
JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, APRIL 2023 1

Sequential Datum–wise Feature Acquisition and

Classifier Selection
Sachini Piyoni Ekanayake, Student Member, IEEE, Daphney-Stavroula Zois, Member, IEEE, Charalampos

Chelmis, Member, IEEE

Abstract—We present a supervised machine learning frame-
work for sequential datum–wise feature acquisition and classifier
selection. The presented method sequentially acquires features
during testing until it determines that additional features will
not improve label assignment. At that stage, easy–to–classify
examples are handled by a simple classifier, which assigns
labels based on the lowest expected misclassification cost. On
the contrary, difficult–to–classify examples are assigned a label
using the acquired features along with one of a number of
available complex classifiers. As more features are acquired,
the presented framework continually assesses the difficulty of
classifying each example. It controls both the feature acquisition
and classifier selection processes through a carefully constructed
optimization problem. We use eleven publicly available datasets
to evaluate the presented framework with respect to accuracy
and average number of acquired features, and obtain results
when two and three complex classifiers are available, respectively.
We compare the performance of the presented framework with
both sequential feature aquisition methods and dynamic classifier
selection methods, and observe improvements in accuracy as well
as acquisition of less number of features on average. Moreover,
we conduct experiments with popular ensemble classification
methods and assess the performance of the proposed framework.

Impact Statement—Traditional supervised classification typi-
cally relies on a single classifier that employs all of the available
features to determine the classification outcomes of all examples
in a dataset. However, in many real–world applications, features
may not be free to acquire (e.g., gender information in a survey)
or available at all (e.g., customer’s transaction history for fraud
detection). Similarly, the importance of features may differ across
the entire dataset, while different classifiers may result in distinc-
tively different classification outcomes. The framework proposed
in this paper addresses the above challenges by sequentially
acquiring features and selecting which classifier to use on a
case–by–case basis. As a result, it improves accuracy by 50%
while acquiring up to 84% less features on average compared
to existing sequential feature acquisition methods. In addition,
it achieves 2X better accuracy than existing dynamic classifier
selection methods while acquiring up to 98% less number of
features on average.

Index Terms—supervised classification, instance–wise feature
selection, inaccurate oracles, dynamic classifier selection, classi-
fier pool

Manuscript received (date to be filled by Editor). This material is based
upon work supported by the National Science Foundation under Grants
ECCS–1737443 & CNS–1942330.

S. P. Ekanayake and D.-S. Zois are with the Department of Electrical and
Computer Engineering, University at Albany, State University of New York,
Albany, NY (email: sekanayake@albany.edu, dzois@albany.edu).

C. Chelmis is with the Department of Computer Science, Univer-
sity at Albany, State University of New York, Albany, NY (email:
cchelmis@albany.edu).

The Associate Editor coordinating the review of this manuscript and
approving it for publication was (name to be filled by Editor).

I. INTRODUCTION

TRADITIONAL supervised classification adopts a batch–

wise approach, where all features are readily available

and used for determining the label of an example [1]. Un-

fortunately, in many real–world applications (e.g., medical

and insurance assessments), this is not true since features

are not freely available. For instance, in medical diagnosis,

features come at a cost (i.e., due to the acquisition process),

however, accurate classification is critical and time–sensitive.

At the same time, the importance of features may differ among

examples (e.g., in speech recognition, different individuals

exhibit different accents, speech patterns and talk at different

speeds). Considering all the above factors, making accurate

predictions using the most informative features is an essential

task in supervised classification. Consequently, feature acqui-

sition, but more importantly, instance–wise feature acquisition

has become an active research area [2]–[4].

On the other hand, classifier selection has also been an

active area of research as using a single common classifier

may not always be suitable for all examples in a dataset [5]–

[7]. For instance, in image classification [5], different types of

classifiers may perform better on different types of images due

to factors such as image complexity and lighting. Alternatively,

fusing multiple classifiers or considering the effect of all

classifiers has been shown to increase accuracy, as seen in

ensemble learning methods [1], [8], [9]. Nonetheless, the

effectiveness of such approaches heavily depends on the ability

to select the most appropriate classifier for each example,

giving rise to dynamic classifier selection [6], [7], [10], [11].

For example, in [6], a decision model that employs dynamic

selection of classifiers for the diagnosis of thyroid nodules

is discussed, while in [7], dynamic selection of classifiers

fused with a feature subspace clustering approach is used for

analyzing insect bite hypersensitivity in horses using protein

microarray data. Nevertheless, it should be noted that dynamic

classifier selection approaches assume that all features are

present at the time of classification, which may not hold true

for several real–world applications.

To address the aforementioned issues, we propose a joint

datum–wise feature aquistion and classifier selection frame-

work. Our proposed framework acquires one feature at a time,

and iteratively updates the posterior probability of the example

belonging to each of the available classes. The resulting

probability is used as a proxy to assess the difficulty of

classifying the example under consideration, and controls the

termination of the feature acquisition process. At that point,

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

2 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, APRIL 2023

the proposed framework decides which classifier to use by

selecting among a simple classifier, based on the expected

misclassification cost, and a set of complex but more powerful

classifiers. Difficult–to–classify examples are forwarded to one

of the later ones, while the remaining ones are handled by the

simple classifier. In order to incorporate information about the

cost associated with training/using each classifier, which may

be available in real–world scenarios, our framework includes

appropriate weighing parameters. We assess the performance

of our proposed framework on eleven real–world datasets

and compare it to eleven existing methods. We also conduct

experiments with popular ensemble classification methods.

Our results show that the proposed framework achieves a good

balance between accuracy and average number of acquired fea-

tures. Moreover, the inclusion of powerful classifiers improves

accuracy by better handling difficult–to–classify examples

while also saving on feature acquisition costs. Finally, we

observe that low–cost classifiers are typically prioritized, while

using them does not seem to significantly affect the overall

performance.

The remaining sections are structured as follows. Sec-

tion II provides a summary of pertinent prior research, while

Section III presents the problem of sequential datum–wise

feature acquisition and classifier selection followed by the

optimum solution. Section IV presents detailed experiments

that assess the performance of the proposed framework. Fi-

nally, Section V concludes the paper and briefly describes

future research directions. All relevant code is available at

https://github.com/IMAgINE9Lab/SFCS. Relevant proofs are

included in the Appendix.

