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ARTICLE INFO ABSTRACT
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Felsic collapse calderas pose a hazard to our society, thus detailed knowledge of collapse mechanisms and
behavior of eruptive products could help us to better understand the active calderas. We present a model of the
eruption and collapse of Late Carboniferous Tharandter Wald Caldera (Variscan Bohemian Massif) based on field

ﬁ;‘l?:;lcteanisotm mapping and a magnetic multi-fabric approach. We investigate intra-caldera rhyolitic ignimbrites using a
Rhfolite Py combination of conventional in-phase and relatively new out-of-phase anisotropy of magnetic susceptibility,

along with the anisotropy of anhysteretic remanent magnetization. A two-stage caldera evolution model is
proposed. (1) The high-energetic and high-temperature ignimbrites filled the paleo-valleys to form a thick
ignimbrite sheet with welded to rheomorphosed central portion. Concurrently, eruptions emptied the source
magma chamber triggering the piston caldera collapse. (2) The subsidence caused a monoclinal ductile bending
of the still-hot and ignimbrite sheet around the caldera rim towards its center. Caldera activity was terminated by
the emplacement of subvolcanic ring and radial dikes associated with hydrothermal activity. The latter likely
induced abundant magneto-mineralogical alteration and formed composite fabrics. Hence, the application of the
multi-fabric approach may serve as a useful tool to extrapolate reliable geodynamic proxies from the magnetic
fabric of old, eroded, or altered caldera ignimbrites.

1. Introduction some ignimbrite deposits include multiple petrographic markers such as

cross-bedding and flow foliations that allow direct interpreting

Field and structural studies complemented by the anisotropy of
magnetic susceptibility are well-proven and established methods for
studying the emplacement processes of ignimbrites (Wang et al., 2001;
Ort et al., 2003; Porreca et al., 2003; Agro et al., 2015; Platzman et al.,
2020). Ignimbrites are deposits of high-energetic pyroclastic density
currents (PDC) mostly produced by explosive volcanic eruptions at felsic
calderas and stratovolcanoes (Wilson and Walker, 1982; Walker, 1983;
Druitt, 1998; Branney and Kokelaar, 2007; Dufek et al., 2015). Ignim-
brite deposits include various compositions ranging from
ash-dominated, through pumice- or scoria-dominated, to crystal-rich
pyroclastic rocks, contain lithic clasts, may have several degrees of
welding, and vary in thickness, volume, and aerial extent (Sparks et al.,
1973; Branney and Kokelaar, 2007; Giordano and Cas, 2021). While
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emplacement dynamics, others appear macroscopically isotropic. In
such cases, rock-magnetic techniques such as the anisotropy of magnetic
susceptibility (AMS) and/or anisotropy of anhysteretic remanent
magnetization (AARM) are useful tools to define the internal preferred
orientation of magnetic minerals and thus reconstruct the magnetic
fabrics (Hrouda, 1982; Borradaile, 1987, 2001; Tarling and Hrouda,
1993; Borradaile and Jackson, 2010). Apart from magnetic foliations
and lineations, the magnetic fabric also allows direct quantification of
the mean (volumetric) magnetic susceptibility roughly reflecting min-
eral rock compositions, degree of anisotropy suggesting the fabric in-
tensity, and shape parameter indicating the symmetry of fabric
ellipsoids. It is well-established that the magnetic fabric yields valuable
information on PDC flow directions at different scales, source vent
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localization, post-emplacement processes, and overall
time-transgressive volcano paleoreconstructions (e.g., Cagnoli and
Tarling, 1997; MacDonald et al., 2012; Ort et al., 2015; Sim6n-Muzas
et al., 2022). As such, ignimbrites commonly yield shallowly dipping
magnetic and/or macroscopic foliations associated with down-dip or
strike-parallel lineations along with the oblate shape of the fabric
ellipsoid referred to as normal magnetic fabric. The angle between
foliation and ignimbrite basal plane records mineral imbrication caused
by PDC flow and emplacement dynamics (see for instance Ellwood,
1982; Fisher et al., 1993; Ort et al., 2003; Giordano et al., 2008; Agro
et al., 2015 among many others). However, in some cases, the primary
fabric record could be obscured by overprinting welding and rheo-
morphism, tectonic deformation, and mineral alteration, superposition
of which may lead to the formation of composite and/or inverse mag-
netic fabrics (e.g., Wang et al., 2001; Geissman et al., 2010; Ort et al.,
2015). Moreover, at some relatively older caldera complexes of the
Paleozoic or even older age, only deep erosional reliefs are preserved (e.
g., Wang et al., 2001; Willcock et al., 2015; Vitous et al., 2022).

