certain aspects of amphibian-Bd interactions (such as
stage structure, complex life history, and explicit intensity-
dependent infection dynamics), it provides a foundation
for generating predictions about the ecological, epidemio-
logical, and evolutionary factors driving amphibian recovery
trajectories. Moreover, its generality provides insights into
evolution and recovery dynamics in other host-pathogen
systems with environmental transmission, such as bats
and white-nose syndrome (e.g., Gignoux-Wolfsohn et al.
2021). When pathogen decay rate in the environment is
fast relative to transmission, our model captures standard
density-dependent transmission such that our results are
also applicable to host-parasite systems with direct trans-
mission (Cortez and Duffy 2021).

Model Description

We consider a host population capable of evolving in-
creased resistance or tolerance in response to pathogen
invasion. Our aim is to examine how three aspects of the
population recovery trajectory—time until recovery be-
gins, magnitude of decline, and time until recovery stops
(fig. 1)—differ between host populations that rapidly
evolve resistance and tolerance following disease invasion.
In contrast to previous research on the long-term evolu-
tionary dynamics of resistance and tolerance (Miller et al.
2005, 2006; Boots et al. 2009), we focus on a single selective
sweep and the transient dynamics of population recovery
following pathogen invasion and disease-induced declines

We assume a population of susceptible (S) and infected
(I) hosts with transmission occurring through an environ-
mental pathogen pool (Z). Consistent with previous litera-
ture (Roy and Kirchner 2000; Miller et al. 2006, 2007; Boots
et al. 2009), we define host tolerance in terms of disease-
induced mortality o, where 1/« defines tolerance. Note
that in our model below, we explicitly account for pathogen
shedding from infected hosts. Given an assumption that o
is positively correlated with within-host infection intensity,
which in turn is positively correlated with pathogen shed-
ding rate w, it follows that varying o among hosts while
holding pathogen shedding rate constant is equivalent to
a tolerance mechanism (i.e., a host changes its ability to
survive with the pathogen without affecting pathogen in-
tensity and shedding rate).

We consider two distinct mechanisms of host resistance:
avoidance resistance and intensity-reduction resistance

(Miller et al. 2005; Boots et al. 2009). Consistent with pre-
vious literature (Boots and Bowers 1999; Roy and Kirchner
2000), we define avoidance resistance in terms of the trans-
mission rate (3, where 1/ quantifies avoidance resistance.
We define intensity-reduction resistance by allowing for
variability in disease-induced mortality among hosts but
also allowing pathogen shedding rate to be an increasing
function of &, w(&) = ¢& (Miller et al. 2005). For clarity
throughout, we refer to disease-induced mortality as ¢& rather
than o when we are referencing the intensity-reduction re-
sistance model, where shedding rate varies with disease-
induced mortality. For intensity-reduction resistance, we
assume that reducing ¢ is a direct result of reducing within-
host infection intensity, which also leads to a reduction in
pathogen shedding rate. In amphibian-Bd systems we have
evidence that tolerance, avoidance resistance, and intensity-
reduction resistance are all potential defense strategies
(McMabhon et al. 2014; Knapp et al. 2016, 2022). However,
at this early stage of observing amphibian recoveries fol-
lowing disease-induced declines, we only have strong evi-
dence that tolerance and intensity-reduction resistance
are heritable strategies that can evolve and can drive host
recoveries (Knapp et al. 2023).

To account for variability in tolerance and resistance
among hosts, we allow «, 8, and & to vary continuously
among hosts. Thus, in the tolerance model N(e, t)do and
I(a, t)da refer to the total density of hosts (N = S + 1)
and total density of infected hosts with o between o and
o + da. In the avoidance resistance models, N(3,t)d(
and I(3,t)d refer to the total density of hosts and total
density of infected hosts with 3 between (8 and 8 + df3 (de-
fined equivalently for intensity-reduction resistance, &).

We also assume that lower o, lower (3, or lower & (higher
tolerance, avoidance resistance, and intensity-reduction
resistance, respectively) can come at a cost to host fitness
such that host birth rate r is a function of « for tolerance
(r(ar)) and B or & for resistance (r(B) or r(a)). While we
do not have data to assess whether such a trade-off exists
in amphibian-Bd systems, this trade-off is a standard as-
sumption in evolutionary models of tolerance and resis-
tance (Roy and Kirchner 2000; Duffy and Forde 2009)
and has been empirically identified in other systems (Miller
et al. 2007). One of our goals is to understand whether
fitness-defense trade-offs affect host recovery trajectories
under different defense strategies. Therefore, we include
this trade-off in our models, recognizing that obtain-
ing empirical data on this trade-off is a key unknown in
amphibian-Bd systems (Wilber et al. 2019). Finally, for
simplicity we assume perfect inheritance (e.g., parents with
tolerance 1/« produce offspring with tolerance 1/a). As
we are ultimately interested in describing the general anat-
omy of recovery trajectories, these simple genetic assump-
tions provide a reasonable starting point.
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The parameter u is intrinsic host death rate, and 6 is
the strength of the density-dependent reduction in host
birth rate due to intraspecific competition. The epidemi-
ological parameters include the disease-induced mortality
rate o, the transmission parameter 3, the recovery rate v,
the rate at which individuals release pathogen into the en-
vironment w(x), and the pathogen mortality rate u,, where
all parameters are positive. We replace x with «, 3, or & in
N(x, 1), I(x, t), r(x), w(x), and the integral to obtain the tol-
erance, avoidance resistance, or intensity-reduction resis-
tance model, respectively (supplemental PDF, sec. S1). When
xisaor 3, w(x) = w. When xis &, w(a) = ¢a (ie., shed-
ding rate is proportional to disease-induced mortality rate).

