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Abstract

Viral genomes are poorly annotated in metagenomic samples, representing an obstacle to understanding viral
diversity and function. Current annotation approaches rely on alignment-based sequence homology methods,
which are limited by the paucity of characterized viral proteins and divergence among viral sequences. Here,
we show that protein language models can capture prokaryotic viral protein function, enabling new portions of
viral sequence space to be assigned biologically meaningful labels. When applied to global ocean virome data,
our classifier expanded the annotated fraction of viral protein families by 29%. Among previously unannotated
sequences, we highlight the identification of an integrase defining a mobile element in marine picocyanobac-
teria, and a capsid protein that anchors globally widespread viral elements. Furthermore, improved high-level
functional annotation provides a means to characterize similarities in genomic organization among diverse viral
sequences. Protein language models thus enhance remote homology detection of viral proteins, serving as a
useful complement to existing approaches.



Introduction

Viruses of microbes, hereafter, ’viruses’, are abundant in the environment and have wide-ranging impacts on
microbial communities. Much of what we know about viral diversity, ecology, and function comes from analysis of
sequences obtained from environmental samples, yet viruses are difficult to identify, classify, and annotate. Thus,
we make statements about viral biology and their impacts on microbial community structure and function based on
a tiny fraction of viral sequences with sufficient similarity to existing references. In recent years, next-generation
sequencing and increasing computational resources have been applied to catalogue the world’s virome1–7. While
there has been substantial methodological progress in identifying viral DNA in whole community metagenomic
sequence data8–16, sequence feature annotation and overall taxonomic assignment of identified uncultivated
virus genomes (UViGs) has lagged considerably. Viruses have no universal conserved marker genes to enable
broad, unified, taxonomic analysis and thus most of the hundreds of thousands of new viruses uncovered in viral
catalogue studies remain unclassified1–7. Viral taxonomic classification is generally based on using predicted
UViG proteins as features for clustering-based17–19 or machine learning-based20 taxonomic classification. Yet,
as many as 86% of environmental viral protein clusters match uncharacterized protein families or have no hits
at all6,7,16,21,22. Though detailed manual investigation of these sequence clusters may be able to yield hints of
potential functions in some cases, such labor-intensive efforts do not readily scale to the amount of data being
generated. Improved annotation of viral protein families (VPFs) is thus a necessary, unrealized step towards
understanding the roles of viruses in microbial ecology.

Viral protein annotation currently relies on sequence homology using state-of-the-art profile Hidden Markov Model
(pHMM)-based approaches. For viral metagenomics, sequence homology methods suffer from two fundamental
limitations: (1) the limited library of annotated viral protein sequences from which to construct probabilistic se-
quence models and (2) the rate at which viral proteins change, quickly diverging beyond recognition by traditional
sequence homology metrics. An alignment-free method that does not depend on constructing sequence profiles
for statistical sequence homology and that can leverage functional homology between proteins could overcome
both challenges.

Advances in the field of natural language processing have increasingly been utilized to identify viral sequences
in whole community sequencing data, including k-mer frequency9,11 and learned vector representation10,16,23,24

methods. In natural language processing, current state-of-the-art large language models are trained in an unsu-
pervised manner on gigantic corpora of text to predict sequences of words. Recently, this approach has been
used to train protein language models (PLMs) on billions of protein sequences. PLMs capture physico-chemical
properties of amino acids and can resolve protein structural and functional information from sequence input
alone25–32. Unlike sequence, structure and function of viral proteins are better maintained over evolutionary
time due to biochemical and fitness constraints33,34. We hypothesized that annotating VPFs based on functional
homology captured in PLM-based protein representations, rather than strict protein sequence homology, would
improve VPF annotation. Therefore, we developed a PLM-based viral protein function classifier and asked if it
could improve the viral protein annotation problem.

Using curated VPF databases and recently published PLMs, we show that PLM-based representations of vi-
ral protein sequences can capture viral functional homology beyond remote sequence homology. Our analysis
focuses on two aspects of viral sequence annotation: systematic labeling of protein families, and specific function
identification for biologic discovery. First, we utilize our PLM-based classifier to expand the annotated fraction of
VPFs collected from the ocean virome by 29%. To highlight the utility of this approach in biological discovery,
we use the classifier to identify previously unannotated and globally widespread viral-like integrases and ma-
jor capsid proteins (MCPs). Additionally, we demonstrate that the PLM-based representations capture function
groupings specific to viral biology. Finally, we show that a high-level functional classification approach enables
the discovery of shared organizations in diverse sequences from the global oceans, patterns that are obscured
by detailed annotations and lost to sequence homology-based approaches due to sequence diversity of viral



proteins. PLMs capture features of viral proteins that aid in detecting remote homology and are thus a powerful
discovery tool and a complementary method to alignment-based approaches for understanding the functions of
viral populations across the world.



Results

Protein language models capture viral protein function

We first asked whether PLMs can capture properties of viral protein function that are invisible to state-of-the-art
approaches such as pHMMs. Given the extensive resources required to train PLMs, we based our work upon
existing resources, including VPF databases and pre-trained PLMs (Figure 1). Our reference annotations were
based on the Prokaryotic virus Remote Homologous Groups (PHROGs) database, a curated library of VPFs
constructed to capture remote sequence homology and manually annotated to high-level functional categories21.
PHROGs contains 868,340 protein sequences clustered into 38,880 families, of which 5,088 are annotated to 9
functional classes (Figure 2a). The database was constructed to maximize remote sequence homology captured
by each family, though intra-category profile similarities differed between functions (Figure 2b). To evaluate the
performance of PLM-based representations for function annotation, PHROGs sequences were embedded with
a PLM and a multi-class function classifier was trained on VPFs to predict the functional category of sequences
from held out VPFs. We then carried out five-fold cross validation over the entire annotated set with proteins em-
bedded using four pre-trained PLMs28–30 (Supplemental Table 1). The PLM trained on the largest protein dataset
(Transformer BFD28) performed the best of the PLMs evaluated (Extended Data Figure 1), with an average area
under the receiver operating characteristic curve of 0.90 (Figure 2c) and average area under the precision-recall
curve of 0.62 across all classes and folds (Figure 2d). The Transformer BFD model was used for all subsequent
analyses.

