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Abstract—We present a supervised machine learning frame-
work for sequential datum-wise feature acquisition and classifier
selection. The presented method sequentially acquires features
during testing until it determines that additional features will
not improve label assignment. At that stage, easy—to—classify
examples are handled by a simple classifier, which assigns
labels based on the lowest expected misclassification cost. On
the contrary, difficult-to—classify examples are assigned a label
using the acquired features along with one of a number of
available complex classifiers. As more features are acquired,
the presented framework continually assesses the difficulty of
classifying each example. It controls both the feature acquisition
and classifier selection processes through a carefully constructed
optimization problem. We use eleven publicly available datasets
to evaluate the presented framework with respect to accuracy
and average number of acquired features, and obtain results
when two and three complex classifiers are available, respectively.
We compare the performance of the presented framework with
both sequential feature aquisition methods and dynamic classifier
selection methods, and observe improvements in accuracy as well
as acquisition of less number of features on average. Moreover,
we conduct experiments with popular ensemble classification
methods and assess the performance of the proposed framework.

Impact Statement—Traditional supervised classification typi-
cally relies on a single classifier that employs all of the available
features to determine the classification outcomes of all examples
in a dataset. However, in many real-world applications, features
may not be free to acquire (e.g., gender information in a survey)
or available at all (e.g., customer’s transaction history for fraud
detection). Similarly, the importance of features may differ across
the entire dataset, while different classifiers may result in distinc-
tively different classification outcomes. The framework proposed
in this paper addresses the above challenges by sequentially
acquiring features and selecting which classifier to use on a
case-by—case basis. As a result, it improves accuracy by 50%
while acquiring up to 84% less features on average compared
to existing sequential feature acquisition methods. In addition,
it achieves 2X better accuracy than existing dynamic classifier
selection methods while acquiring up to 98% less number of
features on average.

Index Terms—supervised classification, instance—wise feature
selection, inaccurate oracles, dynamic classifier selection, classi-
fier pool
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I. INTRODUCTION

RADITIONAL supervised classification adopts a batch—

wise approach, where all features are readily available
and used for determining the label of an example [1]. Un-
fortunately, in many real-world applications (e.g., medical
and insurance assessments), this is not true since features
are not freely available. For instance, in medical diagnosis,
features come at a cost (i.e., due to the acquisition process),
however, accurate classification is critical and time—sensitive.
At the same time, the importance of features may differ among
examples (e.g., in speech recognition, different individuals
exhibit different accents, speech patterns and talk at different
speeds). Considering all the above factors, making accurate
predictions using the most informative features is an essential
task in supervised classification. Consequently, feature acqui-
sition, but more importantly, instance—wise feature acquisition
has become an active research area [2]-[4].

On the other hand, classifier selection has also been an
active area of research as using a single common classifier
may not always be suitable for all examples in a dataset [5]-
[7]. For instance, in image classification [5], different types of
classifiers may perform better on different types of images due
to factors such as image complexity and lighting. Alternatively,
fusing multiple classifiers or considering the effect of all
classifiers has been shown to increase accuracy, as seen in
ensemble learning methods [1], [8], [9]. Nonetheless, the
effectiveness of such approaches heavily depends on the ability
to select the most appropriate classifier for each example,
giving rise to dynamic classifier selection [6], [7], [10], [11].
For example, in [6], a decision model that employs dynamic
selection of classifiers for the diagnosis of thyroid nodules
is discussed, while in [7], dynamic selection of classifiers
fused with a feature subspace clustering approach is used for
analyzing insect bite hypersensitivity in horses using protein
microarray data. Nevertheless, it should be noted that dynamic
classifier selection approaches assume that all features are
present at the time of classification, which may not hold true
for several real-world applications.

To address the aforementioned issues, we propose a joint
datum-wise feature aquistion and classifier selection frame-
work. Our proposed framework acquires one feature at a time,
and iteratively updates the posterior probability of the example
belonging to each of the available classes. The resulting
probability is used as a proxy to assess the difficulty of
classifying the example under consideration, and controls the
termination of the feature acquisition process. At that point,
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the proposed framework decides which classifier to use by
selecting among a simple classifier, based on the expected
misclassification cost, and a set of complex but more powerful
classifiers. Difficult-to—classify examples are forwarded to one
of the later ones, while the remaining ones are handled by the
simple classifier. In order to incorporate information about the
cost associated with training/using each classifier, which may
be available in real-world scenarios, our framework includes
appropriate weighing parameters. We assess the performance
of our proposed framework on eleven real-world datasets
and compare it to eleven existing methods. We also conduct
experiments with popular ensemble classification methods.
Our results show that the proposed framework achieves a good
balance between accuracy and average number of acquired fea-
tures. Moreover, the inclusion of powerful classifiers improves
accuracy by better handling difficult—to—classify examples
while also saving on feature acquisition costs. Finally, we
observe that low—cost classifiers are typically prioritized, while
using them does not seem to significantly affect the overall
performance.

The remaining sections are structured as follows. Sec-
tion II provides a summary of pertinent prior research, while
Section III presents the problem of sequential datum—wise
feature acquisition and classifier selection followed by the
optimum solution. Section IV presents detailed experiments
that assess the performance of the proposed framework. Fi-
nally, Section V concludes the paper and briefly describes
future research directions. All relevant code is available at
https://github.com/IMAINE9Lab/SFCS. Relevant proofs are
included in the Appendix.

II. LITERATURE OVERVIEW

In machine learning, model selection involves selecting the
best model among a set of possible models to generalize well
for unseen data [12]. This is typically accomplished using
domain knowledge and/or model selection techniques such as
cross—validation [1]. It is worthwhile to note that in the context
of model selection, models vary based on the values of the
hyperparameters [12]. Alternatively, instead of selecting one
model, ensemble learning involves averaging multiple models,
such as averaging predictions for regression or carrying out
majority voting for classification [9], [13], [14]. Moreover, in
the context of classification, classifier fusion methods combine
multiple classifiers either at the output (e.g., via voting) or the
classifier level (e.g., dynamic classifier methods) [15]. The
framework presented in this paper is most related to the latter
approach, which is discussed in more detail next.

Dynamic classifier methods, which involve selecting either
a single classifier or a group of classifiers for each test
example, have received considerable attention in machine
learning [10]. Two types of dynamic selection methods exist:
Dynamic Ensemble Selection (DES) and Dynamic Classifier
Selection (DCS). DES involves selecting a set of classifiers
and fusing their outputs to determine the final classification
outcome for each test example. For instance, in [11], [16]-
[18], majority voting is employed to classify each example.
In contrast, and relevant to our work, DCS selects a sin-
gle classifier based on the set of available classifiers and

proceeds to generate a classification outcome. Specifically, a
pool of classifiers is trained and the region of competence
of each classifier in the pool is identified using techniques
like k-NN and clustering. During testing, this information is
used to help dertermine for each test example the region of
competence and hence, the best—performing classifier to use.
Among the various DCS methods, Overall Local Accuracy
(OLA) [19], Local Class Accuracy (LCA) [19], and Modified
Local Accuracy (MLA) [20] are considered state—of—the—art
[21], and their main difference relies on the metric used to
evaluate the performance of base classifiers in competence
regions. The proposed framework differs from DCS in that
it does not use all the available features to determine the
classification outcome of each example. In fact, it sequentially
acquires the features that seem more relevant to each example
before determining the classification outcome. Additionally, it
employs a single different classifier for each example, which is
selected at the time of the termination of the feature acquisition
process. This is in sharp contrast to DCS, which first uses all
available classifiers to determine the classification outcome of
each example during testing, and then carries out dynamic
classifier selection as described above only for those examples
where disagreements exists. Thus, the proposed framework
reduces computational cost and is more practical for time—
critical real-world applications.

Standard supervised classification methods (e.g., Support
Vector Machines (SVM), Naive Bayes (NB)) consider all
features available during training and testing. In contrast,
offline feature selection (e.g., L1-norm based feature selection
(Lasso)) selects a subset of features during training and uses
it during testing. Recently, search space optimization (e.g.,
Enhanced Binary Butterfly Optimization Algorithm (BBOA)
[22]) has been proposed to improve accuracy while using
fewer features. In this case, a subset of features is first selected
by combining different binary variants of BOA with Adaptive
[-Hill Climbing. A standard classifier (e.g., SVM, NB) is
then employed to evaluate performance of selected features.
Due to their high performance, such methods are widely used
in practice [22]-[25], however, they base their decisions on
the same set of features irrespective of the example under
consideration.

