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ABSTRACT

We present a sequential acquisition of features and experts
framework for datum—wise classification. The goal is to ac-
curately assign labels for each instance, minimizing the ac-
quisition cost of features and experts. An expert uses domain
knowledge to make decisions. Starting from a prior belief, fea-
tures are sequentially acquired in a feature acquisition stage.
When this stage terminates, the acquired subset of features is
forwarded to an expert acquisition stage, where each expert
provides their decision one at a time. At that time, contrary
to prior work, the label assignment is reached based on the
acquired experts’ decisions thus far. We evaluate the frame-
work’s performance using six real-world datasets and compare
it with existing methods. Experiments reveal that the proposed
framework increases accuracy up to 56% compared to existing
ensemble methods while acquiring 88% fewer features and,
more importantly, 80% fewer experts on average.

Index Terms— supervised learning, instance—wise classi-
fication, feature selection, costly inputs, collective decision

1. INTRODUCTION

In many applications such as medical diagnosis, multiple ex-
perts (e.g., radiologist, primary care doctor) collaborate in ad-
dition to relying on feature observations (e.g., medical history,
imaging scans). This is because, in critical situations, when
arriving at a final diagnosis, collective decision ensures com-
prehensive and accurate medical decision—making [1,2]. How-
ever, these experts and features are costly (e.g., expert decision
cost, feature evaluation cost) [3,4]. On the other hand, obser-
vations of individual patients may vary [5]; thus, person—wise
decision—making is required. In this context, instance—wise
feature and expert selection and classification have received
considerable attention in machine learning [6-9].

Standard supervised classification (e.g., Support Vector
Machines (SVM)) considers a batch—wise approach where all
features are available and a single expert makes the decision.
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On the other hand, standard ensemble methods consider com-
bining multiple experts’ decisions (e.g., majority voting) [10].
However, they also rely on a batch—wise approach and as-
sume that all features and experts are available during testing.
Conversely, offline feature selection methods (e.g., L1-norm
based (Lasso)) choose a subset of features in the training and
use them for testing. On the contrary, dynamic instance—wise
feature selection techniques [6, 8, 11] choose varying features
for classifying data instances in testing relying on a single
expert decision. Further, Dynamic Ensemble Selection (DES)
techniques [12, 13] acquire all expert decisions during testing
using all available features. If there is disagreement among
experts, they execute instance—wise expert selection and final
decision is reached based on selected subset of experts.

In contrast to prior work, in this paper, we propose an
approach that does not require access to all features and expert
decisions for classification during testing. Specifically, we
propose a two—stage approach that sequentially acquires fea-
tures and experts for instance—wise label assignment. Starting
from an initial belief, features are sequentially acquired first.
Then, the acquired subset of features and updated belief is
used to drive expert acquisition. Finally, a label is assigned
to the instance based on the acquired experts’ decisions thus
far. Performance is evaluated on six real-world datasets and
compared to several existing approaches. We observe that the
proposed approach leads to considerable performance improve-
ment in accuracy, using less number of features and experts on
average.

2. PROBLEM DESCRIPTION

Consider a supervised classification setting, where each
data instance is associated with F' number of features
X 2 [Xiy,...,Xr|" and the value of X is denoted as
x 2 [x1,...,2r]". We define Y such that Y =1 denotes that
the data instance has true label y € {1, ..., N}, where N is the
total number of labels. In standard supervised classification,
the goal is to determine Y by using the feature values x where
the predicted label is denoted as g. Additionally, in this work,
we use features to drive expert decisions, which are then used
to finalize the label ¢. In this context, we consider a set of
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experts as heterogeneous classifiers C 2 {C1,...,Cz} (e.g.,
C £ {SVM} for Z = 1), where Z is the number of experts.
We define X 2 [X,..., Xz]7 as the set of decisions of each
classifier using features Xy € X, f = 1,..., F, and the value
of X is denoted as & £ [#y,...,4z|7. Here &, € {1,...,N}
for z € {1,..., Z}. Note that accessing features and experts
comes at a cost. Specifically, obtaining a decision of the classi-
fier C, € C'involves acost c, >0,z=1, ..., Z. Also, features
Xre X, f=1,...,F, have an associated cost, e; > 0. In
this setting, we propose a two—stage approach, as illustrated
in Fig. 1, to assign a label for each data instance by first se-
quentially acquiring features (Feature Acquisition (FA) stage)
and second sequentially acquiring experts’ decisions (Expert
Acquisition (EA) stage). To simplify the problem, we adopt
the assumptions: (a) features and experts are ordered based on
a certain performance measure, (b) features X¢, f =1,..., F,
are conditionally independent given label Y, and (c) an expert
decision is not affected by the other experts’ decisions.