A second multi-class classification model, which we used for subsequent analyses, was then trained on all anno-
tated families as well as families of the unknown function category in order to capture sequences that do not match
the functional categories. After classifier training, a new version of the PHROGs database (v4) was released, in
which 57 PHROG families were reclassified. The classifier correctly predicted the re-annotation of 38/57 families
(66.6%) despite being trained on the previous incorrect annotation for those families (Supplemental Table 2). The
performance on the re-annotated families serves as a validation of the classifier’s ability to capture function.

Language model protein embeddings capture viral biology

Having determined that PLM-based representations of viral proteins can predict function, we investigated the
viral protein embeddings to understand what enables the PLM to detect differences between functions. Because
a PLM can produce a dense vector representation for any protein sequence, VPFs were represented as the
centroid of sequence embeddings for constituent proteins, and were visualized for the functionally annotated
PHROGs subset (Figure 3a). We first interrogated the similarity of sequences in a family, and families in a
functional category, using vector similarity. While the sequence-sequence vector similarity in families across all
categories is high (Extended Data Figure 2a), the intra-category family-family similarity varied between functional
categories (Extended Data Figure 2b) but higher similarity did not correspond to better classification performance.
We then asked if there are groupings of categories in the embedding space. We measured the category-category
similarity as the average of the family-family vector similarity for all pairs of families between two categories (Ex-
tended Data Figure 3). We spectrally clustered the category-category distance matrix (Figure 3b), revealing a
biologically meaningful partition of functional categories into those relating to virion structure and infection (clus-
ter1) and those relating to viral genome replication and other host derived genes (cluster2). The partition was
apparent when the embedding space is relabeled with cluster assignment (Figure 3c). We grouped functional
categories into the two clusters identified and trained a binary classifier using five-fold cross validation (Figure 3d)
that resulted in better performance compared to random partitions of the categories into groups of two (Figure 3e).

The ability to classify structural proteins, termed phage virion proteins (PVPs) in bacteriophages, is important
for identifying and grouping viral sequences, and several methods have recently been developed to tackle this
problem35,36. We compared PLM-based classification with existing methods for PVP prediction. Using a PVP



identification task designed previously36,37, our method achieved performance on par with state-of-the-art ap-
proaches (Supplemental Table 3). Thus, the clustering of functions in the embedding space, and partitioning
of viral protein sequences among different functional groupings (whether due to primary sequence, structure, or
other properties) may reflect some of the types of information captured in PLM pre-training which enables function
prediction from PLM-based representations of viral proteins.

Improved classification of proteins from the ocean virome

To further test the capabilities of the trained function classifier, we evaluated its performance against pHMM-
based annotation of the largest pan-ecosystem viral protein family database, EFAM, which was curated from
uncultivated virus genomes identified in the global oceans22. Viral genomes in EFAM are not present in the
PHROGs training sequences, making this dataset well-suited for an external validation of our classifier. To as-
sign ’true’ functional categories to the EFAM VPFs, we first used profile-profile HMM matching based on HMMs
provided by the PHROGs database. 88,605/240,311 (36.9%) of EFAM VPFs matched PHROGs VPFs, of which
66,137 (74.7%) had functional annotation. These PHROGs-annotated EFAM VPFs were also predicted using our
PLM-based functional classifier. We used the F1-score, a measure of classification performance that combines
precision and recall, to evaluate our predictions. A F1-score of 1 indicates perfect recall and precision, and a score
of 0 means either precision or recall is 0. All categories had strong performance (Figure 4a) and the weighted
F1-score across all functional categories was 0.85. Using the validation set, we performed a per-class calibra-
tion analysis (Extended Data Figure 4) and determined a classification decision boundary for each class with a
maximum false discovery rate (FDR) of 10% (Supplemental Table 4, Extended Data Figure 5). Next, we used
the calibrated classifier to predict the functional category of EFAM VPFs not captured by the PHROGs HMMs
(Figure 4b). In total we expanded the annotated fraction of EFAM by 26,770 families, a 29.4% increase over the
number annotated within the EFAM database supplemented with annotation by PHROGs (91,156 families). The
largest increases in annotated functions were for the ’head and packaging’ and ’tail’ categories, which contain
VPFs that retain pairwise sequence embedding similarity for lower pairwise sequence identity in the PHROGs
database (Extended Data Figure 6). This result indicates that PLM-based classification can supplement pHMM
representations for remote homology detection.

PLMs enable identification of a tyrosine integrase family

To determine whether PLM-based functional classifications can accurately identify genes of biological interest
from large datasets, we first examined predictions from the ’integration and excision’ category. This group was
chosen for having the best prediction performance, and detection of viral integrases within host genomes is of
biological interest for identifying temperate bacteriophage. EFAM VPFs predicted in this category can be stratified
based on their annotation in the EFAM database itself, with VPFs having average protein lengths >120 match-
ing annotation to known integrase/recombinase proteins and VPFs with average protein lengths <120 matching
known excisionases (Figure 4c). We validated our integration and excision prediction for EFAM VPFs that were
not annotated in EFAM or by PHROGs HMM matching using both structure and domain predictions (Supple-
mental Table 5). Further investigation of predicted EFAM integrase families led to the annotation of an integrase
(EFAM cluster86903) on a previously reported putative prophage in uncultured Alphaproteobacteria38, support-
ing the utility of this approach.

Our method was also able to annotate related genes in non-viral contexts. The PLM model predicted a pre-
viously unannotated VPF, EFAM cluster158946, as a putative integrase. This cluster caught our attention as
the sequences were located not within viral sequences but rather marine picocyanobacterial genomes, including
members of the globally abundant cyanobacteria Prochlorococcus and Synechococcus. Phylogenetic analysis
revealed these enzymes as an unidentified subgroup within the tyrosine integrase/recombinase family of site-
specific integrases. Cyanobacterial integrases in this sequence cluster are distinct from others commonly seen in
bacteriophages and bacterial mobile genetic elements, or those associated with Tycheposon mobile elements in
Prochlorococcus 39; their closest relatives were to a few members of the diverse group of tyrosine recombinases



associated with VEIME bacteriophage satellites40 (Figure 5a). The predicted integrases have a different domain
structure than is typical of many tyrosine integrases41, yet structural modeling confirmed that this enzyme retains
the key catalytic residues required for activity42 (Extended Data Figure 7). These enzymes are only found within
a subset of available Prochlorococcus and Synechococcus genomes, where they are typically located upstream
of one of two specific tRNAs, either tRNA-Phe or tRNA-Cys. tRNAs are frequent integration sites for mobile
genetic elements43 and phylogenetic groupings of these enzymes correlate with their respective tRNA (Figure
5b), suggesting that these may represent the integration site. The integrases are located within genomic islands
of variable genetic content and are also frequently, though not exclusively, found near a small serine recombi-
nase (Figure 5c-d). Together, these properties suggest that this enzyme defines a mobile genetic element within
marine picocyanobacteria.