Finally, an assumption that we make in the model is
that the depletion of pathogen from the environment
upon transmission is minimal. In the accompanying code
available on Zenodo (https://zenodo.org/doi/10.5281/zenodo
.10475490; see the script anatomy_of_recovery_analysis
.ipynb, 1.2.3), we show that including pathogen depletion
(by adding the term —BZN to dZ /dt in eq. [1] with intensity-
reduction resistance) negligibly influences host recovery tra-
jectories within the parameter space we explore. Thus, we
chose to ignore pathogen depletion in our subsequent analyses.

Model Reduction: Moment Closure Approximations

To gain semianalytical insight into equation (1) for dif-
ferent tolerance and resistance strategies, we used a mo-
ment closure approximation to derive explicit equations
for the dynamics of the mean and variance of ¢, 8, and &
with respect to I and N (Bolker and Pacala 1997; a full
description of the derivations is given in sec. S1 of the sup-
plemental PDF). The moment closure approach is a gen-
eralization of the population genetics models previously
used in evolutionary epidemiology to explore the rapid
evolutionary dynamics of hosts and pathogens (Day and
Gandon 2007; Gandon and Day 2009). In contrast to pop-
ulation genetics models, which focus on the dynamics of
mean traits assuming fixed variance (Day and Gandon
2007), modeling the dynamics of the trait variance requires
some distributional assumptions. We assumed that the
random variable «(t) (8(2), &(t)) follows a gamma distri-
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bution at all times ¢ with mean a&(#) (B(¢), &(t)) and vari-
ance Var(o) () (Var(B)(t), Var(a)(t)). We chose a gamma
distribution because it is a flexible distribution that is strictly
positive and has convenient mathematical properties that
allowed for closed-form expressions of our moment clo-
sure approximation (supplemental PDF, sec. S1). These
moment closure approximations allowed us to relate our
results directly to previous evolutionary epidemiological
models and facilitated more expansive exploration of the
parameter space than a direct analysis of equation (1). How-
ever, we confirmed that our moment closure approxima-
tions and discretized implementations of equation (1)
(i.e., a model that did not assume a gamma-distributed
trait) yielded equivalent results (see accompanying script
anatomy_of_recovery_analysis.ipynbon on Zenodo).

To derive the moment closure equations for tolerance,
we multiplied N(e, t) and I(ev, t) in equation (1) by o, o',
and «” and integrated over « to derive the zeroth-moment
(related to total host abundance), first-moment (equiva-
lent to the mean in «), and second-moment (related to
the variance in «) equations for N and I, respectively.
We used an equivalent approach to derive moment clo-
sure equations for avoidance resistance 8 and intensity-
reduction resistance & (supplemental PDF, sec. S1).

The moment closure equations we use to approximate
our tolerance model are (supplemental PDF, sec. S1; as-
suming r(«) = r; model with trade-off r(«) is given in
sec. S2 of the supplemental PDF) as follows:

dN = rN — 6N? — uN — ayl
ar BT o
dl
E = BZS — (u+ I — oy,
dz
Fri wl = p,Z, (2)
day I I(a)
- = __V = _C P A )
It N ar(@) ov(cx ozN(a))
dVar(x) I Var(a)’
= ,
dt N ay

where &y is the mean value of « in the full population at
time ¢ and Var(«) is the variance in « at time ¢. The dy-
namics of mean tolerance in the full population ay can
be expressed in terms of Price’s equation describing the
dynamics of a mean trait in a heterogeneous population
(supplemental PDF, sec. S1; consistent with Day and Gan-
don 2007).

The moment closure equations we use to approximate
our avoidance resistance model are (supplemental PDF,
sec. S1; assuming r(B) = r; model with trade-off (B) is
given in sec. S2 of the supplemental PDF) as follows:
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where By and f3; are the mean values of § in the full pop-
ulation and only in infected individuals, respectively. The
state variables vy and v, are the second moments of 3,
and vy — B% and v, — (2 are the variances of §8 in the full
host population and infected individuals, respectively. The
term E,[3] gives the third moment of the distribution of
 in the infected population, and Ey[3’] gives the third
moment of the distribution of § in the total population
(using a gamma distribution, we can write the third mo-
ment in terms of the first and second moments; see sec. S1
of the supplemental PDF). Here, we can also express the
change in the mean trait By using Price’s equation (Day
and Gandon 2007). While conceptually useful, this covari-
ance formulation is less explicit about the fact that the
dynamics of By depend on dynamic variance in 8 and B,.

Finally, the moment closure equations we use to approx-
imate our intensity-reduction resistance model are (supple-
mental PDEF, sec. S1; assuming #(&) = r; model with trade-
off r(&) is given in sec. S2 of the supplemental PDF) as
follows:

‘Z_Zj = rN — 6N> — uN — I,

% = BZS — (u+ )1 — Ia,

‘fi_f = ¢a,l — p,Z,

By L —ab) = ~cov(aay @), @
ddit = 627 (o — &) — (v~ &),

B (B - i),

% _ 52?% — ) — (Bl&] — vid).