II. LITERATURE OVERVIEW

In machine learning, model selection involves selecting the

best model among a set of possible models to generalize well

for unseen data [12]. This is typically accomplished using

domain knowledge and/or model selection techniques such as

cross–validation [1]. It is worthwhile to note that in the context

of model selection, models vary based on the values of the

hyperparameters [12]. Alternatively, instead of selecting one

model, ensemble learning involves averaging multiple models,

such as averaging predictions for regression or carrying out

majority voting for classification [9], [13], [14]. Moreover, in

the context of classification, classifier fusion methods combine

multiple classifiers either at the output (e.g., via voting) or the

classifier level (e.g., dynamic classifier methods) [15]. The

framework presented in this paper is most related to the latter

approach, which is discussed in more detail next.

Dynamic classifier methods, which involve selecting either

a single classifier or a group of classifiers for each test

example, have received considerable attention in machine

learning [10]. Two types of dynamic selection methods exist:

Dynamic Ensemble Selection (DES) and Dynamic Classifier

Selection (DCS). DES involves selecting a set of classifiers

and fusing their outputs to determine the final classification

outcome for each test example. For instance, in [11], [16]–

[18], majority voting is employed to classify each example.

In contrast, and relevant to our work, DCS selects a sin-

gle classifier based on the set of available classifiers and

proceeds to generate a classification outcome. Specifically, a

pool of classifiers is trained and the region of competence

of each classifier in the pool is identified using techniques

like k–NN and clustering. During testing, this information is

used to help dertermine for each test example the region of

competence and hence, the best–performing classifier to use.

Among the various DCS methods, Overall Local Accuracy

(OLA) [19], Local Class Accuracy (LCA) [19], and Modified

Local Accuracy (MLA) [20] are considered state–of–the–art

[21], and their main difference relies on the metric used to

evaluate the performance of base classifiers in competence

regions. The proposed framework differs from DCS in that

it does not use all the available features to determine the

classification outcome of each example. In fact, it sequentially

acquires the features that seem more relevant to each example

before determining the classification outcome. Additionally, it

employs a single different classifier for each example, which is

selected at the time of the termination of the feature acquisition

process. This is in sharp contrast to DCS, which first uses all

available classifiers to determine the classification outcome of

each example during testing, and then carries out dynamic

classifier selection as described above only for those examples

where disagreements exists. Thus, the proposed framework

reduces computational cost and is more practical for time–

critical real–world applications.

Standard supervised classification methods (e.g., Support

Vector Machines (SVM), Naive Bayes (NB)) consider all

features available during training and testing. In contrast,

offline feature selection (e.g., L1–norm based feature selection

(Lasso)) selects a subset of features during training and uses

it during testing. Recently, search space optimization (e.g.,

Enhanced Binary Butterfly Optimization Algorithm (BBOA)

[22]) has been proposed to improve accuracy while using

fewer features. In this case, a subset of features is first selected

by combining different binary variants of BOA with Adaptive

β–Hill Climbing. A standard classifier (e.g., SVM, NB) is

then employed to evaluate performance of selected features.

Due to their high performance, such methods are widely used

in practice [22]–[25], however, they base their decisions on

the same set of features irrespective of the example under

consideration.

To accommodate prohibitively large feature spaces, stream-

ing or incremental feature selection [26]–[28] selects features

during training as these sequentially arrive one at a time.

A new feature is added to the model if it most likely im-

proves performance. The process terminates when a certain

performance threshold is met or a specific number of features

is selected. During testing, all examples are classified using

the same selected subset of features. Static instance–wise

approaches [29], [30] perform datum–wise classification, but

access all features during testing for that purpose. Specifically,

the approach described in [29] utilizes a neural network–

based method inspired by the actor–critic model to identify

a varying subset of features for each example. In [30], a

method is proposed to reduce search space complexity in

feature selection by using a threshold on the number of feature

subsets. The approach uses a mixture of deep neural networks

to determine the most relevant features for each example,

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

SACHINI PIYONI EKANAYAKE et al.: SEQUENTIAL DATUM–WISE FEATURE ACQUISITION AND CLASSIFIER SELECTION 3

but it requires knowledge of all the feature values during

testing. In contrast, dynamic instance–wise feature acquisition

methods [3], [4], [31] adaptively acquire different features one

at a time to classify each example during testing. Specifically,

in [3], the problem of joint dynamic instance–wise feature

acquisition and classification is introduced and solved. The

properties of the optimum solution are studied, and two

new algorithms are proposed. [4] extends [3] by modeling

feature dependencies with a Bayesian network, which is then

used to sequentially acquire the most informative features to

classify each example. Finally, [31] studies the problem of

dynamic instance–wise feature acquisition and classification

when multiple classification variables are present and are

related through a known Bayesian network. In this context,

features are dynamically acquired for each variable and each

example, while classification decisions are propagated through

the Bayesian network to enhance overall performance. A

major drawback of the latter approaches is inherently their

classification mechanism; labels are assigned based on the

smallest expected misclassification cost defined in terms of

the posterior probability of the label of the example under

consideration given the information provided by the already

acquired features. Such mechanism may work well for some

examples, but not for all, leading to considerable performance

degradation. Moreover, in contrast to the above methods,

which employ a single classifier to determine the classification

outcome for each example, the proposed framework provides

the flexibility to choose one out of a number of classifiers (i.e.,

simple or complex powerful classifiers). As a result, a distinct

classifier may be used along with the distinct features acquired

to classify each example.

III. PROBLEM DESCRIPTION & SOLUTION

In standard supervised classification, the intent is to learn

a model that maps feature vector X ≜ [X1, . . . , XF]
T to a

label Y = y ∈ {1, . . . , N}, where Xf represents a feature

and the value of X is denoted as x ≜ [x1, . . . , xF]
T . The

assumption is that the entire feature vector is accessible during

both training and testing. Herein, we consider this problem

under a slightly different context. Specifically, all features

are available during training, but in testing, the features of

each example are sequentially acquired one at a time based

on a pre–defined fixed order (c.f. Fig 3). Further, acquiring

feature Xf during testing incurs cost cf > 0, f = 1, . . . , F .

Inherently, acquiring less features can save on acquisition

costs. However, we may not have adequate information to

make a reliable label assignment.