PLM-based annotation uncovers dispersed major capsid protein

As a further demonstration of using the PLM-based classifier to uncover biologically informative annotations,
we next turned to viral MCPs. MCPs serve as the core element of the virion capsid and are frequently used
to define viral lineages. To showcase the power of our approach to annotate unexplored regions of viral se-
quence space, we utilized the function classifier to identify unannotated MCPs. The classifier predicted 8,398
unannotated VPFs in the EFAM database as belonging to the ’head and packaging’ category. We manually in-
vestigated one high confidence cluster (EFAM cluster41798) using structural homology and found evidence that
it is a HK97-like MCP. The VPF has high sequence homology to sequences found throughout the oceans, and
their global diversity is broadly divided into two clades (Figure 6a). This MCP is also found in other environ-
ments such as aquatic sediments and freshwater lakes, where it was also unannotated (Supplemental Table 6).
The putative MCP is consistently found near other ’head and packaging’ proteins (Figure 6b), a pattern that is
widely observed among known MCPs in bacteriophage genomes44. Despite the sequence divergence among
the MCP-containing genome scaffolds, the high-level functional annotations provided by the classifier revealed
similarities in the genome organization of this viral element (Figure 6c). Together, these data are consistent with
the identification of a previously unannotated MCP by the PLM classifier, and further highlight the potential for
using patterns in high-level functional annotation as a tool for viral genome identification and/or characterization.



Discussion

While large-scale environmental metagenomic data have revealed an astounding amount of viral diversity, cur-
rent approaches annotate on average less than 30% of viral protein families6,7,16,21,22. This limited understanding
of global viral sequence space represents a clear barrier to our understanding of viral biology, restricting inter-
pretation to those sequences with sufficient similarity to the small fraction of well-characterized viral genomes.
Annotating viral proteins is also key to studies of viral evolution45, characterization of isolate genomes46, and to
understand the role of viruses as disseminators of DNA in microbial populations47. Here, we demonstrate the util-
ity of PLMs to improve classification of sequences within large-scale metagenomic datasets. Our work provides
a proof of concept that high-level viral functions can be learned with PLM-based representations and extends
existing capabilities for remote homology detection. These models thus represent a useful complement to widely
used, state-of-the-art, alignment-based methods to provide novel insights into viral biology. The utility of incor-
porating PLM-based models into bioinformatic discovery workflows is highlighted by the above identifications of
unannotated viral-like proteins from large-scale ocean datasets. The PLM classifier enabled the characterization
of a previously unrecognized integrase that may define a mobile element in abundant marine picocyanobacteria,
as well as that of an unannotated, HK97-like MCP found throughout the global oceans. These preliminary identi-
fications, supported by contextual bioinformatic data, represent only two of thousands of annotations provided by
this approach. Thus, high-level functional annotations can serve a useful role in biological discovery by helping
to identify candidate proteins of interest for detailed study from vast sequence datasets.

As with all classifiers, the PLM model used here is highly dependent on the nature of the training data. PHROGs
functional categories are aggregations that differ in their granularity and specificity, as well as in the number of
VPFs and total sequences they contain. We have relied on the database category definitions and chosen to in-
clude all categories to maintain fidelity to their characterization of the functional space as a whole, as well as the
relevance of all categories in our applied classifier. While the categories ’other’ and ’moron, auxiliary metabolic
gene and host takeover’ are not functional descriptions, they contain groups of functions that make up substantial
fractions of the categories that could be learned by the classifier, including transferases in the former and mem-
brane proteins in the latter.

We show that across all nine categories in PHROGs, a single multi-class classifier was able to learn viral protein
function across the annotated PHROG VPFs. ’Tail’ and ’DNA, RNA, and nucleotide metabolism’ had the highest
predictive performance and the largest number of families. The heterogeneity of the ’other’ and ’moron, auxiliary
metabolic gene and host takeover’ did result in worse performance for these classes, though both could be pre-
dicted. Even with total sequences and number of VPFs in the bottom third of categories, ’lysis’ and ’integration
and excision’ both had high predictive capacity. ’Head and packaging’ has similar counts to the highest perform-
ing classes but did not perform as well. Taken together, the number and diversity of sequences in a function are
factors in the predictability of the function but do not fully explain the performance, highlighting an area for further
investigation.

Of the PHROGs categories, the classifier was able to achieve the largest increase in annotations in the EFAM
dataset for the ’head and packaging’ and ’tail’ categories. These groups had greater intra-family embedding sim-
ilarity compared to other categories for families with low average sequence identity. These categories describe
functions related to virion physical structure and represent one axis of the diversity of viruses. PLMs are hypoth-
esized to perform best at capturing structural similarity in protein sequences27,28; that ’head and packaging’ and
’tail’ have VPFs that are relatively better captured by the PLM could indicate that strongly conserved structural
features are a defining characteristic of these VPFs. The ability to better annotate proteins with these functions
that are foundational for viral biology will contribute to cataloging viruses across environments.