The parameter ¢ is equal to w/d&, where &, is the initial
value of & prior to host evolution. We set ¢ = w/d, to en-
sure comparability among our different defense strategies.
The other parameters are defined analogously to tolerance
and avoidance resistance models. Similar to tolerance and
avoidance resistance, we can also express the dynamics of
mean &, in the form of Price’s equation, relating the fitness
gradient to the covariance between é&y and the effect of in-
fection on host fitness.

Model Analyses

To answer our three questions regarding host recoveries,
we focused on three characteristics of the recovery trajec-
tory (fig. 1): (i) the time from initial pathogen invasion to
when recovery begins, (ii) the magnitude of decline in the
host population following pathogen introduction (nor-
malized on the basis of starting population size), and
(iii) the time until a population is within 2% of its initial
population size (where 2% is an arbitrary choice but does
not affect our qualitative conclusions; fig. 1). These char-
acteristics jointly describe the recovery trajectories and
are the response variables in our subsequent analyses.

We performed a global sensitivity analysis (Marino et al.
2009) where we used Latin hypercube sampling to draw
10,000 stratified random samples for the following param-
eters in equations (2), (3), and (4): 8, w, p., 7, p, 6, and a.
When we were modeling tolerance or intensity-reduction
resistance (eq. [2] or [4]), o represented the initial mean
@y Or Gy, respectively, at time ¢t = 0 immediately prior
to pathogen invasion. Similarly, when we were modeling
avoidance resistance (eq. [3]), § represented the initial
mean By at time ¢ = 0 immediately prior to pathogen in-
vasion. We also varied the initial coefficient of variation
for o, &, or ( to allow for different (but comparable)
magnitudes of variability in tolerance or resistance prior
to pathogen invasion. The range of each of the parameters
that we explored is given in table 1.

After drawing parameters, we excluded all parameter
combinations where the hosts could not persist (intrinsic
host growth rate was less than zero) and the pathogen
could not invade upon initial introduction (intrinsic path-
ogen growth rate was less than zero). As we were interested
in host recovery trajectories following disease-induced
declines, successful pathogen invasion was an essential cri-
terion for our study. Moreover, given density-dependent
transmission and a single-species host-pathogen system (our
assumption in this study), deterministic, disease-induced
extinction was impossible (supplemental PDF, sec. S4).
However, disease-induced declines can reduce host density
substantially, significantly augmenting stochastic extinc-
tion risk in natural populations (Wilber et al. 2019). Thus,
only considering situations where host and pathogen growth



Table 1: Parameters and ranges used in global sensitivity
analysis

Parameter (units) Range
Transmission rate 3 (area per year) .05-.3
Disease-induced mortality « (per year) 1-3
Pathogen shedding rate w (pathogens per year)  100-1,000
Pathogen death rate p. (per year) 10-100
Metric of initial variability in host defense k

(unitless) 5-5
Per capita birth rate r (per year) .1-10
Host death rate p (per year) 1-3
Intraspecific competition 6 (area per year) 1-5
Shedding rate to initial mortality rate ratio ¢

(unitless) wlay

Note: For all models, we set loss of infection rate y = 0.

rates were greater than zero captured all of the potential
host recovery trajectories of interest.

For equation (1), the intrinsic host growth rate is given by
Aot = 1 — u, and the intrinsic pathogen growth rate is
given by A, = —((@X +p+p)/2) + ((4N*B?\1w +
@ + p)° — 2@ + wpe + p2)"/2), where a4 and B}
represent the initial mean disease-induced mortality o and
transmission 3 in the full population immediately prior to
pathogen invasion. The term N is the host population at
the disease-free equilibrium. We excluded all parameter
combinations where pathogen R, > 20; R, is a unitless num-
ber of pathogen reproduction that is comparable among
populations (R, = (BYN'w)/(aX + m)u.)), and R, >20
represents a borderline unrealistically large value for R,.
That being said, we do examine the consequences of large
R, on recovery trajectories below. On average, we performed
our subsequent analyses on approximately 60% of the
10,000 parameter combinations that had median R, = 5.4
and R, 25th and 75th percentiles of 2.81 and 9.89, respec-
tively. For each parameter set, we simulated equations (2)-
(4), generated a recovery trajectory, and calculated our
three metrics of interest (fig. 1).

To answer our first question regarding whether host
life history consistently affected host recovery trajecto-
ries, we calculated the partial correlation coefficients (PCCs)
between log(Ay.«) and each of our three log-transformed
output metrics that jointly described our recovery trajec-
tory (fig. 1). We also calculated PCCs for log(A,...) and
log(initial coefficient of variation in «, 8, or &) to further
explain variation in simulated recovery trajectories. PCCs
measure the correlation between a variable of interest and
an outcome after accounting for the effects of all other
variables (Marino et al. 2009). A higher absolute value of
a PCC indicates that a particular input variable is more
tightly correlated with the output, independent of all other
inputs. We also ran a regression model where log(Ay..0),
log(A,.r.), and log(initial coefficient of variation in « or 3)
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were additive predictor variables and each log-transformed
output variable related to the recovery trajectory was a re-
sponse variable. We calculated the R* value of the resulting
model to examine how much variance in attributes of the
recovery trajectory was explained by host life history, path-
ogen growth rate, and initial variability in host defense.