In this section, we describe the problem of sequential

datum–wise joint feature acquisition and classification when

multiple classifiers are present. The objective is to jointly

acquire the subset of features based on which each exam-

ple is to be classified, the appropriate classifer to be used

for this task, and the respective label assignment for each

example in the testing dataset. The benefit of having access

to multiple classifiers is twofold. First, examples that require

the acquisition of large number of features to be accurately

classified could instead be potentially classified by a more

powerful classifier using less features. Second, simple but less

accurate classifiers may be inaccurate for certain examples re-

gardless of the number of acquired features; such difficult–to–

classify examples may be better handled by a more powerful

classifier. Next, we define a number of variables needed to

mathematically describe the problem of interest and present

the optimization problem to be solved.

A. Optimization Problem

We define random variables S, US and DS . S ∈ {0, . . . , F}
is the last feature acquired before assigning a label to Y . S = 0
means no features have been acquired. US ∈ {0, . . . , Z}
represents the classifier selected after S features have been ac-

quired. Specifically, US = 0 represents the selection of a sim-

ple (possibly less accurate) classifier, while US ∈ {1, . . . , Z}
represents the selection of one out of a set C ≜ {C1, . . . , CZ}
of more complex and powerful classifiers. For example, such

classifiers could be Support Vector Machine (SVM) and Deci-

sion Tree (DT). Last but not least, we define DS ∈ {1, . . . , N}
as the label assignment provided by classifier US based on S
acquired features. To learn a model that jointly selects the

number of acquired features, the classifier to be used, and the

label assignment for each example, we propose the following

cost function:

L(S,US , DS) = E

{

S
∑

f=1

cf +

Z
∑

z=1

λzI{US=z}h
z
S

+ γI{US=0}

N
∑

j=1

N
∑

i=1

ΩijP (DS = j, Y = i)

}

, (1)

where γ ≜ 1 −
∑Z

z=1
λz, γ > 0 and {λz ∈ (0, 1)} is a set

of weighing parameters to differentiate between the various

classifiers. Further, we define λ ≜ {λ0, λ1, . . . , λZ}, where

λ0 ≜ γ and λt ∈ λ, t = 0, . . . , Z. Here Ωij , i, j ∈ {1, . . . , N},

is the cost of assigning label j to an example when the true

label is i. The term hz
S , z = 1, . . . , Z, representing the cost

associated with selecting to use classifier Cz when S features

have been acquired, is defined as:

hz
S ≜

N
∑

i=1

Pz(e, Y = i|x1, . . . , xS). (2)

It is defined in terms of the error probability Pz(e, Y =
i|x1, . . . , xS) of classifier Cz when the true label of an

example is i and S features have been acquired. The first term

in Eq. (1) denotes the cost of acquiring S features. The second

term indicates the cost of selecting and using one out of the

Z powerful classifiers to assign a label to an example using S
acquired features. Finally, the last term captures the same cost

but in the case where the simple (but possibly less accurate)

classifier is selected. Therefore, our goal is to minimize the

expected cost in Eq. (1) and determine the optimum values of

S, US and DS for each example in the testing dataset.

B. Posterior Probability

Let φi
f ≜ P (Y = i|x1, . . . , xf), f = 1, . . . , F, i =

1, . . . , N , denote the posterior probability the label of an

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

SACHINI PIYONI EKANAYAKE et al.: SEQUENTIAL DATUM–WISE FEATURE ACQUISITION AND CLASSIFIER SELECTION 5

Eq. (8) in this case. Details about the setting presented in

Fig. 1 and relevant derivations are provided in Appendix B.

We observe that depending on the value of the posterior

probability φ1
S , a different classifier selection choice is made.

Specifically, region A represents selecting to use the simple

classifier, while region B denotes selecting to use the powerful

classifier C1. The optimum label assignment for each region

is also provided, where y1,S represents the label assignment

from powerful classifier C1 using S number of features i.e.,

yz,S ≜ Mz(X1, . . . , XS) where Mz(.) is the trained model of

Cz (c.f. Section III-D). The operation of the optimal classifier

selection and label assignment methods is very intuitive, as

explained next. When the posterior probability φ1
S (i.e., the

probability of the label of the example being 1) takes relatively

low values (e.g., below around 0.2), the simple classifier is

selected and the example under consideration is assigned label

2. In this case, the framework is confident about the label

assignment and prefers to select the simple classifier. Similar

is the case where the posterior probability φ1
S is relatively

high (e.g., above around 0.7). In contrast, when the posterior

probability φ1
S falls in the intermediate interval, the framework

is not very confident about the true label of the example under

consideration. In that case, the powerful classifier is preferred

that can potentially lead to an accurate label assignment.

As we will later see (c.f. Section III-D), when the posterior

probability falls in that region, the proposed framework tends

to acquire more features in the hope that the resulting posterior

probability will end up in region A. If this is not the case, the

powerful classifier will still be selected and used in the end. In

summary, difficult–to–classify examples (as indicated by the

value of the posterior probability) are essentially forwarded to

classifier C1, while the rest are handled by the simple classifier.

Finally, we look into determining the optimum feature

acquisition method S∗. Since we have already determined the

optimal classifier selection and label assignment methods, the

cost function in Eq. (6) now becomes:

L̃(S) = E

{

F
∑

f=1

cf + l(φS)

}

, (9)

where l(φS) ≜ min0⩽t⩽Z [λtH
t
S(φS)]. The form of the cost

function in Eq. (9) enables us to use stochastic dynamic

programming [32] to determine the optimum feature acqui-

sition method. In particular, we obtain the following dynamic

programming equation:

L̄f (φf) = min
[

l(φf), Īf (φf)
]

, (10)

where

Īf (φf) = cf+1 +
∑

xf+1

L̄f+1(φf+1)Π
T
f+1(xf+1)φf (11)

with L̄F (φF) = l(φF) and Πf (xf) ≜ [P (xf |Y =
1), . . . , P (xf |Y = N)]T . Īf (φf) represents the cost of con-

tinuing feature acquisition, while l(φf) represents the cost of

stopping this process. Therefore, if the former term is less

than the latter, the optimum feature acquisition method will

keep acquiring features. Otherwise, it will stop and proceed

with selecting one out of the available classifiers to decide on a

label assignment. In the end, the optimum number of acquired

features will differ for each example under consideration, and

be either S∗ = f < F , or S∗ = F if all features are acquired.