PLM model training is computationally expensive, and one motivation of this work was to determine whether
pre-trained PLMs can be effectively leveraged for challenges in metagenomics through transfer learning, or the



application of knowledge learned in one task to another task. We evaluated four PLMs with different training
corpora, architectures, and objectives. Utilization of a PLM trained on the largest existing protein sequence
database48, including sequences from uncultivated genomes in metagenomic sequencing data, resulted in the
best function classifier performance. Interestingly, supplemental supervision tasks in PLM training related to
structure30 or function29 did not result in better classification performance. It is possible that this is due to the
dearth of viral protein representation in protein structure and knowledge databases, and future work is neces-
sary to determine if there are viral-specific supervised tasks that can enhance PLM training. However, our work
demonstrates that transfer learning with pre-trained PLMs can be utilized for targeted biologic problems by re-
searchers who cannot access the computational resources necessary to train large language models. We note
that our classifier was trained on PHROGs and then calibrated on viral metagenomes from the EFAM global
oceans database, thus making the final model particularly well-suited for discovery in marine metagenomes. For
other ecosystems, such as soils or host-associated microbial communities, the initial PHROGs training could be
augmented by calibrating on ground-truth datasets from the ecosystem under study.

As part of our efforts to explore and validate the classifier predictions, we bioinformatically identified a mobile
genetic element defined by a previously unrecognized integrase related to the tyrosine integrase/recombinase
family. The genomic context of these integrases indicates that their activity contributes to generating genomic
diversity among globally abundant marine picocyanobacteria. We identified representative sequences of this in-
tegrase in cultured isolate and single-cell genomes of Prochlorococcus and Synechococcus and found that the
region immediately surrounding the integrase represents a genomic island whose length, gene content, and gene
orientation varies among individual genomes. Variable genes found near the integrase include putative restric-
tion/modification systems, biosynthetic enzymes, and nutrient acquisition genes, indicating that the integrase-
associated element can move genetic cargo of ecological relevance in the ocean. The consistent proximity of
the integrase to two specific tRNAs suggests these as likely integration sites for the element. The integrases are
also frequently, though not exclusively, found near a small serine recombinase which might contribute to resolving
mobile element insertion into a target molecule49. However, the specific mechanism through which this element
is mobilized or integrated is not yet known. Mobile genetic elements, frequently defined in part by their associated
integrases, are widespread in environmental samples and are still being discovered and characterized39,40. As
such, expanding the ability to rapidly identify such enzymes represents an important step in understanding the
origins and dynamics of these elements. While not specifically investigated here, other proteins classified as
being in the ’integration and excision’ functional category may be of particular interest in viral profiling studies,
where they are used to distinguish between lytic and temperate viral life-cycles13,16,50.

We next mined EFAM predictions in the ’head and packaging’ category to seek unidentified capsid proteins, a
key calling card of viral genomes. The high-throughput classifier annotations identified a strong hit with structural
similarity to a HK97-like MCP and that appears to be widespread in the global oceans. With contigs containing the
MCP in hand, we utilized our classifier to reveal conserved genomic organization across these sequence diverse
contigs. A major benefit of the high-level functional annotations that is particularly important for viral sequences
is their ability to highlight functional conservation that spans sequence-diverse proteins. We find that our newly-
identified MCP is in the neighborhood of other predicted ’head and packaging’ proteins, as would be expected
for capsid genes. In one of the two architectures we identified, this neighborhood is flanked on one side by ’tail’
proteins and on the other side by ’DNA, RNA, and nucleotide metabolism’ proteins, which are in turn flanked
by ’transcription regulation’ proteins and host-associated proteins. Together, this high-level functional annotation
begins to paint a picture of what this viral element ’looks’ like genomically in different ocean regions at a level
of abstraction that may be appropriate for examining features of genome architecture that would be difficult to
resolve from sequence similarity alone.

Our study must acknowledge several limitations. In attempting to systematically annotate VPF function and
highlight the ability to label individual VPFs, we note that for experimentalists interested in annotating UViGs
there are a plethora of methods, parameters, and thresholds to decide, and they may arrive at an annotation for



a specific gene not annotated in large-scale approaches by thorough investigation. Annotation goals are project-
specific and may require different levels of annotation granularity; here we have focused on protein family level
annotations. In selecting the PHROGs database for training the function classifier, we benefited from the high-
level functional category annotation which collapses a wide array of annotation terms into defined categories.
However, the categories vary in their scope and while some are relatively narrow (e.g., ’integration and excision’
and ’lysis’) and their prediction can be relevant to experimentalists, the ones that are comparatively broad are
limited in their ability to provide specific information when predicted.

In conclusion, our PLM-based classifier is trained on the same data that underlies the PHROG pHMMs yet
can detect homology across a larger sequence space, identifying proteins that the original pHMMs and other an-
notation tools did not. This suggests that PLMs are accessing features of sequence space that alignment-based
methods cannot and are thus a complementary approach to these existing, widely-used, methods. Using our
approach, targeted hypotheses about protein function can be gleamed from PLM-based classification and then
tested experimentally, providing a powerful method for directing study into currently hidden functions of interest.



Methods

Viral protein sequence data

The PHROGs VPF database v321 (https://phrogs.lmge.uca.fr/) was downloaded on 01/26/2022. Re-annotation
data was downloaded after the v4 release. The EFAM VPF database was downloaded from its project repository
on the CyVerse Data Commons on 09/07/202251. PHANNs protein sequences and annotations37

(https://phanns.com/downloads) was downloaded on 01/17/2023.

PHROGs intra-category family sequence similarity

PHROG VPF similarity was measured using hhsearch52 for each family against a HMM database of all families
in a category and the average score was collected for each VPF. Category HMM databases were constructed
by converting all category families multiple sequence files downloaded from PHROGs to a3m format and then
constructing a hhm database using ffindex build, ffindex apply, and cstranslate as described in hhsuite v3.3.052.

Protein language models

Protein sequences were embedded to vectors using trained PLMs. The Transformer BFD PLM from the Prot-
Trans28 project was used via the DeepChainBio/BioTransformers python package (https://github.com/DeepChainBio/bio-
transformers). Sequences were embedded with pool mode=’mean’ and batch size=2. Sequences were cut off
at 5,096 amino acids which is the limit of the Transformer BFD PLM. LSTM Uniref90 and LSTM Uniref90 MT
from the ProSE30 project were download from the project GitHub repository and protein sequences were em-
bedded with the embed sequences.py script with –pool avg. Transformer Uniref90 MT from the ProteinBERT29

project was downloaded from the project GitHub repository and protein sequences were embedded using the
get model with hidden layers as outputs function in the proteinbert python package. All protein sequence em-
bedding was performed on 2 NVIDIA TITAN V GPUs.