To accommodate prohibitively large feature spaces, stream-
ing or incremental feature selection [26]—[28] selects features
during training as these sequentially arrive one at a time.
A new feature is added to the model if it most likely im-
proves performance. The process terminates when a certain
performance threshold is met or a specific number of features
is selected. During testing, all examples are classified using
the same selected subset of features. Static instance—wise
approaches [29], [30] perform datum—wise classification, but
access all features during testing for that purpose. Specifically,
the approach described in [29] utilizes a neural network—
based method inspired by the actor—critic model to identify
a varying subset of features for each example. In [30], a
method is proposed to reduce search space complexity in
feature selection by using a threshold on the number of feature
subsets. The approach uses a mixture of deep neural networks
to determine the most relevant features for each example,
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but it requires knowledge of all the feature values during
testing. In contrast, dynamic instance—wise feature acquisition
methods [3], [4], [31] adaptively acquire different features one
at a time to classify each example during testing. Specifically,
in [3], the problem of joint dynamic instance—wise feature
acquisition and classification is introduced and solved. The
properties of the optimum solution are studied, and two
new algorithms are proposed. [4] extends [3] by modeling
feature dependencies with a Bayesian network, which is then
used to sequentially acquire the most informative features to
classify each example. Finally, [31] studies the problem of
dynamic instance—wise feature acquisition and classification
when multiple classification variables are present and are
related through a known Bayesian network. In this context,
features are dynamically acquired for each variable and each
example, while classification decisions are propagated through
the Bayesian network to enhance overall performance. A
major drawback of the latter approaches is inherently their
classification mechanism; labels are assigned based on the
smallest expected misclassification cost defined in terms of
the posterior probability of the label of the example under
consideration given the information provided by the already
acquired features. Such mechanism may work well for some
examples, but not for all, leading to considerable performance
degradation. Moreover, in contrast to the above methods,
which employ a single classifier to determine the classification
outcome for each example, the proposed framework provides
the flexibility to choose one out of a number of classifiers (i.e.,
simple or complex powerful classifiers). As a result, a distinct
classifier may be used along with the distinct features acquired
to classify each example.

III. PROBLEM DESCRIPTION & SOLUTION

In standard supervised classification, the intent is to learn
a model that maps feature vector X 2 [X1,...,Xr]T to a
label Y = y € {1,..., N}, where Xy represents a feature
and the value of X is denoted as x £ [zy,...,7r|T. The
assumption is that the entire feature vector is accessible during
both training and testing. Herein, we consider this problem
under a slightly different context. Specifically, all features
are available during training, but in testing, the features of
each example are sequentially acquired one at a time based
on a pre—defined fixed order (c.f. Fig 3). Further, acquiring
feature Xy during festing incurs cost ¢y > 0,f =1,..., F.
Inherently, acquiring less features can save on acquisition
costs. However, we may not have adequate information to
make a reliable label assignment.

In this section, we describe the problem of sequential
datum—wise joint feature acquisition and classification when
multiple classifiers are present. The objective is to jointly
acquire the subset of features based on which each exam-
ple is to be classified, the appropriate classifer to be used
for this task, and the respective label assignment for each
example in the testing dataset. The benefit of having access
to multiple classifiers is twofold. First, examples that require
the acquisition of large number of features to be accurately
classified could instead be potentially classified by a more

powerful classifier using less features. Second, simple but less
accurate classifiers may be inaccurate for certain examples re-
gardless of the number of acquired features; such difficult—to—
classify examples may be better handled by a more powerful
classifier. Next, we define a number of variables needed to
mathematically describe the problem of interest and present
the optimization problem to be solved.

A. Optimization Problem

We define random variables S, Us and Dg. S € {0,...,F'}
is the last feature acquired before assigning alabelto Y. S =0
means no features have been acquired. Us € {0,...,Z}
represents the classifier selected after S features have been ac-
quired. Specifically, Ugs = 0 represents the selection of a sim-
ple (possibly less accurate) classifier, while Ug € {1,...,Z}
represents the selection of one out of a set C' = {Cy,...,Cz}
of more complex and powerful classifiers. For example, such
classifiers could be Support Vector Machine (SVM) and Deci-
sion Tree (DT). Last but not least, we define Dg € {1,..., N}
as the label assignment provided by classifier Ug based on S
acquired features. To learn a model that jointly selects the
number of acquired features, the classifier to be used, and the
label assignment for each example, we propose the following
cost function:

s z
L(S,Us,Ds) = E{ Z cy + Z ALug=:1h%
=1 =1

N N

+ M vg=oy »_ Y P(Ds =5,Y = i)}, )]

j=11i=1

where v 2 1 -7 A,y > 0 and {\. € (0,1)} is a set
of weighing parameters to differentiate between the various
classifiers. Further, we define \ £ {Ao, A1,-.., Az}, where
Mo =vand A\, € \,t=0,...,Z. Here Q;;,i,j € {1,...,N},
is the cost of assigning label j to an example when the true
label is i. The term hg,z = 1,...,Z, representing the cost
associated with selecting to use classifier C, when S features

have been acquired, is defined as:

N
géZPZ(e,Y:ﬂxh...,xS). ()
i=1

It is defined in terms of the error probability P,(e,Y =
t|z1,...,2g) of classifier C, when the true label of an
example is ¢ and S features have been acquired. The first term
in Eq. (1) denotes the cost of acquiring S features. The second
term indicates the cost of selecting and using one out of the
Z powerful classifiers to assign a label to an example using S
acquired features. Finally, the last term captures the same cost
but in the case where the simple (but possibly less accurate)
classifier is selected. Therefore, our goal is to minimize the
expected cost in Eq. (1) and determine the optimum values of
S, Ug and Dg for each example in the testing dataset.

B. Posterior Probability

Let ¢ = P(Y = ilzy,...,xp),f = 1,...,Fi =
1,..., N, denote the posterior probability the label of an
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example currently under consideration being ¢ when f features
have been so far acquired. We use Bayes’ rule to update this
posterior probability when a new feature is acquired, i.e.,

P(zylY = i)ébl}_l

O = Plagly =1)¢b_ +...+ Plag]Y = N)¢y_ ®

In this context, ¢y £ [qﬁ;, .. ,gb}V}T, f=1,..., F, represents
the posterior probability vector, where ¢g = [p1,...,pn|T
denotes the case where no features have been acquired. Here,
pi=P(Y =1i),i=1,..., N, represents the prior probability
the label of the example currently under consideration being <.
In line with prior work in the area [3], we assume features to
be independent given the label of the example. We underscore
that this assumption results in a good trade—off between ac-
curacy and average number of acquired features per example,
irrespective of its simplicity (c.f. Section IV).

C. Problem Solution

To minimize Eq. (1), we first use the probability vector ¢
to rewrite the cost of selecting between available classifiers in
C (second term in Eq. (1)). Specifically, Corollary 1 expresses

% in terms of ¢, (see Appendix A for proof).

Corollary 1: For given feature values [x1,...,xg], the cost
h% associated with selecting to use classifier C, when §
features have been acquired can be expressed as:

% = Q5. 9s, 4)

where Qg. = [Qf.,...,QF.]" and Qf, £ P.(e]Y =
1,Z1,...,28).
Corollary 1 enables us to express Eq. (1) as follows:

S zZ
L(Sv US? DS) = E{ Z Cf + Z )\Z]I{(]S:Z}Qév,z(bs
f=1

z=1

N N
Flwg=0y Y Y P(Ds =j4,Y = i)}. ®)

j=1i=1

Eq. (5) is then further simplified to Eq. (6) using the definition
of indicator function and the posterior probability as in prior
work [3]. Specifically, P(Ds = j,y = i) = E{¢}[{ps=j}}

and defining Q; = [Qy;,...,Qn;]T, we obtain:

S zZ
L(S,Us,Ds) = E{ Z cr+ Z Alirg—2) Qb . bs
f=1

z=1

N
+7vg=0} Zﬂdemﬂ{Ds_j}}» (6)

j=1

Next, we proceed with minimizing the expression in Eq. (6)
in three steps. To this end, we first look into determining
the optimum label assignment method DY when fixed S
features have been acquired and a classifier has been selected
(i.e., Ug is fixed). In this context, depending on the selected
value of Ug, there are two distinct cases. Specifically, if
Us = 0, then the optimum label assignment is carried out
by the simple classifier, as discussed next. Consider the last
term of Eq. (6). As discussed in prior work [3], for any
Ds. 73521 9 ¢slipo—jy = G(¢s) where G(¢s) =
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Fig. 1: Mlustration of the classifier selection and label assign-
ment processes in the case of two label values (i.e., N = 2),
a simple classifier (region A), and a single powerful classifier
(region B). The highlighted line graphically represents Eq. (8).

min; << N[Q?(bs]. Therefore, the simple classifier carries out
the optimum label assignment D3 as follows:
D§ = argmin[Q] ¢]. (7)
1<j<N
On the other hand, if Us € {1,...,Z}, the optimum label
assignment is obtained using one out of the powerful classifiers
in set C. In this case, the selected classifier (e.g., SVM) uses
the acquired S features, as it deemed fit by its internal mech-
anism, to assign a label to the example under consideration.
We subsequently look into determining the optimum classi-
fier selection method Ug when fixed S features have been
acquired. As evident from Eq. (6), the last two terms ef-
fectively control the classifier selection process. To this end,
we define J(¢s) £ ming<i<z[MH5(¢s)], where Ao = 7,
HZ(¢s) £ G(¢s) and Hi(¢s) = Q. ¢s,2 = 1,...,Z.
Therefore, Zzzzl )\z]I{Us:z}ng(bS + ”VH{US:O}G((#S) =
thzo M HE(ps)Iyg=¢y. Since thzo Iiyg=¢y = 1 for any
Us, N7 o MHS(05) ugmy > SoioJ(05){ug=r). The
right side of the inequality is independent of Ug because
J(¢g) is the minimum from a set of numbers. Then the
inequality simplifies to ZtZ=o MHY(0s)jug=ty = J(9s).
Thus, the optimum classifier selection method Ug is given
by:

Us = argmin[)\tHfg (¢s)]- €))
0<t<Z

Before proceeding with the last and final step of our
derivations, we present an example to showcase the opera-
tion of the optimal classifier selection and label assignment
methods. In particular, Fig. 1 illustrates how decisions are
made based on the value of the posterior probability in the
case of two label values (i.e., N = 2) and a single powerful
classifier (i.e., Z = 1,C = {C1}) in addition to the simple
classifier. Further, the highlighted line graphically represents
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Eq. (8) in this case. Details about the setting presented in
Fig. 1 and relevant derivations are provided in Appendix B.
We observe that depending on the value of the posterior
probability ¢}, a different classifier selection choice is made.
Specifically, region A represents selecting to use the simple
classifier, while region B denotes selecting to use the powerful
classifier C;. The optimum label assignment for each region
is also provided, where y; s represents the label assignment
from powerful classifier C; using .S number of features i.e.,
Yo = M,(X1,...,Xg) where M,(.) is the trained model of
C., (c.f. Section III-D). The operation of the optimal classifier
selection and label assignment methods is very intuitive, as
explained next. When the posterior probability ¢% (i.e., the
probability of the label of the example being 1) takes relatively
low values (e.g., below around 0.2), the simple classifier is
selected and the example under consideration is assigned label
2. In this case, the framework is confident about the label
assignment and prefers to select the simple classifier. Similar
is the case where the posterior probability ¢} is relatively
high (e.g., above around 0.7). In contrast, when the posterior
probability ¢} falls in the intermediate interval, the framework
is not very confident about the true label of the example under
consideration. In that case, the powerful classifier is preferred
that can potentially lead to an accurate label assignment.
As we will later see (c.f. Section III-D), when the posterior
probability falls in that region, the proposed framework tends
to acquire more features in the hope that the resulting posterior
probability will end up in region A. If this is not the case, the
powerful classifier will still be selected and used in the end. In
summary, difficult-to—classify examples (as indicated by the
value of the posterior probability) are essentially forwarded to
classifier C'y, while the rest are handled by the simple classifier.

Finally, we look into determining the optimum feature
acquisition method S*. Since we have already determined the
optimal classifier selection and label assignment methods, the
cost function in Eq. (6) now becomes:

F
L(S) = E{ > e +l(¢s)}7 ©)

F=1

where [(¢s) £ ming<i<z[MHE(ds)]. The form of the cost
function in Eq. (9) enables us to use stochastic dynamic
programming [32] to determine the optimum feature acqui-
sition method. In particular, we obtain the following dynamic
programming equation:

Ly(¢y) = min [Z(¢f)7 ff((bf)}, (10)
where
Ij(dp) = crni+ Y Lypa(@pe) i (zp0) (1D
Tf+1
with Lr(¢r) = Il(¢r) and Ij(z;) = [PlaylY =

1),...,P(xs|]Y = N)]T. I;(¢y) represents the cost of con-
tinuing feature acquisition, while I(¢s) represents the cost of
stopping this process. Therefore, if the former term is less
than the latter, the optimum feature acquisition method will
keep acquiring features. Otherwise, it will stop and proceed
with selecting one out of the available classifiers to decide on a

label assignment. In the end, the optimum number of acquired
features will differ for each example under consideration, and
be either S* = f < F, or S* = F if all features are acquired.

D. Proposed Method

Our proposed method (see Fig. 2) involves two phases:
training (Fig. 2a) and testing (Fig. 2b), which follow the
problem solution described in Section III-C. During training,
all possible posterior probability vectors ¢ are generated by
discretizing the range [0, 1] such that ¢y17 = 1. Here, 1 is
a N-dimensional vector of all ones. Specifically, considering
the arithmetic precision of discretization to be 7, d possible
vectors ¢ are generated. Then, for each of ¢, Egs. (8) and
(10) are numerically solved to determine the optimum fea-
ture acquisition and classifier selection processes. Moreover,
classifiers C,,z = 1,...,7, are trained for each number
f=1,..., F, of features (see Fig. 2a) and the conditional
probabilities P(zs|Y = i) and P.(e|]Y = i,21,...,2g) are
estimated (c.f. Section IV).

Next, we conduct the complexity analysis of the training
phase. First, computing [ t(¢5) involves computational com-
plexity of O(FNBn™N~1) [3]. Here, 3 represents the number
of bins used to discretize the feature space (c.f. Section IV-B).
Furthermore, computing [(¢¢) involves evaluating Eq. (8). In
particular, computing the dot product of N terms and finding
the minimum is O(N?). Therefore, computing Ao H}(¢y) for
all possible d vectors ¢y is O(N?p™V~1) [3]. Computing
A:H3(¢p),2=1,...,Z, however, is O(ZN?nN=1), because
we repeat this process for all powerful classifiers (in total
Z). Thus, the computational complexity to numerically solve
Egs. (8) and (10) is O((FB + ZN)Nn™N~1). The former
term can be simplified to O(FBN7n~~1) if the number of
classes and the available classifiers is low. Second, dur-
ing training, all powerful classifiers C,,z = 1,...,Z, are
trained for all f number of features, where f = 1,..., F.
The overall complexity of this step is dictated by the cost
of training the most expensive of all classifiers. Namely,
this is O(Zle (£ N, Opain)), Where Z7(f N, Oyain)
denotes the cost of training the most expensive classifier
when f features are used and Oy, is the total number of
examples in the training dataset. Furthermore, to estimate
error probability P,(e]lY = 4,z1,...,2g) involves using
the learned model M. (.) to obtain a label assignment for
each example in the training dataset. Since there are Z
available classifiers and F' possible features, this step re-
quires O(Z}llEteSt( fy N, Owain) + FZOuan). In the for-
mer expression, Z°(f, N, Oy,n) is the testing complexity
of the most expensive classifier when f features are used.
Finally, estimating P(x¢|Y = 4),i = 1,...,N, requires
O(Oyin). Therefore, the overall complexity of training all
powerful classifiers and estimating relevant parameters is
O(Z°Y(F, N, Ouain) + F ZOpain ), where Z°% (F) N, Oin) =
Z?Zl (E"n(f, N, Oain) + E'(f, N, Oain)). As an exam-
ple, consider the case of Z = 1 classifier, i.e., binary
SVM with training complexity O(©2;,F) [33] and testing
complexity O(vF') [34], where v represents the number of
support vectors. Adopting an one—vs—rest approach for mul-
ticlass classification for SVM, the overall training complexity
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Fig. 2: Graphical representation of the proposed approach. (a) Training phase: training of powerful classifiers C,,z =1,..., 7,

parameter estimation, and computing numerical solutions, (b) testing phase: feature acquisition, classifier selection, and label
assignment for a single example. The final output with acquired features, predicted labels, and selected classifiers for all the

examples in the testing dataset is also presented.

becomes O(FNBnN—t + N2pN-1 4 NO2Z,. F). Now, con-
sider two powerful classifiers, i.e., binary SVM and binary
DT. The training and testing complexities of binary DT are
O(F@lrain 10g(®train)) and O(log(glrain))lv reSPeCtiVely [33]
Thus, the overall training complexity remains the same, i.e.,
O(FNBnN 1+ N2pN=1 4+ NOZ,,.F), since the most expen-
sive classifier to train is SVM.

During testing, numerical solutions obtained during training
are utilized to carry out feature and classifier selection as well
as label assignment. First, we initialize the posterior probabil-
ity ¢o 2 [p1,...,pn|%, where p; = P(Y =4),i=1,...,N
(c.f. Section IV-B). Then, features are sequentially acquired
based on Eq. (10). Specifically, at each stage, a new feature
is acquired if the stopping cost is greater than the continuing
cost (see Fig. 2b), both of which have been computed during
training. The process continues until a subset of features is
acquired, or no more features are available. Eq. (8) is then used
to decide which classifier to use (see Classifier Selection block
in Fig. 2b) when the feature acquisition process terminates. At
that point, Eq. (7) is used by the simple classifier to assign
a label to the example currently under consideration. On the
other hand, if one out of the powerful classifiers is selected,
the acquired features are forwarded to that classifier to be
used by M,(.) for label assignment. Algorithm 1 outlines
the testing process of our proposed method, referred to as
Sequential Datum-wise Feature Acquisition and Classifier
Selection (SFCS).