In this manuscript, we present a new structural dataset that combines
field and structural mapping along with the magnetic multi-fabrics
complemented with a detailed rock-magnetic investigation of high-
grade rhyolitic ignimbrites of the late Carboniferous Tharandter Wald
Caldera, northwestern Bohemian Massif (European Variscan belt). The
multi-fabric approach utilizes conventional low-field in-phase anisot-
ropy of magnetic susceptibility (ipAMS) and AARM supported by a
newly introduced out-of-phase anisotropy of magnetic susceptibility
(opAMS) technique capable of distinguishing magnetic fabrics carried
by ultra-fine ferromagnetic grains (Hrouda et al., 2017, 2020, 2022). To
specify the carriers of magnetic fabrics, we applied several
magneto-mineralogical tests including the thermomagnetic susceptibil-
ity curves, frequency-dependent susceptibility, hysteresis loops,
first-order reversal curves, and optical and electron microscopy. The
application of magnetic multi-fabric along with the detailed
magneto-mineralogical tests allowed us to isolate some magnetic fabric
data that resulted from hydrothermal alteration and the formation of
composite fabrics. The fabric pattern of high-grade rheomorphic
ignimbrite is interpreted as formed in two-steps. First, the pyroclastic
density currents deposited an extensive and thick ignimbrite sheet with
intensely welded and in places rheomorphosed proximal facies in the
area of the future caldera. Second, the drainage of the source magma
chamber triggered the caldera collapse, which in turn caused a ductile
monoclinal bending of still-hot and ductile ignimbrites along the caldera
margins.

2. Regional geologic setting in brief

The Bohemian Massif is the largest exposure of the Variscan orogenic
belt in Europe (Matte et al., 1990; Matte, 1991; Winchester, 2002;
Schulmann et al., 2014; Zak et al., 2014). The Variscan orogeny formed
as a result of oblique convergence and final collision between northern
Gondwana and southern Laurussia mainlands along with several
microplates sutured between the converging plates. The incipient
collision closed the Rheic Ocean and other smaller oceanic domains
during the Devonian and Carboniferous periods (Franke, 1989, 2006;
Pin, 1990; Pharaoh, 1999; Winchester et al., 2006; Edel et al., 2013,
2018; Schulmann et al., 2014).

In the Bohemian Massif, the subduction and closure of the Sax-
othuringian ocean were followed by the collision of the Saxothuringian
and Tepla-Barrandian microplates between ~380 Ma and 346 Ma
(Schifer et al., 1997; Zak et al., 2005, 2012, 2014; Schulmann et al.,
2009, 2014). The ~346-335 Ma orogenic collapse resulted in the rapid
exhumation of the lower and middle crust, now exposed as the Molda-
nubian unit (Dorr and Zulauf, 2010; Zak et al., 2014). A rather exotic
terrane of likely Avalonian affinity, the Brunovistulian microplate, was
underthrusted beneath the Moldanubian and Saxothuringian units along
the eastern margin of the Bohemian Massif at ~344-335 Ma
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(Schulmann and Gayer, 2000; Racek et al., 2017). The orogenic collapse
triggered major tectonothermal processes in the peripheral areas of the
Bohemian Massif resulting in the production of voluminous early
ultrapotassic and high-K plutons, and late S-type and high-K I-type
granites emplaced between ~335 Ma and 315 Ma (Forster et al., 1999;
Finger et al., 2009, 2022, Zak et al., 2013, 2014; Verner et al., 2014;
Janousek et al., 2020; Tichomirowa et al., 2019; Megerssa et al., 2023).
Magmatism is thought to be linked to decompression melting, mantle
heat addition due to slab delamination, and/or the presence of large
volumes of ponded mafic magma at depth, which facilitated large-scale
crustal anatectic melt generation (Gerdes et al., 2000; Finger et al.,
2009, 2022; Zak et al., 2011, 2014; Janousek et al., 2020). Concurrently,
the dextral strike-slip movements along major ~ NW-SE striking
crustal-scale shear/fault zones occurred (e.g., Intra Sudetic Fault, Elbe,
Danube, and Pfahl zones; Aleksandrowski, 1997; Scheck et al., 2002;
Kabner et al., 2021; Megerssa et al., 2023). This process was closely
associated with the development of the intramontane, coal-bearing
Carboniferous basins (e.g., Oplustil and Cleal, 2007; Oplustil et al.,
2016b; Martinek et al., 2017). The sedimentary fill is often intercalated
with Westphalian ash-fall tuff layers and volcaniclastic deposits (Ulrych
etal., 2006; Oplustil et al., 2016a, 2016b; Tomek et al., 2022). However,
only in the western part of the Saxothuringian unit in the NW Bohemian
Massif, two large volcanic edifices, the Altenberg-Teplice and Thar-
andter Wald calderas along with some smaller eruptive centers related
to this late Variscan event, are exposed (Benek, 1980; Breitkreuz et al.,
2021; Tichomirowa et al., 2022; Tomek et al., 2022).