Classifier training and evaluation

To test the ability of a model to predict a functional category for a test sequence, all labeled PHROG families were
split into five stratified sets for five-fold cross-validation. In each split, training was done on all sequences in the
training families while testing was performed on a single randomly selected sequence from the testing families.
Data preparation for model training was done using scikit-learn53 methods StratifiedKFold and LabelBinarizer.
The same training-validation procedure was used for the five-fold cross-validation of virion structure and infection
(cluster1) vs viral genome replication and other host derived genes proteins (cluster2).

The classifier architecture is a dense, feed-forward neural network, which has been shown to perform well with
protein embeddings as input26, and was trained with tensorflow54. The network has three hidden layers of di-
mensions 512, 256, and 128 trained with 20% dropout and ReLU activation. The output layer is of dimension
equal to the number of functional categories being predicted and has a softmax activation. Input dimension is
equal to the embedding vector length output from the PLM. For PLMs with embedding dimension greater than
1,024, an additional hidden layer of dimension 1,024 was added as the first hidden layer. The model was fit with
the following parameters: n epoch=20, loss=categorical crossentropy, opt=Adam(0.0001), batch size=60. Class
prediction is assigned based on the highest probability of the softmax layer. We did not perform hyper-parameter
optimization, which could result in a higher performing model. For binary classifiers based on clusters of PHROGs
functional categories and for the EFAM classifier, the same architecture and training parameters are used with
the exception of n epochs=5.

For training the PHROGs function classifier used in the EFAM classification experiment, families from the ’un-
known function’ category were included as an additional functional category. However, because the unknown



families may be missing annotation, any family that was predicted by the model trained without the unknown
function category with a score >0.8 was removed from training (n=9,080), leaving 24,712 families for training.

Evaluation for the classifier was measured per-functional category using area under the receiver operating char-
acteristic curve (AUROC), area under precision-recall curve (AUPRC), and the F1-score: F1 = 2 · TP

TP+ 1
2
(FP+FN)

,

where TP, FP, and FN are the number of true positive, false positive, and false negatives predicted, respectively.
ROC and PRC curves, AUC, and F1-score were all calculated using scikit-learn53 methods roc curve, preci-
sion recall curve, and auc. In the case of PHROGs five-fold cross-validation, true labels are known for holdout
families. In the case of EFAM, true labels are assigned based on HMM matching of EFAM families to PHROG fam-
ilies. EFAM families were aligned using clustal omega v1.2.455 and searched against the PHROG HMM database
using hhsearch52. PHROGs functional label assignment was made if an EFAM family matched a PHROGs HMM
with e-value < 1E-10. The label of the PHROGs family with the lowest e-value is considered the true label unless
that label is unknown function in which case the next lowest family label is assigned. For predicting EFAM cate-
gory in the absence of PHROGs HMM hits, the decision threshold probability for category assignment in EFAM
was identified by calculating the per-category maximum F1-score with FDR <= 0.1. Model calibration analysis
was performed with scikit-learn53 calibration curve method and n bins=10. Our trained classifier is available for
download (https://github.com/kellylab/viral-protein-function-plm). For EFAM VPFs with annotation in the EFAM
database, annotation terms present > 10 times in families predicted by the classifier as ’integration and excision’
are shown to highlight the split around proteins of length 120 in the category.

Viral protein family embedding space

PHROGs v4 annotation were used for interrogation of the embedding space. PHROGs families were collapsed
to centroid vectors by taking the column average of the vector representation of all proteins in a family. Uni-
form Manifold Approximation and Projection for Dimension Reduction (UMAP) in python56 was used to visualize
embedded VPFs. Cosine similarity is a measure of similarity between two vectors and is calculated:

cosine similarity =
∑n

i=1
uivi∑n

i=1
ui

∑n

i=1
vi

where u and v are vectors of length n and xi is the i-th element of each vector. It is used to measure sequence-
sequence similarity and family-family similarity from protein vectors and family centroid vectors, respectively, and
calculated using scikit-learn53. Families with vector similarities > 0.999 (n=312) were excluded from category
median family mean sequence-sequence similarity calculation as some families have only duplicate sequences as
PHROGs did not de-duplicate protein sequences. For intra-category similarity, pairwise similarity was calculated
for all category families. For inter-category similarity, each family in one category was compared to each family
in another category with the mean across all pairwise comparisons constituting the category-category similarity.
Differences in the distribution of similarities between categories were evaluated with the independent student
t-test with Bonferroni correction using statannotations57. The category-category similarity matrix was converted
to a network using networkx58 and displayed with spectral layout. The distance matrix was clustered using scikit-
learn53 SpectralClustering with n clusters=2.

PHROGs intra-family sequence similarity

Sequence identity was calculated using the Bio.Align.PairwiseAligner59 method to find the global alignment score
with default scores: match score = 1, mismatch score = 0, and gap score = 0. Sequence identity was calculated
for all pairwise sequence combinations in a family and averaged for a single family score. A linear regression for
family sequence identity and embedding similarity was calculated using scipy60.

Phage virion protein classification

To compare the performance of PLM representations for PVP identification, we used the PHANNs37 database.
PHANNs protein sequences were embedded using the Transformer BFD PLM and a PVP vs ’other’ classifier



was trained with the same architecture and parameters as the cluster1 vs. cluster2 classifier. Training and testing
sequence split is as described previously36. All sequences in the 10 PHANNs validation splits for all PVP classes
are combined to a single PVP training set (n=154,183) and all 10 ’other’ validation splits were combined to a
single ’other’ training set (n=336,151). Testing was done on the held PVP sequences for all classes (n=14,477)
and the held out ’other’ sequences (n=33,402).

Viral protein sequence annotation validation tools

Viral sequence predictions were manually validated using existing sequence and structural homology software.
Individual sequence homology was performed with NCBI-hosted blastp61 using the nr database and default
parameters. Domain prediction was performed using InterPro62. MPI bioinformatics suite63 was used for search-
ing protein sequences against HMM databases using hhpred64 with default databases (PDB mmCIF30 10 Jan,
UniProt-SwissProt-viral70 3 Nov 2021, COG KOG v1.0, PHROGs v4) and parameters and for searching se-
quence databases (nr30 17 jan) for HMM hits using HMMER v3.3.265 with default parameters. Phyre2 was
used for protein structural fold prediction and 3D model prediction66.

