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ABSTRACT

We present a sequential acquisition of features and experts

framework for datum–wise classification. The goal is to ac-

curately assign labels for each instance, minimizing the ac-

quisition cost of features and experts. An expert uses domain

knowledge to make decisions. Starting from a prior belief, fea-

tures are sequentially acquired in a feature acquisition stage.

When this stage terminates, the acquired subset of features is

forwarded to an expert acquisition stage, where each expert

provides their decision one at a time. At that time, contrary

to prior work, the label assignment is reached based on the

acquired experts’ decisions thus far. We evaluate the frame-

work’s performance using six real–world datasets and compare

it with existing methods. Experiments reveal that the proposed

framework increases accuracy up to 56% compared to existing

ensemble methods while acquiring 88% fewer features and,

more importantly, 80% fewer experts on average.

Index Terms— supervised learning, instance–wise classi-

fication, feature selection, costly inputs, collective decision

1. INTRODUCTION

In many applications such as medical diagnosis, multiple ex-

perts (e.g., radiologist, primary care doctor) collaborate in ad-

dition to relying on feature observations (e.g., medical history,

imaging scans). This is because, in critical situations, when

arriving at a final diagnosis, collective decision ensures com-

prehensive and accurate medical decision–making [1,2]. How-

ever, these experts and features are costly (e.g., expert decision

cost, feature evaluation cost) [3, 4]. On the other hand, obser-

vations of individual patients may vary [5]; thus, person–wise

decision–making is required. In this context, instance–wise

feature and expert selection and classification have received

considerable attention in machine learning [6–9].

Standard supervised classification (e.g., Support Vector

Machines (SVM)) considers a batch–wise approach where all

features are available and a single expert makes the decision.

This material is based upon work supported by the National Science
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On the other hand, standard ensemble methods consider com-

bining multiple experts’ decisions (e.g., majority voting) [10].

However, they also rely on a batch–wise approach and as-

sume that all features and experts are available during testing.

Conversely, offline feature selection methods (e.g., L1–norm

based (Lasso)) choose a subset of features in the training and

use them for testing. On the contrary, dynamic instance–wise

feature selection techniques [6, 8, 11] choose varying features

for classifying data instances in testing relying on a single

expert decision. Further, Dynamic Ensemble Selection (DES)

techniques [12, 13] acquire all expert decisions during testing

using all available features. If there is disagreement among

experts, they execute instance–wise expert selection and final

decision is reached based on selected subset of experts.

In contrast to prior work, in this paper, we propose an

approach that does not require access to all features and expert

decisions for classification during testing. Specifically, we

propose a two–stage approach that sequentially acquires fea-

tures and experts for instance–wise label assignment. Starting

from an initial belief, features are sequentially acquired first.

Then, the acquired subset of features and updated belief is

used to drive expert acquisition. Finally, a label is assigned

to the instance based on the acquired experts’ decisions thus

far. Performance is evaluated on six real–world datasets and

compared to several existing approaches. We observe that the

proposed approach leads to considerable performance improve-

ment in accuracy, using less number of features and experts on

average.

2. PROBLEM DESCRIPTION

Consider a supervised classification setting, where each

data instance is associated with F number of features

X ≜ [X1, . . . , XF ]
T and the value of X is denoted as

x ≜ [x1, . . . , xF ]
T . We define Y such that Y =y denotes that

the data instance has true label y∈{1, . . . , N}, where N is the

total number of labels. In standard supervised classification,

the goal is to determine Y by using the feature values x where

the predicted label is denoted as ŷ. Additionally, in this work,

we use features to drive expert decisions, which are then used

to finalize the label ŷ. In this context, we consider a set of
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programming [14]. Specifically, since there are F available

features, there exists a maximum of F + 1 stages for the asso-

ciated dynamic programming equation:

Af (πf ) = min
[

g(πf ), Ãf (πf )
]

, f = 0, . . . , F − 1, (7)

where Ãf (πf ) = ef+1+
∑

xf+1
Af+1(πf+1)

(

∆
T
f+1(xf+1)πf

)

,

with ∆f (xf ) ≜ [P (Xf = xf |Y = 1), . . . , P (Xf = xf |Y =
N)]T and AF (πF ) = g(πF ). The term g(πf ) in Eq. (7)

represents the cost of stopping FA when f features have

already been acquired, while Ãf (πf ) is the cost of continuing

this process. Thus, S∗
FA = f if g(πf )<Ãf (πf ) for f <F or

S∗
FA=F when all the features are acquired.