3. Tharandter Wald Caldera: an overview
3.1. Caldera geometry, geological relations, and emplacement

The Tharandter Wald Caldera (TWC; also variously referred to as
Tharandt caldera, Tharandt forest caldera, or Tharandter volcanic
complex) is a ~52 km? large and elliptical (~NE-SW striking longest
axis) volcano-plutonic complex in the NW Bohemian Massif (Fig. 1). The
TWC belongs to a ~NW-SE striking chain of late Paleozoic volcanic
centers, which roughly delineate the Elbe shear/fault zone (Troger et al.,
1968). These include from north to south the Meissen volcanic complex
(~303 Ma, U-Pb on zircons; Hoffmann et al., 2013), the TWC and the
associated Niederbobritzsch pluton (~319-312 Ma, U-Pb on zircons;
Breitkreuz et al., 2021), the Schonfeld-Altenberg complex, the Flaje
pluton, and the Altenberg-Teplice Caldera (~325-312 Ma, U-Pb on
zircons; Tichomirowa et al., 2022; Tomek et al., 2022). According to
Benek (1980), the formation of these complexes was driven by dextral
shearing along crustal-scale shear/fault zones with maximum horizontal
shortening in the ~N-S direction. This hypothesis was recently
corroborated by Tomek et al. (2023), who presented a detailed struc-
tural model of the emplacement of the Altenberg-Teplice Caldera. Note
that the climactic eruptive activity of both the adjacent calderas yielded
virtually the same age of ~314-313 Ma (Breitkreuz et al., 2021;
Tichomirowa et al., 2022; Tomek et al., 2022). TWC was emplaced into
crystalline complexes of the Precambrian to early Paleozoic age. These
include the Freiberg gneiss dome (paragneiss, orthogneiss, and
meta-graywacke) and Nossen Wilsdruff mountains (phyllite and slate;
Gehmlich et al., 2000; Tichomirowa et al., 2001, 2012) that are bounded
by the Hartha thrust fault.

The activity of the TWC magmatic system commenced with the
intrusion of the pre-caldera Niederbobritzsch pluton (Fig. 1). Caldera
evolution started with the eruption and deposition of ash-fall tuffs at the
base of the caldera fill. The voluminous intra-caldera rhyolitic-ignim-
brites erupted during the piston caldera collapse, while the outflow
facies are not exposed at the present-day erosional level (Breitkreuz
et al., 2021). The intra-caldera rhyolitic-ignimbrites are traditionally
divided into two lithotypes. The more voluminous and relatively older
quartz phenocryst-poor ignimbrite (hereafter referred to as Qz-poor
ignimbrite) occupies about two-thirds of the present-day erosional
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Fig. 1. A simplified geologic map of the Tharandter Wald Caldera and Niederbobritzsch pluton compiled from Benek (1980) and geologic maps in the scale of 1:25,
000 sheets 5046 Freiberg, and 5047 Freital (authorship not specified). A shaded relief base map was obtained through the WMS services of the Saxon State Office for
Environment, Agriculture, and Geology. Equal area stereographic projection on a lower hemisphere of the pole of the magmatic foliation is also reported. Note the
location of specimens for multi-fabric analysis shown by a red circle; See the supplementary material for WGS84 coordinates. The inset portrays the location of the
Tharandter Wald Caldera in the Bohemian Massif. EZ — Elbe Zone. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)

surface. The younger and overlying lithotype is the less-voluminous
quartz phenocryst-rich ignimbrite (Qz-rich ignimbrite), which is
exposed in the central and western portions of the caldera (Fig. 1; Benek
1980). No field evidence of a depositional break between these two
lithotypes occurs, suggesting emplacement during a single eruptive
event (Breitkreuz et al., 2021).

A monolithic gneiss mesobreccia with a pyroclastic matrix occurs in
the peripheral areas of the caldera fill and is interpreted as syn-collapse
landslides (Fig. 1). In addition, some minor and isolated areas of lithic-
rich ignimbrites and vitrophyric rhyolites were identified (Breitkreuz
et al., 2021). Based on subsurface drilling data and field mapping, the
minimum thickness of the preserved caldera fill is estimated to be 371
m, the minimum areal extent of pyroclastic deposits is 550 km?, and the
minimum cumulative volume of erupted material is estimated to be 22
km? (Benek, 1980; Breitkreuz et al., 2021). The caldera fill was intruded
by the microgranite ring and radial dikes (Fig. 1; Benek 1980).

The TWC is cut by several major faults, including Herrndorf, Grund,

Tharandt, and Mid-Saxony. About one-third of the caldera is dis-
conformably overlayed by the Late Cretaceous sediments, intruded by
Oligocene to Miocene basalts, and partly also covered by Quaternary
sediments (Fig. 1).