D. Proposed Method

Our proposed method (see Fig. 2) involves two phases:

training (Fig. 2a) and testing (Fig. 2b), which follow the

problem solution described in Section III-C. During training,

all possible posterior probability vectors φf are generated by

discretizing the range [0, 1] such that φf1
T = 1. Here, 1 is

a N–dimensional vector of all ones. Specifically, considering

the arithmetic precision of discretization to be η, d possible

vectors φf are generated. Then, for each of φf , Eqs. (8) and

(10) are numerically solved to determine the optimum fea-

ture acquisition and classifier selection processes. Moreover,

classifiers Cz, z = 1, . . . , Z, are trained for each number

f = 1, . . . , F , of features (see Fig. 2a) and the conditional

probabilities P (xf |Y = i) and Pz(e|Y = i, x1, . . . , xS) are

estimated (c.f. Section IV).

Next, we conduct the complexity analysis of the training

phase. First, computing Īf (φf) involves computational com-

plexity of O(FNβηN−1) [3]. Here, β represents the number

of bins used to discretize the feature space (c.f. Section IV-B).

Furthermore, computing l(φf) involves evaluating Eq. (8). In

particular, computing the dot product of N terms and finding

the minimum is O(N2). Therefore, computing λ0H
0
f (φf) for

all possible d vectors φf is O(N2ηN−1) [3]. Computing

λzH
z
f (φf), z = 1, . . . , Z, however, is O(ZN2ηN−1), because

we repeat this process for all powerful classifiers (in total

Z). Thus, the computational complexity to numerically solve

Eqs. (8) and (10) is O((Fβ + ZN)NηN−1). The former

term can be simplified to O(FβNηN−1) if the number of

classes and the available classifiers is low. Second, dur-

ing training, all powerful classifiers Cz, z = 1, . . . , Z, are

trained for all f number of features, where f = 1, . . . , F .

The overall complexity of this step is dictated by the cost

of training the most expensive of all classifiers. Namely,

this is O(
∑F

f=1
Ξtrain(f,N,Θtrain)), where Ξtrain(f,N,Θtrain)

denotes the cost of training the most expensive classifier

when f features are used and Θtrain is the total number of

examples in the training dataset. Furthermore, to estimate

error probability Pz(e|Y = i, x1, . . . , xS) involves using

the learned model Mz(.) to obtain a label assignment for

each example in the training dataset. Since there are Z
available classifiers and F possible features, this step re-

quires O(
∑F

f=1
Ξtest(f,N,Θtrain) + FZΘtrain). In the for-

mer expression, Ξtest(f,N,Θtrain) is the testing complexity

of the most expensive classifier when f features are used.

Finally, estimating P (xf |Y = i), i = 1, . . . , N , requires

O(Θtrain). Therefore, the overall complexity of training all

powerful classifiers and estimating relevant parameters is

O(Ξtotal(F,N,Θtrain)+FZΘtrain), where Ξtotal(F,N,Θtrain) ≜
∑F

f=1

(

Ξtrain(f,N,Θtrain) + Ξtest(f,N,Θtrain)
)

. As an exam-

ple, consider the case of Z = 1 classifier, i.e., binary

SVM with training complexity O(Θ2
trainF) [33] and testing

complexity O(νF) [34], where ν represents the number of

support vectors. Adopting an one–vs–rest approach for mul-

ticlass classification for SVM, the overall training complexity

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

8 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, APRIL 2023

TABLE II: Accuracy (“Acc”), average number of acquired features (“Feat”), training (“Train”) and testing (“Test”) time in

seconds for the proposed approach (SFCS–2X, SFCS–3X) and baselines. Acc values that are the highest and second highest

are indicated as bold and gray–shaded, and gray–shaded, respectively. Feat values that are the smallest and second smallest

are indicated as bold and gray–shaded, and gray-shaded, respectively.

Dataset Metric SFCS–
2X

SFCS–
3X

ETANA NB SVM DT Lasso OLA–
2X

OLA–
3X

LCA–
2X

LCA–
3X

MLA–
2X

MLA–
3X

Monks Acc 0.657 0.779 0.529 0.591 0.657 0.922 0.654 0.674 0.797 0.662 0.649 0.661 0.649
Feat 4.449 5.234 5.188 6.000 6.000 6.000 4.800 6.000 6.000 6.000 6.000 6.000 6.000
Train 0.074 0.143 0.029 0.002 0.017 0.002 0.006 0.008 0.008 0.009 0.005 0.011 0.013
Test 0.049 0.057 0.030 0.001 0.007 0.001 0.002 0.007 0.007 0.007 0.008 0.006 0.007

Diabetes Acc 0.759 0.730 0.749 0.751 0.674 0.706 0.766 0.758 0.750 0.758 0.757 0.759 0.755
Feat 6.301 6.059 5.935 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
Train 0.114 0.294 0.029 0.001 0.004 0.002 0.005 0.014 0.015 0.014 0.015 0.013 0.012
Test 0.057 0.077 0.021 0.002 0.003 0.001 0.003 0.007 0.007 0.008 0.008 0.007 0.008

Eye Acc 0.574 0.751 0.500 0.437 0.551 0.475 0.551 0.368 0.419 0.371 0.375 0.371 0.375
Feat 4.258 8.109 12.261 14.000 14.000 14.000 13.400 14.000 14.000 14.000 14.000 14.000 14.000
Train 61.092 48.510 1.316 0.004 4.774 0.106 0.496 5.346 5.701 5.364 5.676 6.922 6.452
Test 1.787 1.030 0.043 0.001 0.776 0.006 0.009 0.315 0.353 0.309 0.334 0.421 0.467

Magic Acc 0.808 0.816 0.775 0.727 0.806 0.819 0.789 0.860 0.856 0.823 0.823 0.824 0.823
Feat 5.946 7.527 6.302 10.000 10.000 10.000 9.000 10.000 10.000 10.000 10.000 10.000 10.000
Train 39.884 36.798 0.956 0.003 4.256 0.215 0.501 4.804 4.854 4.851 4.852 5.878 5.929
Test 2.100 1.515 0.033 0.002 0.608 0.002 0.090 0.258 0.246 0.285 0.264 0.306 0.310

Student Acc 0.835 0.847 0.790 0.532 0.592 0.801 0.650 0.639 0.676 0.592 0.592 0.592 0.590
Feat 6.903 4.772 9.035 32.000 32.000 32.000 29.600 32.000 32.000 32.000 32.000 32.000 32.000
Train 5.289 11.712 2.543 0.002 0.018 0.003 0.101 0.033 0.030 0.033 0.028 0.051 0.037
Test 0.050 0.036 0.060 0.001 0.001 0.001 0.050 0.009 0.010 0.008 0.012 0.017 0.009