Next, we conduct the complexity analysis of Algorithm 1.
At each stage f, SFCS acquires a single feature in O(1),
and then updates the posterior probability vector. The latter

Note that the training dataset is used to estimate the error probabilities.

Algorithm 1 SFCS method

1: Input: test example [z1,...,2zp], numerical solutions

{l(py), I;(pp)}, set {Mi(.),...,Mz(.)} of trained pow-
erful classifier models

2: Output: classification decision Valy

3: Initialize ¢ = [p1, ..., pn]7

4: for each feature f € F' do

5:  Acquire feature x

6:  Update ¢ using Eq. (3)

7: ifl(¢f) < ff(¢f) then

8: Use Eq.(8) to determine which classifier to use
9: if U = 0 then

10: Determine label assignment Dy
11: Set Valy = D%

12: else if US e {1,...,Z} then

13: Set Valy = y..s

14: end if

15: Terminate feature acquisition process
16:  else

17: Continue feature acquisition process
18:  end if

19: end for

20: Return: Valy

step involves computing N terms requiring O(N) complexity.
Thus, the overall time complexity of the feature acquisition
process across all stages is O(F N). At the same time, compar-
ing I(¢s) and If(¢s) is O(1). To determine which classifier
to use when the feature acquisition process terminates, we
need to compute Z + 1 terms (see Eq. (8)) and determine
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Fig. 3: Illustration of SFCS for 2 examples in the CREDIT
dataset.

TABLE I: Datasets & their characteristics (number of exam-
ples (©), number of features (F'), number of classes (IV)).

Dataset €] F N
Monks 601 6 2
Diabetes 768 8 2
Eye 14980 14 2
Magic 19020 10 2
Student 649 32 4
Credit 1000 20 2
Travel 5454 23 5
Wine 178 12 3
Gender 4746 20 3
Spambase 4601 57 2
Madelon 2600 500 2

the minimum among them. Specifically, computing vG(¢)
requires O(N?) due to taking the inner product and iden-
tifying the minimum among N terms. Similarly, computing
M. Hi(¢s),z = 1,...,Z, requires O(ZN?) considering that
there are Z classifiers. Overall, solving Eq. (8) results in
O(ZN?). If the simple classifier is selected, determining
the label of a single example is O(N?). This consists of
computing the dot product of N terms i.e., O(N?), and
finding the minimum O(N) (see Eq. (7)). In the opposite
case, obtaining a label for the example under consideration
depends on the selected classifier. As an example, considering
that the testing complexity of binary SVM is O(vF) [33],
[34], the overall time complexity of assigning a label to a
single example is O(N? + vNF).

Fig. 3 illustrates the testing phase of SFCS (i.e., Fig. 2b)
for 2 examples in the CREDIT dataset. Specifically, SFCS
acquires 3 features (i.e., “Account Balance”, “Payment Status”,
“Apartment Type”) for example 1 and uses SVM to predict
that the credit risk is low. In contrast, SFCS acquires 2 features
(i.e., “Account Balance”, “Payment Status”) for example 2 and
uses the simple classifier to predict that the credit risk is high.

IV. EXPERIMENTAL RESULTS

In this section, we present and discuss numerical exper-
iments conducted to assess the performance of SFCS. The
experiments are carried out on an Intel(R) Core(TM) i7-
8565U CPU @ 1.80GHz computer with 16 GB memory.
All experimental results are five—fold cross-validated. Cross—
validation is a standard technique used to assess the effec-
tiveness of machine learning models and prevent overfitting.
We use accuracy, the average number of acquired features,
and Receiver Operating Characteristic (ROC) / Area Under

the Curve (AUC) as evaluation metrics. Training and testing
times (in seconds) are also reported.

A. Datasets

We use 11 real-world datasets to carry out experiments, and
their characteristics are reported in Table . MONKS PROBLEM
(referred to MONKS in Table I), DIABETES, EEG EYE STATE
(referred to EYE in Table I), MAGICTELESCOPE (referred to
MAGIC in Table I), STUDENT PERFORMANCE (referred to
STUDENT in Table I), WINE, SPAMBASE, and MADELON
datasets are from OpenML [35]. GERMAN CREDIT (referred
to CREDIT in Table I) and TRAVEL REVIEW RATINGS (re-
ferred to TRAVEL in Table I) datasets are from Kaggle [36],
while GENDER GAP IN SPANISH (referred to GENDER in
Table I) is from UCI machine learning repository [37]. All
datasets are used as is, except for the STUDENT and TRAVEL
datasets, as described next. In particular, we quantize the
variable G5 that represents the final grade in the STUDENT
dataset such that it takes 4 values, i.e., Gz € {0,1,2,3}>.
In the TRAVEL dataset, the attribute Average ratings on
restaurants is selected as the label Y taking five distinct values,
ie, Y €{0,1,2,3,4}.

B. Experimental Setting

To numerically determine the optimum solution, the condi-
tional probabilities P(z;|Y =4),f=1,...,F,i=1,...,N,
are needed. These are estimated as P(z;|Y = i) = %fi’f;l
during training. The notation ©y ; represents the count of ex-
amples with label 7 and x ¢ being a specific value, whereas O;
corresponds to the total number of examples with label i. The
parameter 3 € {2, 3,5, 10,20, 30,40, 50,100} represents the
number of bins considered, and we define the prior probability
P(Y =4) = 1/N to reflect the assumption of equiprobable
labels. During training/testing and before any other processing
is carried out, features are sorted in descending order of feature
variance scaled by the cost coefficient. This avoids considering
all exponentially large numbers of orders that features may
have. This order promotes the acquisition of informative but
low—cost features [3]. We consider two variations of SFCS
that incorporate 2 and 3 powerful classifiers, respectively,
namely SFCS-2X with C' £ {NB, SVM}, and SFCS-3X with
C £ {NB, SVM, DT}. We also consider another variation of
SFCS (i.e., SFCS-2E with C' £ {XGB, RF}) that incorporates
2 ensemble learning methods, i.e., XG Boosting (XGB), and
Random Forest with tree depths 10. During training, the
error P,(elY = i,x1,...,2g) for each classifier C, € C is
estimated. Specifically, trained models M, (X4,...,Xg),z =
1,...,Z, are used to predict labels, which are then compared
with the true labels (see Section. III-D). Then the error
probability is estimated as P,(e|Y = i,x1,...,2g) = %‘ji
Here, O, ; represents the count of error e for the labelli,
whereas ©; is the total number of examples with label i. When
no features are acquired (i.e., S = 0), we set such probability

2Label 0 is assigned if 0 < G3 < 9, label 1 if 9 < G3 < 12, label 2 if
12 < G3 < 15, and label 3 if 15 < G3 < 20.

3Label 0 is assigned if rating € [0, 1], label 1 if rating € (1,2], label 2 if
rating € (2, 3], label 3 if rating € (3, 4], and label 4 if rating € (4, 5].
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TABLE 1II: Accuracy (“Acc”), average number of acquired features (“Feat”), training (“Train”) and testing (“Test”) time in
seconds for the proposed approach (SFCS-2X, SFCS-3X) and baselines. Acc values that are the highest and second highest
are indicated as bold and gray—shaded, and gray—shaded, respectively. Feat values that are the smallest and second smallest
are indicated as bold and gray—shaded, and gray-shaded, respectively.