3.2. Geochemistry and petrography of ignimbrites

The petrographical and geochemical datasets of Benek (1980) and
Breitkreuz et al. (2021) reported that the TWC ignimbrites are silica-rich
rhyolites (~75 wt% SiO3). Both ignimbrite lithotypes share a similar
whole-rock geochemical signature as well as the REE pattern with a
negative anomaly in Ba, Sr, Ca, and Ti (Breitkreuz et al., 2021). The
geochemistry also suggests that the Qz-poor ignimbrite represents the
most evolved part of the underlying magma chamber, while the Qz-rich
ignimbrite is characterized as a moderately evolved melt with an in-
termediate degree of fractional crystallization. The compositions of the
pre-caldera Niederbobritzsch pluton together with the post-caldera ring
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and radial dikes then correspond to the least evolved part of the source
magmatic system (Breitkreuz et al., 2021).

The intra-caldera fill consists of the welded rhyolitic ignimbrites with
variable amounts of quartz, plagioclase, K-feldspar phenocrysts, and
minor biotite (Fig. 2c and d). The dominant Qz-poor ignimbrite contains
up to 10-13% of crystals, whereas the Qz-rich ignimbrite includes up to
33% of quartz and feldspar phenocrysts (Benek 1980; Breitkreuz et al.,
2021). In several parts of the caldera, the ignimbrites include also
elongated fiamme and lithic clasts (Benek 1980; Breitkreuz et al., 2021).
The lithic clasts are dominated by slates in the northern part, whereas in
the southern part, they include mostly gneiss, schist, and volcanic clasts
(Breitkreuz et al., 2021). Map trends reveal a spatial pattern in the
volume and size of fiamme, and the occurrence of columnar joints in
both ignimbrite lithotypes (Benek, 1980). In general, the volume and
size of fiamme and the occurrence of columnar cooling joints decrease
from the peripheral areas toward the caldera center (Benek, 1980).

4. Magnetic multi-fabric methodology
4.1. Sampling strategy

Detailed field and structural mapping at a scale of 1:10,000 was
conducted in the TWC and the surrounding areas that are intruded by
ring and radial dikes. Apart from structural data, we have collected 16
representative specimens for petrographic thin-sections, which were
analyzed using optical and scanning electron microscopy. The speci-
mens for rock magnetic experiments were obtained at 32 sampling sites
in both the ignimbrite lithotypes and porphyritic microgranite ring
dikes. The sites were selected to cover the entire exposed erosional
surface of the caldera. We obtained either oriented drill core samples
using a portable gasoline-powered drill or oriented block samples that
were drilled in the laboratory. The core samples were cut into standard
right-cylinder specimens (2.54 cm diameter x 2.20 cm height). From the
495 specimens collected (at least 8 specimens per site), 362 specimens
(24 sites) were obtained from the Qz-poor ignimbrite, 99 specimens (6
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sites) from Qz-rich ignimbrite, and 34 specimens (2 sites) from the ring
dikes. The latter includes porphyritic microgranite at site TC62 situated
within the Niederbobritzsch pluton (eastern margin) and may poten-
tially represent a dike unrelated to the ring dikes.

Out of the 32 AMS sites, 17 representative sites (101 specimens, ~6
specimens per site) across the caldera were selected for AARM analysis.
Magneto-mineralogical tests included specimens from 31 sites across the
caldera for the analysis of frequency-dependent susceptibility, 10 sites
for thermomagnetic curves (one representative powdered specimen per
site was selected), and 17 representative specimens (chip fragments) for
the hysteresis loops and first-order reversal curve (FORC) distributions.
The results are presented in Figs. 4-11, while full data tables and com-
plementary figures are provided in Supplementary Material items
S1-S6. The readers are referred to Table 1 for an overview of the mag-
netic fabric parameters, magnetic mineralogy, and associated
references.

4.2. Anisotropy of in-phase and out-of-phase magnetic susceptibility

Magnetic anisotropy is the directional variability of the magnetic
susceptibility of minerals and rocks and provides an effective tool for
recognizing internal rock fabrics that lack visible macroscopic structural
features (Hrouda 1982; Tarling and Hrouda, 1993; Borradaile and Henry
1997; Borradaile and Jackson 2004, 2010). The AMS allows the inter-
pretation of the flow and emplacement dynamics of subvolcanic dikes,
sheets, and laccoliths (e.g., Knight and Walker, 1988; Petronis et al.,
2004; Chadima et al., 2009; Burchardt et al., 2019; Tomek et al., 2019),
lava flows and domes of different compositions (e.g., Loock et al., 2008;
Zavada et al., 2009; Akkoyun et al., 2013; Tomek et al., 2016; Kolarova
et al., 2022; Prival et al., 2022), and pyroclastic rocks (e.g., Gountié
Dedzo et al., 2011; Agro et al., 2015; Ort et al., 2015; Moncinhatto et al.,
2020; Vitous et al., 2022).