To answer our second question regarding differences be-
tween recovery trajectories of populations using tolerance,
avoidance resistance, or intensity-reduction resistance strat-
egies, we performed paired comparisons between popula-
tions with identical starting parameters and variability
in o, B, or & We standardized variability between tolerant
and resistant populations by ensuring that populations had
the same starting variance in ¢, (3, or & relative to the mean
starting value (i.e., populations had identical coefficient of
variations in «, 3, or & immediately prior to pathogen inva-
sion). We then compared how the time when recovery
begins, the magnitude of decline, and the time until a popu-
lation recovers to 2% of its initial population size differed
between populations evolving tolerance, avoidance resis-
tance, or intensity-reduction resistance.

To answer our third question regarding the effects of trade-
offs on recovery trajectories, we repeated the simulation
analysis and compared populations with and without a
trade-off in fecundity and host defense while keeping other
parameters constant. We assessed the change in (i) time
from pathogen invasion to recovery onset, (ii) magnitude
of decline in host population after pathogen introduction,
and (iii) time until the population reaches 2% of the equi-
librium host abundance in the presence of a trade-off. We
included a concave-down trade-off between host defense
and fecundity as described in section S2 of the supplemental
PDF. For the last item (iii), including a trade-off between
host defense and fecundity yielded equilibrium host abun-
dances following pathogen invasion that were less than
host abundance prior to pathogen invasion. For models
that were identical other than the presence of a trade-off,
we measured the time until the population from either
model was within 2% of the equilibrium host abundance
in the presence of the trade-off. We examined populations
with an initial coefficient of variation in c, 3, or & less than
0.1 (i.e., small variance relative to the mean), such that a
population was experiencing no selection gradient on these
traits prior to pathogen arrival.

Results

Question 1: Faster Life History Hosts Experience Smaller
Disease-Induced Declines and Faster Recoveries
Regardless of Host Defense Strategy

Host population recovery trajectories following pathogen
invasion were predictably influenced by host life history
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Figure 2: Effects of pathogen growth rate, host growth rate, and initial variability in « (tolerance), & (intensity-reduction resistance), and 3
(avoidance resistance) on attributes of a host population’s recovery trajectory. The bars in each plot show the partial correlation coefficients
between (log) pathogen growth rate, (log) host growth rate, and (log) initial variability in «, &, and 8 and each attribute of the recovery
trajectory. For a given host defense strategy and attribute of the recovery trajectory, the R*> value gives the total amount of variation in
the attribute of the recovery trajectory described by the multiple regression with all three variables (additive effects only). For example,
for tolerance in A, R*> = 0.96 means that a multiple regression with pathogen growth rate, host growth rate, and initial variability in o ex-
plains 96% of the variation in time until recovery begins. A, Sensitivity results for time until recovery begins. B, Sensitivity results for time

until recovery stops. C, Sensitivity results for magnitude of decline. CV = coefficient of variation.

(Anost)- Across all three host defense strategies, populations
of faster life history hosts experienced smaller disease-
induced declines and faster recoveries (fig. 2). Notably, de-
spite intrinsic host growth rate being highly predictive of
recovery time, host populations evolving tolerance and re-
sistance showed slower recovery compared with predic-
tions from a disease-free scenario following an equivalent
perturbation in an otherwise identical population (figs. 1,
S1; figs. S1-S3 are available online).

Increasing initial standing variation in host defense
traits impacted all three characteristics of the recovery
trajectory, particularly reducing the time until recovery
stops for all defense strategies (fig. 2). Finally, pathogen
growth rate (A,,.,) notably contributed to the magnitude
of decline and time until recovery begins across defense
strategies, explaining 17% and 84% of the variation, re-
spectively (fig. 2). Interestingly, this implies that by quan-
tifying initial parasite growth rate upon invasion, we
may be able to predict characteristics of the host recovery
trajectory, including the duration of disease-induced de-
clines (fig. 2). In section S3 of the supplemental PDF,
we use our tolerance model to derive additional analytical
insight into the effects of initial standing variation, host
life history, and pathogen growth rate on population re-
covery trajectories.

Question 2: Hosts Using Resistance Strategies
Tend to Recover More Quickly Than Hosts
Using Tolerance Strategies

For all host defense strategies, the dynamics of total pop-
ulation size are dN/dt = Np(t), where p(¢) is the intrin-
sic host growth rate (i.e., fitness), p(t) < 0 indicates a de-
clining population, and p(¢) > 0 indicates a recovering
population.

For hosts using a tolerance strategy,

1(t)
N(t)’
(5)

where 7, is the average host growth rate, averaged over the
instantaneous distribution of tolerance in the population;
& is the average tolerance level in only infected hosts; and
I/N is pathogen prevalence in the host population.

