L)

Check for

updates

PolyARBerNN: A Neural Network Guided Solver and
Optimizer for Bounded Polynomial Inequalities

WAEL FATNASSI and YASSER SHOUKRY, University of California, Irvine, USA

Constraints solvers play a significant role in the analysis, synthesis, and formal verification of complex cyber-
physical systems. In this article, we study the problem of designing a scalable constraints solver for an impor-
tant class of constraints named polynomial constraint inequalities (also known as nonlinear real arithmetic
theory). In this article, we introduce a solver named PolyARBerNN that uses convex polynomials as abstrac-
tions for highly nonlinears polynomials. Such abstractions were previously shown to be powerful to prune
the search space and restrict the usage of sound and complete solvers to small search spaces. Compared with
the previous efforts on using convex abstractions, PolyARBerNN provides three main contributions namely
(i) a neural network guided abstraction refinement procedure that helps selecting the right abstraction out of
a set of pre-defined abstractions, (ii) a Bernstein polynomial-based search space pruning mechanism that can
be used to compute tight estimates of the polynomial maximum and minimum values which can be used as
an additional abstraction of the polynomials, and (iii) an optimizer that transforms polynomial objective func-
tions into polynomial constraints (on the gradient of the objective function) whose solutions are guaranteed
to be close to the global optima. These enhancements together allowed the PolyARBerNN solver to solve com-
plex instances and scales more favorably compared to the state-of-the-art nonlinear real arithmetic solvers
while maintaining the soundness and completeness of the resulting solver. In particular, our test benches
show that PolyARBerNN achieved 100X speedup compared with Z3 8.9, Yices 2.6, and PVS (a solver that
uses Bernstein expansion to solve multivariate polynomial constraints) on a variety of standard test benches.
Finally, we implemented an optimizer called PolyAROpt that uses PolyARBerNN to solve constrained poly-
nomial optimization problems. Numerical results show that PolyAROpt is able to solve high-dimensional and
high order polynomial optimization problems with higher speed compared to the built-in optimizer in the Z3
8.9 solver.

CCS Concepts: « Computer systems organization — Embedded systems; Redundancy; Robotics; « Net-
works — Network reliability;

Additional Key Words and Phrases: Neural networks, bernstein polynomials, abstraction refinement

ACM Reference Format:

Wael Fatnassi and Yasser Shoukry. 2024. PolyARBerNN: A Neural Network Guided Solver and Optimizer for
Bounded Polynomial Inequalities. ACM Trans. Embedd. Comput. Syst. 23, 2, Article 22 (March 2024), 26 pages.
https://doi.org/10.1145/3632970

This work was supported by the National Science Foundation under grant numbers #2002405 and #2139781.
Authors’ address: W. Fatnassi and Y. Shoukry, University of California, Irvine, CA 92697, USA; e-mails: wfatnass@uci.edu,
yshoukry@uci.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1539-9087/2024/03-ART22
https://doi.org/10.1145/3632970

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

https://orcid.org/0000-0002-4600-0909
https://orcid.org/0000-0002-8224-8477
https://doi.org/10.1145/3632970
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3632970
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632970&domain=pdf&date_stamp=2024-03-18

22:2 W. Fatnassi and Y. Shoukry

1 INTRODUCTION

Constraint solvers and optimizers have been used heavily in the design, synthesis, and verifica-
tion of cyber-physical systems [1, 3, 4, 7, 17, 30, 35, 42, 45, 53, 54]. Examples include verification of
neural network (NN) controlled autonomous systems [50], formal verification of human-robot
interaction in healthcare scenarios [32], automated synthesis for distributed cyber-physical sys-
tems [44], design for cyber-physical systems under sensor attacks [48], air traffic management of
unmanned aircraft systems [39], software verification for the next generation space-shuttle [41],
and conflict detection for aircraft [40].

In this article, we will focus on the class of general multivariate polynomial constraints (also
known as nonlinear real arithmetic). Multivariate polynomial constraints appear naturally in
the design, synthesis, and verification of these systems. It is not then surprising that the amount
of attention given to this problem in the last decade, as evidenced by the amount of off-the-self
solvers that are designed to solve feasibility and optimization problems over general multivariate
polynomial constraints, including Z3 [13], Coq [33], Yices [16], PVS [38], Cplex, [34], CVXOPT
[52], and Quadprog [26]. Regardless of their prevalence in several synthesis and verification
problems, well-known algorithms—that are capable of solving a set of polynomial constraints—are
shown to be doubly exponential [18], placing a significant challenge to design efficient solvers for
such problems.

Recently, NNs have shown impressive empirical results in approximating unknown functions.
This observation motivated several researchers to ask how to use NNs to tame the complexity of
NP-hard problems. Examples are the use of NNs to design scalable solvers for program synthe-
sis [14], traveling salesman problem [5], first-order theorem proving [28], higher-order theorem
proving [29], and Boolean satisfiability (SAT) problems [46]. While several of these solvers sac-
rifice either soundness or correctness guarantees, we are interested in this article on using such
empirically powerful NNs to design a sound and complete solver for nonlinear real arithmetic.

In addition to NNs, polynomials constitute a rich class of functions for which several approx-
imators have been studied. Two of the most famous approximators for polynomials are Taylor
approximation and Bernstein polynomials. These two approximators have been successfully used
in solvers like Coq and PVS [8, 38]. This opens the question of how to combine all those approxima-
tion techniques, i.e., NNs, Taylor, and Bernstein approximations, to come up with a scalable solver
that can reason about general multivariate polynomial constraints. We introduce PolyARBerNN,
a novel sound and complete solver for polynomial constraints that combines these three function
approximators (NNs, Taylor, and Bernstein) to prune the search space and produce small enough
instances in which existing sound and complete solvers (based on the well-known Cylindrical
Algebraic Decomposition (CAD) algorithm) can easily reason about. In general, we provide the
following contributions:

— We introduced a novel NN-guided abstraction refinement process in which an NN is used to
guide the use of Taylor approximations to find a solution or prune the search space. We an-
alyzed the theoretical characteristics of such an NN and provided empirical evidence on the
generalizability of the trained NN in terms of its ability to guide the abstraction refinement
process for unseen polynomials with various numbers of variables and orders.

— We complement the NN-guided abstraction refinement with a state-space pruning phase
using Bernstein approximations that accelerates the process of removing portions of the
state space in which the sign of the polynomial does not change.

— We validated our approach by first comparing the scalability of the proposed PolyARBerNN
solver with respect to PVS, a library that uses Bernstein expansion to solve polynomial
constraints. Second, we compared the execution times of the proposed tool with the latest

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:3

versions of the state-of-the-art nonlinear arithmetic solvers, such as Z3 8.9, Yices 2.6 by
varying the order, the number of variables, and the number of the polynomial constraints
for instances when a solution exists and when a solution does not exist. We also compared
the scalability of the solver against Z3 8.9 and Yices 2.9 on the problem of synthesizing a
controller for a cyber-physical system.

— We proposed PolyAROpt, an optimizer that uses PolyARBerNN to solve constrained multi-
variate polynomial optimization problems. Our theoretical analysis shows that PolyAROpt
is capable of providing solutions that are € close to the global optima (for any € > 0
chosen by the user). Numerical results show that PolyAROpt solves high-dimensional and
high-order optimization problems with high speed compared to the built-in optimizer in Z3
8.9 solver. We also validated the effectiveness of PolyAROpt on the problem of computing
the reachable sets of polynomial dynamical systems.

Related work: CAD was introduced by Collins [12] in 1975 and is considered to be the first al-
gorithm to effectively solve general polynomial inequality constraints. Several improvements were
introduced across the years to reduce the high time complexity of the CAD algorithm [9, 27, 36]. Al-
though the CAD algorithm is sound and complete, it scales poorly with the number of polynomial
constraints and their order. Other techniques to solve general polynomial inequality constraints
include the use of transformations and approximations to scale the computations. For instance,
the authors in [38] incorporated Bernstein polynomials in the Prototype Verification System
(PVS) theorem prover; these developments are publicly available in the NASA PVS Library. The
library uses the range enclosure propriety of Bernstein polynomials to solve quantified polynomial
inequalities. However, the library is not complete for non-strict inequalities [38] and is not prac-
tical for higher dimensional polynomials. Another line of work that is related to our work is the
use of machine learning to solve combinatorial problems [25, 46]. In particular, the authors in [25]
proposed a graph convolutional neural network (GCNN) to learn heuristics that can accel-
erate mixed-integer linear programming (MILP) solvers. Similarly, the NeuroSAT solver [46]
uses a message-passing neural network (MPNN) to solve Boolean SAT problems. The authors
of [46] showed that NeuroSAT generalizes to novel distributions after training only on random
SAT problems. Nevertheless, NeuroSAT is not competitive with state-of-the-art SAT solvers and
it does not have a correctness guarantee.

2 PROBLEM FORMULATION

Notation: We use the symbols N and R to denote the set of natural and real numbers, re-
spectively. We denote by x = (x1,x2,...,%x,) € R" the vector of real-valued variables, where
x; € R. We denote by I,(d,d) = [41,31] X oo X [c_in,gn] C R" the n-dimensional hyperrectan-
gle where d = (d,....d,) and d = (di,...,d,) are the lower and upper bounds of the hyper-
rectangle, respectively. For a real-valued vector x = (x1,x2,...,%,) € R" and an index-vector
K = (ki,...,k,) € N", we denote by xX € R the scalar xX = x{cl .- -xﬁ”. Given two multi-indices
K =(ky,...,kp) e N*and L = (L1,...,l,) € N", we use the following notation throughout this ar-
ticle: K+L = (ki +1,. . kn+1n), (6) = (2) -+ (), and Sgep = oy, -+ ik <, A real-valued
multivariate polynomial p : R” — R is defined as follows:

L b I

ki k kn _ K
plxy, .. yxy) = Z Z Z Ay, .. o)X Xy o X" = ZaKx ,
k kn=0

1=0 k=0 . K<L
where L = (I, l5,...,l,;) is the maximum degree of x; for all i = 1,...,n. We denote by
ap = (a,0,...,0) - - - » Ay, b,1,)) the vector of all the coefficients of polynomial p. We denote the

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:4 W. Fatnassi and Y. Shoukry

space of multivariate polynomials with coefficients in R by R[xy, x, . .., x,]. Given a real-valued
function f : R" — R, we denote by L; (f) and Lj (f) the zero sublevel and zero superlevel sets of
f,ie.:

Ly (f) = {x € R"|f(x) < 0}, Ly (f) = {x € R"|f(x) > 0}.
Finally, a function f : R* — R™ is called Lipschitz continuous if there exists a positive real
constant wy > 0 such that, for all x; € R" and x, € R”, the following holds:

(1) = Ol < o [lx1 = X2l
Main Problem: In this article, we focus on two problems namely (Problem 1) the feasibil-
ity problems that involve multiple polynomial inequality constraints with input ranges confined
within closed hyperrectangles and (Problem 2) the constrained optimization problem which aims
to maximize (or minimize) a polynomial objective function subject to other polynomial inequality
constraints and input range constraints.