Credit Acc 0.761 0.741 0.714 0.700 0.700 0.664 0.734 0.720 0.697 0.713 0.698 0.704 0.698
Feat 12.088 10.011 11.846 20.000 20.000 20.000 17.800 20.000 20.000 20.000 20.000 20.000 20.000
Train 0.568 0.693 0.140 0.002 0.031 0.006 0.017 0.032 0.028 0.032 0.029 0.035 0.028
Test 0.122 0.112 0.082 0.001 0.005 0.002 0.004 0.009 0.010 0.010 0.006 0.010 0.010

Travel Acc 0.814 0.781 0.676 0.615 0.710 0.733 0.660 0.774 0.779 0.759 0.765 0.759 0.765
Feat 8.613 8.477 9.985 23.000 23.000 23.000 23.000 23.000 23.000 23.000 23.000 23.000 23.000
Train 51.910 71.475 11.140 0.002 0.536 0.044 0.776 0.764 0.670 0.762 0.671 0.788 0.837
Test 0.674 0.744 0.738 0.002 0.109 0.003 0.005 0.069 0.063 0.070 0.069 0.074 0.077

Wine Acc 0.955 0.943 0.950 0.950 0.669 0.910 0.944 0.983 0.983 0.972 0.972 0.972 0.972
Feat 5.982 6.442 4.349 13.000 13.000 13.000 8.200 13.000 13.000 13.000 13.000 13.000 13.000
Train 0.791 0.989 0.266 0.001 0.003 0.002 0.028 0.003 0.004 0.004 0.006 0.004 0.006
Test 0.010 0.010 0.008 0.001 0.001 0.001 0.009 0.004 0.010 0.004 0.006 0.004 0.006

Gender Acc 1.000 1.000 0.965 0.588 0.588 1.000 0.928 0.961 0.954 0.954 0.955 0.954 0.955
Feat 1.884 2.086 3.678 20.000 20.000 20.000 17.800 20.000 20.000 20.000 20.000 20.000 20.000
Train 7.686 8.262 0.367 0.001 0.488 0.010 0.974 0.404 0.411 0.403 0.422 0.373 0.445
Test 0.186 0.152 0.164 0.001 0.089 0.003 0.031 0.027 0.025 0.026 0.029 0.025 0.028

Spambase Acc 0.880 0.903 0.835 0.826 0.690 0.886 0.909 0.916 0.915 0.918 0.917 0.918 0.917
Feat 10.498 8.222 30.922 57.000 57.000 57.000 50.600 57.000 57.000 57.000 57.000 57.000 57.000
Train 27.167 30.860 0.199 0.004 0.773 0.063 0.034 0.670 0.555 0.658 0.565 0.638 0.659
Test 0.368 0.334 1.174 0.002 0.145 0.010 0.001 0.047 0.050 0.049 0.048 0.053 0.060

Madelon Acc 0.698 0.708 0.621 0.593 0.617 0.743 0.560 0.590 0.653 0.587 0.643 0.587 0.643
Feat 12.620 10.900 68.017 500.000 500.000 500.000 492.000 500.000 500.000 500.000 500.000 500.000 500.000
Train 196.147 304.115 1.332 0.018 2.218 0.470 3.022 3.689 3.838 3.740 3.809 3.440 3.506
Test 0.291 0.207 1.162 0.001 0.512 0.012 0.002 0.319 0.358 0.325 0.335 0.301 0.317

Rank Acc 4.32 4.59 8.23 10.59 9.86 6.77 7.86 5.32 5.59 6.77 7.09 6.77 7.23
Feat 1.82 1.91 2.45 8.91 8.91 8.91 4.64 8.91 8.91 8.91 8.91 8.91 8.91

to 1/N assuming a random choice between the N labels. We

consider Ωij = 1, ∀i ̸= j and Ωii = 0, ∀i, j ∈ {1, . . . , N}.

We assume feature cost to be the same for all features, i.e.,

cf = c, ∀f = 1, . . . , F.

C. Results & Discussion

We compare SFCS–2X and SFCS–3X with: (i) instance–

wise joint feature selection and classification algorithm

ETANA [3], (ii) the offline feature selection algorithm L1–

norm based feature selection (Lasso), (iii) supervised learning

algorithms NB, SVM with Gaussian kernel, and Decision Tree

(DT), and (iv) dynamic classifier selection algorithms, OLA,

LCA, and MLA [21]. We consider the same pool of classifiers

as SFCS for the DCS algorithms, resulting in the following

variations: OLA–2X, OLA–3X, LCA–2X, LCA–3X, MLA–

2X, and MLA–3X. The DESlib [21] is used for DCS methods

with default parameter values (e.g., k = 7) following the

literature [10], [16], [18]. The values of η = 10, V = 10,
and e = 0.0001 [3] are considered for ETANA. For SFCS,

a grid search was conducted over the possible values of

hyperparameters λ, c, and β. The results that yield the best

accuracy using the smallest average number of features are

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

SACHINI PIYONI EKANAYAKE et al.: SEQUENTIAL DATUM–WISE FEATURE ACQUISITION AND CLASSIFIER SELECTION 9

presented in Table II. In all the experiments, η = 10.

SFCS outperforms, or is competitive with, all baselines in

terms of accuracy and the average number of acquired features.

Moreover, it is evident that SFCS consistently performs better

irrespective of the external classifier pool. Specifically, for

all the datasets except DIABETES, CREDIT, and WINE, the

accuracy increase of SFCS–3X is between 0.02% and 30.93%
when compared to SFCS–2X. This improvement, however,

is achieved by utilizing 10.72% to 90.43% more features

on average except for STUDENT, TRAVEL, SPAMBASE and

MADELON datasets. It is intuitive that fusing with a powerful

external classifier such as DT, which performs better than

SVM and NB, can lead to accuracy improvements. In the EYE

dataset, DT is second to SVM in accuracy, but all the external

classifiers have lower accuracy, nearly around 0.5. In this case,

to achieve better accuracy, SFCS–3X utilizes 90.43% more

features on average compared to SFCS–2X.