In addition to quantifying the internal rock fabrics (K;, maximum
principal susceptibility axis = magnetic lineation; K3, minimum prin-
cipal susceptibility axis = pole/normal to magnetic foliation), AMS also

Fig. 2. Close-up view of main ignimbrite lithotypes. (a) Quartz-poor ignimbrite outcrop exposing a fan-like pattern of columnar cooling joints in an abandoned
quarry near Grund. (b) An example of flow foliation defined by the preferred orientation of fiamme in a foliation perpendicular section, quartz-poor ignimbrite.
Representative photos of rock slabs showing (c) the isotropic texture of quartz-rich ignimbrite, and (d) flow-foliated quartz-poor ignimbrite. Fsp — feldspar, Qz —

quartz. See the supplementary material for WGS84 coordinates.
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Fig. 3. Microphotographs showing (a) quartz-poor ignimbrite with eutaxitic texture dominated by a fine-grained and recrystallized quartzo-feldspathic matrix
hosting elongated devitrified fiamme, feldspar and quartz phenocrysts, accessory magnetite, and lithic clasts. (b) Quartz-rich ignimbrite showing abundant feldspar
and quartz phenocrysts, and accessory biotite and magnetite microphenocrysts. Backscattered electron images display (c) a representative of a large and elongated
magnetite microphenocryst embedded in a quartzofeldspathic matrix of a quartz-rich ignimbrite; (d) less abundant very fine-grained magnetite grains and aggregates
scattered in the matrix of the quartz-poor ignimbrite; and (e) magnetite in form of rims and inclusions in altered biotite and feldspar phenocrysts in quartz-rich
ignimbrite. Fsp — feldspar, Ab - albite, Kfs — potassium feldspar, Qz — quartz, Mag — magnetite, LC — lithic clast, Fe-Ti — iron-titanium oxides, Zr — zircon, Bt —
biotite; PPL — plain polarized light, XPL — crossed polarized light. See the supplementary material for WGS84 coordinates.

provides other parameters that allow a semi-quantitative correlation
with strain (Table 1; Borradaile, 1987, 1991; Borradaile and Jackson,
2010). For the purposes of this manuscript, we use the following pa-
rameters: (1) volume normalized bulk (mean) susceptibility (kp,
dimensionless in SI units), (2) degree of anisotropy (P), and (3) shape
parameter (T).

The conventional low-field in-phase AMS and recently introduced
out-of-phase AMS techniques represent two phases into which the
alternating-field AMS signal can be decomposed (Hrouda et al., 2017,
2022). The in-phase magnetic susceptibility (ipkp,) reflects an integrated
contribution of all the minerals in the specimen (diamagnetic, para-
magnetic, and ferromagnetic). The ipky, of a rock specimen is strongly
dependent on the dominant carrier(s) of the magnetic susceptibility
(Tarling and Hrouda, 1993). On the other hand, the out-of-phase mag-
netic susceptibility (opkp) reflects only some ferromagnetic minerals
such as pyrrhotite, hematite, maghemite, titanomagnetite, and
magnetically viscous ultrafine magnetite (Table 1; Jackson et al., 1998;
Hrouda et al., 2013, 2018a). The investigation of opAMS, in addition to
the ipAMS, can reveal a possible existence of magnetic subfabrics that
allow detailed interpretation of emplacement processes (Hrouda et al.,
20205 Cruz et al., 2022). The ipAMS and opAMS were measured on an
AGCIO KLY5 Kappabridge in the Laboratory of Rock Magnetism, Insti-
tute of Geology and Paleontology, Charles University (Prague, Czech
Republic).

4.3. Anisotropy of anhysteretic remanent magnetization

The anisotropy of anhysteretic remanent magnetization (AARM)
technique was used to separate the contribution of remanence-bearing
grains (e.g., magnetite) from the rock matrix and other magnetic

fabric. In addition, AARM allows for the evaluation of magnetic sub-
fabrics, and a possible contribution of inverse magnetic fabrics due to
the presence of single-domain grains (Rochette, 1988). Furthermore,
these data improve a comprehensive interpretation of ipAMS and
opAMS magnetic fabric (Table 1; e.g., Rochette et al., 1999; Chadima
et al., 2009; Cerny et al., 2020; Hrouda et al., 2020). We measured the
AARM by imparting a set of directional anhysteretic remanences over
the coercivity range of the specimen to obtain the directional variability
of the remanent magnetization (e.g., Hrouda, 1982; McCabe 1985;
Jackson 1991; Hrouda 2002b; Hrouda et al., 2018b).