PROBLEM 1.

Ax € I,(d, d) such that: p1(X1s..xy) €0

Pm (X1, .,x0) <0

where p; (x) = p; (x1,...,%x,) € R[x1,x2, ..., x,]is a polynomial over variables xi, . . ., x,. Without
loss of generality, p;(x) > 0and p; (x) = 0 can be encoded using the constraints above. Similarly,
given a polynomial objective function p(x) € R[x1, x2, . . ., X,], we define the optimization problem
as follows:

PROBLEM 2.
min_ p(x) [or max p(x)]
x€l,(d,d) xel,(d,d)
subject to: py(x1,...,x,) <0,

Pm (X150 xy) €0

3 CONVEX ABSTRACTION REFINEMENT: BENEFITS AND DRAWBACKS

In this section, we overview our previously reported framework for using convex abstraction re-
finement process introduced in [55] along with some drawbacks that motivate the need for the
proposed framework.

3.1 Overview of Convex Abstraction Refinement

Sound and complete algorithms that solve Problem 1 are known to be doubly exponential in n
with a total running time that it is bounded by (m deg)?" [18], where deg is the maximum degree
among the polynomials py, . . ., pp,. Since the complexity of the problem grows exponentially, it is
useful to remove (or prune) subsets of the search space in which the solution is guaranteed not to
exist. Since Problem 1 asks for an x in R” for which all the polynomials are negative, a solution
does not exist in subsets of R” at which one of the polynomials p; is always positive (i.e., Lj (p;)). In
the same way, finding regions of the input space for which some of the polynomials are negative
L; (pi) helps with finding the solution faster.

To find subsets of L] (p;) and L (p;) efficiently, the use of “convex abstractions” of the polynomi-
als was previously proposed by the authors in [55]. Starting from a polynomial p;(x) € R[x] and a

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:5

p(x) P

—— 0%(x) over approximation of p(x) b L
. B —— 07 (x) over approximation of p(x) 1
U (x) under approximation of p(x) s

Uf(x) under approximation of p(x) 1

1

|

I

1

y e

Xg I

L5(0}) Ly

| =
T -
d :C/ d a
! L) =9 Li(UY) < Li@)

()
07 (x) over approximation of p(x)

b - -

p(x)
—— 0%(x) over approximation of p(x)
——— U%(x) under approximation of p(x)

) — /. 15(0%) = @)
13(0%) % \/\/: l,
‘ 5/ ¥
d
] I

/I
1
1
1
1
1
] & \/\/d
LU =090
L(U?) = [xo,d] W (%)

Fig. 1. Exemplary cases where abstracting higher order polynomial (black curves) using convex approxima-
tions fails to provide helpful information: Top-Left: under-approximation (green curve) is entirely negative
and hence fails to identify any subsets of L} (p). Top-Right: over-approximation (red curve) is entirely pos-
itive and hence fails to identify subsets of L (p). Bottom: under/over approximations failed to identify
polynomials that are consistently positive (left) or negative (right).

U'l’ (x) under approximation of p(x)

hyperrectangle I,, ¢ R", the framework in [55] computes two quadratic polynomials Of " and U]‘.D !
such that:

UP'(x) < p(x) < OV'(x), Vx €, (1)

where O and U stands for Over-approximate and Under-approximate quadratic polynomials, re-
spectively, and the subscript j in Of "(x) and Uf (x) encodes the iteration index of the abstrac-
tion refinement process. It is easy to notice that the zero superlevel set of Uj‘.p “(x) is a subset of
Li(pi), e, LS(UJE) C Lj(p;). Similarly, the zero sublevel set of Ofi (x) is a subset of Lj(p;), i.e.,
Lg(Of ") € Ly(pi). Moreover, being convex polynomials, identifying the zero superlevel sets and
zero sublevel sets of Of (x) and Uf ’(x) can be computed efficiently using convex programming
tools. By iteratively refining these upper and lower convex approximations, the framework in [55]
was able to rapidly prune the search space until regions with relatively small volumes are identi-
fied, at which sound and complete tools such as Z3 8.9 and Yices 2.6 (which are based on the CAD
algorithm) are used to search these small regions, efficiently, to find a solution. It is important to
notice that these solvers (especially Yices) are optimized for the cases when the search space is a
bounded hyperrectangle.

3.2 Drawbacks of Convex Abstraction Refinement

Although the prescribed convex abstraction refinement process was shown to provide several or-
ders of magnitude speedup compared to the state-of-the-art [55], it adds unnecessary overhead
in certain situations. In particular, and as shown in Figure 1, the quadratic abstractions Of "(x)
and Uj‘.ﬂ '(x) may fail to identify meaningful subsets of L; (p;) and Lj (p;). One needs to split the
input region to tighten the over-/under-approximation in such cases. Indeed, applying the convex
abstraction refinement process, above, may lead to several unnecessary over-approximations or

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:6 W. Fatnassi and Y. Shoukry

under-approximations until a tight one that prunes the search space is found. These drawbacks
call for a methodology that is capable of:

(1) Guiding the abstraction refinement process: To reduce the number of unnecessary compu-
tations of over/under approximations, one needs a heuristic that guides the convex abstrac-
tion refinement process. In particular, such a heuristic needs to consider the properties of
the polynomials and the input region to estimate the volume of the sets that the convex
under/over-approximation will identify.

(2) Alternative Abstraction: As shown in Figure 1 (bottom), abstracting high-order polynomials
using convex ones may fail to identify easy cases when the polynomial is strictly positive or
negative. Therefore, it is beneficial to use alternative ways to abstract high-order polynomi-
als that can augment the convex abstractions.

Designing a strategy that addresses the two requirements above is the main topic for the following
two sections.

4 NEURAL NETWORK GUIDED CONVEX ABSTRACTION REFINEMENT

In this section, we are interested in designing and training an NN that can be used to guide the
abstraction refinement process. Such NN can be used as an oracle by the solver to estimate the
volume of the zero super/sub-level sets (for each polynomial) within a given region I,(d, d) and
select the best approximation strategy out of three possibilities namely: (i) apply convex under-
approximation, (ii) apply convex over-approximation, and (iii) split the region to allow for finer
approximations in the subsequent iterations of the solver. In this section, we aim to develop a
scientific methodology that can guide the design of such NN.

4.1 On the Relation between the NN Architecture and the Characteristics of the
Polynomials

In this subsection, we aim to understand how the properties of the polynomials affect the design
of the NN. We start by reviewing the following result from the machine learning literature:

THEOREM 1 (THEOREM 1.1 [47]). There exists a Rectifier Linear Unit (ReLU)-based NN ¢ that can
estimate a continuous function f such that the estimation error is bounded by

¢ - f1l < wp Vd O(N-4L724)

where N, L,d are the NN depth, the NN width, and the number of NN inputs, respectively, and wy is
the Lipschitz constant of the function f. Moreover, this bound is nearly tight.

The above result can be interpreted as follows. The depth N and width L of an NN depend on
the rate of change of the underlying function (captured by its Lipschitz constant wy). That is, if
we use an NN to estimate a function with a high wy, then one needs to increase the depth N and
width L of the NN to achieve an acceptable estimation error.

Now we aim to connect the result above with the characteristics of the polynomials. To that end,
we recall the definition of “condition numbers” of a polynomial [19]:

Definition 1. Given a polynomial p(x) = Y x axxX and a root x of p, the quantity Ca,(x0) is
called the condition number for the root xy. The condition number characterizes the sensitivity
of the root x to a perturbation of the coefficients a,. That is, if we allow a random perturbation

of a fixed relative magnitude € = |%| in each coefficient ak in ap, then the magnitude of the
maximum displacement §x, of a root x is bounded as: |5xo| < C, » (x0) €. For a polynomial with
multiple roots, then we define the condition number of the polynomial C, , as the largest Cq, (xo)

among all roots, i.e., Eap = SUPxye {x|p(x)=0} Ca, (X0)-

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:7

We are now ready to present our first theoretical result that connects the condition number of
polynomials to the NN architecture. As stated before, we are interested in designing an NN that
can estimate the zero sub/super level volume set within a given region. We show that the larger
the condition number, the larger the NN depth and width, as captured by the following result.

THEOREM 2. Given a polynomial p with coefficients a,, a region I,(d, d), and an estimate’s quality
of the volume of zero sub/super level sets I. There exists a neural network NN(ap, I,,) that estimates
the volume of zero sub/super level sets from the polynomial coefficients a,,. The Lipschitz constant of
this NN(ay, I), denoted by wny , is bounded by O(nrﬁraap) where Eap is the condition number of

the polynomial p, n, = max(li ,n,) and n, is the number of roots of the polynomial p.
To prove the result, we will proceed with an existential argument. We will show that an NN

that matches the properties above exists without constructing such an NN. As shown in Figure 2,
the neural network NN (ap,In) consists of multiple sub-neural networks. In particular, the first

sub-neural network NN, x, computes all the roots X, = (xg, - - ., x,") of the polynomial (where
n, is the number of roots) from the coefficients ap, ie.;
Xo = NNg,—x,(ap)- (2)

Note that NN, o Xo does not depend on the region I, and hence the roots X, may not lie inside the
region I,. Moreover, Theorem 2 asks for an NN that estimates the volume of the zero sub/super
level sets and not the location of the roots. To that end, our strategy is to split the region I,, into
sub-regions of fixed volume and check if a root lies within each of these sub-regions. If a sub-region
does not have a root (i.e., there is no zero crossing inside this sub-region) and the evaluation of
the polynomial at any point in this region turns to be positive, then this sub-region belongs to
the super level set of p and similarly for the sublevel set of p. By counting the number of the sub-
regions with no zero crossings and multiplying this count by the volume of these sub-regions, we
can provide an estimate of the sub/super level sets. Such a process can be performed using the
following three sub-neural networks:

— The sub-neural network NN; _, i splits the region I, into [sub-regions I}, ..., Il and returns
the bounds of the ith sub-region, i.e.,:

@, d)=NN, (L), ie{l,...I}. (3)

— The sub-neural network NNx,_,z¢, checks the location of the roots (xé, R xg ") and returns
a binary indicator variable ZC; that indicates whether a zero-crossing takes place within the
ith sub-region or whether the polynomial is always positive/negative within the ith sub-

region, i.e.,:
ZC;i (ap.I1) = NNx,-zc, (NNapqxo(ap), NN, Lt (I,,)). @)
— The final output NN(ap, I,,) is computed using the sub-neural network NNzc_,;+/r- which
counts the number of regions that has no zero-crossing (using the indicators ZCy, . .., ZCy)
and compute the estimate of the zero sub/super level sets, i.e.,:
NN(ap.In) = NNzcpo/1- (ch (ap. I2)..... ZCy (ap,I,l,)).)