Investigation of predicted integrase protein families

A putative integrase protein sequence (MAK08069.1) from cluster158946 was used to search MGniFY67 for sim-
ilar sequences in metagenomic datasets. We took the first MGnify hit, MGYP000503484273 (e-value 3.3E-257),
and used it as a seed to search for additional sequences using the IMG/VR68,69 Viral Protein Database using
default cutoffs (1E-5). The search uncovered putative integrase homologs from Prochlorococcus and Syne-
chococcus genomes, which were interrogated further.

Integrase family sequences originally identified in IMG/VR were used to query a custom database of Prochloro-
coccus genomes from cultured isolates and single cell genomes39 and additional sequences, such as those
from Synechococcus, were retrieved through blastp searches of the NCBI nr database. The tyrosine inte-
grase phylogeny was constructed from a set of tyrosine recombinases extracted from the UniRef50 database
(http://www.uniprot.org/uniref) using HMM models from ref41; a set of integrases associated with Prochlorococcus
Tycheposons and cryptic elements39; and representative sequences of VEIME-associated integrases40 (based
on 40% identity clusters as generated by MMSeqs270). Sequences were aligned with Mafft v7.520 (options
–maxiterate 1000 –genafpair)71, a maximum likelihood phylogeny was generated using FastTree v2.1.11 using
default settings72, and the tree was plotted using iTOL73. Genome regions surrounding the integrases were plot-
ted in R using gggenomes 0.9.7.9000
(https://github.com/thackl/gggenomes).

Major capsid protein analysis

EFAM VPFs classified as belonging to the ’head and packaging’ category, and that were unannotated, were in-
vestigated for putative MCPs. Using structure homology searching with the aligned cluster proteins in hhpred64

as above and individual cluster members in foldseek74, we found that EFAM cluster41798, while most similar
to unannotated proteins, also contained hits to HK97-like MCPs. We next looked for similar proteins encoded
within the GOV2.0 dataset3, as predicted by prodigal75 v2.6.3 (options -p meta –c). The cluster41798 HMM was
used with hmmsearch65 v3.3.2 to identify sequences at a 1E-100 cutoff, yielding a total of 2,203 candidate MCP
sequences. Capsid sequence alignments and phylogeny were computed as above for the integrases. We use
the best hhpred hit for an experimentally determined structure (PDB: 6WKK D, e-value=6E-7) as an out-group
for the MCP sequence tree. To see if the MCP is found in other environments, cluster41798 was used to query
the geNomad database (v1.3)76 of viral protein marker families using hmmscan65 v3.3.2 to identify families at a
1E-100 cutoff, yielding one family (GENOMAD.062939, e-value=9.7E-122). Genome and ecosystem annotation
was pulled from IMG/VR68 where available.



All contigs containing the MCP were used to construct gene neighbor networks. Contigs were de-replicated at
95% identity and protein clusters (PCs) were constructed at 50% identity for all proteins on de-replicated contigs
using MMSeqs2 v14.7e28470 (respective parameters: contig: -c 1.0 –cluster-mode 2 –cov-mode 1 –min-seq-id
0.95; protein: -s 6 -e 1e-5 -c 0.8 –cov-mode 0 –cluster-mode 2 –min-seq-id 0.5 –cluster-reassign 1). The number
of times two PCs are immediately adjacent on contigs is used to construct a network where nodes represent
PCs and edges represent instances of PCs being adjacent. Network visualization was done in cytoscape77. PC
functional classification was assigned using the EFAM-calibrated function classifier. If two classes were predicted
for a PC, the higher probability assignment was used for labeling. Genome regions surrounding the MCPs were
plotted as above for integrase genomes.

Protein structure modeling of identified integrase sequence

Protein structure can be conserved among very distantly related sequences. We previously utilized homology
modeling approaches to identify distantly related structural homologs to novel viral capsid protein sequences78.
Here, we took a similar approach to identify structures related to sequences in our putative integrase family. We
utilized the fully automated protein structure homology-modelling server SWISS-MODEL via the Expasy web
server79 for template selection, target/template alignment, and model generation using default parameters for an
integrase sequence from the Prochlorococcus PAC1 genome (WP 052038630). The top template, as identified by
the Global Model Quality Estimate score, was PDB ID 1Z1B, the phage lambda integrase80. The target/template
alignment has 13% sequence identity, consistent with our sequences not previously being identified as integrases.
The MolProbity protein quality score, provided by SWISS-MODEL, which combines protein structure quality fea-
tures that together reflect crystallographic resolution, was 2.281. The lambda integrase is a tyrosine recombinase
with defined active site residues Arg 212, Lys 235, His 308, Arg 311, His 333, and Tyr 34280. In a study of catal-
ysis requirements for tyrosine recombinases, the key residues strictly required for function were identified as the
Tyr (Y) and Lys (K) residues42. The target/template alignment demonstrates that residues Arg 212, Lys 235, Arg
311, and Tyr 342 are conserved in our target sequence (Extended Data 4, panel A). The sequence is modeled
as a homo-tetramer, consistent with the quaternary structure of the template (Extended Data Figure 4, panel B).

Study code, data, and visualizations

The trained classifier is available for download82 as well as PLM representations for PHROGs and EFAM protein
sequences used in this study. Python packages numpy83 and pandas84 were used for analysis, matplotlib85 and
seaborn86 were used for data visualization, and jupyter notebooks87 was used for analysis.
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Figure 1: Viral protein family (VPF) function prediction using protein language models (PLMs) uncovers
novel biology. (a) VPFs were collected from the curated databases Prokaryotic Virus Remote Homologous
Groups (PHROGs) and EFAM. (b) Protein sequences are embedded using pre-trained PLMs. (c) Embeddings are
used as input to a multi-class classifier for high-level function prediction. (d) Classifier predictions of unannotated
VPFs lead to biologic discovery. HMM- hidden Markov model; BFD- Big Fantastic Database.