For hosts using an intensity-reduction resistance
strategy,

p(t) = p(N,I,a) = 7o(t) = ON(£) — p — a,(t)

p(t) = p(N,1,&) = 7a(t) = SN(t) — p — &’(t)%'

(6)



Finally, for hosts using an avoidance resistance strategy,

o 0

Simulations elucidate how equations (5)-(7) affect re-
covery dynamics. Host populations using a tolerance
strategy recovered (at the median) four times more slowly
than host populations using an avoidance resistance
strategy, all else being equal (fig. 3A). The faster recovery
of hosts using an avoidance resistance strategy can be

p(t) = p(N,I,B) = 75(t) —=ON(t) — p — «
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understood by equation (7). For a population evolving
avoidance resistance, recovery (i.e., p(t) >0) is driven
by I/N decreasing because o remains fixed. The mecha-
nism through which prevalence I/N decreases is negative
selection on f: reducing 8 (increasing avoidance resis-
tance) reduces pathogen R,, which reduces I/N. Eventu-
ally R, <1 and I/N goes to zero, such that per capita
growth rate p(f) is no longer influenced by infection.
We can understand how prevalence I/N changes with
changing 3 by examining a bifurcation plot of equation (3)
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25.1 2.2
25 Fastest Medium Sloest Slowest Medium Fastest Largest Smallest Largest
’ 2.0
€ 15.8
g
= 10.0 18
£ 20
c
2 6.3 16
£=]
@
016 4.0 14
o
]
2 2.5 13
<13
g
= 1.6 1.1
1.0 1.04 1.04
Tolerance Intensity-reduction Avoidance Tolerance Intensity-reduction  Avoidance Tolerance Intensity-reduction  Avoidance
resistance resistance resistance resistance resistance resistance
B. Ro=5.78 C. Ro=20.95
1.0 A 1.0
— —_
o o
& o8 | S T & o8
© -= Tolerance n
c . c
RS - Avoidance R : N
55 0.6 1 resistance 55 061 , T TTTTmeeal
g_‘_" h Inte_nsity—reduction ‘_:{r_u : —— Tolerance *\\
1 / 1 K
¥ 04] I\ 4 -m-=--_ re5|sFance oo 044 1 Avoidance AN
3& i |‘\::/ S~ —— Relative abundance SE ! 7 resistance AN
S~ N . N
> R “~._ ~=- Prevalence > 1 Intensity-reduction N
® 0.2 | \___\ ~~~~~~~~ ® 0.2 | resistance .
[0] 1 S~o T .- [0] 1 —— Relative abundance S
o 1 ~o o4 ] ~
1 ~—e_ 1 -=-- Prevalence Ss<
004 2 0000 e e 0.0+ ’
T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (years) Time (years)

Figure 3: A, Comparison of time until recovery begins, time until recovery stops, and magnitude of decline between host populations using
tolerance, avoidance resistance, and intensity-reduction resistance strategies, all else being equal. The boxplots are a result of 1,000 simu-
lations with different parameter values. For each simulation, all three host defense strategies were compared to the minimum value for that
simulation. The minimum strategy had a value of 1, and the other two strategies had values greater than 1. This was repeated 1,000 times.
For example, a median value of 1.4 for the avoidance resistance strategy and the characteristic “time until recovery begins” indicates that
avoidance resistance strategies have a median time until recovery begins that is 1.4 times slower (i.e., a larger value) than the defense strategy
with the fastest time until recovery begins. Note that parameter combinations resulting in R, > 20 are excluded from the analysis. Boxes give
the interquartile range, and whiskers are +1.5 times the interquartile range. B, Example recovery trajectories from tolerant and resistant
populations where the resistant populations recover more quickly than the tolerant population. Parameter values: r = 4.69 yr ',
p=273yr',6 =025areayr’, o =230yr', w=451.55yr ', u, = 29.89 yr ', 3 = 0.25 area yr~', coefficient of variation in «, 3,
or & = 0.54. C, Same as B, but where a tolerant population recovers more quickly than or equivalently to the resistant populations. Param-
eter values: r = 491 yr'', p = 143 yr',6 = 04lareayr ', o« = 1.13yr ', w = 404.16 yr ', u, = 17.15yr ', B = 0.27 area yr ', coef-
ficient of variation in 8 or o« = 0.62. In B and C, solid lines show relative population size, and dashed lines show pathogen prevalence. These
plots were made using equation (2) for tolerance, equation (3) for avoidance resistance, and equation (4) for intensity-reduction resistance.



544 The American Naturalist

B R0=42.56,[JZ=10 yl’_1

A R0=4.26,[JZ= 100 yr‘l

1.0 4

0.8 A
53
> S Dynamic By and I/N
= T 0.6 {==== with evolution,
¢S Equation 3
8 % Stable equilibrium, »
D o no evolution
o £ 0.4-___ Unstable equilibrium, y
4] ®© no evolution
o &) @ Bifurcation point