The Lipschitz constants of these sub-neural networks are captured by the following four propo-
sitions whose proof can be found in the appendix.

ProposITION 1. Consider the sub-neural network NN, x,(ap) defined in (2). The Lipschitz con-
stant of NN,, - x,(ap) is bounded by O(anap).

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:8 W. Fatnassi and Y. Shoukry

. Xo
ap ‘Nap -Xo -l_-
1 ZCy
NN:,, -1 hn | INNx -ze—
1
1 Vol(L*UL™)
]
I, H | NNzc SLY /L]
1
1
1 ZC,
NNln -1 In L.NNXO —ZC

Fig. 2. The architecture of the neural network NN(ap, I) used to prove the Theorem 2.

ProOPOSITION 2. Consider the sub-neural network NN; _, i defined in (3). The Lipschitz constant
of NNj, ;i is bounded by o).

PROPOSITION 3. Consider the sub-neural network NNx,zc, (Xo,1}) defined in (4). The Lipschitz
constant of NNx, - z¢, (Xo,I,"l) is bounded by O(n,).

ProrosiTION 4. Consider the sub-neural network NNzc_,1+/1- defined in (5). The Lipschitz con-
stant of NNzc_,p+/1- is bounded by O(1).

Proor oF THEOREM 2. Consider the NN shown in Figure 2 and defined using Equations (2)—-(5).
To bound the Lipschitz constant of NN(ay, I), we consider two sets of inputs (ay, I») and (ay,, I,)
as follows:

HNN(a;,,I,;) - NN(ap o),

- HNNZC_>L+/L7 (zcl (a;,,l,’}), . ,Zc,(a;,,f,’j))

~NNzcop /- (ch (ap, I},), e (ap, 1,’1)))2 : ©)
<00l 8) 2o))2)
- 0(1)(2”2@(%',,1,’,") —ZCi(ap,I,il) z)% (8)
=

where (7) follows from Proposition 4. Now, we upper bound || ZC;(a},, Il))-ZC; (ap, I11)]|2 as follows:

. . 2
Hzci(a;,,l,';) —ZC,-(ap,I;l) i

= [Nz, (NNapaxa (@) NN, e (12)

~NNxy-z; (NNay—rxa(4p). NN; _gg (I"))Hz v
<00 | (NNay x4 4) = NNap x4 ap) NNy g (1) = NNy,)ZH)
10
=00 401650t
HNNI L (1) = NNy i (I))
<0(n) (o(nrca,, ||a — a2 +0um)||I, —In||§) (11)
=0(nrirCa,)||(a). I1) = (ap. In)|[5. (12)

where (10) follows from Proposition 3; (11) follows from Propositions 2 and 1 along with the def-
inition of 7, = max(l % ,n,). Substituting (12) in (8) and noticing that [is a constant that does not
depend on n yields:

NN (ap, 1) = NN(ap, I)||, < O(n/7,Ca,)||(ay. I7) = (ap, In)|,» (13)

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:9

from which we conclude that the Lipschitz constant of NN(a,,) is in the order of O(nrﬁraap)
which concludes the proof of Theorem 2. O

According to Theorem 1, the depth and width of an NN must be increased to achieve an ac-
ceptable estimation error proportional to the NN’s Lipschitz constant. Additionally, Theorem 2
establishes that the Lipschitz constant of NN (ap, I,,) is upper-bounded by a constant dependent
on the condition number of the polynomial C, ,- Consequently, we can deduce from Theorem 1
and Theorem 2 that higher condition numbers of polynomials necessitate larger network widths
and depths for accurate estimation of zero sub/super level set volumes. Notably, the power basis
representation (i.e., representing the polynomial as a summation Y i .; axxX) has been identified
to possess an unstable nature with significantly large condition numbers [19], thereby demanding
NNs with substantial architectural complexities which motivates the need to use other polynomial
representations.

4.2 Bernstein Polynomials: A Robust Representation of Polynomials

Motivated by the challenge above, we seek a representation of polynomials that is more robust to
changes in coefficients, i.e., we seek a representation in which the roots of the polynomial change
slowly with changes in the coefficients (and hence smaller condition numbers C, , and a smaller
NN to estimate the volume of the sub/super level sets). We start with the following definition.

Definition 2. Let p(x) = Y1 axx® € R[xy,...,x,] be a multivariate polynomial over a hyper-
rectangle I,,(d, d) and of a maximal degree L = (I, ...,I,) € N". The polynomial:

Bp1(x)= > b 1Berk 1 (x), (14)
K<L

is called the Bernstein polynomial of p, where Ber 1 (x) and bk | are called the Bernstein basis
and Bernstein coefficients of p, respectively, and are defined as follows:

Berie 1 () = [F)xK (1= 0)F K. by = i @(E—d)]i Da-1a, (5
B e, T guls

The Bernstein representation is known to be the most robust representation of polynomials
which is captured by the next result [19].

THEOREM 3 (THEOREM [19]). The Bernstein basis is optimally stable, i.e., there exists no other basis
with a condition number smaller than the condition number of the Bernstein coefficients Cy,,, where
by = (b(o,0,...,0,Ls - - -+ B(1y, 1,,....,1,,),1) s the vector of all the Bernstein coefficients of polynomial p.

Theorems 1-3 point to the optimal way of designing the targeted NN. Such an NN needs to take
as input the Bernstein coefficients b, instead of the power basis coefficients a,. To validate this con-
clusion, we report empirical evidence in Table 1. In this numerical experiment, we trained two NNs
with the same exact architecture, using the same exact number of data points, and both networks
have the same number of inputs. Both NNs are trained to estimate whether a zero-crossing occurs
in a region (recall from our analysis in Theorem 2 that the Lipschitz constant of this NN is equal
to the condition number of the polynomial). The only difference is that one NN is trained using
power basis coefficients a;, (column 3 of Table 1) while the second is trained using Bernstein basis
coefficients b, (column 5 of Table 1). The coefficients are randomly generated via a uniform distri-
bution between —0.1 and 0.1, i.e., U (—0.1,0.1). We generated 40,000 training samples and 10,000
validation samples for both bases. We evaluate the trained NN on three different benchmarks for

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:10 W. Fatnassi and Y. Shoukry

Table 1. Evaluation of Three Trained NNs on Three Different Benchmarks for the Different Polynomial

Basis
Benchmark | Coefficients Power Basis Bernstein Basis Reduced Bernstein Basis
Accuracy | Overhead | Accuracy | Overhead | Accuracy | Overhead
1 U(-0.1,0.1) | 46% 0[s] 91% 0.01 [s] 82% 0.002 [s]
2 U(=05,05) | 32% 0 [s] 87% 0.03 [s] 79% 0.005 [s]
3 U-1,1) 30% 0[s] 88% 0.04 [s] 80% 0.007 [s]

Each benchmark has 10,000 samples. The coefficients of the polynomial within each basis are generated following a
uniform distribution given in the table.

the two bases. Each evaluation benchmark has 10,000 samples. The results are summarized in Ta-
ble 1. As it can be seen from Table 1, the NN trained with Bernstein coefficients generalizes better
than the NN trained with power basis coefficients as reflected by the empirical “Accuracy” during
evaluation. This empirical evidence matches our analysis in Theorem 2 along with the insights of
Theorem 1 and Theorem 3.

5 TAMING THE COMPLEXITY OF COMPUTING BERNSTEIN COEFFICIENTS

In Section 4, we concluded that Bernstein’s representation has a smaller condition compared to
other representations, which helps build a more efficient NN. Nevertheless, computing this repre-
sentation adds a significant overhead even by using the most efficient algorithms to calculate these
coeflicients [43, 49]. For example, computing all the Bernstein coefficients of a 6th-dimensional
polynomial with 7 th order using Matrix method and Garloft’s methods [43, 49] require 1.1e07
and 7.1e06 summation and multiplication operations [43]. To exacerbate the problem, the Bern-
stein coefficients depend on the region I,, and need to be recomputed in every iteration of the
abstraction refinement process. Reducing such overhead is the main focus of this section.

5.1 Range Enclosure Property of Bernstein Polynomials

Given a multivariate polynomial p (x) that is defined over the n-dimensional box I,,(d, d), we can

bound the range of p (x) over I,(d, d) using the range enclosure property of Bernstein polynomials
as follows:

THEOREM 4 (THEOREM 2 [23]). Let p be a multivariate polynomial of degree L over the n-
dimensional box I,(d,d) with Bernstein coefficients b ;, 0 < K < L. Then, for all x € I,, the
following inequality holds:

min b < p(x) <max bk . 16
in bk, 1 p(x) max Ok.L (16)

The traditional approach to computing the range enclosure of p is to compute all the Bernstein
coeflicients of p to determine their minimum and maximum [23, 24, 56]. However, computing all
the coefficients has a complexity of O ((ljax + 1)"), where L0 = max<;<, l;, which increases
exponentially with the dimension n. Luckily, the Bernstein coefficients enjoy monotonicity prop-
erties, whenever the region I,,(d, 3) is restricted to be an orthant (i.e., the sign of x; does not change
within I,(d, d), for each i € {1, .. .,n}) [49]. Using such monotonicity properties, one can compute

the minimum and maximum Bernstein coefficients (denoted by B .1 By, 1) with a time complexity
of O (2 (Lyax + 1)2) which does not depend on the dimension n.