Figure 2: Functional category classification of PHROG VPFs with PLM-based protein embeddings. (a)
PHROG category family and total protein numbers. (b) Distribution of pairwise profile similarity of families in a
functional category (DNA, RNA, and nucleotide metabolism- n=1,065; connector- n=133; head and packaging-
n=946; integration and excision- n=105; lysis- n=299; moron, auxiliary metabolic gene and host takeover- n=458;
other- n=560; tail- n=1,219; transcription regulation- n=303). Boxes represent interquartile range; whiskers rep-
resent the entire distribution with the exception of outliers (diamonds); horizontal line indicates median. (c-d)
Multi-class function classifier performance for five-fold stratified splits of annotated PHROGs families. (c) Re-
ceiver operating characteristic curve with average area under curve (AUC) and standard deviation (SD) over five
folds. (d) Precision-recall curve with AUC and SD over five folds. Per fold, training is performed over all proteins
in a family and testing is performed on a random single sequence from test families. Protein sequences were em-
bedded using the Transformer BFD PLM and the classifier consists of a three hidden layer dense neural network
and an output layer with softmax activation.



Figure 3: Investigation of PLM-based embedding of PHROG VPFs. (a) umap projection of PHROG VPFs.
VPFs were represented as the centroid of sequence vectors. (b) Spectral network visualization of the inter-
category family-family similarity (edge weight), which is measured as the mean family-family centroid similarity
across all family pairs between two categories. The category-category similarity matrix is clustered with n=2 into
two groups (black and yellow). (c) Spectral clusters are used to color PHROGs VPF umap projection. (d) Clusters
are used as binary classes for PHROGs VPF classifier as in 2B. (e) Classifier performance on 10 random two
group splits with AUPRC averaged over groups and splits. (d-e) Performance is reported as average AUC over
five folds and error represents one standard deviation.



Figure 4: Functional category classifier validation and discovery with the EFAM database of VPFs curated
from the ocean virome. (a) Precision-recall curve for EFAM VPFs labeled with PHROGs HMMs and predicted
with the PLM-based function classifier. Performance is measured with AUPRC and F1-score. (b) Number of
VPFs in EFAM that are labeled to each functional category based on the category-specific optimal threshold
and not captured by PHROGs HMMs. (c) EFAM VPFs predicted ”integration and excision” class probability by
average protein length in the VPF. Annotation of excisionase (pink) and integrase/recombinase (purple) terms
are for VPFs annotated in EFAM (·). Structural prediction for two EFAM VPFs that do not match PHROGs HMMs
and are unannotated in EFAM (x) are shown with predicted structure, one excisionase (cluster122519) and one
integrase (cluster86903). Decision probability is the FDR-based threshold for ”integration and excision” prediction.
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Figure 5: Identification of an integrase/recombinase within marine picocyanobacteria. (a) Phylogenetic
relationship of the identified integrases (blue) in comparison with tyrosine recombinases described in marine vi-
ral parasites (VEIMES; yellow), cyanobacterial mobile element integrases (green) and classes commonly found
among well-described phage and mobile elements (e.g. IS, PICIs, ICEs). (b) Phylogenetic groupings of full-
length (>350aa) integrases in Prochlorococcus and Synechococcus, in relationship to the closest downstream
tRNA (outer ring) and genome taxonomy (inner ring). Gaps reflect unknown tRNA associations from limitations of
genome assemblies. Purple dots indicate branch supports of 0.5 or greater. (c and d) Genomic context of the in-
tegrase in selected marine Prochlorococcus and Synechococcus genomes, respectively. Colored genes indicate
the integrase (blue), a small serine recombinase frequently found near the integrase (red) and the downstream
tRNA (purple or yellow). Shaded regions connect orthologous genes.



Figure 6: Discovery of a major capsid protein (MCP). (a) Phylogenetic relationship of the MCP and distribution
across the global oceans. The MCP has two major clades (red and blue). Purple dots indicate branch supports of
0.5 or greater. (b) Network depiction of MCP containing contigs where protein clusters (PCs, depicted as nodes)
are constructed from all contigs that contain the MCP and the number of times two PCs are adjacent on a contig
is counted (depicted as edges). For visualization, PCs are filtered for size >= 10 members. Node size reflects
the number of proteins in the PC; edge width reflects the number of times PCs are adjacent; and black halo on
node indicates the PC is a cluster of the MCP. (c) Genomic context of the MCP in selected contigs from the two
MCP clades. Color of nodes (b) and genes (c) are predicted functional class by the PLM-based function classifier.
Networks and genome maps represent the two clades from (a), top (red) and bottom (blue).



Extended Data Figure 1: Performance of four different PLM-based representations for viral VPF functional
classification. Embedded proteins were used to train and evaluate PHROGs functional annotation classification.
Performance is measured as F1-score over five-fold training-testing splits of PHROGs VPFs (n=5). Study is
described by the model architecture, protein source, and whether the PLM is trained with a multi-task training
objective (MT). Boxes represent interquartile range; whiskers represent the entire distribution with the exception
of outliers (diamonds); horizontal line indicates median. BFD- Big Fantastic Database; LSTM- long short-term
memory.