Optimization Problem. We define four random variables
Sta, Seas Dsy,» and Dg,,. We use Spa € {0, ..., F'} to de-
note the last feature acquired from the ordered feature set X at
the end of the FA stage'. Similarly, we use Sga € {1,..., 7}
to represent the last expert considered to obtain a decision. The
decision that controls when the FA will terminate is denoted
as Dg,, € {1,...,N}. Furthermore, Dg,, € {1,...,N}
indicates the final decision, i.e., the label assignment based on
accumulated experts’ decisions up to Sga. We define two cost
functions Jga (Ska, Ds;, ) and Jga (Sga, Ds, ) for the FA and
EA stages, respectively. First, we propose the following cost
function for the FA stage:

SFA

Jra(Sra, D) = [Zef +ZZ]\L/P Dsg, =3, Y =1), (1)

Jj=1li=1

where P(Dg,, = j,Y = i) denotes the probability of assign-
ing label j, while true label is <. The first expression in Eq. (1)
represents the expected cost of acquiring Sga features, while
the second expression indicates the average cost of decision
Deg,, in the FA stage. Here M;;, 4,7 € {1,..., N} is the cost
of assigning label j to a data instance when the true label is .
Next, we propose the following cost function for the EA stage:

SEA

Jea(Sea,Dsgy) = |:Z(‘z +ZZW” (Dspy=3,Y =1), (2)

Jj=1li=1

where P(Dgs,, = j,Y = i) denotes the probability of as-
signing label j, while true label is ¢. The first expression in
Eq. (2) represents the expected cost of acquiring decisions
from Sga experts, while the second expression indicates the
average cost of using the decisions of Dg,, in the EA stage.
Here W;;,4,5 € {1,..., N} is the cost of assigning label j to
a data instance when the true label is 7 in the EA stage.
Sufficient Statistics. Let 7 = P(Y =i X, =1, .., X ;=
xzg), f=1,...,F,i=1,..., N, denote the posterior proba-
bility of the label of a data instance of interest being ¢ when
f features have been acquired so far in the FA stage. Using

Ska = O represents the case where no features have been acquired.

FA stage
X Xo X3 Xy, .. Xrp
[Z1]2 |3 |Ta] 2 | 2 |

Prior prob. 7
—_—

Posterior prob. 74
and
features{zy, ..., 24}

Acquired features

EA stage
Xl Xz

Ll 2 [~ [ ]° ]

Acquired experts’ decisions

Fig. 1. Illustration of the two—stage approach for one instance.

Predicted label g

Bayes’ rule, we update this posterior probability when a new
feature is acquired, as follows:

w}é P(Xf_ivf|Y:i)7Tj‘ 1
Zn 1P(Xffxf\Y7n)7rf 1

W}V]T,f: 1,...,
rior probability vector, where my = [r{, ..., m{’]” denotes
the case where no features have been aqulred Here, m§ =
PY =4),i=1,...,N, represents the prior probability of
the true label bemg 1. Next in the EA stage, we define posterior
qbzAPf(Y—z\Xl—xl,...,XZ—xZ)lz—l AR

, IV, as the probability of true label being ¢ given z indi-
Vidual expert decisions. Let ¢, = [¢}, ..., qSN ], represents
the posterior probability vector, where ¢g 2 [#}, ..., d) "
denotes the case where no experts have been considered. Here,
¢} represents the prior probability of the data instance’s true
label being i before EA stage begins. We initialize ¢ to 7%,
which denotes the posterior probability determined at the end
of the FA stage. Using Bayes’ rule, we update this ¢% when a
new expert decision is acquired as follows:

P(X. = .|V = i)¢l

ZTIY:1P(X =2.|Y =n)¢l_ 1.

©)

Let s £ [n},.. ., F, represent the poste-

S )

3. TWO-STAGE SOLUTION

To determine the feature and expert acquisition strategies (i.e.,
Sga and SE ), we first minimize Eq. (1) and then Eq. (2).