5.2 Zero Crossing Estimation Using Only a Few Bernstein Coefficients

Now we discuss how to use the range enclosure property above to reduce the number of computed
Bernstein coefficients. First, we note that the zero crossing of a polynomial p in a given input

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:11

region I,, depends on its estimate range given by B,1 and Ep, L. More specifically, if B L > 0
(Ep, L < 0), then the entire polynomial is positive (negative), which means that there is no zero-
crossing. If B, ; and Ep, 1. have different signs, and because of the estimation error of these bounds,
the polynomial p may still be positive, negative, or have a zero crossing in the region. In this case,
we need additional information such as the bounds of the gradient of the polynomial p within the
input region, that are given by By, oL and va, L (which can be computed efficiently thanks to the
fact that gradients of polynomials are polynomials themselves). Such additional information about
the worst-case gradient of the polynomial leads to a natural estimate of whether a zero crossing
occurs in a region.

Due to space constraints, we omit the analysis of bounding the estimation error introduced
by relying only on the maximum and minimum of the polynomial B L and Ep, . along with the

maximum and minimum of the gradient By, oL and EVp, - Instead, we support our claim using
the empirical evidence shown in Table 1. Using the same benchmarks used in Section 4.2, we
train a third NN that takes as input only the four inputs B L Ep, L. By, L,va, L and compare its
generalization performance (column 7 of Table 1). As shown in the table, the third NN sacrifices
some accuracy compared to the ones that use all Bernstein coefficients. But on the other side, it
reduces the overhead to compute the Bernstein coefficients by order of magnitude as can be seen
by comparing the “execution overhead” reported in columns 4, 6, and 8 for the power basis, the
Bernstein basis, and the reduced Bernstein basis, respectively.

5.3 Search Space Pruning Using Bernstein Coefficients

The range enclosure property and the discussion above open the door for a natural solution of the
“alternative abstraction” problem mentioned in Section 3.2. The maximum and minimum Bernstein
coefficients can be used as an abstraction (in addition to convex upper and lower bounds) of high-
order polynomials. Such abstractions can be refined with every iteration of the solver. They can
be used to identify portions of the search space for which one of the polynomials is guaranteed to
be positive (and hence a solution does not exist). More details about integrating this abstraction
and the convex abstraction are given in the implementation section below.

6 ALGORITHM ARCHITECTURE AND IMPLEMENTATION DETAILS

In this section, we describe the implementation details of our solver PolyARBerNN. As a pre-
processing step, the tool divides the input region I, into several regions such that each one is
an orthant. This allows the tool to process each orthant in parallel or sequentially. The tool keeps
track of all regions for which the sign of a polynomial is not fixed. These regions are called am-
biguous regions, and they are stored in a list called Ambig. As long as the volume of the regions
in this list is larger than a user-defined threshold e, then our tool will continuously use abstrac-
tions to identify portions in which one of the polynomials is always positive (and hence removed
from the search space) or negative (and hence the tool will give higher priority for this region).
The abstraction refinement is iteratively applied in Lines 5-17 of Algorithm 1. In each abstrac-
tion refinement step, the tool picks a polynomial p and a region region based on several heuristics
(Lines 6-7). In Lines 8-14, we compute the maximum/minimum Bernstein coefficients followed by
checking the sign of the polynomial within this region. Suppose the Bernstein coefficients indicate
that the polynomial is always positive in this region. In that case, this provides a guarantee that a
solution does not exist in this region (recall that Problem 1 searches for a point where all polyno-
mials are negative). Similarly, if the polynomial is always negative, then it will be added to the list
of negative regions. For those polynomials for which the Bernstein abstraction failed to identify

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:12 W. Fatnassi and Y. Shoukry

ALGORITHM 1: PolyARBerNN

Input: I,,(d, g),pl,pz, e sPms €, Output: xs,
1: orthants := Partition_Region(I,)
2: Neg := {}
3: Ambig = {orthants}
4: List_pols := {p1,...,pm}
5: while Compute_Maximum_Volume(Ambig) > € do
6: p:=Select_Poly (List_pols, Neg)
7: region := Remove_Ambiguous_Region_From_List (Ambig)
8 (EP,L’EP,L’BVP,L’EVP»L) := Compute_Bern_Coeff(p, region)
9:

ifﬁp’]_ > 0 then

10: break

11: elseif B, <0 then

12: Neg := Neg U (p, L (p))

13: break

14: endif

15: (under_approx, over_approx, split) := NN(B L0 Ep, 1-By, 1- Evp, L, region)
16: action := Select_best_action(under_approx, over_approx, split)

172 Ly (p). Ly (p), L0+/7 (p) := Convex_Abst_Refin_PolyAR (p, action, region)
18: Ambig := Amibg U Lg/_ (p)

190 Neg:= Neg U (p,L; (p))

20: end while

21: if is_List_Empty(Ambig) then

22: if A negative region in Neg has all the polynomials then
23: Xsol := any point in the negative region

24: else

25: return the problem is UNSAT

26: end if

27: else

28: Xsol := CAD_Solver_Parallel (Ambig, p1,...,pm)

29: end if

their signs, we query the trained NN to estimate the best convex abstraction possible (Lines 15-16).
Based on the NN suggestion, we use the PolyAR tool [55] to compute the convex abstraction (Line
17), which returns portions of this region that are guaranteed to belong to the zero sublevel set
L, (p), those who belong to the zero superlevel set L; (p), and those remain ambiguous Lg/ “(p). The
process of using Bernstein abstraction and the convex abstraction (which is guided by the trained
NN) continues until all remaining ambiguous regions are smaller than a user-defined threshold
€ in which case it will be processed in parallel using a sound and complete tool that implements
CAD such as Z3 and Yices (Line 28 in Algorithm 1).

The NN itself is trained using randomly generated, quadratic, two-dimensional polynomials
where the coefficients follow a uniform distribution between —1 and 1. For each randomly gener-
ated polynomial, we used PolyAR to compute the volumes of the L{ (p), L (p), L;/ “(p) regions. We
use a fully connected NN that contains an input layer, three hidden layers, and one output layer
(shown in Figure 3). The input layer has 4 neurons, the hidden layers have 40 neurons each, and
the output layer has 3 neurons. We use a dropout of probability 0.5 in the first and second hidden

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:13

Ambig_n:gl Ambig reg2

Fig. 3. The architecture of the trained NN that is used to guide the abstraction refinement process within
PolyARBerNN. We used a fully connected NN that contains an input layer with 4 neurons, three hidden
layers with 40 neurons each, and one output layer with 3 neurons. All neurons are ReLU-based except for
the output neurons which uses SoftMax nonlinearity.

layers to avoid overfitting. We use the ReLU activation function for all the hidden layers and the
Softmax activation function for the output layer. We use Adam as an optimizer and cross-entropy
as a loss function. Although the NN is trained on simple quadratic two-dimensional polynomi-
als, we observed it generalizes well to higher-order polynomials with several variables. This will
become apparent during the numerical evaluation in which polynomials of different orders and
several variables will be used to evaluate the tool.

Correctness Guarantees: We conclude our discussion with the following result which captures
the correctness guarantees of the proposed tool:

THEOREM 5. The PolyARBerNN solver is sound and complete.

Proor. This result follows from the fact that search space is pruned using sound abstractions
(convex upper bounds or Bernstein-based). The NN and the convex lower bound polynomials are
just used as heuristics to guide the refinement process. Finally, CAD-based algorithms (which are
sound and complete) are used to process the portions of the search space which are not pruned by
the abstraction refinement. O

7 GENERALIZATION TO POLYNOMIAL OPTIMIZATION PROBLEMS

In this section, we focus on providing a solution to Problem 2. Our approach is to turn the optimiza-
tion problem (Problem 2) into a feasibility problem (Problem 1). First, we recall that the gradient
of p, Vp = [g—fl, e, aa—fn], where g—fl is the partial derivative of p with respect to x;, is a vector of
n polynomials. The optimal value of p occurs either (i) when the vector of partial derivatives are
all equal to zero or (ii) at the boundaries of the input region.

To find the critical points x* of p where Vp (x*) = 0, we add the n polynomial constraints
g—i <0,1<i<nand —g—i < 0,1 < i < nto the constraints of the optimization problem. Now,
we modify the PolyARBernNN solver to output all possible regions in which all the constraints
are satisfied. This can be easily computed by taking the intersections within the regions stored in
the data structure Neg in Algorithm 1. These regions enjoy the property that all points in these

regions are critical points of p. In addition, we modify PolyARBernNN to output all the remaining

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:14 W. Fatnassi and Y. Shoukry

ALGORITHM 2: PolyAROpt

Input: I,(d, 3),p,p1,pg, s Pms €
Output: ppin, Pmax

end

t Plist = Plist Uplist
¢ Pmin = min(Plist); Pmax = max(plist)

1: Vp = Grad_Poly(p)

2: régy,, = PolyARBerNN(I,(d,d), Vp,p1,. . ., Pms€)
3: Xl = center(régyy,)

4: xl‘fi’;‘f = Sample_boundaries(I,(d, 3), €)

5: Prise = p(ust); pird = plxegid)

6:

7

ambiguous regions whose volumes are smaller than the user-specified threshold € and for which
the CAD-based solvers returned a solution. These regions enjoy the property that there exists a
point inside these regions which is a critical point. These modifications are captured in Line 2 of
Algorithm 2.

Since the minimum/maximum of p may occur at the boundaries of the region I,(d, d), our
solver samples from the boundaries of the region I,,(d, d) (Line 4 in Algorithm 2). The solver uses
8 = 2+/n(e)/™ as sampling distance between two successive boundary samples—recall € is a user-
defined parameter and was used in Algorithm 1 as a threshold on the refinement process. Next,
we evaluate the polynomial p in the obtained samples (Line 5 Algorithm 2). Then, we take the
minimum and the maximum over the obtained values (Line 7 in Algorithm 2). All the details can
be found in Algorithm 2.

We conclude our discussion with the following result which captures the error between the
solutions provided by PolyAROpt and the global optima.