Dataset | Metric| SFCS—| SFCS— | ETANA | NB SVM |DT Lasso |OLA- |OLA- |LCA- |LCA- |MLA- |MLA-
2X 3X 2X 3X 2X 3X 2X 3X
Monks |Acc [0.657 [0.779 ]0.529 ]0.591 [0.657 [0.922 [0.654 [0.674 [0.797 [0.662 [0.649 |0.661 |0.649
Feat |4.449 [5.234 |[5.188 |6.000 [6.000 |[6.000 |4.800 |6.000 [6.000 [6.000 [6.000 |6.000 [6.000
Train [0.074 [0.143 [0.029 [0.002 |0.017 [0.002 [0.006 [0.008 [0.008 [0.009 [0.005 [0.011 |0.013
Test [0.049 [0.057 [0.030 |0.001 [0.007 [0.001 [0.002 ]0.007 [0.007 [0.007 ]0.008 |[0.006 |0.007
Diabetes | Acc  [0.759 |0.730 |0.749 |0.751 |0.674 [0.706 [0.766 |0.758 |0.750 |0.758 |0.757 |0.759 |0.755
Feat |6.301 [6.059 |5.935 [8.000 |8.000 |8.000 |8.000 |8.000 |[8.000 [8.000 [8.000 |8.000 [8.000
Train [0.114 [0.294 [0.029 |0.001 ]0.004 [0.002 [0.005 [0.014 [0.015 [0.014 [0.015 [0.013 [0.012
Test |0.057 [0.077 [0.021 |0.002 ]0.003 [0.001 [0.003 [0.007 [0.007 ]0.008 ]0.008 [0.007 |0.008
Eye Acc |0.574 [0.751 [0.500 |0.437 [0.551 (0475 |0.551 (0368 (0419 [0.371 [0.375 [0.371 ]0.375
Feat [4.258 [8.109 |[12.261 |14.000 |14.000 |14.000 |13.400 |14.000 |14.000 |14.000 |14.000 |14.000 |14.000
Train [61.092 [48.510 [ 1.316 |0.004 [4.774 [0.106 [0.496 [5.346 |[5.701 [5.364 [5.676 [6.922 [6.452
Test |1.787 [1.030 [0.043 |0.001 [0.776 [0.006 |[0.009 [0.315 [0.353 [0.309 [0.334 [0.421 [0.467
Magic Acc  |0.808 [0.816 |0.775 [0.727 |0.806 [0.819 [0.789 [0.860 |0.856 [0.823 [0.823 [0.824 |0.823
Feat [5.946 |7.527 |6.302 |10.000 [10.000 |10.000 [9.000 [10.000 |10.000 |10.000 |10.000 |10.000 |10.000
Train |39.884 [36.798 [0.956 |0.003 [4.256 [0.215 |0.501 [4.804 |[4.854 [4.851 [4.852 |5.878 [5.929
Test [2.100 |[1.515 [0.033 [0.002 [0.608 [0.002 [0.090 [0.258 [0.246 [0.285 [0.264 [0.306 [0.310
Student |Acc |0.835 [0.847 [0.790 [0.532 |0.592 |0.801 [0.650 {0.639 |0.676 [0.592 [0.592 |0.592 |0.590
Feat |6.903 |4.772 [9.035 [32.000 [32.000 [32.000 [29.600 [32.000 [32.000 |[32.000 |[32.000 |[32.000 |32.000
Train |5.289 [11.712 2543 |0.002 [0.018 [0.003 |[0.101 [0.033 [0.030 [0.033 [0.028 [0.051 [0.037
Test [0.050 [0.036 [0.060 |0.001 [0.001 [0.001 [0.050 ]0.009 [0.010 [0.008 ]0.012 [0.017 |0.009
Credit Acc |0.761 |0.741 [0.714 |0.700 [0.700 [0.664 |0.734 [0.720 [0.697 |0.713 ]0.698 [0.704 |0.698
Feat |12.088 |10.011 | 11.846 |20.000 |20.000 |20.000 |17.800 |20.000 |20.000 |20.000 |20.000 |20.000 |20.000
Train [0.568 [0.693 [0.140 |0.002 [0.031 [0.006 |[0.017 ]0.032 [0.028 [0.032 [0.029 [0.035 [0.028
Test [0.122 10.112 [0.082 |0.001 ]0.005 [0.002 |0.004 [0.009 [0.010 ]0.010 [0.006 |0.010 [0.010
Travel Acc |0.814 |0.781 [0.676 |0.615 |0.710 [0.733 [0.660 [0.774 ]0.779 [0.759 [0.765 [0.759 |0.765
Feat [8.613 [8.477 [9.985 |23.000 [23.000 |23.000 |23.000 [23.000 |23.000 [23.000 |[23.000 |23.000 [23.000
Train |51.910 | 71.475 [ 11.140 |0.002 ]0.536 [0.044 |0.776 [0.764 [0.670 [0.762 [0.671 [0.788 |0.837
Test [0.674 [0.744 [0.738 |0.002 [0.109 [0.003 [0.005 [0.069 [0.063 [0.070 [0.069 [0.074 [0.077
Wine Acc 0955 [0.943 [0.950 [0.950 [0.669 |0.910 [0.944 (0983 (0983 [0.972 [0.972 [0.972 |0.972
Feat [5.982 [6.442 |4.349 |13.000 [13.000 |13.000 |8.200 |[13.000 |13.000 |13.000 |13.000 |13.000 |13.000
Train [0.791 [0.989 [0.266 |0.001 [0.003 [0.002 [0.028 [0.003 [0.004 [0.004 [0.006 |0.004 |0.006
Test [0.010 [0.010 [0.008 |0.001 ]0.001 [0.001 [0.009 ]0.004 [0.010 [0.004 ]0.006 |0.004 |0.006
Gender |Acc [1.000 |1.000 [0.965 |0.588 |0.588 [1.000 [0.928 |0.961 [0.954 10954 0955 [0.954 |0.955
Feat |1.884 |2.086 |3.678 [20.000 |[20.000 |[20.000 |17.800 |20.000 |20.000 |20.000 |20.000 |20.000 |20.000
Train |7.686 [8.262 [0.367 |0.001 [0.488 [0.010 |0.974 (0404 [0411 (0403 [0422 [0.373 [0.445
Test [0.186 [0.152 [0.164 |0.001 [0.089 [0.003 [0.031 [0.027 [0.025 ]0.026 [0.029 [0.025 ]0.028
Spambase| Acc  [0.880 [0.903 [0.835 |0.826 [0.690 [0.886 [0.909 [0.916 [0.915 [0.918 [0.917 [0.918 |0.917
Feat |10.498 [8.222 [30.922 |57.000 [57.000 [57.000 |50.600 |[57.000 |57.000 [57.000 [57.000 |57.000 |57.000
Train |27.167 |30.860 [0.199 |0.004 [0.773 [0.063 |0.034 ]0.670 [0.555 [0.658 [0.565 |[0.638 |0.659
Test [0.368 [0.334 |[1.174 |0.002 [0.145 [0.010 [0.001 [0.047 [0.050 [0.049 [0.048 [0.053 [0.060
Madelon |Acc [0.698 [0.708 [0.621 ]0.593 [0.617 [0.743 [0.560 [0.590 [0.653 |0.587 [0.643 |0.587 |0.643
Feat |12.620 |10.900 | 68.017 |500.000 | 500.000 | 500.000 | 492.000 | 500.000 | 500.000 | 500.000 | 500.000 | 500.000 | 500.000
Train |196.147304.1151.332 |0.018 |2.218 [0.470 |[3.022 [3.689 |[3.838 [3.740 [3.809 [3.440 |3.506
Test [0.291 [0.207 |[1.162 |0.001 [0.512 [0.012 |[0.002 ]0.319 [0.358 [0.325 [0.335 [0.301 [0.317
Rank Acc 432 (459 |8.23 10.59 ]9.86 6.77 7.86 5.32 5.59 6.77 7.09 6.77 7.23
Feat |1.82 1.91 2.45 8.91 8.91 8.91 4.64 8.91 8.91 8.91 8.91 8.91 8.91

to 1/N assuming a random choice between the N labels. We
consider Q;; = 1,Vi # j and Q;; = 0,Vi,j € {1,...,N}.
We assume feature cost to be the same for all features, i.e.,
cr=cVf=1,... F.

C. Results & Discussion

We compare SFCS-2X and SFCS-3X with: (i) instance—
wise joint feature selection and classification algorithm
ETANA [3], (ii) the offline feature selection algorithm LI1-
norm based feature selection (Lasso), (iii) supervised learning
algorithms NB, SVM with Gaussian kernel, and Decision Tree

(DT), and (iv) dynamic classifier selection algorithms, OLA,
LCA, and MLA [21]. We consider the same pool of classifiers
as SFCS for the DCS algorithms, resulting in the following
variations: OLA-2X, OLA-3X, LCA-2X, LCA-3X, MLA-
2X, and MLA-3X. The DESIib [21] is used for DCS methods
with default parameter values (e.g., k¥ = 7) following the
literature [10], [16], [18]. The values of n = 10,V = 10,
and e = 0.0001 [3] are considered for ETANA. For SFCS,
a grid search was conducted over the possible values of
hyperparameters A, ¢, and 3. The results that yield the best
accuracy using the smallest average number of features are
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presented in Table II. In all the experiments, n = 10.

SFCS outperforms, or is competitive with, all baselines in
terms of accuracy and the average number of acquired features.
Moreover, it is evident that SFCS consistently performs better
irrespective of the external classifier pool. Specifically, for
all the datasets except DIABETES, CREDIT, and WINE, the
accuracy increase of SFCS-3X is between 0.02% and 30.93%
when compared to SFCS-2X. This improvement, however,
is achieved by utilizing 10.72% to 90.43% more features
on average except for STUDENT, TRAVEL, SPAMBASE and
MADELON datasets. It is intuitive that fusing with a powerful
external classifier such as DT, which performs better than
SVM and NB, can lead to accuracy improvements. In the EYE
dataset, DT is second to SVM in accuracy, but all the external
classifiers have lower accuracy, nearly around 0.5. In this case,
to achieve better accuracy, SFCS-3X utilizes 90.43% more
features on average compared to SFCS-2X.