FA Stage. First, DgFA for a fixed Sga is obtained. Eq. (1)
is written in terms of the posterior probability and the indicator
function 1 42 as [6]:

SFA

Z€f+ZZMJ7TSFA]1D{SFA Al

j=11i=1

Jra(SkasDsgy) =

Then Dy, can be obtained by finding the lower bound of the

second term of Eq. (5) as in prior work [6]. Therefore, Dg,_ is

given by: Ds., = argmln[M TSl 6)
1<j<N

where M; £ [M;,...,My;]T. To obtain the optimum

feature acquisition strategy Sy, Eq. (5) is written in the re-

duced form [6] as: Jra(Sra) = [ZSFA ey + g(wsFA)], where

9(ms,) £ mini<j<n[M]7g,]. Finally, Si, can be ob-
tained by minimizing the reduced cost function via dynamic

21 421 when event A occurs and O otherwise.
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programming [14]. Specifically, since there are F' available
features, there exists a maximum of F' 4 1 stages for the asso-
ciated dynamic programming equation:

Ag(mp) = min [g(mp), Ay (mp)|  f =0, F =1, (D)

where Ay (1) = ey1+Y, | Apra(mpn) (A (@) ),
with Af([L‘f) e [P(Xf ZLL‘f|Y = 1)7 . ,P(Xf fo|Y =
N)]T and Ap(wp) = g(wp). The term g(ms) in Eq. (7)
represents the cost of stopping FA when f features have
already been acquired, while A #(7y) is the cost of continuing
this process. Thus, S, = f if g(7f) < A(my) for f < F or
Spa =F when all the features are acquired.

EA Stage. We use posterior probability mg+ from FA
stage to drive EA. First, we discuss the optimum final decision
strategy Df,. Specifically, Eq. (2) in the EA stage can be
written in terms of the posterior probability vector ¢s,, and
indicator function A for a fixed Sga as follows:

SEA

N N
Jea(Sea,Dsg,) = ZCZ+ZZWij¢_lSEA Disga=iy |+ ®
=1 j=1i=1
The optimum decision strategy Df, can be obtained by
finding an appropriate lower bound of the second term
of Eq. (8). Specifically, for a given Sga, for any Dg,,,
N
Zj:l W?¢SEAH{DSEA:j} > h(¢SEA) where h’(¢SEA) 2
minlsjgN[WJTngEA} and Wj & [le, ey WNj]T. There-
fore, the optimum decision strategy is given by:

Dg., = argmin[W;‘.F Dseal- 9
1<j<N

Next, to find the optimum expert acquisition strategy Sf,,
the cost function in Eq. (8) is reduced to: Jga(Sga) =

E [ ¢, + h(qbsEA)] This enables us to find Sf, using

z=1
dynamic programming [14]. In particular, we derive the
following dynamic programming equation:

B.(¢.) = min [h(@),éz(@)} 2=0,....Z—1, (10)

where Bz (¢:) = c241+ 32, | Bev1(Pzt1) (93+1(iz+1)¢z)’
with @, (#,) 2 [P(X, =2.[Y =1),...,P(X, = &.|]Y =
N)JT and Bz(¢z) = h(¢.). In Eq (10), the term h(¢.)
represents the cost associated with stopping EA after obtaining
z number of expert decisions. Conversely, B, (¢.) denotes the
cost of continuing the EA process. Thus, if h(¢.) < B.(¢.)
for z < Z, the optimum EA strategy is S, = 2. If the cost
of stopping is always greater than the cost of acquiring more
experts, the EA continues until all experts have been acquired.
At that point, the optimum EA strategy is Sf, = Z, and the
final decision is made considering the decisions of all experts.
SAFE Algorithm®. Training: The interval [0, 1] is quan-
tized to generate all possible posterior probability vectors 7
and ¢, such that w17 =1 and ¢, 17 = 1. Here, lisa N
dimensional vector of all ones. With a precision of discretiza-
tion 7, d possible vectors 7y and ¢, are generated. For all

3Sequential Acquisition of Features and Experts.