Comparing SFCS with ETANA, a recently proposed

instance–wise joint feature selection and classification algo-

rithm, it is observed that SFCS–2X achieves better accuracy

(0.52% to 24.23%) in all datasets, while SFCS–3X’s accuracy

is improved with respect to ETANA from 3.60% to 50.20%,

except for the DIABETES and WINE datasets. Additionally, the

number of average acquired features in these cases is smaller

(5.65% to 81.45% in SFCS–2X, and 15.10% to 83.97% in

SFCS–3X) compared to ETANA, except for the DIABETES,

CREDIT, and WINE datasets for SFCS–2X, and MONKS, DI-

ABETES, MAGIC, and WINE for SFCS–3X. In the DIABETES

and WINE datasets, the accuracy of SFCS–3X is only 2.45%
and 0.65% less than ETANA, respectively, while acquiring a

few more features. The decrease in accuracy may be due to the

lower performance of DT, which is observed when DT is used

as a standalone classifier for these two datasets. On the other

hand, for the MONKS and MAGIC datasets, the accuracy im-

proves (47.17% and 5.27%, respectively) compared to ETANA

by using 0.90% and 19.44% more features, respectively. These

observations validate that the addition of powerful classifiers

can indeed enhance accuracy, mainly when these classifiers

are utilized to assign labels to certain examples.

We observe that SFCS outperforms offline Lasso in almost

all datasets except DIABETES and SPAMBASE. SFCS achieves

better accuracy (between 0.51% to 36.32%) using 7.31%
to 97.78% fewer features on average, with the exception

of MONKS (9.04% more features for SFCS–3X). For the

DIABETES dataset, there is a small accuracy drop (0.85% for

SFCS–2X and 4.60% for SFCS–3X compared to Lasso), yet

fewer number of features on average are acquired (21.24%
and 24.27% fewer features for SFCS–2X and SFCS–3X). For

SPAMBASE, there is also a small accuracy drop (3.20% and

0.72% for SFCS–2X and SFCS–3X) but fewer average number

of features (79.25% and 83.75% for SFCS–2X and SFCS–3X)

are acquired compared to Lasso.

After comparing SFCS with the DCS algorithms, it is

evident that although DCS methods outperform the rest of the

baselines, SFCS in turn outperforms DCS methods in terms of

accuracy and, more importantly, average number of acquired

features; in over half of the datasets, SFCS displays better

accuracy (between 1% to 100%) compared to DCS methods,

while acquiring 13% to 98% fewer features on average. In

cases where DCS methods perform better in accuracy, SFCS–

2X and SFCS–3X acquire, on average, fewer features (between

21.24% and 85.58%).

Finally, we compute Gini Impurity Reduction (GIR) [38],

an extension of the Gini score [39], to measure the feature

significance for SFCS and the baselines. Specifically, a feature

with higher GIR is more significant than a feature with lower

GIR, since the latter cannot be used to effectively separate the

labels. SFCS and ETANA acquire different number of features

per example. Thus, to compute GIR in this case, we began

by separating examples in subsets according to the features

acquired and used for their classification. For each such subset,

we calculated the difference (i.e., reduction) between the Gini

impurity of the label variable, and the weighted average of the

Gini impurity of each feature. We subsequently computed the

average GIR over the number of features and examples in a

subset, and averaged over five–folds. In Fig. 4, the distribution

of average GIR per example is illustrated for the proposed

approach and the baselines. Note that the average GIR per

example for Lasso and all baselines that use the same number

of features is a single number. We observe that the proposed

approach achieves similar or much better average GIR per

example compared to ETANA. Further, in comparison to Lasso

and methods that use all features, the proposed approach

achieves larger average GIR per example, as seen by looking

at the median and the interquartile range. This experiment

validates the importance of instance–wise feature acquisition.

The observations made confirm that the inclusion of pow-

erful classifiers enhances accuracy. Moreover, the proposed

algorithms seem to attain a good balance between accuracy

and the average number of acquired features by forwarding

difficult–to–classify examples to any of the powerful classifiers

(see also Fig. 5). This is crucial in real–world applications,

where the acquisition of features is either prohibitive (e.g.,

due to cost or unwillingness of users to provide sensitive

information) or the feature space is large.

In order to evaluate the statistical significance of the re-

ported outcomes in Table II, we employ the Friedman test,

which is commonly used to compare the effectiveness of clas-

sifiers across numerous datasets [40]. The average ranks for

Acc and Feat are presented in Table II, and the corresponding

p–values were found to be 1.29 × 10−3 and 1.12 × 10−19,

respectively. These findings suggest that there exists a notable

difference in the performance of SFCS–2X and SFCS–3X, and

the baselines considered.

D. Evaluation of SFCS–2X and SFCS–3X

In this section, we analyze the behaviors of SFCS–2X and

SFCS–3X during testing. In particular, we start by illustrating

and discussing the behavior of SFCS–2X4 by looking into

the evolution of the posterior probability as more features are

acquired. We then look into the effect of weighing parameters

λ ≜ {λ0, λ1, . . . , λZ}, where λ0 ≜ γ, with respect to classifier

selection. Finally, we present the distribution of the number of

4Similar observations are obtained for SFCS–3X.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

14 JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 00, NO. 0, APRIL 2023

posterior probability p falls in the interval (α1, α2), where

0 ≤ α1 < 0.5 < α2 ≤ 1, the powerful classifier is

selected (i.e., U∗

S = 1). Next, we determine the conditions

that λ1 ∈ (0, 1) needs to satisfy, so that these regions exist.

We start by looking at the interval [0, 0.5) and the intersec-

tion of the curves described by Eqs. (B.2) (upper part) and

(B.3). Specifically, we determine the point of intersection by

solving for a1 as follows:

λ0α1 = λ1(q
1
1 − q21)α1 + λ1q

2
1 →

(1− λ1)α1 = λ1(q
1
1 − q21)α1 + λ1q

2
1 →

α1 =
λ1q

2
1

(1− λ1)− λ1(q11 − q21)
. (B.4)

We compute λ1 such that α1 ∈ [0, 0.5). Specifically, λ1q
2
1 ≥ 0

because λ1 ∈ (0, 1) and q21 ∈ [0, 1]. Therefore to satisfy α1 ≥
0, the denominator of Eq. (B.4) should be:

(1− λ1)− λ1(q
1
1 − q21) > 0 →

1− λ1(1 + q11 − q21) > 0 →

1 > λ1(1 + q11 − q21) →

λ1 <
1

1 + q11 − q21
≜ µ1. (B.5)

Also to satisfy α1 < 0.5, Eq. (B.4) should be:

λ1q
2
1

(1− λ1)− λ1(q11 − q21)
< 0.5 →

λ1q
2
1 < 0.5(1− λ1(1 + q11 − q21)) →

λ1q
2
1 + 0.5λ1(1 + q11 − q21) < 0.5 →

λ1(q
2
1 + 0.5(1 + q11 − q21)) < 0.5 →

λ1 <
0.5

q21 + 0.5(1 + q11 − q21)
→

λ1 <
1

2q21 + 1 + q11 − q21
→

λ1 <
1

1 + q11 + q21
≜ µ2. (B.6)

Next, we look at the interval (0.5, 1] and the intersection

of the curves described by Eqs. (B.2) (lower part) and (B.3).