Comparing SFCS with ETANA, a recently proposed
instance-wise joint feature selection and classification algo-
rithm, it is observed that SFCS-2X achieves better accuracy
(0.52% to 24.23%) in all datasets, while SFCS-3X’s accuracy
is improved with respect to ETANA from 3.60% to 50.20%,
except for the DIABETES and WINE datasets. Additionally, the
number of average acquired features in these cases is smaller
(5.65% to 81.45% in SFCS-2X, and 15.10% to 83.97% in
SFCS-3X) compared to ETANA, except for the DIABETES,
CREDIT, and WINE datasets for SFCS-2X, and MONKS, DI-
ABETES, MAGIC, and WINE for SFCS-3X. In the DIABETES
and WINE datasets, the accuracy of SFCS-3X is only 2.45%
and 0.65% less than ETANA, respectively, while acquiring a
few more features. The decrease in accuracy may be due to the
lower performance of DT, which is observed when DT is used
as a standalone classifier for these two datasets. On the other
hand, for the MONKS and MAGIC datasets, the accuracy im-
proves (47.17% and 5.27%, respectively) compared to ETANA
by using 0.90% and 19.44% more features, respectively. These
observations validate that the addition of powerful classifiers
can indeed enhance accuracy, mainly when these classifiers
are utilized to assign labels to certain examples.

We observe that SFCS outperforms offline Lasso in almost
all datasets except DIABETES and SPAMBASE. SFCS achieves
better accuracy (between 0.51% to 36.32%) using 7.31%
to 97.78% fewer features on average, with the exception
of MONKS (9.04% more features for SFCS-3X). For the
DIABETES dataset, there is a small accuracy drop (0.85% for
SFCS-2X and 4.60% for SFCS-3X compared to Lasso), yet
fewer number of features on average are acquired (21.24%
and 24.27% fewer features for SFCS-2X and SFCS-3X). For
SPAMBASE, there is also a small accuracy drop (3.20% and
0.72% for SFCS-2X and SFCS-3X) but fewer average number
of features (79.25% and 83.75% for SFCS-2X and SFCS-3X)
are acquired compared to Lasso.

After comparing SFCS with the DCS algorithms, it is
evident that although DCS methods outperform the rest of the
baselines, SFCS in turn outperforms DCS methods in terms of
accuracy and, more importantly, average number of acquired
features; in over half of the datasets, SFCS displays better
accuracy (between 1% to 100%) compared to DCS methods,

while acquiring 13% to 98% fewer features on average. In
cases where DCS methods perform better in accuracy, SFCS—
2X and SFCS-3X acquire, on average, fewer features (between
21.24% and 85.58%).

Finally, we compute Gini Impurity Reduction (GIR) [38],
an extension of the Gini score [39], to measure the feature
significance for SFCS and the baselines. Specifically, a feature
with higher GIR is more significant than a feature with lower
GIR, since the latter cannot be used to effectively separate the
labels. SFCS and ETANA acquire different number of features
per example. Thus, to compute GIR in this case, we began
by separating examples in subsets according to the features
acquired and used for their classification. For each such subset,
we calculated the difference (i.e., reduction) between the Gini
impurity of the label variable, and the weighted average of the
Gini impurity of each feature. We subsequently computed the
average GIR over the number of features and examples in a
subset, and averaged over five—folds. In Fig. 4, the distribution
of average GIR per example is illustrated for the proposed
approach and the baselines. Note that the average GIR per
example for Lasso and all baselines that use the same number
of features is a single number. We observe that the proposed
approach achieves similar or much better average GIR per
example compared to ETANA. Further, in comparison to Lasso
and methods that use all features, the proposed approach
achieves larger average GIR per example, as seen by looking
at the median and the interquartile range. This experiment
validates the importance of instance—wise feature acquisition.

The observations made confirm that the inclusion of pow-
erful classifiers enhances accuracy. Moreover, the proposed
algorithms seem to attain a good balance between accuracy
and the average number of acquired features by forwarding
difficult—to—classify examples to any of the powerful classifiers
(see also Fig. 5). This is crucial in real-world applications,
where the acquisition of features is either prohibitive (e.g.,
due to cost or unwillingness of users to provide sensitive
information) or the feature space is large.

In order to evaluate the statistical significance of the re-
ported outcomes in Table II, we employ the Friedman test,
which is commonly used to compare the effectiveness of clas-
sifiers across numerous datasets [40]. The average ranks for
Acc and Feat are presented in Table II, and the corresponding
p-values were found to be 1.29 x 1073 and 1.12 x 10719,
respectively. These findings suggest that there exists a notable
difference in the performance of SFCS-2X and SFCS-3X, and
the baselines considered.

D. Evaluation of SFCS-2X and SFCS-3X

In this section, we analyze the behaviors of SFCS-2X and
SFCS-3X during testing. In particular, we start by illustrating
and discussing the behavior of SFCS—2X* by looking into
the evolution of the posterior probability as more features are
acquired. We then look into the effect of weighing parameters
A2 {0, A1, ..., Az}, where \g £ ~, with respect to classifier
selection. Finally, we present the distribution of the number of

4Similar observations are obtained for SFCS—3X.
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Fig. 5: Posterior probability evolution as more features are acquired for four examples in the CREDIT dataset using SFCS-2X.
Green lines indicate correct label assignments, while red lines indicate wrong label assignments.

acquired features during testing for SFCS-2X and SFCS-3X,
and discuss our findings.

Fig. 5 demonstrates the evolution of the posterior proba-
bility of label assignment as more features are acquired. The
reported results are based on five instances of the CREDIT
dataset when SFCS-2X is employed. It is observed that
in the scenario where the simple classifier is selected, the
posterior probability remains significantly away from 0.5 at
every step of the feature acquisition process. This suggests
that the associated example is relatively easy to classify.
Note that when the feature acquisition process terminates, the
example is assigned to the class with the highest posterior

probability as a result of setting €;; = 1,Vi # j and
0 = 0,Vi,j € {1,...,N}. In contrast, for all other cases,
a higher number of features is acquired, while the posterior
probability continues to fluctuate around 0.5. This suggests
that these examples are much harder—to—classify. Considering
the above behavior, SFCS-2X, which sends harder—to—classify
examples to one of the powerful classifiers, achieves better
performance in comparison to prior work [3], which just
employs a simple classifier based on the posterior probability
value, as also seen in Table II.

Next, to better understand the classifier selection process,
we experiment with different weighing parameter values for
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of the MAGIC dataset for four cases: (i) Costly NB
A = {0.288,0.525,0.187}, (ii) Cheap Simple Classi-
fier A\ {0.078,0.312,0.610}, (iii) Cheap SVM A
{0.629,0.281,0.090}, and (iv) Costly Simple Classifier A\ =
{0.595,0.156,0.249}, using SFCS-2X. Note that A, £1—
S22 A, with A, A € (0,1).

A and consider four different cases, as shown in Fig. 6
for SFCS-2X. In case (i), the simple and SVM classifiers
have relatively comparable weights, while NB has the highest
weight, indicating that it is the most expensive to use. In
this case, we observe that on average, the simple and SVM
classifiers classify 45% and 55% of examples, respectively,
while NB is not utilized at all. In case (ii), all examples are
classified using the simple classifier, which is relatively cheap
to use compared to NB and SVM. Similarly, in case (iii), most
examples are classified using SVM, which is the cheapest to
use. Finally, in case (iv), the powerful classifiers have lower
weights than the simple one but these are still comparable.
Thus, we observe that 84% of examples have been classified
by the powerful classifiers, specifically NB, which has the
least cost, and the rest are forwarded to the simple classifier.
Overall, as expected, weighing parameter values influence
the classifier selection process during testing, highlighting the
need to carefully select such values in practice, especially if
any relevant knowledge is available.

Finally, Figs. 7 and 8 provide the distribution of the number
of acquired features during testing for the SPAMBASE dataset
in the case of SFCS-2X and SFCS-3X, respectively, when
¢ = 0.00001, and 8 = 30. In Fig. 7, we consider A =
{0.39,0.29,0.32}. We see that a simple classifier is selected
in most cases where the number of features is lower. On the
other hand, when the number of acquired features is higher,
those examples are forwarded to NB and SVM. NB is 20%
better in accuracy compared to SVM when it is a standalone
classifier for SPAMBASE dataset (see Table II). Therefore,
NB is preferred compared to SVM for this specific case. In
Fig. 8, the simple classifier is selected for fewer features, and
examples are forwarded to powerful classifiers when more
features are acquired. In SFCS-3X, when comparably equal
weights A, are assigned to powerful classifiers, we observe
that only DT is preferred compared to SVM and NB. At the

same time, DT’s performance is better when it is a standalone
classifier for SPAMBASE dataset (accuracy is 7% and 28%
higher than NB and SVM). Therefore, in Fig. 8, even for
A = {0.59,0.01,0001,0.04}, DT is preferred over NB and
SVM. We observe that introducing a new powerful classifier
does not significantly affect the feature distribution i.e., SFCS—
2X and SFCS-3X can classify most examples using the simple
classifier with very few features (less than half of the available
features). However, when more than half of the features are
acquired, SFCS tends to send the corresponding examples to
powerful classifiers, indicating that they are harder—to—classify.
This insight can tremendously help speed—up the training
phase of SFCS by training the powerful classifiers only on
this subset of features. Finally, since SFCS acquires a different
number of features per example in contrast to the rest of the
baselines, its decisions are much easier to interpret.