The AARM acquisition experiments were performed initially on one
specimen from site TC30 to establish the applied field and demagneti-
zation parameters. The maximum measured coercivity window was
20-60 mT and viscosity was 1% expressed by the decrease of magneti-
zation in time. Once these parameters were set, we measured the
remaining seventeen sites with the same setup. The natural remanent
magnetization (NRM) of each specimen was measured and the NRM was
then fully demagnetized in a 120 mT applied field. Specimens were then
progressively magnetized in 6 directions with a weak uniaxial DC field
of 500 pT and a decaying AC field of 60 mT. The AARM remanence
tensors were evaluated using the least-square method. The AARM data
were obtained using an AGICO JR-6A spinner magnetometer, LDA5
alternating field demagnetizer, and PAM1 pulse/anhysteretic magneti-
zation unit at the Laboratory of Rock Magnetism, Institute of Geology
and Paleontology, Charles University (Prague, Czech Republic).

4.4. Magnetic mineralogy

To identify magnetic minerals carrying the bulk magnetic signal and
the relative contribution of paramagnetic and ferromagnetic grains, we
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Fig. 4. (a) Histogram showing the distribution of the in-phase susceptibility of all individual specimens. Representative thermomagnetic susceptibility curves of (b) a
dominantly paramagnetic specimen with a pronounced hyperbolic shape, the inset shows the full course of the curve TC29 from quartz-poor ignimbrite; (c) specimen
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measured thermomagnetic susceptibility curves (ky,~T curves; Orlicky,
1990; Hrouda, 1994; Hrouda et al., 1997; Petrovsky and Kapicka, 2006).
The ky,~T curves were obtained by progressive measurement of the bulk
susceptibility during the heating of the specimen from ca. —196 °C
(boiling temperature of liquid nitrogen) to 5 °C (1st low-temperature
heating), heating up from room temperature (ca. 21 °C) to 700 °C
(high-temperature heating) and spontaneous cooling back to the room
temperature (high-temperature cooling). A second low-temperature
measuring cycle was then repeated (2nd low-temperature heating).
The repeated cooling, heating, and cooling cycles allow for the charac-
terization of the secondary magnetic phases potentially formed during
the experiment. All experiments were conducted in an inert argon at-
mosphere to minimize oxidation. Powdered specimens were measured
using AGICO CS-L Cryostat and CS4 Furnace connected to the KLY5
Kappabridge.

To identify the magnetic domain state(s) we employed magnetic
hysteresis loops and first-order reversal curve distribution experiments
(Roberts et al., 2000). Magnetic Hysteresis and FORCs were measured
on a Lake Shore Cryotronics High performance 8600 Vibrating Sample
Magnetometer at the New Mexico Highlands University
Paleomagnetic-Rock Magnetic laboratories (NM, USA). Both techniques
are used to determine the magnetic mineral domain states and relative
composition of the oxides (e.g., Day et al., 1977; Roberts et al., 2022).

The frequency-depended susceptibility (XFD) and normalized
frequency-dependent susceptibility (XFN) were used to assist in the
mineral identification of the opAMS signal (Table 1; Dearing et al., 1996;

Hrouda, 2002b, 2011; Hrouda et al., 2006, 2009; Hrouda and Jezek,
2014). The data obtained from the XFD and XON provide a means to
identify ultra-fine grains and viscous magnetic particles. These ultra-fine
particles, at times, may carry a different magnetic fabric compared to the
bulk AMS fabric of the rock (e.g., Eyre, 1997; Dearing et al., 1996;
Hrouda, 2011; Hrouda et al., 2006, 2009; Hrouda and Jezek, 2014).
Measurements of frequency-dependent susceptibility and related pa-
rameters were obtained at two operation frequencies. The instrument
setting was 976 Hz, 200 A/m field intensity for measuring low fre-
quency, and 15.616 Hz, 200 A/m for high-frequency XFD. Measure-
ments were obtained on an AGICO MFK2-FA Kappabridge in the AGICO
laboratory, Brno, Czech Republic.

5. Results
5.1. Field observations, structures, and textures

The Qz-poor ignimbrite shows apparent columnar cooling joints with
a dominantly steep to subvertical plunge, whereas locally a fan-like
structure was observed (Fig. 2a). Only at one site (TC35) located in
the peripheral part of the Qz-rich ignimbrite at the present-day erosional
level, the moderately-plunging columnar joints were recognized.