THEOREM 6. Let p;, .. and p;, .. be the global optimal points for the solution of Problem 2. The
solutions obtained by Algorithm 2, denoted by pmin and pmax, satisfy the following:

[Pmin = Pinl < (Up(s: [Pmax = Pmax| < wp5» (17)

where w,, is the Lipschitz constant of the polynomial p, § = 2+/n(e)!/™ is the sampling distance, and
€ > 0 is a user-defined error.

Proor. Let us denote by x;;5, the input domain points that correspond to py;s;. Let us denote by
Xmin = MiNgex,, |x = x|l and Xpmax = mingey,,, [|x — x4, ||, the nearest point to the actual
optimal points x}, ; and x}, ... We note that there are three cases that Algorithm 2 uses to compute

the set of critical points, xj;5;:

(1) Using the center of the regions in the Neg list
(2) Using the center of the regions in the Ambig list
(3) Using samples from the boundaries

We proceed by case analysis. Case 1: First, we note that all the points within the Neg regions
satisfy that Vp = 0 and hence the value of the polynomial takes the same exact value overall the
region, hence the value of p at the center % of the region is the same at the global optima x*. Case
2 and Case 3: First, we can show that X,,;, and X,,,4x are bounded from the actual optimal points

5 *
Xy, and x,, . by

[Xmin = Xpuin]| < 6 [Xmax = Xppax|| < 6 (18)

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:15

where § = 24/n(e)!/". To show that inequalities (18) hold we proceed by case analysis. However (18)
follow directly in Case 2 from the fact that Ambig regions have a volume that is smaller than e
(Line 7 in Algorithm 1) and hence the distance between any two points within the regions is
bounded by § = 2+/n(e)!/". Similarly, Case 3 follows from the fact that Algorithm 2 samples from
the boundaries with a maximum distance between the samples that is equal to § = 2+v/n(e)!/".
Second, we obtain (17) as follows:

Pmin < PXmin) = |Pmin = Pinl < 1PEmin) = Prinl < wp& (19)

where (19) comes from the definition of p,,;,, the Lipschitz continuity of polynomial p, and (18).

The inequality for |pax — Pl,4y | 1s Obtained in a similar manner. O

8 NUMERICAL RESULTS—NN TRAINING

In this section, we show the details of training and evaluating the NN used to help PolyARBerNN
selecting the best convex abstraction. We evaluate the trained NN on six different benchmarks.
The benchmarks are different than the training benchmarks with respect to the input region, the
degree of the polynomial, and the number of variables of the polynomial. All the experiments were
executed on an Intel Core i7 2.6-GHz processor with 16 GB of memory.

8.1 Training Data Collection and Pre-Processing

8.1.1 Data collection. To collect the data, we generated random quadratic two-dimensional

polynomials:
q(x1, x2) = €1x% + coxy + €312 + C4Xz + CsY + o,

where the coefficients cy, . . ., ¢s follow a uniform distribution between —1 and 1.The random gen-
erated polynomials are defined over the domain I, = [~2, 2]%. For each randomly generated poly-
nomial, we perform the abstraction refinement on the domain I, iteratively. In every iteration,
we perform under-approximation, over-approximation of the original polynomial over a selected
ambiguous region, and a split of the ambiguous region. Next, we compute the volume of the re-
maining ambiguous region after each action was implemented. The labels are a one-hot vector of
dimension three where each component represents the action that leads to the maximum reduc-
tion in the volume of the ambiguous region, either under-approximation, over-approximation or
divide the region into two regions. We ran the abstraction refinement process on all the generated

polynomials to collect the data (Bl L,B - 1, B

sample. We generate 50, 000 samples for training, 10,000 samples for validation, and 10, 000 for
testing.

o). L,B Vp;. L) where i denotes the index of the

8.1.2 Data Normalization. In the literature of NN [31], it is important to normalize the data
when the data vary across a wide range of values. This normalization leads to faster training and
improves the generalization performance of the NN [31]. Therefore, we normalize all the input
data to a zero mean and unit variance by adopting a simple affine transformation data_sample «
%, where p and o are the mean of the data and its standard deviation. The p and o
parameters are initialized with, respectively, the empirical mean and standard deviation of the

dataset and they are computed offline before the training.
8.2 NN’s Evaluation

We evaluated the NN on six different benchmarks as follows:

— In the first and second benchmarks, we generate the same random quadratic polynomials but
in a different domain: [—4,4]? and [-10, 10]2. This choice is made to test the generalization
of the NN outside the data domains that were used in its training. This is important since

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:16 W. Fatnassi and Y. Shoukry

Benchmark 1 Benchmark 2 Benchmark 3

e
N
I
N

12 - und

[
°
e
o

1.0

14
@
I
®

(X

o
£y

0.6

14
Y
14
IS

0.4

I4
N
e
N

0.2

4
°
14
°

0.0

% reduction in the volume of the ambiguous regions
% reduction in the volume of the ambiguous regions

% reduction in the volume of the ambiguous regions
°
@

1 2 3 4 5 6 7 8 9 10
samples samples samples
Benchmark 6

Benchmark 4 Benchmark 5

" o o

H 2 2

12 212 = under-approximation (1) 212

@] == over-approximation (2)]

: - - split (3) ')

3 12 2 2 1 H 3 1 1 1 2 1 1 3 3 1 3 12 1 2 3

S 10 S 10 S 10

- = >

& a 35

£ i £

» 0.8 o 0.8 ® 08

£ £ £

s s s

2 0.6 ¢ 0.6 2 0.6

5 H H

E s :

s 04 204 204

s] £

£ & £

§ o2 § o2 §o2

g £ £

] -1 3

o0 £ oo £ oo

£ 1 2 3 4 s 6 7 8 9 100 ¥ 1 2 3 4 5 6 7 8 9 10 £ 1 2 3 4 5 6 7 8 9 10
samples samples Samples

Fig. 4. Percentage in reduction of the volume of ambiguous regions along with the NN output number (the
number is at the top of histograms) for 20 samples for 6 evaluation benchmarks described in Table 2.

the Bernstein coefficients of a polynomial (the input to the NN) depend on the input region
I,.

— In the third and fourth benchmarks, we generated random polynomials with degrees 4 and
10 over the domain [-2, 2]%. These benchmarks are used to validate the generalization of the
NN to polynomials of orders higher than the ones used in its training.

— Finally, in the fifth and sixth benchmarks, we generated random polynomials with higher
dimensions, i.e., with dimensionn =4 andn = 7.

In summary, these benchmarks will help us to answer the following question: Can the trained NN
generalize to new data with different domains (benchmarks 1 and 2), higher orders (benchmarks 3
and 4), and higher dimensions (benchmarks 5 and 6)? More detail about the different benchmarks
is shown in Table 2.

Figure 4 shows the performance of the trained NN over 20 random samples of each of the
six benchmarks. For each sample, we used the framework in [55] to compute the ground-truth
percentage in the reduction of the volume of ambiguous regions after applying every action
under-approximation, over-approximation, or split. We then evaluated the NN on each sample
and reported in Figure 4 both the ground-truth reduction of the ambiguous regions (as bars)
against the index of the action suggested by the NN (as the text above the bars). As it can be seen
from Figure 4, except for the second sample of the first benchmark, the NN outputs represent the
actions that lead to the maximum reduction of the ambiguous region’s volume.

Finally, we ran the same experiment for 1000 samples and report the percentage of samples for
which the NN was able to predict the action that leads to the maximum reduction in the ambiguous
region’s volume. As it can be seen from Table 2, the trained NN is able to generalize on the different
benchmarks. For instance, evaluating the NN on different domains results in the lowest accuracy
of 93%. Furthermore, evaluating the NN on polynomials with higher-order results in an accuracy
of 87%. Finally, the NN achieves 80% on higher dimension benchmarks.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:17

Table 2. Evaluation of the Trained NN on the Six Different Benchmarks

‘ Benchmark ‘ p(x) ‘ n ‘ order ‘ region ‘ Accuracy
1 €1X% + CaXp + C3X1X7 + CaXp + CsY + Cg 2 2 [—4,4]? 95%
2 C1X% + Caxp + C3X1Xp + CaXp + CsY + Cg 2 2 [-10,10]? 93%
3 C1X] + Cox) + C3X[X5 + C4X] + €5 2 4 [-2,2]? 88%
4 c1x10 + x5 + c3x]x; + Cax; + 5 2| 10 [-2,2]% 87%
5 cle + czxg + C3x§' + c4x2 4 3 [-2,2]* 81%
6 Cle + szg + C3x§’ + C4.X‘Z + C5x§’ + 06.7('63 + C7X? 7 3 [—2, 2]7 80%

9 NUMERICAL RESULTS—SCALABILITY RESULTS

In this section, we study the scalability of PolyARBerNN in terms of execution times by varying
the order, the number of variables, and the number of the polynomial constraints for instances
when a solution exists (the problem is Satisfiabile or SAT for short) and when a solution does not
exist (or UNSAT for short). We will perform this study in comparison with state-of-the-art solvers
including our previous solver PolyAR, Z3 8.9, and Yices 2.6. Next, we compare the performance of
PolyARBerNN against a theorem prover named PVS which implements a Bernstein library to solve
multivariate polynomial constraints [38]. Finally, we compare the scalability of the PolyAROpt
optimizer against the built-in optimization library in Z3 8.9 to solve an unconstrained multivariate
polynomial optimization problem with varying order and number of variables.

9.1 Scalability of PolyARBerNN Against Other SMT Solvers

In this experiment, we compare the execution times of PolyARBerNN against the PolyAR tool [55],
Z3 8.9, and Yices 2.6. We consider two instances of Problem 1: an UNSAT and SAT problems. For
each instance, we consider three scenarios, m = 1, m = 5, and m = 10 where m is the number of
polynomial constraints. First, we vary the order of the polynomials from 0 to 1000 while fixing the
number of variables (and hence the dimension of the search space) to two. Alternatively, we also fix
the order of the polynomials to 30 while varying the number of variables from 1 to 200. We set the
timeout of the simulations to be 1 hour. Figure 5 reports the execution times for all the experiments
whenever the problem is UNSAT and SAT. As evidenced by the figures, PolyARBerNN succeeded
to solve the instances of Problem 1 for all orders and numbers of variables in a few seconds. For
instance, solving 10 polynomial constraints with 200 variables and a maximum order of 30 took
around 20 s leading to a speed-up of 200X compared to Z3 and Yices. On the other hand, other
solvers are incapable of solving the polynomial constraints for all orders or number of variables and
they time out after 1 hour. These results show the scalability of the proposed approach by including
Bernstein coefficients to prune the search space and an NN to guide the abstraction refinement.