Relative
0.2 host abundance
00 —————— -]
0.00 0.05 0.10 0.15 0.20 0.25
Bn

0.00 0.05 0.10 0.15 0.20 0.25

Bn

Figure 4: A, Example of how the evolution of avoidance resistance and the dynamics of host recovery can be understood in terms of a
bifurcation plot. The black lines give the equilibria values of equation (3) when there is no variability and thus no evolution for a fixed
By (solid lines are stable equilibria, and dashed lines are unstable equilibria). Varying By changes the equilibrium pathogen prevalence
I'/N" in a population. A transcritical bifurcation point exists at R, = 1, below which the pathogen-free equilibrium is stable. The red line
shows the dynamics of By and prevalence I(t)/N(t) when there is evolution in resistance. Time moves in the directions given by the red
arrow (i.e., a population starts with Bx = 0.276, and By decreases through time due to evolution with subsequent changes in prevalence
I(t)/N(t)). Host abundance relative to the predecline level is shown by the gray line. B, Same as A, but the death rate of the pathogen
in the environment has been reduced by a factor of 10, with subsequent changes in the shape of the bifurcation diagram that have notable

affects on the dynamics of host recovery trajectories. The values of other parameters are r = 1.68 yr~

1 1

, = 0.56yr ', 6 = 0.14 area yr ',

a =359 yr}, A = 800 yr’, initial 8 = 0.276 area yr ', and coefficient of variation in § = 0.32.

without evolution, where (3 is the bifurcation parameter
and the equilibrium of interest is equilibrium prevalence
I'/N" (fig. 4A). Plotting the dynamics of By and I /N with
evolution on the bifurcation plot, we see that the dynamics
of evolving 8y and prevalence tend to track the bifurcation
plot—in other words, we can conceptualize the dynamics
of evolving By and I/N as similar to how a perturbation of
fixed B3 affects equilibrium pathogen prevalence I" /N". Us-
ing this insight, figure 4A shows that host recovery begins
to happen before R, < 1 and evolution of By tends to stop
once R, < 1 (with some overshoot depending on the speed
of the evolutionary dynamics compared with the epidemi-
ological dynamics). Moreover, as 3y gets closer to the bi-
furcation point, a change in (3 leads to a greater change in
I/N (i.e., a steeper slope), leading to faster host recovery
(fig. 4A).

In contrast, recovery for a tolerant population is driven
strictly by a reduction in « because I/N will generally in-
crease over time (eq. [5]; fig. 3A4; reducing « increases
pathogen R,, increasing prevalence I/N). While higher
prevalence I/N increases the selection gradient on « and
speeds up evolution (eq. [2]), the selection gradient is also

decreased by a reduction in the variance of « and slows
down evolution (eq. [2]). The selection gradient on ay be-
comes increasingly weak as the variance in « also decreases.
Thus, infection generally continues to dampen the per
capita growth rate p(t) of tolerant hosts for a longer time
than resistant hosts, leading to slower recovery of tolerant
hosts.

Recovery rates for host populations using an intensity-
reduction resistance strategy are intermediate between
tolerance and avoidance resistance strategies (a median
of 1.38 times slower than the fastest recovery strategy;
fig. 3A, 3B). When prevalence is more sensitive to changes
in transmission, the recovery trajectories of intensity-
reduction resistance can resemble avoidance resistance,
leading to faster recovery rates (fig. 3B). However, when
reductions in pathogen shedding (as a result of the evo-
lution of intensity-reduction resistance) have little effect
on pathogen prevalence (e.g., because of long pathogen
persistence in the environment), the recovery of popu-
lations using intensity-reduction strategies can still occur
because of reductions in disease-induced mortality rates
(eq. [6]). Thus, intensity-reduction resistance recovery



rates mirror tolerance recovery rates in situations where prev-
alence is insensitive to changes in transmission (fig. 3C).

In contrast, the recovery rate of host populations using
an avoidance resistance strategy can be drastically re-
duced when prevalence is insensitive to changes in trans-
mission. For example, when pathogen death rate in the
environment p. is low and R, is high, the bifurcation plot
in figure 4B shows that prevalence is largely insensitive to
small changes in 8. This means that By has to be reduced
to very low levels before there is a sufficient change in
prevalence to allow intrinsic growth rate p(f) to be greater
than zero and host recovery to occur. In this situation,
populations evolving avoidance resistance recover more
slowly than populations evolving tolerance or intensity-
reduction resistance (fig. 3C).

Finally, hosts employing tolerance or avoidance resis-
tance strategies did not differ consistently in the magnitude
of decline experienced but did experience consistently larger
declines than host populations using intensity-reduction
resistance strategies (median declines were 1.1 times larger;
fig. 3A). Across the parameter space we explored, hosts us-
ing tolerance strategies generally began recovering sooner
following declines than hosts using avoidance or intensity-
reduction resistance strategies (fig. 3A).

Question 3: Trade-Offs between Host Defense
and Fecundity Affect Recovery Dynamics but Have
Little Effect on Disease-Induced Declines

The time until recovery begins and the magnitude of de-
cline were largely unaffected by the trade-oft between host
defense and fecundity (fig. 5A-5C). In contrast, our model
predicted that time until recovery to some fixed point
(which we set as within 2% of the equilibrium population
size of the model with a host defense-fecundity trade-off
and was less than the equilibrium abundance in the model
without a trade-off) was slower in the populations with a
trade-off (fig. 5A-5C). Host populations with a trade-off
had a slower maximum per capita growth rate p(f) after
recovery (fig. 5D-5F). For tolerant host populations, the
slower recovery rate was because o could not continue to
decrease to zero given the trade-off r(«) (fig. 5D). As shown
via Price’s equation (supplemental PDF, sec. S3, eq. [S34]),
the negative selection gradient on « is canceled out by
the positive selection gradient induced by the trade-off
r(ew). For host populations using avoidance resistance, the
slower recovery was also due to 3 not being able to be re-
duced enough such that R, < 1, allowing for persistence
of the pathogen and host and a continued effect of infec-
tion on per capita host growth rate p(f) (fig. 5E). Intensity-
reduction resistance was a combination of both of these
mechanisms. The parameter & could not go to zero because
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of the trade-off (supplemental PDF, sec. S2, eq. [S42])
and prevalence also maintained a nonzero value (fig. 5F),
both of which reduced p(t).