Specifically, we determine the point of intersection by solving

for α2 as follows:

λ0(1− α2) = λ1(q
1
1 − q21)α2 + λ1q

2
1 →

(1− λ1)(1− α2) = λ1(q
1
1 − q21)α2 + λ1q

2
1 →

α2 =
(1− λ1)− λ1q

2
1

(1− λ1) + λ1(q11 − q21)

= 1−
λ1q

1
1

(1− λ1) + λ1(q11 − q21)
. (B.7)

We compute λ1 such that α2 ∈ (0.5, 1]. Therefore, to satisfy

0.5 < α2, Eq. (B.7) should be:

0.5 < 1−
λ1q

1
1

(1− λ1) + λ1(q11 − q21)
→

λ1q
1
1

(1− λ1) + λ1(q11 − q21)
< 0.5 →

λ1q
1
1 < 0.5(1− λ1 + λ1(q

1
1 − q21)) →

λ1q
1
1 < 0.5(1− λ1(1− q11 + q21)) →

2λ1q
1
1 < 1− λ1(1− q11 + q21) →

2λ1q
1
1 + λ1(1− q11 + q21) < 1 →

λ1(1 + q11 + q21) < 1 →

λ1 <
1

1 + q11 + q21
≜ µ3. (B.8)

Also to satisfy α2 ≤ 1, Eq. (B.7) should be:

1−
λ1q

1
1

(1− λ1) + λ1(q11 − q21)
≤ 1 →

0 ≤
λ1q

1
1

(1− λ1) + λ1(q11 − q21)
.

(B.9)

Here, λ1 ∈ (0, 1) and q11 ∈ [0, 1]. Therefore, λ1q
1
1 ≥ 0. To

satisfy Eq. (B.9), the following inequality must hold:

(1− λ1) + λ1(q
1
1 − q21) > 0 →

1− λ1(1− q11 + q21) > 0 →

λ1 <
1

1− q11 + q21
≜ µ4. (B.10)

Finally, for α1 and α2 to satisfy 0 ≤ α1 < 0.5 < α2 ≤ 1,

λ1 should satisfy λ1 < µ1, λ1 < µ2, λ1 < µ3 and λ1 < µ4.

Therefore using Eqs. (B.5), (B.6), (B.8) and (B.10), we choose

λ1 such that:

λ1 < min[µ1, µ2, µ3, µ4] →

λ1 < min[µ1, µ2, µ4], µ2 = µ3 →

λ1 < min
[1

1 + q11 − q21
,

1

1 + q11 + q21
,

1

1− q11 + q21

]

→

λ1 <
1

1 + q11 + q21
. (B.11)

For this example, we select λ1 = 0.5 where λ0 = 1− λ1 (see

Eq. (1)).

REFERENCES

[1] K. P. Murphy, Probabilistic machine learning: an introduction. MIT
press, 2022.

[2] X. Hu, P. Zhou, P. Li, J. Wang, and X. Wu, “A survey on online feature
selection with streaming features,” Frontiers of Computer Science,
vol. 12, no. 3, pp. 479–493, 2018.

[3] Y. W. Liyanage, D.-S. Zois, and C. Chelmis, “Dynamic instance-wise
joint feature selection and classification,” IEEE Transactions on Artificial

Intelligence, vol. 2, no. 2, pp. 169–184, 2021.

[4] ——, “Dynamic instance-wise classification in correlated feature
spaces,” IEEE Transactions on Artificial Intelligence, vol. 2, no. 6, pp.
537–548, 2021.

[5] M. Moradi, Y. Chen, X. Du, and J. M. Seddon, “Deep ensemble
learning for automated non-advanced amd classification using optimized
retinal layer segmentation and sd-oct scans,” Computers in Biology and

Medicine, p. 106512, 2023.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

SACHINI PIYONI EKANAYAKE et al.: SEQUENTIAL DATUM–WISE FEATURE ACQUISITION AND CLASSIFIER SELECTION 15

[6] C. Xu, C. Fu, W. Liu, S. Sheng, and S. Yang, “Data-driven decision
model based on dynamical classifier selection,” Knowledge-Based Sys-

tems, vol. 212, p. 106590, 2021.

[7] A. Maciel-Guerra, G. P. Figueredo, E. Marti, M. J. Alcocer, and
J. Twycross, “Subspace-based dynamic selection: a proof of concept
using protein microarray data,” in 2020 International Joint Conference

on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.

[8] Z.-H. Zhou, Ensemble methods: foundations and algorithms. CRC
press, 2012.

[9] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, vol. 14, pp. 241–258, 2020.

[10] R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier se-
lection: Recent advances and perspectives,” Information Fusion, vol. 41,
pp. 195–216, 2018.

[11] J. Elmi, M. Eftekhari, A. Mehrpooya, and M. R. Ravari, “A novel frame-
work based on the multi-label classification for dynamic selection of
classifiers,” International Journal of Machine Learning and Cybernetics,
pp. 1–18, 2023.

[12] S. Raschka, “Model evaluation, model selection, and algorithm selection
in machine learning,” arXiv preprint arXiv:1811.12808, 2018.

[13] Z.-H. Zhou, “Ensemble learning,” in Machine learning. Springer, 2021,
pp. 181–210.

[14] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[15] D. Ruta and B. Gabrys, “An overview of classifier fusion methods,”
Computing and Information systems, vol. 7, no. 1, pp. 1–10, 2000.

[16] R. M. Cruz, D. V. Oliveira, G. D. Cavalcanti, and R. Sabourin,
“Fire-des++: Enhanced online pruning of base classifiers for dynamic
ensemble selection,” Pattern Recognition, vol. 85, pp. 149–160, 2019.

[17] J. Elmi and M. Eftekhari, “Multi-layer selector (mls): Dynamic selection
based on filtering some competence measures,” Applied Soft Computing,
vol. 104, p. 107257, 2021.