9.2 Scalability of PolyARBerNN Against Other Bernstein-Based Solvers

PolyARBerNN was compared against Bernstein-based solvers such as PVS [38] and Realroot [37]
on computing a root/solution for the following multivariate polynomial equation system. The
scalability was evaluated by fixing the number of variables, changing the maximum order, fixing
the maximum order, and varying the number of variables. PolyARBerNN successfully solved the
systems for all orders and variables, while Realroot and PVS encountered timeouts. The execution
times are shown in Figure 6 for both scenarios, with PolyARBerNN outperforming the other
solvers.

9.3 Scalability of PolyAROpt Against Other Solvers

We compare the scalability results of PolyAROpt with the Z3 solver since Z3 has a built-in op-
timization library, Bernstein-based optimizer Borderbasix [51], and SOSTool [2]. Unfortunately,

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:18 W. Fatnassi and Y. Shoukry

m | SAT/UNSAT ‘ Execution times vs Polynomial Order ‘ Execution times vs Number of Variables
@ PolyARBernNN A PolyAR k- Yices B z3
300 50
w @
C) < 404
OE) 200 1 GE)
=1 S 301
5 5
=] S 201
2 1004 3
UNSAT ¢ 2 10
w w
0 T T T T 0 y -~ et -
" 0 200 400 600 800 1000 0 25 50 75 100 125 150 175 200
300 50
v v
2 200]
=1 5 3041
5 5
5 1001 5207
SAT g ¢ 104
w w
0 T T T 0 y -~ -r—ar—a——a—ra -
0 200 400 600 800 1000 0 25 50 75 100 125 150 175 200
300
G})
[[
£ 2004 £
< <
2 L
S 100 A E
UNSAT]]
X X
w w ‘/
0 T T T T T T T T
5 0 200 400 600 800 1000 0 25 50 75 100 125 150 175 200
300 50
o % 40l
2 200 e
= S 30
5 5
E=1 5 20
S 1001 g 20
SAT g 8 104
]]
0 T T T 0 VR T T T
0 200 400 600 800 1000 0 25 50 75 100 125 150 175 200
300 50
w w
2 200]
=] 5 301
5 5
5 100 1 5207
UNSAT | & 8 104
w w
0 a—ra T T 0 - T T T T T T
10 0 200 400 600 800 1000 0 25 50 75 100 125 150 175 200
300 50
@ @
C) < 404
OE) 200 4 GE)
=1 S 301
5 5
=] S 201
2 1001 3
SAT ¢ 2 10
= “ M
0 S i r T 0 ~ y —a— ; : T
0 200 400 600 800 1000 0 25 50 75 100 125 150 175 200

Fig. 5. Scalability results of PolyARBerNN in the UNSAT case for 1, 5, and 10 constraints. (Left) evolution of
the execution time in seconds as a function of the order of the polynomials, (right) evolution of the execution
time in seconds as a function of the number of variables. The timeout is equal to 1 hour.

Yices does not have such an optimizer. We set the timeout of the experiment to be 1 hour.
Figure 7 reports the execution times of two experiments that compute unconstrained optimiza-
tion’s minimum and maximum. As evidenced by the two figures, PolyAROpt succeeded in solv-
ing the unconstrained optimization problem for all orders and numbers of variables. For instance,
solving the unconstrained optimization problem with 70 variables and a maximum order of 3 took
around 50 seconds. On the other hand, the Z3 Borderbasix, SOSTool solvers cannot solve the un-
constrained optimization problem for all orders or number of variables and time out.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:19

300 500
@ —8— PolyARBerNN 0 —8— PolyARBerNN
2 00 —*— realroot ¢ 4001 —#— realroot
= —A— PVS = 300 4 —A— PVS
c c
o o
< 100 g 200
o £ 100 1
w w
0 L — T T T T 0 - — T T T
0 10 20 30 40 50 60 70 0 10 20 30 40 50
order n

Fig. 6. Scalability results of PolyARBerNN for multivariate polynomial equation system over the interval
I, = [-1,1]". (Left) evolution of the execution time in seconds as a function of the order of the polynomial
with the number of variables n = 3. (Right) evolution of the execution time in seconds as a function of the
number of variables with maximum order equal to 3. The timeout is equal to 1 hour.

250 400
0 —e— PolyAROpt 0 —e— PolyAROpt
o 2007 - =3 © 300 - =3
-§ 150 —&— SOSTool E —&— SOSTool
15 1 —A— Borderbasix § 200 —A— Borderbasix
Ei
% 50+ g 1001
w [pl M

0 -~_ra—a— T T 0 ——ar—a——a ? T T
0 20 40 60 80 100 0 10 20 30 40 50 60 70
order n

Fig. 7. Scalability results of PolyAROpt for unconstrained optimization over the interval I, = [-1, 1]". (Left)
evolution of the execution time in seconds as a function of the polynomial order. (Right) evolution of the
execution time in seconds as a function of the number of variables. The timeout is equal to 1 hour.

10 NUMERICAL RESULTS—USE CASES

In this section, we provide two engineering use cases. The first one focuses on the use of Pol-
yARBerNN to synthesize stabilizing non-parametric controllers for nonlinear dynamical systems.
The second use case focuses on the use of PolyAROPT to perform reachability analysis of polyno-
mial dynamical systems.

10.1 Use Case 1: Nonlinear Controller Design for a Duffing Oscillator

In this subsection, we assess the scalability of the PolyARBerNN solver compared to state-of-the-
art solvers for synthesizing a non-parametric controller for a Duffing oscillator reported by [22]. All
the details of the dynamics of the oscillator and how we generated the polynomial constraints can
be found in [55]. We denote by n the dimension of the Duffing oscillator. We consider two instances
of the controller synthesis problem for the Duffing oscillator with the following parameters:
—n =3¢ = 1.0,x(0) = [0.15,0.15,0.15], Ly (x (k) u (k)) = (=x> (k) + %3 (k) + u (k) - 2)°",
Ly (x (k),u(k) = x3' (k)x] (k) + x] (k) x; (k) — 5x; (k) — x5 (k) u* (k), which results in 9
polynomial constraints with 4 variables and max polynomial order of 153.
—n =4,{ = 1.75 x(0) = [0.1,0.1,0.01,0.1], Ly (x (k),u(k)) = x{ (k) + x; (k) + x5 (k) +
xq (k) = ut (k), Ly (x (k) u (k) = —x7" (k) x3° (k) — 5x; (k) — x5 (k) u? (k), Ls (x (k) , u (k) =
(x1x? —u (k) - 100)41, which results in 12 polynomial constraints with 5 variables and max
polynomial order of 82.

We feed the resultant polynomial inequality constraint to PolyARBerNN, Yices, and Z3. We solve
the feasibility problem for n = 3 and n = 4. We set the timeout to be 60s. Figure 8 (left) shows
the state-space evolution of the controlled Duffing oscillator for different solvers for number of
variables n of 3 and 4. Figure 8 (right) shows the evolution of the execution time of the solvers

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:20 W. Fatnassi and Y. Shoukry

n| State Space 1 Execution Time Evolution over time B
0.2
—— PolyARBerNN 15 4 —— PolyARBerNN
— Yices — Yices
011 —z3 — z3
3 10
0.0 A
5 4
0.1
T T T T T T 0 - T T T T T T
| -0.05 0.00 0.05 0.10 0.15 020 025 C| 0 2 4 6 8 10 12 |
0.2
—— PolyARBerNN 30 4 —— PolyARBerNN
—— Yices — Yices
019 — 3 — 3
4 20
0.0 1
101
0.1
T T T T T T (s T T T T T T
—0.05 0.00 0.05 0.10 0.15 0.20 C 0 2 4 6 8 10 12

Fig. 8. Results of controlling the Duffing oscillator with different n (left) evolution of the states x;(k) and
x2(k) for the solvers in the state-space, (right) evolution of the execution time of solvers during the 12 seconds.
The timeout is equal to 60s. Trajectories are truncated once the solver exceeds the timeout limit.

during the 12 seconds. As it can be seen from Figure 7, our solver PolyARBerNN succeeded to find
a control input u that regulates the state to the origin for all n. However, off-the-shelf solvers are
incapable of solving all two instances, and they early time out after 60 seconds out of the simulated
12 seconds. This shows the scalability of the proposed approach.

10.2 Use Case 2: Reachability Analysis of a Discrete Polynomial Dynamical Systems

In this section, we show how to use PolyAROpt to compute the reachable set of states for discrete-
time polynomial systems. We consider a discrete polynomial dynamical system of the following
form:

Xea1 = f (xx), k € N,xo € Qp, (20)

where f : R" — R" is a multivariate polynomial map of a maximum degree L = (l1,...,I,), and
Qo is a bounded polyhedron in R”. In this subsection, we consider a bounded-time reachability
analysis of the system in (20). Computing the exact reachability sets of this type of dynamic sys-
tem is hard. Therefore, we overapproximate the exact set with a simplified set such as bounded
polyhedra. Bounded polyhedra are easy to handle and analyze. Computing the reachability set,
after a finite time K, involves computing sequentially the reachability set at every timestep k us-
ing the following relation Q.1 = f (Qx),k = 0,...,K — 1, where Qg is a bounded polyhedra. A
bounded polyhedra is represented with an H-representation Qy = (Ag, bx) = {x € R"|Arx < bt },
where the inequality is a point-wise inequality. The template A represents the directions of Qy’s
faces and by represents their positions. Given a polyhedra Qr = (A, bx), we need to compute
Ok+1 = f (O).- We assume that Ay € R™" is given. Now, we need to compute by,; € R™ which
can be obtained through the following optimization problem [6]:

=brs1i < Upyr = min —Agy i f (%), Vi=1,...,m, (21)
x€Qk

where Agy1,; and by.q ; are the i th row and component of the templates Ay and b1, respectively.
In every step k € N, we compute an upper bound for —bj4 ;, by solving the optimization problem
(21) using PolyAROpt and then an overapproximation of the reachability set Qk.; is computed.
In order to use PolyAROpt to solve (21), we need to overapproximate the polyhedra Qy with a

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:21

26 26

26

gl

20

x2

2

T T T T T T T T T T T T

=20 -15 -0 -5 00 05 10 =20 15 -10 -5 00 05 10 =20 -15 -0 05 00 05 10

Fig. 9. Reachability computation for the FitzHugh-Nagumo neuron model. Left: using PolyAROpt for num-
ber of steps K = 50. Center: using Sapo for number of steps K = 50. Right: using Flowstar for number of
steps K = 50.

hyperrectangle Ry. Therefore, the optimization problem (21) is modified as follows:
—bji1,i < Upqr,; = min —Agiq i f (x),Vi=1,...,m,
X€Ry
subject to x € Q. (22)

We implemented the reachability computation method and tested it on three dynamical systems:

— FitzHugh-Nagumo Neuron: is a polynomial dynamic system that models the electrical ac-
tivity of a neuron [21]. We performed reachability analysis for K = 50 timesteps with the
initial set of states Qy = [0.9, 1.1] X [2.4, 2.6],

— Duffing Oscillator: is a discrete-time version of a nonlinear oscillator model [55]. We per-
formed reachability analysis for K = 50 timesteps with the initial set of states Qp =
[2.49,2.51] X [1.49, 1.51],

— Jet Flight: is a discrete-time version of a jet flight model [10]. We performed reachability
analysis for K = 50 timesteps with the initial set of states Qy = [0.9,1.2] X [0.9, 1.2].