Discussion

Motivated by disease-induced declines and ongoing re-
coveries in amphibian-fungal pathogen systems that are
putatively driven by the evolution of host defense, we
used a simple model to test how host life history, path-
ogen life history, standing genetic variation, host defense
strategies, and trade-offs affected the dynamics of pop-
ulation recovery. Predictably, host life history defined
along a slow-to-fast continuum was a strong predictor
of host recovery trajectories. After accounting for differ-
ences in recovery due to host life history and standing
genetic variation, we found that the type of host defense
strategy strongly influenced multiple characteristics of a
population’s recovery trajectory. In single-species pop-
ulations, resistance strategies tended to lead to faster re-
coveries than tolerance strategies. Thus, even when pop-
ulations are deterministically predicted to recover to their
predecline state, different strategies of host defense can lead
to populations taking drastically different routes. This is
important because spending a longer time below a critical
population threshold can, for example, significantly aug-
ment the risk of stochastic extirpation and limit a popu-
lation’s ability to respond to secondary stressors (Lande
et al. 2003). Last, we found that while trade-offs between
host defense and fecundity slowed recovery rates for all de-
fense strategies, they had little affect on short-term char-
acteristics of population recovery trajectories.

Our results align with previous work on the long-term
equilibrium outcomes of resistance and tolerance evo-
lution (Antonovics and Thrall 1994; Roy and Kirchner
2000; Miller et al. 2005; Boots et al. 2009). For example,
our model predicted that when there are no trade-offs,
polymorphism in avoidance resistance was maintained be-
cause selection pressure induced by the pathogen effec-
tively ended once mean avoidance resistance in the pop-
ulation was such that pathogen R, < 1 (fig. S2; Antonovics
and Thrall 1994). Moreover, when a trade-off was present
between fecundity and avoidance resistance such that path-
ogen persistence was possible, our model showed that re-
sistance traits tended to fixation (fig. S3). While previous
models have shown that trade-offs can promote equilib-
rium polymorphism in resistance traits within a popula-
tion (Roy and Kirchner 2000), this primarily occurs when
one of the possible host states is complete resistance with
no intermediate options (e.g., 3 = 0). In contrast, when
incomplete resistance states exist in the population, fixa-
tion of resistance is possible (fig. S3; Roy and Kirchner
2000).
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The primary goal of our study was to move beyond
equilibrium results and elucidate the differences in the
transient dynamics of host population recovery under tol-
erance and resistance strategies. We found that host pop-
ulations employing different resistance strategies (avoid-
ance and intensity-reduction resistance) often recovered
drastically faster than populations using a tolerance strat-
egy. The reason for this relates to the distinct mechanisms
through which tolerant and resistant hosts evolve. For tolerant
hosts, recovery trajectories are not driven by evolutionary-
induced reductions in pathogen fitness. Rather, pathogen
fitness increases such that until a host evolves perfect toler-
ance, the pathogen will continue to negatively affect host fit-
ness. Moreover, a key result of this work is that through our
moment closure approximation we highlight a dampening
feedback in tolerance evolution that affects the potential
speed of population recovery. As mean tolerance in the
population increases, variance in tolerance in the popula-
tion decreases, slowing the speed at which mean tolerance
can further increase. Together, this dampens the rate at
which host populations evolving tolerance strategies can re-
cover, compared with recovery in resistance populations and
disease-free populations.

In contrast, the recovery trajectories of host populations
using avoidance and intensity-reduction resistance are driven
by a reduction in pathogen fitness, resulting in decreased
pathogen prevalence and increased per capita host growth
rate. However, a surprising result of this study was that
for avoidance resistance in particular, ecological conditions
greatly affected the sensitivity of prevalence to a change in
avoidance resistance. For example, when pathogens could
persist for long periods of time in the environment, a small
evolutionary change in avoidance resistance had a negligi-
ble effect on pathogen prevalence and thus did relatively lit-
tle to augment population recovery. In this situation, a host
population’s mean avoidance resistance value had to evolve
close to a bifurcation point before any substantial host re-
covery could occur. This resulted in a type of slow-fast tran-
sient dynamics (Hastings et al. 2018), where host popula-
tions using avoidance resistance strategies could remain
at seemingly stable low densities for long periods before
rapidly recovering to predecline abundances. Interestingly,
while we did not consider the evolution of the pathogen in
this model, the prolonged persistence of pathogens in the
environment can in some situations lead to an increase in
pathogen virulence (Gandon 1998). The evolution of in-
creased pathogen virulence could increase the selection
gradient on host avoidance resistance, which could reduce
the time that hosts evolving avoidance resistance spend in
abundance troughs. Analyzing the transient dynamics of
host recovery trajectories given the coevolution of hosts
and pathogens is an interesting future direction (e.g., using
a framework like that in Gandon and Day 2009).
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Our results for avoidance resistance have important
implications in multispecies systems. The ability of a host
species using an avoidance resistance strategy to recover
following disease-induced declines could be severely hin-
dered by the presence of a species using a tolerance strat-
egy even if these two species are demographically and
ecologically equivalent. This is a transient manifestation
of apparent competition (Holt and Pickering 1985), as
ultimately both species have the evolutionary ability to de-
terministically recover to their predecline abundance but
the recovery trajectory of the species using an avoidance
resistant strategy can be drastically altered by the tolerant
species.