7y and ¢, Egs. (6) and (7) for FA stage and Egs. (9) and
(10) for EA stage are numerically solved to determine the opti-
mum feature and expert acquisition strategies. Experts C.,Vz,
are trained for each number f = 1,..., F, of features and
probabilities P(X; =z |Y =) and P(X; = .|V =) are
estimated (c.f. Section 4). Testing: The process begins in the
FA stage by initializing posterior o = [7d, ..., m{']T where
7y = P(Y =1). Then features are sequentially acquired based
on the numerical solutions determined during training and an
intermediate decision is reached based on Eq. (6). Assuming
f features have already been acquired, if the stopping cost is
greater than the continuing cost, next feature X ¢ 1 is acquired,
and the posterior probability gets updated using Eq. (3). This
continues until all or a subset of features are acquired. After
that, Sy, and 7g-, from FA stage are forwarded to EA stage
and we set ¢ =g: . Then, experts are sequentially queried
based on the numerical solutions found during training, and an
expert decision is acquired based on features Sf,. Assuming
z expert decisions have already been acquired, if the stopping
cost is greater than the continuing cost, the next expert deci-
sion X »+1 18 acquired. This continues until a subset or all the
experts are acquired. Either way, a label is assigned to the
current instance based on Eq. (9).

4. NUMERICAL RESULTS

To illustrate the performance of the SAFE algorithm, we con-
sider 6 real-world datasets: MONKS [15] (601, 6, 2), STU-
DENT [15] (649, 31, 2), GENDER [16] (4746, 20, 3), SPAM-
BASE [15] (4601, 57, 2), MADELON [15] (2600, 500, 2), and
CANCER [17] (569, 30, 2)*. STUDENT dataset is preprocessed
such that the classification variable final grade G5 is binary [8].
We use accuracy, average number of acquired features and av-
erage number of acquired experts (when relevant) to compare
SAFE’s performance with the baselines: (i) SDFA-DT’ [8],
a recent instance—wise feature and classifier selection algo-
rithm, (i) SVM with Gaussian kernel, a standard often used
supervised learning algorithm, (iii) Lasso, an offline feature
selection algorithm, (iv) FIRE-DES++° [9], a recent standard
DES algorithm, and (v) AdaBoost and XGBoost with five de-
cision stumps [19], often used ensemble learning algorithms.
For diversity reasons [10], we consider five widely used [20]
standard classifiers as the experts for SAFE and FIRE-DES++:
(i) Naive Bayes, (ii) SVM with Gaussian kernel, (iii) Decision
Tree, (iv) K-Nearest Neighbours (k = 7), and (v) Logistic
Regression.

During training, P(Xf=x5|Y =i)= Ij{i‘i;l is estimated.
Here Ry ; denotes the number of instances that have label ¢ and
x}, takes a specific value, while I?; denotes the total number of
instances that have label 4. 3 is the number of bins considered.
The training dataset is used to obtain X first and then P(X =

4(# instances, # features, # classes).
5B =10,c¢ = 0.0001, and M;. = 0.4.
OKNE [18] for k=7 implemented with DESIib [13].
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Table 1. Accuracy (“Acc”) and average number of acquired features (“Feat”) for SAFE and baselines. Highest and next highest
Acc values are bold and gray—shaded, and gray—shaded, respectively. Smallest and next smallest Feat values are bold and

gray—shaded, and gray-shaded, respectively.