All the details of the dynamics of the three dynamical systems and how we generated the polyno-
mial constraints can be found in [6, 10, 21, 55]. We computed the reachable sets for these dynamical
systems and compared our results with Sapo [15] and Flowstar [11]. Sapo is a tool proposed for the
reachability analysis of the class of discrete-time polynomial dynamical systems. Sapo linearizes
the optimization problem (21) using the Bernstein form of the polynomial and was shown to out-
perform state-of-the-art reachability analysis tools like Flowstar [11]. Flowstar [11] is a tool used
in the ARCH workshop competition for hybrid systems’ reachability. This tool is a state-of-the-art
reachability analysis that uses Taylor models to compute the reachable sets. Figure 9 shows the
reachable sets computed by PolyAROpt compared to Sapo and Flowstar for the FitzHugh-Nagumo
Neuron model. Inspecting the results in Figure 9 qualitatively shows that PolyAROpt is capable
of computing tighter sets compared to Sapo and Flowstar. Flowstar stopped the computation of
reachable sets at the 10 — th step due to large overestimation errors. To quantitatively compare
the results of PolyAROpt, Sapo, and Flowstar, we compute the volume of each reachable set (for
different timesteps). Figure 10 shows these volumes for all the three dynamical systems mentioned
above. As evident by the results in Figure 10, PolyAROpt results in reachable sets that are tighter
than the one obtained from the Sapo and Flowstar thanks to PolyAROpt’s ability to solve the
polynomial optimization problem without any relaxations or using Taylor models. Such ability to
avoid relaxation results in several orders of magnitude reduction in the volume of the reachable
sets compared to Sapo and Flowstar; a significant improvement in the analysis of such dynamical
systems.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:22 W. Fatnassi and Y. Shoukry

—e— PolyAROpt —e— PolyAROpt —e— PolyAROpt
020{ —A— Sapo s00{ —4— Sapo s0{ —— Sapo
—— Flowstar —— Flowstar —— Flowstar
Q015) e o 60
£ S S
o N S w
200
0.05 100 20
0.00 0
o 20 30 a0 0 10 20 30 40 5 1o 20 30 40 50
Step Step Step

Fig. 10. The volume of the reachable set of states that are obtained using PolyAROpt, Sapo, and Flowstar
(left) FitzHugh-Nagumo, (center) Duffing oscillator, and (right) Jet flight.

Conclusions. In this article, we proposed PolyARBerNN, a solver for polynomial inequality con-
straints. We proposed a systematic methodology to design NNs that can be used to guide the
abstraction refinement process by bridging the gap between NN properties and the properties of
polynomial representations. We showed that the use of Bernstein coefficients leads the way to de-
signing better NN guides and provides an additional abstraction that can be used to accelerate the
solver. We generalized the solver to reason about optimization problems. We demonstrated that
the proposed solver outperforms state-of-the-art tools by several orders of magnitude.

APPENDICES
A PROOF OF PROPOSITION 1

Proor. Note that NN, x,(ap) is a vector-valued function which returns the roots X, =
(X3, Xg,....x,") of the polynomial p. Therefore, to upper bound the Lipschitz constant of
NNg,—x,(ap), we will start by upper bounding the Lipschitz constant of its components func-

tions NN’ ;(ap), 1 < j < n,. To that end, consider two polynomials with coefficients a, and al’,
ap—wco

such that ||a, — a;,|| < €. Therefore:

[2tap) - (a)

)2 < Cap(x(]).) Hap - a;, < alpe (23)

J _ J ’ —
o, -],
where x{;(ap) and xé(a;,) are the location of the jth root for the polynomials with coefficients a,
and a,,, respectively. The last two inequalities follow from the definition of the condition number
(Definition 1). Now,

2

ny

N Na,-x(ap) = NNg, -x, (al',)“2 =D
7=1

—2 —
< w/anaPez = \/n_,Cape. (25)

From_which we conclude that the Lipschitz constant of NNg,—, x,(ap) is bounded by \/n_,Eap
O(n,Ca,). O

(24)

j _ NN ,
NNaﬁxg(ap) NNaﬁxg (a,) 2

B PROOF OF PROPOSITION 2

Proor. We assume that the number of sub-regions [is fixed for each dimension n, and In =
k € N. Partitioning the input space into [sub-regions occurs by dividing the interval for each
dimension into k sub-intervals. Without loss of generality, the sub-neural network NN; _,;i (I,)

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:23

for n = 1 can be defined as follows:

k

1+i/k —i/k d
—(i+1)/k 1+@G+1)/k||d

d.,d) = NN, _;i(I,) = NN, _;i(d.d) = (gl+ é (3—4), AR (3_6_1))

(26)

A generalization to a higher dimension is straightforward by replacing i with a multi-index in
each dimension. Note that NN _,;i (I,) is a multivariate linear function in its inputs and hence
its Lipschitz constant can be computed as the largest singular value. Indeed, the linear function
depends only on the constant k (which depends on the constant / and the dimension n) from which
we conclude that the Lipschitz constant of NNy _, i is o(lw). O

C PROOF OF PROPOSITION 3

Proor. It follows from Equations (2)—-(4) that the sub-neural network NNx, _, z¢, can be written
as follows:

—i

ZC,-(ap,I,il) = NNx,-zc; (NNap_,XO(ap),NNIn_)I’il(In)) = NNx,-zc; ((xé, . ..,x(;lr)’ (di,d))
(27)

The indicator variable ZC; should be set to zero whenever all the roots xé lies outside the hyperrect-

angle Ii(d’, Ei). First note that a root xé lies outside I’ (d’, Ei) if and only if the following condition
holds:

e d) %Hk —d| | TS (E) o (28)
k=1 =

where x{; o gl;c, and E; are the kth element in the vectors x{), o_li ,and El, respectively. Hence, the

indicator variable ZC; should be set to zero whenever the following conditions hold:

k=n . n _ .
ZCi(ap 1) =0 & maxjeq...m) (Z ‘x{)’k —g;‘ + ‘x{)’k - d;‘ -3 (dk —di)) —0 (29)
k=1 k

=1

Before we compute the Lipschitz constant of NNy,_,z¢, in Equation (29), we recall the following
identities. Consider two functions f(x) and g(x) with Lipschitz constants Ly and L, respectively.
Then:

— The Lipschitz constant of max(f(x), g(x)) is bounded by L¢ + L.

— The Lipschitz constant of f(x) + g(x) is bounded by max(L¢, Ly).
Now notice that |x€’k - 6_1;<| = max(xé,k - Q;C, 0)+ max(—xé,k + Q;C, 0). Applying the identities above
along with the fact that the Lipschitz constant of x{) r—4d i is O(1), we conclude that the Lipschitz
constant of |x(’).’k - QU is O(1). Hence, the Lipschitz constant of Zii;’ |xé’k - c_l}c| + |x{)"k - 3;| -

22:1@; - c_l}c) is also O(1). Finally, the Lipschitz constant of the right hand side of Equation (29)
is O(n,). We conclude our proof by noticing that all the operators in Equation (29)—namely the
absolute value, the max operator, summation, and checking the final value against a constant—can
be implemented exactly using ReLU NNs [20] and hence the neural network NNx,_,z¢, will also
have a Lipschitz constant equal to O(n,). O

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

22:24 W. Fatnassi and Y. Shoukry

D PROOF OF PROPOSITION 4

Proor. This result follows directly by noticing that NNzc_,+/;- can be computed as a linear
function:

l
NNzcopo - (ZCy, .., ZCp) = v) (1= ZCy) (30)

i=1

where v is a constant that depends on the volume of the hyperrectangle I,,. Since [is a constant,
we conclude the result.]

REFERENCES

[1] Bai Xue, Martin Frénzle and Naijun Zhan. 2018. Under-approximating reach sets for polynomial continuous systems.
In Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week).
51-60.

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P. Parrilo, M. Peet, and J. Jagt. 2021. SOSTOOLS

version 4.00 sum of squares optimization toolbox for MATLAB. ArXivorg (2021). https://par.nsf.gov/biblio/10353822

Jie An, Naijun Zhan, Xiaoshan Li, Miaomiao Zhang, and Wang Yi. 2018. Model checking bounded continuous-time

extended linear duration invariants. In Proceedings of the 21st International Conference on Hybrid Systems: Computation

and Control (part of CPS Week). 81-90.

Stanley Bak, Hoang-Dung Tran, and Taylor T. Johnson. 2019. Numerical verification of affine systems with up to

a billion dimensions. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and

Control. 23-32.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. 2017. Neural combinatorial optimization

with reinforcement learning. arXiv:1611.09940. Retrieved from https://arxiv.org/abs/1611.09940

Mohamed Amin Ben Sassi, Romain Testylier, Thao Dang, and Antoine Girard. 2012. Reachability analysis of poly-

nomial systems using linear programming relaxations. In Proceedings of the International Symposium on Automated

Technology for Verification and Analysis. Springer, 137-151.