The flattened fiammes (up to 8 cm in length) are present in both
ignimbrites at the majority of the examined sites, but they are more
abundant in the Qz-poor ignimbrite (Fig. 2b and d). The flow foliation
defined by the shape-preferred orientation of fiamme measured on
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outcrops and documented by Benek (1980) varies greatly across the
entire caldera in terms of both the dip direction and dip. In general, the
subhorizontal to subvertical foliations resemble a concentric pattern
that mimics the caldera shape. Subhorizontal foliation is present mostly
in the central areas and in the southern, southeastern, and northern parts
of the caldera, while steep to subvertical and generally inward-dipping
foliations occur in the southwestern, northwestern, and northeastern
parts of the caldera (Fig. 1). No apparent relationship between the trend
and plunge of cooling joints and flow foliation was observed. The
porphyritic microgranite ring dike yields subvertical flow foliation
defined by the shape-preferred orientation of K-feldspars phenocrysts
that is oriented parallel to the dike strike (Fig. 1).

In both lithotypes, the phenocrysts are embedded in a fine-grained
matrix composed of a quartz, orthoclase, and plagioclase mixture with
a pseudo-fluidal texture (Fig. 3). Apart from quartz phenocrysts, feld-
spars are dominated by in places sericitized orthoclase. Most pheno-
crysts are highly fragmented due to the explosive eruption (Fig. 3c). In
detail, micro-scale fiammes are present in both the ignimbrite lithotypes
and define eutaxitic to parataxitic texture implying a high degree of
welding compaction (Fig. 3a and b). Tabular biotite and rare muscovite
up to 200 pm long occur as minor accessory minerals, as well as indi-
vidual microphenocrysts of Fe-Ti oxides scattered throughout the

matrix (Fig. 3a—d). Magnetite and rarely also ilmenite form anhedral to
euhedral elongated phenocrysts up to 80 pm in Qz-poor ignimbrite and
up to 500 pm in Qz-rich ignimbrite (Fig. 3). Fe-Ti oxide grains also form
thin rims around feldspar phenocrysts and microinclusions in some
sericitized feldspars and biotite (Fig. 3e).

5.2. Magnetic mineralogy

5.2.1. Magnetic susceptibility

The ipky values of individual specimens in the Qz-poor ignimbrite
range from 39.4 x 107° to 5746.3 x 10~ ° (with a mean kmy, of 859.0 x
1076), while most of the values are clustered between 39.4 x 10° and
549.4 x 107°. The site-mean ki, values indicate 12 ferromagnetic sites
with ky, > 500.0 x 107 and 12 paramagnetic sites with kg, < 500.0 x
107% (Fig. 4a, Table S2). The Qz-rich ignimbrite shows a slightly higher
K. The susceptibility of all specimens yields a range from 10.6 x 10~® to
5080.0 x 107° with a mean value of 2025.4 x 107°. The site-mean
values indicate two and four sites with dominant paramagnetic and
ferromagnetic susceptibility, respectively. The susceptibility of the
porphyritic microgranite ring dike is relatively low ranging from 40.6 x
1075 to 131.8 x 107® with a mean value of 89.6 x 107° (Fig. 4a,
Table S2). The majority of specimens have a much lower opky, compared
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Fig. 6. Frequency-dependent magnetic susceptibility diagrams without the rejected specimens (see the text for details). (a) Diagram showing a relation between the
normalized frequency-dependent susceptibility (XFN) and the in-phase magnetic susceptibility (ipk,,) measured at 976 Hz (low frequency; LF). (b) Diagram dis-
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to ipkp. The out-of-phase susceptibility ranges by three orders from 10~
to 10~ with a mean value of 5.5 x 1076, No spatial distribution pattern
of susceptibility is evident in the map view (Fig. S5).

5.2.2. Thermomagnetic susceptibility curves

Three types of kn-T curves were distinguished based on: (1) the
presence of a hyperbolic decrease of susceptibility with increasing
temperature in the first low-temperature heating curve (specimens TC29
and TC31); (2) the increase in susceptibility attributed to the Verwey
transition at about —150 °C followed by a hyperbolic decrease and later
a slight susceptibility increase terminated by a Curie point temperature
around 580 °C in the high-temperature heating curve (specimens TCO1
and TC35), and (3) a pronounced Verwey transition (ca. —150 °C),
followed by a flat course of susceptibility with increasing temperature,
which is terminated by an abrupt drop of susceptibility with a Curie
point at ~580 °C (specimens TC18, TC30, TC57, TC60, and TC66; Figs.
4d, S3). All specimens have irreversible behavior with a significantly
higher susceptibility in the cooling curve and the second low-
temperature heating curve, and most specimens also yield a pro-
nounced susceptibility peak between ~420 and 560 °C (Figs. 4b—d, S3).
The ferromagnetic specimen TC19 is somewhat different showing a
moderate increase in susceptibility from room temperature to ~350 °C
followed by a flat pattern until a sharp drop at ~520 °C. The high-
temperature cooling curve first roughly follows the heating curve with a
subtle Curie point at ~530 °C, which is followed by a steep increase of
susceptibility with increasing temperature to ~360 °C. The suscepti-
bility then decreases steadily down to ca. —196 °C (Fig. S3).