Extended Data Figure 2: Evaluation of embedding similarities of constituent families between functional
categories. (a) Distribution of family average sequence-sequence similarity. (b) Distribution of family-family cen-
troid similarity. (a-b: DNA- n=1,065; connector- n=133; head- n=946; integration- n=105; lysis- n=299; moron-
n=458; other- n=560; tail- n=1,219; transcription- n=303) (c) Significance of pairwise category distribution com-
parison using a two-sided independent t-test with Bonferroni correction (left- lysis vs. integration- p=1.493e-02;
head vs. other- p=1.014e-11; head vs. lysis- p=1.096e-02; head vs. DNA- p=2.098e-10; head vs. transcription-
p=4.978e-07; head vs. connector- p=1.207e-05; head vs. integration- p=2.085e-09; moron vs. other- p=1.205e-
04; moron vs. DNA- p=2.084e-03; moron vs. transcription- p=9.269e-03; moron vs. connector- p=1.484e-02;
moron vs. integration- p=5.970e-05; tail vs. other- p=4.449e-16; tail vs. lysis- p=4.479e-04; tail vs. DNA-
p=3.759e-15; tail vs. transcription- p=1.814e-09; tail vs. connector- p=3.121e-07; tail vs. integration- p=1.482e-
11, right- transcription vs. DNA- p=1.010e-111; transcription vs. connector- p=4.416e-22; transcription vs. tail-
p=7.299e-260; transcription vs. head- p=0.000e+00; transcription vs. other- p=0.000e+00; transcription vs.
lysis- p=0.000e+00; transcription vs. moron- p=0.000e+00; transcription vs. integration- p=0.000e+00; DNA vs.
tail- p=1.943e-208; DNA vs. head- p=0.000e+00; DNA vs. other- p=0.000e+00; DNA vs. lysis- p=0.000e+00;
DNA vs. moron- p=0.000e+00; DNA vs. integration- p=0.000e+00; connector vs. tail- p=4.234e-06; connec-
tor vs. head- p=7.253e-30; connector vs. other- p=2.294e-228 ; connector vs. lysis- p=1.662e-196; connector
vs. moron- p=0.000e+00; connector vs. integration- p=2.827e-271; tail vs. head- p=1.145e-243; tail vs. other-
p=0.000e+00; tail vs. lysis- p=0.000e+00; tail vs. moron- p=0.000e+00; tail vs. integration- p=0.000e+00; head
vs. other- p=0.000e+00; head vs. lysis- p=0.000e+00; head vs. moron- p=0.000e+00; head vs. integration-
p=0.000e+00; other vs. lysis- p=9.303e-21; other vs. moron- p=1.099e-188; other vs. integration- p=6.600e-87;
lysis vs. moron- p=4.171e-204; lysis vs. integration- p=5.199e-138; moron vs. integration- p=1.478e-25). Boxes
represent interquartile range; whiskers represent the entire distribution with the exception of outliers (diamonds);
horizontal line indicates median.



Extended Data Figure 3: Inter-category similarity for PHROGs functional categories. Pairwise family cen-
troid similarities were calculated for every combination of families between the two categories. Score is the
average over all comparisons.



Extended Data Figure 4: EFAM function classifier calibration analysis. (a) EFAM VPFs that have hits to
annotated PHROG HMMs (test set) are used to evaluate the model calibration for each category. For each class,
probabilities across all VPFs in the test set are binned into 10 partitions and the fraction of true positives for
each bin is calculated. A perfectly calibrated model (dotted line) has a true positive proportion equal to the mean
predicted probability for each bin. Below the perfect model indicates overconfidence and under the perfect model
indicates under confidence. (b) Histogram of the number of predictions across the test set for each probability
bin.



Extended Data Figure 5: Decision threshold evaluation for function classifier predictions on EFAM VPFs.
EFAM VPFs with PHROG hits were used as ground truth for prediction with the function classifier. Classifier
thresholds are determined by considering false discovery rate (FDR) and F1-score (F1). The final decision
threshold for each class is the decision boundary with maximal F1 with FDR <= 0.1.



Extended Data Figure 6: Comparison of PLM embedding similarity and sequence identity for PHROG
VPFs. (a) The intra-family pairwise sequence embedding similarity, measured using cosine similarity, and se-
quence identity, measured using global alignment identity, were calculated for all annotated PHROG VPFs. Fam-
ilies are colored by functional category annotation. Solid line represents a linear regression for each function with
shading representing a 95% bootstrapped confidence interval for the regression estimation. (b) Linear regression
results for each category. R-value is measured using Pearson correlation coefficient. P-value is calculated using
the Wald Test.



Extended Data Figure 7: Comparative protein structure modelling of an integrase family sequence sup-
ports annotation as a tyrosine recombinase. (a) Target/template alignment between the Prochlorococcus
PAC1 sequence (indicated as Model 01), and the template sequence 1Z1B, the phage lambda integrase. Red
arrows point to active site residues Arg 212, Lys 235, His 308, Arg 311, His 333, and Tyr 342. Boxed amino
acid regions represent secondary structure. (b) Homology model of Prochlorococcus PAC1 sequence based on
template 1Z1B. Colors indicate individual monomers of the homo-tetramer template protein structure in both a
and b.



Project Model
name

Model
architecture

Protein
source

Mutl-task
training
objective

Number
of proteins

Training
objective

ProSE30 MT-LSTM LSTM Unifref90 yes 76,215,872

Masked token +
predicting contact between
residues in protein structure +
structural similarity of proteins
by SCOP hierarchy

ProSE30 DLM-LSTM LSTM Unifref90 no 76,215,872 Masked token

ProteinBERT29 ProteinBERT Transformer Uniref90 yes ∼106M
Masked token +
GO term annotation

ProtTrans28 protbert bfd Transformer BFD no 2,122M Masked token

Supplemental Table 1: PLMs evaluated for viral protein VPF functional classification. Four PLMs were
used to embedd PHROG VPFs proteins for training and testing the viral function classifier. Model name is name
from original study. PLMs were chosen to vary in the model architecture, protein source, and use of multiple
training objectives.



Method Recall (%) Precision (%) F1-score (%)
PLM-based classifier 90.32 96.88 93.48
*DeePVP 88.10 96.75 92.22
*PHANNs 91.68 76.11 83.17

Supplemental Table 3: PLM-based viral protein sequence embedding for phage virion protein (PVP) clas-
sification task performance. PVP classification task designed previously36 with PHANNs dataset37. * is per-
formance reported previously36.



Category Support Precision Recall F1-score FDR Decision threshold
DNA, RNA and
nucleotide metabolism

20,240 0.92 0.93 0.93 0.08 0.25

connector 2,412 090 0.63 0.74 0.10 0.74
head and packaging 15,601 0.90 0.80 0.85 0.10 0.41
integration and excision 484 0.99 0.91 0.95 0.01 0.46
lysis 2,237 0.90 0.65 0.76 0.10 0.53
moron, auxiliary metabolic gene
and host takeover

4,414 0.90 0.72 0.80 0.10 0.64

other 7,810 0.90 0.62 0.74 0.10 0.50
tail 12,257 0.90 0.83 0.86 0.10 0.45
transcription regulation 682 0.94 0.87 0.90 0.06 0.29

Supplemental Table 4: Functional classifier evaluation for EFAM VPFs labeled with PHROGs annotation.
PHROGs functional annotation was assigned to EFAM VPFs using HMM matching. Support indicates how many
EFAM VPFs matched PHROG VPFs per category. False discovery rate (FDR) is reported for the category
decision threshold.