E. Comparison to Ensemble Learning

Finally, we compare SFCS-2E with often used ensemble
learning methods (i) XGB, and (ii) RF (see Table III). We
observe that SFCS-2E outperforms both XGB and RF for over
half of the datasets (between 1% to 89%) while acquiring 3%
to 93% fewer features on average. For the cases where SFCS—
2E is outperformed by XGB (1% to 8% drop in accuracy),
it acquires 78% to 99% fewer features on average. When
outperformed by RF, SFCS-2E acquires 63% to 81% less fea-
tures. Furthermore, SFCS-2E outperforms both SFCS-2X and
SFCS-3X, demonstrating the ability of SFCS to incorporate
additional, and more complex classifiers.

Last but not least, Fig. 9 shows that the proposed framework
generalizes well for imbalanced datasets (i.e., datasets in which
the minority class accounts for 1% — 39% of the samples),
particularly so when using ensemble classifiers (i.e., SFCS—
2E). Comparing the accuracy of SFCS-2E (see Table III) with
SFCS-2X and SFCS-3X (see Tabel II) further confirms this
point.

V. CONCLUSIONS

In this paper, we proposed a method for sequential datum—
wise feature acquisition and classification when various clas-
sifiers are available. Our proposed approach, SFCS, involves
sequentially acquiring features and utilizing them to classify
examples using either a simple classifier or one out of a set
of powerful classifiers. After validating SFCS on several real—
world datasets and comparing it with existing algorithms, we
have found that the proposed approach achieves a favorable
balance between accuracy and the average number of acquired
features. Additionally, the simple classifier is utilized for easy—
to—classify examples, while challenging ones are forwarded to
the powerful classifiers, thus improving overall accuracy. This
observation reinforces the effectiveness of SFCS in practical
applications. Furthermore, the selection of classifiers during
testing is influenced by the relative weighing parameters.

Nonetheless, the proposed approach has certain limitations
that we intend to address in the future. Firstly, there is
a training time overhead as we have to train all powerful
classifiers for all the possible number of features. For F
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TABLE III: Accuracy (“Acc”), average number of acquired features (“Feat”), training (“Train”) and testing (“Test”) time in
seconds for SFCS—2E and ensemble learning methods. Highest and second highest Acc values are indicated as bold and gray—
shaded, and gray—shaded, respectively. Smallest Feat values are indicated as bold and gray—shaded.

Method Metric| Monks | Diabetes | Eye Magic | Student | Credit | Travel Wine Gender | Spambase | Madelon
SFCS-2E | Acc 0.973 0.744 0.928 | 0.878 0.858 0.768 0.896 0.921 1.000 0.896 0.748
Feat 6.000 | 2.971 12.747| 9.477 | 2.202 15.349 | 15.008 | 2.809 1.848 10.558 7.208
Train | 2.312 2.931 29.125| 62.751 | 19.043 7.816 91.570 7.273 24.804 62.072 1619.708
Test 0.259 1.032 9.681 | 10.977 | 1.173 0.535 26.177 0.037 0.822 1.239 1.060
XGB Acc 0.933 0.736 0.491 | 0.883 0.826 0.742 0.801 0.955 1.000 0.932 0.815
Feat 6.000 8.000 14.000{ 10.000 | 32.000 20.000 | 23.000 13.000 20.000 57.000 500.000
Train | 0.094 0.175 1.007 | 3.235 0.390 0.265 1.818 0.118 0.288 0.902 3.332
Test 0.002 0.002 0.008 | 0.010 0.005 0.002 0.004 0.002 0.002 0.005 0.004
RF Acc 0.875 0.768 0.495 | 0.868 0.831 0.723 0.817 0.983 1.000 0.925 0.706
Feat 6.000 8.000 14.000{ 10.000 | 32.000 20.000 | 23.000 13.000 20.000 57.000 500.000
Train | 0.321 | 0.315 1.544 | 4.639 | 0.346 0.329 0.938 0.244 0.538 0.814 2.531
Test 0.017 0.012 0.034 | 0.039 0.017 0.017 0.017 0.014 0.016 0.022 0.017
features, a classifier C,,z = 1,...,Z, is trained in total F' the proposed framework to combine decisions from multiple

times. To mitigate this issue, based on the insights gained from
Figs. 7 and 8, we plan to explore training powerful classifiers
using a subset of features. We also plan to investigate the
potential of using a multi—-armed bandit approach to expedite
the training process. Secondly, the accuracy of the proposed
approach is affected by the ordering of features. With F'
features involved, there exist F'! possible feature orderings.
Thus, we intend to extend this work to enable the acquisition
of features in any order, similar to [41]. Thirdly, the choice of
classifier for each example has an impact on overall accuracy.
To enhance performance and robustness, we plan to extend

classifiers (i.e., ensemble learning [1], [9]), contrary to just
using the decision of one classifier.

APPENDIX A
First, consider the error probability P,(e,Y = i|z1,...,x3)
of a given classifier C,. From Bayes’ rule, we have that:
) P.(e,Y =i|z1,...,zs5)
P.(elY =i,zq,..., = - , (Al
(elY =i, rs) PO —iler... . 29) (A.1)

Authorized licensed use limited to: UNIVERSITY AT ALBANY. Downloaded on April 25,2024 at 19:25:11 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3334707

SACHINI PIYONI EKANAYAKE et al.: SEQUENTIAL DATUM-WISE FEATURE ACQUISITION AND CLASSIFIER SELECTION 13
1.0 ~——- o 1.0
‘—‘SFCS-ZX (AUC = 0.53) —— SFCS-2X (AUC ; 0.82) Z - SFCS-2X (AUC = 0.84)
v 0.8 ---- SFCS-3X (AUC = 0.80) v 0.8 ---- SFCS-3X (AUC = 0.64) v 0.8 - SFCS-3X (AUC = 0.76)
® —-— SFCS-2E (AUC = 0.99) © —-— SFCS-2E (AUC = 0.81) © SFCS-2E (AUC = 0.93)
c |/ T e ETANA (AUC = 0.55) -4 e ETANA (AUC = 0.83) -4 - ETANA (AUC = 0.83)
(] Lasso (AUC = 0.53) [P R e Lasso (AUC = 0.83) [0) Lasso (AUC = 0.84)
206 -~ NB (AUC = 0.54) 206 ---- NB (AUC = 0.82) 206 - NB (AUC = 0.76)
= SVM (AUC = 0.77) = SVM (AUC = 0.79) = SVM (AUC = 0.85)
o DT (AUC = 0.93) o DT (AUC = 0.67) o DT (AUC = 0.80)
a4 ---- OLA-2X (AUC = 0.72) Q04 ---- OLA-2X (AUC = 0.82) Q04 - OLA-2X (AUC = 0.90)
< OLA-3X (AUC = 0.80) g OLA-3X (AUC = 0.78) g OLA-3X (AUC = 0.88)
= LCA-2X (AUC = 0.72) c LCA-2X (AUC = 0.82) c LCA-2X (AUC = 0.90)
= 0.2 —— MLA-2X (AUC = 0.72) = 0.2 —— MLA-2X (AUC = 0.82) = 0.2 MLA-2X (AUC = 0.90)
. ---- MLA-3X (AUC = 0.80) . ---- MLA-3X (AUC = 0.78) . - MLA-3X (AUC = 0.88)
XGB (AUC = 0.95) XGB (AUC = 0.79) XGB (AUC = 0.93)
RF (AUC = 0.96) , RF (AUC = 0.83) ’ RF (AUC = 0.92)
8% 02 04 06 08 10 %80 02 04 06 08 10 %80 02 04 06 08 10
False Positive Rate False Positive Rate False Positive Rate
(a) MONKS dataset (b) DIABETES dataset (c) MAGIC dataset
1.0 e 1.0 7 1.0
””” SFCS-2X (AUC = 0.94)
v 0.8 ---- SFCS-3X (AUC = 0.95) o 0.8 - SFCS-3X (AUC = 0.63) v 0.8 - SFCS-3X (AUC = 0.93)
® —— SFCS-2E (AUC = 0.97) © — SFCS-2E (AUC = 0.75) T SFCS-2E (AUC = 0.98)
e B/ L s e ETANA (AUC = 0.94) e« | S e ETANA (AUC = 0.76) o ETANA (AUC = 0.90)
) Lasso (AUC = 0.93) ) Lasso (AUC = 0.76) 9] Lasso (AUC = 0.91)
>06 -=-- NB (AUC = 0.84) 2 0.6 ---- NB (AUC = 0.74) 206 - NB (AUC = 0.88)
-"ﬁ SVM (AUC = 0.96) “% SVM (AUC = 0.53) ‘u:; SVM (AUC = 0.93)
) q DT (AUC = 0.87) o DT (AUC = 0.61) o DT (AUC = 0.83)
Q0.4 ---- OLA-2X (AUC = 0.89) Q04 ---- OLA-2X (AUC = 0.76) Q04 - OLA-2X (AUC = 0.94)
g OLA-3X (AUC = 0.84) e OLA-3X (AUC = 0.69) g OLA-3X (AUC = 0.89)
'b LCA-2X (AUC = 0.83) 't 7 7 ) LCA-2X (AUC = 0.76) l'_— LCA-2X (AUC = 0.94)
0.2 —— MLA-2X (AUC = 0.83) 0.2 /";’ L —— MLA-2X (AUC = 0.76) 0.2 MLA-2X (AUC = 0.94)
. ---- MLA-3X (AUC = 0.81) i ---- MLA-3X (AUC = 0.69) . - MLA-3X (AUC = 0.89)
XGB (AUC = 0.95) [ XGB (AUC = 0.75) XGB (AUC = 0.96)
RF (AUC = 0.95) y72d RF (AUC = 0.76) RF (AUC = 0.97)