EA Stage. We use posterior probability πS∗
FA

from FA
stage to drive EA. First, we discuss the optimum final decision
strategy D∗

EA. Specifically, Eq. (2) in the EA stage can be
written in terms of the posterior probability vector φSEA

and
indicator function A for a fixed SEA as follows:

JEA(SEA,DSEA
)=

[

SEA
∑

z=1

cz+

N
∑

j=1

N
∑

i=1

Wijφ
i
SEA D{SEA=j}

]

. (8)

The optimum decision strategy D∗
EA can be obtained by

finding an appropriate lower bound of the second term

of Eq. (8). Specifically, for a given SEA, for any DSEA
,

∑N

j=1
W

T
j φSEA

I{DSEA=j} ≥ h(φSEA
) where h(φSEA

) ≜

min1≤j≤N [WT
j φSEA

] and Wj ≜ [W1j , . . . ,WNj ]
T . There-

fore, the optimum decision strategy is given by:

D∗
SEA

= argmin
1≤j≤N

[WT
j φSEA

]. (9)

Next, to find the optimum expert acquisition strategy S∗
EA,

the cost function in Eq. (8) is reduced to: JEA(SEA) =

E

[

∑SEA

z=1
cz + h(φSEA

)
]

. This enables us to find S∗
EA using

dynamic programming [14]. In particular, we derive the

following dynamic programming equation:

Bz(φz) = min
[

h(φz), B̃z(φz)
]

, z = 0, . . . , Z − 1, (10)

where B̃z(φz) = cz+1 +
∑

x̂z+1
Bz+1(φz+1)

(

Θ
T
z+1(x̂z+1)φz

)

,

with Θz(x̂z) ≜ [P (X̂z = x̂z|Y = 1), . . . , P (X̂z = x̂z|Y =
N)]T and BZ(φZ) = h(φz). In Eq (10), the term h(φz)
represents the cost associated with stopping EA after obtaining

z number of expert decisions. Conversely, B̃z(φz) denotes the

cost of continuing the EA process. Thus, if h(φz)<B̃z(φz)
for z < Z, the optimum EA strategy is S∗

EA = z. If the cost

of stopping is always greater than the cost of acquiring more

experts, the EA continues until all experts have been acquired.

At that point, the optimum EA strategy is S∗
EA =Z, and the

final decision is made considering the decisions of all experts.

SAFE Algorithm3. Training: The interval [0, 1] is quan-

tized to generate all possible posterior probability vectors πf

and φz such that πf 1
T = 1 and φz 1

T = 1. Here, 1 is a N

dimensional vector of all ones. With a precision of discretiza-

tion η, d possible vectors πf and φz are generated. For all

3Sequential Acquisition of Features and Experts.

πf and φz , Eqs. (6) and (7) for FA stage and Eqs. (9) and

(10) for EA stage are numerically solved to determine the opti-

mum feature and expert acquisition strategies. Experts Cz, ∀z,

are trained for each number f = 1, . . . , F , of features and

probabilities P (Xf = xf |Y = i) and P (X̂f = x̂z|Y = i) are

estimated (c.f. Section 4). Testing: The process begins in the

FA stage by initializing posterior π0≜ [π1
0 , . . . , π

N
0 ]T where

πi
0=P (Y = i). Then features are sequentially acquired based

on the numerical solutions determined during training and an

intermediate decision is reached based on Eq. (6). Assuming

f features have already been acquired, if the stopping cost is

greater than the continuing cost, next feature Xf+1 is acquired,

and the posterior probability gets updated using Eq. (3). This

continues until all or a subset of features are acquired. After

that, S∗
FA and πS∗

FA
from FA stage are forwarded to EA stage

and we set φ0=πS∗
FA

. Then, experts are sequentially queried

based on the numerical solutions found during training, and an

expert decision is acquired based on features S∗
FA. Assuming

z expert decisions have already been acquired, if the stopping

cost is greater than the continuing cost, the next expert deci-

sion X̂z+1 is acquired. This continues until a subset or all the

experts are acquired. Either way, a label is assigned to the

current instance based on Eq. (9).

4. NUMERICAL RESULTS

To illustrate the performance of the SAFE algorithm, we con-

sider 6 real–world datasets: MONKS [15] (601, 6, 2), STU-

DENT [15] (649, 31, 2), GENDER [16] (4746, 20, 3), SPAM-

BASE [15] (4601, 57, 2), MADELON [15] (2600, 500, 2), and

CANCER [17] (569, 30, 2)4. STUDENT dataset is preprocessed

such that the classification variable final grade G3 is binary [8].

We use accuracy, average number of acquired features and av-

erage number of acquired experts (when relevant) to compare

SAFE’s performance with the baselines: (i) SDFA–DT5 [8],

a recent instance–wise feature and classifier selection algo-

rithm, (ii) SVM with Gaussian kernel, a standard often used

supervised learning algorithm, (iii) Lasso, an offline feature

selection algorithm, (iv) FIRE–DES++6 [9], a recent standard

DES algorithm, and (v) AdaBoost and XGBoost with five de-

cision stumps [19], often used ensemble learning algorithms.

For diversity reasons [10], we consider five widely used [20]

standard classifiers as the experts for SAFE and FIRE–DES++:

(i) Naive Bayes, (ii) SVM with Gaussian kernel, (iii) Decision

Tree, (iv) K–Nearest Neighbours (k = 7), and (v) Logistic

Regression.

During training, P (Xf =xf |Y = i)=
Rf,i+1

Ri+β
is estimated.

Here Rf,i denotes the number of instances that have label i and

xk takes a specific value, while Ri denotes the total number of

instances that have label i. β is the number of bins considered.

The training dataset is used to obtain X̂ first and then P (X̂z=

4(# instances, # features, # classes).
5B = 10, c = 0.0001, and Miε = 0.4.
6KNE [18] for k=7 implemented with DESlib [13].
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