[18] M. Sellmann and T. Shah, “Cost-sensitive hierarchical clustering for
dynamic classifier selection,” arXiv preprint arXiv:2012.09608, 2020.

[19] K. Woods, W. P. Kegelmeyer, and K. Bowyer, “Combination of multiple
classifiers using local accuracy estimates,” IEEE transactions on pattern

analysis and machine intelligence, vol. 19, no. 4, pp. 405–410, 1997.

[20] P. C. Smits, “Multiple classifier systems for supervised remote sensing
image classification based on dynamic classifier selection,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 40, no. 4, pp. 801–813,
2002.

[21] R. M. O. Cruz, L. G. Hafemann, R. Sabourin, and G. D. C. Cavalcanti,
“Deslib: A dynamic ensemble selection library in python,” Journal of

Machine Learning Research, vol. 21, no. 8, pp. 1–5, 2020. [Online].
Available: http://jmlr.org/papers/v21/18-144.html

[22] A. Tiwari, “A hybrid feature selection method using an improved binary
butterfly optimization algorithm and adaptive β–hill climbing,” IEEE

Access, 2023.

[23] H. Singh and O. Arandjelović, “Data efficient support vector machine
training using the minimum description length principle,” in ICASSP

2022-2022 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2022, pp. 1361–1365.

[24] O. Queen and S. J. Emrich, “Lasso-based feature selection for improved
microbial and microbiome classification,” in 2021 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021,
pp. 2301–2308.

[25] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The journal of machine learning research, vol. 15, no. 1, pp. 3133–3181,
2014.

[26] N. AlNuaimi, M. M. Masud, M. A. Serhani, and N. Zaki, “Streaming
feature selection algorithms for big data: A survey,” Applied Computing

and Informatics, 2019.

[27] J. Zhou, D. Foster, R. Stine, and L. Ungar, “Streaming feature selection
using alpha-investing,” in Proceedings of the eleventh ACM SIGKDD

international conference on Knowledge discovery in data mining. ACM,
2005, pp. 384–393.

[28] S. Perkins, K. Lacker, and J. Theiler, “Grafting: Fast, incremental feature
selection by gradient descent in function space,” The Journal of Machine

Learning Research, vol. 3, pp. 1333–1356, 2003.

[29] J. Yoon, J. Jordon, and M. van der Schaar, “INVASE: Instance-wise
variable selection using neural networks,” in International Conference

on Learning Representations, 2018.

[30] Q. Xiao and Z. Wang, “Mixture of deep neural networks for instance-
wise feature selection,” in 2019 57th Annual Allerton Conference on

Communication, Control, and Computing (Allerton). IEEE, 2019, pp.
917–921.

[31] S. P. Ekanayake, Y. W. Liyanage, and D.-S. Zois, “Dynamic feature
selection for classification in structured environments,” in 2021 55th

Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021,
pp. 140–144.

[32] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2005, vol. 1.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.
[34] M. Claesen, F. De Smet, J. A. Suykens, and B. De Moor, “Fast

prediction with svm models containing rbf kernels,” arXiv preprint

arXiv:1403.0736, 2014.
[35] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “Openml:

networked science in machine learning,” SIGKDD Explorations, vol. 15,
no. 2, pp. 49–60, 2013. [Online]. Available: https://www.openml.org/

[36] “Kaggle,” https://www.kaggle.com.
[37] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[Online]. Available: http://archive.ics.uci.edu/ml
[38] S. Nembrini, I. R. König, and M. N. Wright, “The revival of the gini

importance?” Bioinformatics, vol. 34, no. 21, pp. 3711–3718, 2018.
[39] G. K. Rajbahadur, S. Wang, G. A. Oliva, Y. Kamei, and A. E. Hassan,

“The impact of feature importance methods on the interpretation of
defect classifiers,” IEEE Transactions on Software Engineering, vol. 48,
no. 7, pp. 2245–2261, 2021.

[40] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[41] Y. W. Liyanage and D.-S. Zois, “Optimum feature ordering for dynamic
instance–wise joint feature selection and classification,” in ICASSP

2021-2021 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2021, pp. 3370–3374.

Sachini Piyoni Ekanayake received the B.Sc. de-
gree in electrical and electronic engineering from
the University of Peradeniya, Sri Lanka, in 2017.
Currently, she is working toward the Ph.D. degree in
electrical and computer engineering at the University
at Albany, State University of New York, USA.
Her research interests include machine learning and
statistical signal processing.

Daphney-Stavroula Zois received the B.S. degree
in computer engineering and informatics from the
University of Patras, Patras, Greece, and the M.S.
and Ph.D. degrees in electrical engineering from the
University of Southern California, Los Angeles, CA,
USA. Previous appointments include the University
of Illinois, Urbana–Champaign, IL, USA. She is an
Associate Professor in the Department of Electrical
and Computer Engineering, University at Albany,
State University of New York, Albany, NY, USA.
She received the Viterbi Dean’s and Myronis Grad-

uate Fellowships, the NSF CAREER award, and a Google AI for Social
Good Impact Scholars award. She has served and is serving as Co-Chair,
TPC member or reviewer in international conferences and journals, such as
AAAI, ICASSP, ICLR, NeurIPS, IEEE TSP, IEEE TIT, IEEE TAI, and IEEE
TNNLS. Her research interests include machine learning and statistical signal
processing with a particular focus on decision making under uncertainty.

Charalampos Chelmis is an Associate Professor
in Computer Science at the University at Albany,
State University of New York, and the director of
the Intelligent Big Data Analytics, Applications, and
Systems Lab. He has served and is serving as Co–
Chair, TPC member or reviewer in international
conferences and journals including AAAI, TheWe-
bConf, and WSDM. He received the B.S. degree
in computer engineering and informatics from the
University of Patras, Greece in 2007, and the M.S.
and Ph.D. degrees in computer science from the

University of Southern California in 2010 and 2013, respectively.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Literature Overview
	Problem Description & Solution
	Optimization Problem
	Posterior Probability
	Problem Solution
	Proposed Method

	Experimental Results
	Datasets
	Experimental Setting
	Results & Discussion
	Evaluation of SFCS–2X and SFCS–3X
	Comparison to Ensemble Learning

	Conclusions
	Appendix A
	Appendix B
	References
	Biographies
	Sachini Piyoni Ekanayake
	Daphney-Stavroula Zois
	Charalampos Chelmis