Michele Boreale. 2018. Algorithms for exact and approximate linear abstractions of polynomial continuous systems.

In Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week).

207-216.

Nicolas Brisebarre, Mioara Joldes, Erik Martin-Dorel, Micaela Mayero, Jean-Michel Muller, Ioana Pasca, Laurence

Rideau, and Laurent Théry. 2012. Rigorous polynomial approximation using Taylor models in Coq. In Proceedings of

the NASA Formal Methods Symposium. Springer, 85-99.

Christopher W. Brown. 2001. Improved projection for cylindrical algebraic decomposition. Journal of Symbolic Com-

putation 32, 5 (2001), 447-465.

[10] Xin Chen. 2015. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models. Ph.D. Dissertation. Fach-
gruppe Informatik, RWTH Aachen University.

[11] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems. In
Proceedings of the International Conference on Computer Aided Verification. Springer, 258-263.

[12] George E. Collins. 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Au-
tomata Theory and Formal Languages 2nd GI Conference Kaiserslautern. Lecture Notes in Computer Science, Springer,
134-183.

[13] Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In Proceedings of the International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. 337-340.

[14] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli.
2017. Robustfill: Neural program learning under noisy I/O. In Proceedings of the International Conference on Machine
Learning. PMLR, 990-998.

[15] Tommaso Dreossi. 2017. Sapo: Reachability computation and parameter synthesis of polynomial dynamical systems.
In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. 29-34.

[16] Bruno Dutertre. 2014. Yices 2.2. In Proceedings of the International Conference on Computer Aided Verification. Springer,
737-744.

[17] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. 2019. Reachability analysis for neural feedback systems
using regressive polynomial rule inference. In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control. 157-168.

[2

—

3

—_

[4

—

5

[

(6

—

[7

—

8

[

[9

—

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

https://par.nsf.gov/biblio/10353822
https://arxiv.org/abs/1611.09940

PolyARBerNN: A Neural Network Guided Solver and Optimizer 22:25

(18]

(19]

Matthew England and James H. Davenport. 2016. The complexity of cylindrical algebraic decomposition with re-
spect to polynomial degree. In Proceedings of the International Workshop on Computer Algebra in Scientific Computing.
Springer, 172-192.

Rida T. Farouki and V. T. Rajan. 1987. On the numerical condition of polynomials in Bernstein form. Computer Aided
Geometric Design 4, 3 (1987), 191-216.

[20] James Ferlez and Yasser Shoukry. 2020. AReN: Assured ReLU NN architecture for model predictive control of LTI

[21]

[22]

systems. In Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control. 1-11.
Richard FitzHugh. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Jour-
nal 1, 6 (1961), 445-466.

Toannis A. Fotiou, Philipp Rostalski, Pablo A. Parrilo, and Manfred Morari. 2006. Parametric optimization and optimal
control using algebraic geometry methods. International Journal of Control 79, 11 (2006), 1340-1358.

[23] Jurgen Garloff. 1985. Convergent bounds for the range of multivariate polynomials. In Proceedings of the International

Symposium on Interval Mathematics. Springer, 37-56.

[24] Jurgen Garloff and Andrew P. Smith. 2004. An improved method for the computation of affine lower bound functions

(25]

[26]

[27]

(28]

[29]

(30]
(31]

(32]

(33]

(34]
(35]

(36

—

(37]
(38]
(39]
[40]
[41]

(42]

for polynomials. In Frontiers in Global Optimization. Nonconvex Optimization and Its Applications. Springer, 135-144.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. 2019. Exact combinatorial opti-
mization with graph convolutional neural networks. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems.

Donald Goldfarb and Ashok Idnani. 1983. A numerically stable dual method for solving strictly convex quadratic

programs. Mathematical Programming 27, 1 (1983), 1-33.

H. Hong. 1990. An improvement of the projection operator in cylindrical algebraic decomposition. In Proceedings of
the International Symposium on Symbolic and Algebraic Computation (ISSAC 90). ACM, New York, NY, USA, 261-264.
DOI:https://doi.org/10.1145/96877.96943

Geoffrey Irving, Christian Szegedy, Alexander A. Alemi, Niklas Eén, Francois Chollet, and Josef Urban. 2016.
Deepmath-deep sequence models for premise selection. In Proceedings of the 30th Conference on Neural Information
Processing Systems. 2235-2243.

Cezary Kaliszyk, Francois Chollet, and Christian Szegedy. 2017. Holstep: A machine learning dataset for higher-
order logic theorem proving. International Conference on Learning Representations. https://openreview.net/forum?id=

ryuxYmvel

Niklas Kochdumper and Matthias Althoff. 2020. Reachability analysis for hybrid systems with nonlinear guard sets.
In Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control. 1-10.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Miller. 2012. Efficient backprop. In Neural Networks:
Tricks of the Trade. Lecture Notes in Computer Science Springer, 9-48.

Livia Lestingi, Mehrnoosh Askarpour, Marcello M. Bersani, and Matteo Rossi. 2020. Formal verification of human-
robot interaction in healthcare scenarios. In Proceedings of the International Conference on Software Engineering and
Formal Methods. Springer, 303-324.

Assia Mahboubi. 2006. Programming and certifying a CAD algorithm in the Coq system. In Dagstuhl Seminar Pro-
ceedings, Thierry Coquand, Henri Lombardi, and Marie-Francoise Roy (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fur
Informatik.

Cplex, IBM ILOG. 2009. V12. 1: User’s Manual for CPLEX. International Business Machines Corporation 46, 53 (2009),
157.

Tobia Marcucci and Russ Tedrake. 2019. Mixed-integer formulations for optimal control of piecewise-affine systems.
In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control. 230-239.

Scott McCallum. 1998. An improved projection operation for cylindrical algebraic decomposition. In Quantifier Elimi-
nation and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, Springer, 242-268.
Bernard Mourrain and Jean Pascal Pavone. 2009. Subdivision methods for solving polynomial equations. Journal of
Symbolic Computation 44, 3 (2009), 292-306.

César Munoz and Anthony Narkawicz. 2013. Formalization of Bernstein polynomials and applications to global opti-
mization. Journal of Automated Reasoning 51, 2 (2013), 151-196.

Cesar A. Munoz. 2015. Formal methods in air traffic management: The case of unmanned aircraft systems. In Proceed-
ings of the International Colloquium on Theoretical Aspects of Computing (ICTAC 2015).

Anthony Narkawicz and César A. Munoz. 2012. Formal verification of conflict detection algorithms for arbitrary
trajectories. Reliable Computing 17 (2012), 209-237.

Stacy D. Nelson and Charles Pecheur. 2002. Formal verification for a next-generation space shuttle. In Proceedings of
the International Workshop on Formal Approaches to Agent-Based Systems. Springer, 53-67.

Maben Rabi. 2020. Piece-wise analytic trajectory computation for polytopic switching between stable affine systems.
In Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control. 1-11.

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

https://doi.org/10.1145/96877.96943
https://openreview.net/forum?id=ryuxYmvel

22:26 W. Fatnassi and Y. Shoukry

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Shashwati Ray and P. S. V. Nataraj. 2012. A matrix method for efficient computation of Bernstein coefficients. Reliable
Computing 17, 1 (2012), 40-71.

Debayan Roy, Michael Balszun, Thomas Heurung, and Samarjit Chakraborty. 2018. Multi-domain coupling for auto-
mated synthesis of distributed cyber-physical systems. In Proceedings of the 2018 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 1-5.

Sadra Sadraddini and Russ Tedrake. 2020. Robust output feedback control with guaranteed constraint satisfaction. In
Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control. 1-10.

Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy Liang, Leonardo de Moura, and David L. Dill. 2019. Learning
a SAT solver from single-bit supervision. In Proceedings of the International Conference on Learning Representations.
Retrieved from https://openreview.net/forum?id=HJMC_iA5tm

Zuowei Shen. 2020. Deep network approximation characterized by number of neurons. Communications in Computa-
tional Physics 28, 5 (2020), 1768-1811. DOI: 10.4208/cicp.OA-2020-0149

Yasser Shoukry, Michelle Chong, Masashi Wakaiki, Pierluigi Nuzzo, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia,
Joao P. Hespanha, and Paulo Tabuada. 2018. SMT-based observer design for cyber-physical systems under sensor
attacks. ACM Transactions on Cyber-Physical Systems 2, 1 (2018), 1-27.

Andrew Paul Smith. 2009. Fast construction of constant bound functions for sparse polynomials. Journal of Global
Optimization 43, 2 (2009), 445-458.

Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. 2019. Formal verification of neural network controlled autonomous
systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control.
147-156.

Philippe Trébuchet, Bernard Mourrain, and Marta Abril Bucero. 2016. Border basis for polynomial system solving
and optimization. Mathematical Software—ICMS 2016: 5th International Conference, Berlin, Germany, July 11-14, 2016,
Proceedings 5, Springer, 212-220.

Lieven Vandenberghe. 2010. The CVXOPT linear and quadratic cone program solvers. Retrieved March 20, 2010 from
http://cvxopt.org/documentation/coneprog.pdf.

Abraham P. Vinod and Meeko M. K. Oishi. 2018. Scalable underapproximative verification of stochastic LTI systems
using convexity and compactness. In Proceedings of the 21st International Conference on Hybrid Systems: Computation
and Control (Part of CPS Week). 1-10.

Bai Xue, Qiuye Wang, Naijun Zhan, and Martin Franzle. 2019. Robust invariant sets generation for state-constrained
perturbed polynomial systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computa-
tion and Control. 128-137.

Wael Fatnassi and Yasser Shoukry. 2021. PolyAR: A highly parallelizable solver for polynomial inequality constraints
using convex abstraction refinement. IFAC-PapersOnLine 54, 5 (2021), 43-48.

Michael Zettler and Jurgen Garloff. 1998. Robustness analysis of polynomials with polynomial parameter dependency
using Bernstein expansion. IEEE Transactions on Automatic Control 43, 3 (1998), 425-431.

Received 27 February 2023; revised 19 July 2023; accepted 21 October 2023

ACM Trans. Embedd. Comput. Syst., Vol. 23, No. 2, Article 22. Publication date: March 2024.

https://openreview.net/forum?id=HJMC_iA5tm
https://doi.org/10.4208/cicp.OA-2020-0149
http://cvxopt.org/documentation/coneprog.pdf