0.2 0.4 0.6

False Positive Rate

0.8 1.0 0.2 0.4

(d) STUDENT dataset

False Positive Rate

(e) CREDIT dataset

©
=)

0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(f) TRAVEL dataset

=
o

=
[=)

—— SFCS-2X (AUC = 0.98)

=== SFCS-3X (AUC = 0.94)

—-— SFCS-2E (AUC = 0.99)

ETANA (AUC = 0.99)

Lasso (AUC = 0.99)

---- NB (AUC = 1.00)

SVM (AUC = 0.89)
DT (AUC = 0.93)

-=-- OLA-2X (AUC = 1.00)
OLA-3X (AUC = 1.00)
LCA-2X (AUC = 1.00)

—— MLA-2X (AUC = 1.00)

===+ MLA-3X (AUC = 1.00)
XGB (AUC = 1.00)

RF (AUC = 1.00)

o
©

g
o

°
IS

True Positive Rate
True Positive Rate

©
[N}

—— SFCS-2X (AUC = 0.89)

—— SFCS-2X (AUC = 1.00)

--=- SFCS-3X (AUC = 1.00) 0 0.8 ---- SFCS-3X (AUC = 0.89)
—— SFCS-2E (AUC = 1.00) © —— SFCS-2E (AUC = 0.91)
------- ETANA (AUC = 1.00) o < ETANA (AUC = 0.91)
Lasso (AUC = 0.77) 206 Lasso (AUC = 0.95)
---- NB (AUC = 0.77) 2 Y --=- NB (AUC = 0.94)
SVM (AUC = 0.75) = SVM (AUC = 0.78)
DT (AUC = 1.00) o DT (AUC = 0.88)
---- OLA-2X (AUC = 1.00) Q04 ---- OLA-2X (AUC = 0.95)
OLA-3X (AUC = 1.00) g OLA-3X (AUC = 0.92)
LCA-2X (AUC = 1.00) = LCA-2X (AUC = 0.95)

—— MLA-2X (AUC = 0.95)
=== MLA-3X (AUC = 0.92)
XGB (AUC = 0.97)
RF (AUC = 0.97)

—— MLA-2X (AUC = 1.00)
===+ MLA-3X (AUC = 1.00)
XGB (AUC = 1.00)
RF (AUC = 1.00)

©
[N

o
==
ol

0.2 0.4 0.6 0.8

False Positive Rate

1.0 0.2 0.4

(g) WINE dataset

False Positive Rate

(h) GENDER dataset

0.6 0.8 1.0 1.0

0.2

0.4 0.6 0.8
False Positive Rate

(i) SPAMBASE dataset

Fig. 9: ROC and AUC of the proposed approach and the baselines for imbalanced datasets.

which implies that:

P.(e.Y =ilor,....x5) = Po(e]Y = i,a,...,5)

x P(Y =i|xy,...,x5). (A2)

At this point, we use Eq. (A.2) to rewrite Eq. (2) as follows:

N
hy =Y Q%.¢%, (A3)
=1

A

where Q% ., £ P.(e]Y = i,x1,...,x5). Defining Qg . =
[@Q%.,...,QF.]", Eq. (A.3) takes the final form of Eq. (4).

APPENDIX B

For N = 2 and Z = 1, the optimum classifier selection
method becomes:

U = argmin[\ Hg(¢s)]- (B.1)
te{0,1}
Let the posterior probability be ¢ = [p, 1 —p]T, where ¢}, =

p, when S features have already been acquired. We assume

Q?S,l = qlivo < Qi < 1,Vi = 1,2, where Qg1 = [Q%ﬂQ%]T'
We consider ¢f = 0.3, ¢ = 0.2 and ;; = 1,Vi # j, Qi =
0,Vi,j € {1,2}. Consider vy = Ao = 1 —X,0 < A1 < 1
(see Eq. (1)), and let us simplify the form of the cost curves
MNeHY(¢ps). Specifically, for ¢t = 0, we have:

Aop, 0<p<0.5
M HY(p5) = { P P (B.2)
Xo(l—p), 05<p<1
On the other hand, for t = 1, we have:
MHg(¢s) = M(gip+¢i(1—p))
= Mgl — a})p + Mgt (B.3)

As shown in Fig. 1, the cost curves in Egs. (B.2) and (B.3)
may intersect, thus creating regions in the posterior probability
p space, where the simple classifier is preferred compared to
the powerful classifier and vice versa. In particular, when the
posterior probability p falls in either of the intervals [0, o]
and [ag,1] (referred to as region A in Fig. 1), the simple
classifier is selected (i.e., U = 0). In contrast, when the
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posterior probability p falls in the interval (ay,cas), where
0 < a1 < 05 < ay < 1, the powerful classifier is
selected (i.e., US = 1). Next, we determine the conditions
that A\; € (0,1) needs to satisfy, so that these regions exist.

We start by looking at the interval [0, 0.5) and the intersec-
tion of the curves described by Eqgs. (B.2) (upper part) and
(B.3). Specifically, we determine the point of intersection by
solving for a; as follows:

Xoar = Ai(gf — qi)an + \igf —

(1= A)ex = Ailgr — ¢F)en + Aigf —
)\1‘]%

(1 =X1) = Ailgr —af)

(B.4)

o] =

We compute \; such that o; € [0,0.5). Specifically, Alq% >0
because A\; € (0,1) and ¢? € [0, 1]. Therefore to satisfy a; >
0, the denominator of Eq. (B.4) should be:

(I=X1) =gt —q3) >0—
1—)\1(1+q}—q%)>0—>
1> M(1+q —qF) —

1
M<—F—— S m. (B.3)

1+q — ¢
Also to satisfy a; < 0.5, Eq. (B.4) should be:

\ig?
(1—X1) = Ailgt —q})
Mg <051=M(1+q —q))—
M@ + 050 (1+qh —¢3) < 05—
M(@E+05(14+q1 —¢?) <05 —

<05 —

A< 0.5 .
q; +0.5(1+ g1 — q7)
A< 1 —
2¢i +1+4qi —qf
: 2 e (B6)

MN<— A
1+qi +q

Next, we look at the interval (0.5,1] and the intersection
of the curves described by Egs. (B.2) (lower part) and (B.3).
Specifically, we determine the point of intersection by solving
for vy as follows:

Xo(1—az) = Mi(gf — qi)az + Mgt —
(1= A1) (1 —az) = Mg — ¢f)aa + Migi —
(1=X1) = Mgi
(1—X1) 4+ Ailg] —q?)
/\1Q%

=1 . B.7
(1=X1) + Mgl — 4}) B

Qg =

We compute A; such that e € (0.5, 1]. Therefore, to satisfy

0.5 < a9, Eq. (B.7) should be:

>\1€I%
(1—=X1)+Mi(qf —a)

<0.5—

05<1—

—

A1qi
(1—X)+Ai(dt — )
Mgl < 0.5(1 =X\ + Mgl —¢2)) —
Al <0.5(1=XM(1— gl +¢3) —
2Xq1 <1-XM(1—q +¢i) =
20q1 + M1 —qi +45) <1—
M(I+gi+q)<1—

1
M < —— 2 4. B.8
Also to satisfy as < 1, Eq. (B.7) should be:
)\1Q%
1-— <1-—
(1—=X1)+Xilqf —q}) —
1

0< At 1 N

(1= A1)+ Mgy —q7)
(B.9)

Here, A\; € (0,1) and ¢f € [0, 1]. Therefore, A\1g; > 0. To
satisfy Eq. (B.9), the following inequality must hold:

(1=X)+Xilg —gi) >0—
1-M(1—gi+¢)>0—

1 N
1—qt +q7
Finally, for a; and s to satisfy 0 < a3 < 0.5 < ag < 1,
A1 should satisfy Ay < pq, A1 < po, A1 < ug and A; < pug.
Therefore using Egs. (B.5), (B.6), (B.8) and (B.10), we choose
A1 such that:

A< 4. (B.10)

A1 < min{pg, po, i3, pa] —

A1 < minfps, po, pal, plo = pz —
1 1 1

T+t —qi’ 14+ +¢"1—qf +4i
1

N < —
1+qi+q

A1 < min
(B.11)

For this example, we select \; = 0.5 where \yg = 1 — \; (see
Eq. (1)).
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