Method MONKS STUDENT GENDER SPAMBASE MADELON CANCER
Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat
SAFE 0.900 | 5.730 | 0.880 | 3.723 | 1.000 | 7.543 | 0.899 | 40.884 | 0.766 | 198.572 | 0.953 | 7.960
SDFA-DT 0.795 | 5.722 | 0.869 | 4.656 | 0.979 | 3.439 | 0.849 | 31.177 | 0.624 | 68.822 | 0910 | 2.827
SVM 0.657 | 6.000 | 0.871 | 32.000 | 0.588 | 20.000 | 0.690 | 57.000 | 0.617 | 500.000 | 0.891 | 30.000
Lasso 0.654 | 4.800 | 0.886 | 19.200 | 0.928 | 17.800 | 0.909 | 50.600 | 0.560 | 492.000 | 0.947 | 10.600
FIRE-DES++ | 0.800 | 6.000 | 0.793 | 32.000 | 0.996 | 20.000 | 0.895 | 57.000 | 0.641 | 500.000 | 0.967 | 30.000
AdaBoost 0.577 | 6.000 | 0.908 | 32.000 | 0.839 | 20.000 | 0.874 | 57.000 | 0.613 | 500.000 | 0.928 | 30.000
XGBoost 0.657 | 6.000 | 0.909 | 32.000 | 0.964 | 20.000 | 0.852 | 57.000 | 0.593 | 500.000 | 0.933 | 30.000
Y =i)= % is estimated. Here R, ; denotes the number @@ e cee 0t 400
i ’ " Circle area o No. of instances
of instances that have true label i and predicted label &, when 5. L . ) 0
expert z is used, while R; denotes the total number of instances % SAFE acquires few features and experts 300;,,
that have true label i. Equal prior probability P(Y =i) = + 5 | o dasiymalorityol if'a"ces ~ . 203
is considered assuming equally likely scenarios. Features g ___l _______ 203
are ranked in ascending order of the total of type I and type g 5 : . .i e e 150~
IT errors, which is scaled by the cost coefficient of the fth % i ' 100
feature to prioritize low—cost features. Experts are ranked ) &".“ L 50

based on increasing order of training errors to promote the
most competent experts. The ranked feature set is used in
both training and testing phases, and the experts are trained for
f=1,...,F, features. We consider =100, 3 =10, M;; =
Wij = 1,v77£j and M” = W” :O,V’Lj € {1, .. ,N} We
assume feature and expert costs to be the same for all features
and experts, i.e., ey = e,V f and c, = ¢, Vz. Five—fold cross
validated results are reported in Table 1.

The average number of acquired experts for SAFE is
1.000,1.168, 1.922,1.945, 2.484, and 1.227 for datasets in the
order shown in Table 1. Comparing SAFE with ensemble
methods FIRE-DES++, AdaBoost, and XGBoost, we observe
that SAFE achieves better accuracy (up to 56% improvement)
using fewer experts (up to 80% less). Importantly, SAFE uses
between 4% and 88% fewer features. For the cases where
SAFE’s accuracy is less (up to 3%), SAFE uses significantly
fewer features (between 73% to 88%) and experts (between
75% to 77%). Comparing with Lasso, we observe that SAFE’s
performance is better in accuracy (up to 38%) for the majority
of the datasets using fewer features (between 19% to 81%).
For the cases where Lasso performs better in terms of accu-
racy, SAFE uses fewer features (19% and 81%) resulting in a
small accuracy drop. Comparing SAFE with SVM, SAFE’s
performance is always better in terms of accuracy (up to 70%)
using fewer features (4% to 88%). Finally, we compare SAFE
with SDFT-DT, a recently proposed instance—wise feature
and classifier selection algorithm. SAFE’s accuracy is always
better (up to 23%) than SDFT-DT, although the latter one
uses fewer features in most cases with a single expert. In some
cases, SAFE saves on features (20% fewer) by expending more
on experts (17% more). This is essential in applications like
medicine where we can do less medical tests and rely more on

0 5 io 15 20 25 30
Average no. of features

Fig. 2. Frequency of the number of acquired features and
experts during testing for the SPAMBASE dataset.

experts’ decisions of the same tests. SAFE’s performance is
due to a combination of both features and experts. We note
that when the FA posterior is inaccurate due to few acquired
features, SAFE attempts to acquire more experts to get a better
posterior value. For the majority of data instances, accurate
classification can happen with just a few features and experts
(Fig. 2). This is important in real-world applications where
the acquisition of features and experts is costly and/or feature
and expert space is large.

5. CONCLUSION

We proposed a supervised learning algorithm, SAFE, that
sequentially acquires features and experts for instance—wise
classification in a costly environment. We devised a two—stage
approach that involves sequential feature acquisition followed
by an expert decision acquisition stage. SAFE’s performance
is validated on a set of experiments. Observations confirm
that SAFE achieves a good balance between accuracy, the
average number of acquired features, and the average number
of acquired experts. It uses varying features and experts per
instance; thus, its decisions can be explained [21]. SAFE
forwards all instances from the first to the second stage, no
matter the intermediate decision. Other limitations include
training complexity and ordering assumptions. Forwarding
only most ambiguous instances [22] and training a subset
of experts using heuristics can potentially reduce complexity
without hurting accuracy.
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