Recovery trajectories of host populations using intensity-
reduction resistance exhibit similar benefits to avoidance
resistance (e.g., the potential for faster recovery than toler-
ance strategies) but are less affected by ecological context.
This raises the following question: Is there an optimal re-
covery strategy, all else being equal? While more rigorous
analysis is needed, our analyses suggest that intensity-
reduction resistance may often be the preferred strategy
for three reasons. First, populations evolving intensity-
reduction resistance can recover at least as fast as tolerant
populations and at best significantly more quickly. Sec-
ond, the recovery rates of populations evolving intensity-
reduction resistance are less sensitive to ecological context
than populations using avoidance resistance strategies, re-
ducing the likelihood of being trapped in prolonged pe-
riods of low abundance. Finally, although the effect was
small in our simulations, populations employing intensity-
reduction resistance consistently experience smaller disease-
induced declines than equivalent populations using tolerance
and avoidance resistance. While existing standing variation
and evolutionary constraints will affect the optimal defense
strategy in natural populations, populations evolving intensity-
reduction strategies can be more resilient in terms of re-
sisting and recovering from disease-induced declines across
varying ecological contexts.

Implications for Recoveries in Amphibian-Bd Systems

Our study was motivated by amphibian-Bd systems, where
we have observed drastic declines and the nascent recov-
eries of amphibian populations and communities. While
lacking some key realism of amphibian-Bd systems, our
model still provides retrospective and prospective insight
into amphibian recoveries. For mountain yellow-legged
frog (MYL frog) populations in the Sierra Nevada moun-
tains of California (composed of two sister species, Rana
muscosa and Rana sierrae), there is strong evidence of
population recoveries following Bd-induced declines (Knapp
et al. 2016). Moreover, there is evidence that the evolution
of intensity-reduction resistance and tolerance are, at least
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in part, driving these recoveries (Knapp et al. 2023). MYL
frogs have a long-lived tadpole stage that does not suffer
disease-induced mortality from infection and can prolong
the persistence of Bd in this system (Briggs et al. 2010). It
is therefore broadly consistent with our model results that
we observe recovering populations in this system evolving
intensity-reduction resistance and tolerance rather than
avoidance resistance, as avoidance resistance could sub-
stantially delay recoveries and keep populations at low den-
sities for long periods of time before recovery.

In Panamanian amphibian communities, where we are
observing the recovery and reorganization of entire am-
phibian communities following Bd-induced declines (Voyles
et al. 2018), the mechanisms of recovery remain unclear.
However, our model makes at least two predictions that
could inform our understanding of recovery mechanisms
in this system. First, we predict that we are more likely to
observe avoidance resistance as a mechanism of recovery
in terrestrial host species that have less habitat overlap
with viable, aquatic zoospores shed by other hosts in the
community. As such, we would predict patterns of de-
creasing prevalence with increasing host abundance to
be skewed toward more terrestrial species that interact less
with the aquatic zoospore pool. Second, after controlling
for host life history, we predict that primarily aquatic am-
phibian hosts with the highest recovery rates are more
likely to be using tolerance or intensity-reduction resis-
tance strategies. Thus, we predict that aquatic species with
high recovery rates should generally maintain high Bd
prevalence and show detectable reductions in infection
intensity. It is important to note, however, that ecological
interactions not accounted for in our current model could
significantly alter these predictions. For example, inter-
specific competition among species could interact with
standing variation in host defense to lead to transient re-
covery dynamics in host communities that differ signifi-
cantly from equivalent single-species recovery trajectories.
It will be important to extend the model we develop here
to incorporate interacting species with varying host de-
fense strategies to thoroughly explore the recovery and re-
organization dynamics of communities in the presence of
a pathogen.

Conclusions

A key goal in amphibian-Bd systems, as well as in host-
pathogen systems more generally, is to identify the mech-
anisms leading to recovery (Brannelly et al. 2021). The
theory developed here highlights that there are distinct
signatures of different host defense strategies embedded in
the transient trajectories of prevalence, infection intensity,
and host abundance during host recovery. A key contri-
bution of this study is that we show that the recovery tra-

jectories of host abundance can differ drastically across
defense strategies and that these differences can be highly
influenced by environmental conditions. Importantly, given
that we can control for host life history (e.g., by leveraging
a priori information on host vital rates and demographic
structure), we can use the results of this theory in combi-
nation with observed patterns of prevalence, infection in-
tensity, and, in particular, host abundance to statistically
compare among candidate defense strategies driving host
recoveries. This provides an exciting opportunity to em-
pirically test the extent to which different species and even
populations of the same species use different defense strat-
egies to resist and recover from disease-induced declines.
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