5.2.3. Hysteresis loops and FORCs

The magnetic hysteresis results show loops consistent with various
magnetic behaviors (i.e., single-domain, vortex state, and multi-
domain). Most hysteresis loops are wasp-waisted or goose-necked in
shape suggesting that the ignimbrite specimens (both lithotypes) have a
mixture of magnetic domain states and/or ferromagnetic minerals
(Fig. 5a—c). The FORC diagram displays a range of behavior from vortex
state (pseudo-single-domain) to multi-domain state with the presence of

non-interacting single-domain particles (Fig. 5d—f). Two specimens from
the Qz-rich ignimbrite (i.e., TC35 and TC57; Figs. 5, S4) have similar
magnetic behavior (i.e., a mixture of vortex state and single-domain
particles).

5.2.4. Frequency-dependent magnetic susceptibility

The XFN parameter of the analyzed specimens is rather low, with
values ranging from O to 2.3%, and with an average of 0.6%. Most of the
values do not exceed 1.4% of dependence. The relatively highest
dependence was measured at sites TC29, TC30, TC43, TC34, and TC38
(Fig. 6a and b, Table S2). The XFN increases with decreasing LF sus-
ceptibility (Fig. 6a) and increases with the XON parameter (Fig. 6b). A
few specimens that yielded XFN values close to zero and negative values
(i.e., site TC60), are attributed to measurement noise, and these speci-
mens were excluded from further interpretation of XFN.

5.3. Magnetic fabrics

5.3.1. Degree of anisotropy and shape parameter

The degree of in-phase anisotropy (ipP) of all individual specimens of
the Qz-poor ignimbrite ranges from 1.003 to 1.100 (0.3-10% anisot-
ropy) with a mean value of all individual specimens of 3.1%. The shape
of the in-phase anisotropy parameter (ipT) ranges from —0.938 to 0.882
and the mean ipT is —0.303. (Fig. 7, Table S2). The Qz-rich ignimbrite
yields the ipP parameter from 1.005 to 1.104 (0.6-10.4% of anisotropy)
and the mean value is 3.1%. The range of ipT values is from —0.852 to
0.887, while the mean value is —0.073 (Fig. 7). The ipP from the ring
dike specimens is significantly lower with a mean value of 1.008 and the
ipT mean value is 0.267 (Fig. 7).

The out-of-phase degree of anisotropy (opP) of all specimens is
relatively higher as compared to ipP, ranging from 1.013 to 2.948
(1.1-294.8% anisotropy) with a mean value of 1.114 (11.4%), which is
significantly higher than ipP (Fig. 7). The in-phase and out-of-phase
shape parameters (ipT and opT) then show similar behavior. The opT
of all individual specimens ranges from —0.910 to 0.962, and the mean
value is —0.062 (Fig. 7). All the parameters do not show any trend in
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their spatial distribution on the map (Fig. S5).

5.3.2. Reliability and precision of magnetic fabric

The ipAMS of individual specimens indicates relatively high values
of F-statistics (on average: F = 211,977.88, F15 = 34,339.75, Fo3 =
14,554.32; after Jelinek, 1978) and low confidence semi-axes angles

around the eigenvectors (on average: ej3 = 3.07, eg3 = 3.21, e13 = 1.03),
implying a well-defined anisotropy. Exceptions are sites TC29, TC31,
TC35, and TC62 with larger confidence ellipses of individual specimens
and a rather poor clustering of principal susceptibility axes (Kj, K3, and
K3) round their mean value due to very low susceptibility and low de-
gree of anisotropy. These sites are analyzed further with caution.
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Most of the sites yield clustered principal susceptibility axes Kj, Ko,
and K3 of individual specimens around their mean values. For the pur-
pose of this manuscript, we informally define the threshold value for
well-clustered susceptibility axes as those with confidence estimates less
than 30° about the mean based on the major semi-axis of the confidence
ellipse of mean susceptibility tensor after Jelinek (1978) (Table S2). The
sites with more dispersed individual specimens and confidence ellipses
greater than 30° (TC19, TC29, TC31, TC35, TC61, and TC62), were
analyzed with caution.

On average, the opAMS of individual specimens indicates up to three
orders of magnitude lower values of F-tests values (on average: F =
535.18, F12 = 86.53, Fa3 = 35.32) and one order higher confidence el-
lipses semi-axis angles around the eigenvectors compared to the ipAMS
(on average: e13 = 26.73, eg3 = 27.13, e13 = 9.32), indicating a lower but
still defined anisotropy. Sites TC35 and TC62 have significantly low F-
tests and high confidence ellipses, respectively. Sites TC10, TC19, TC45,
TC58, TC60, and TC73 yield either close to zero or negative opky, and/or
poorly constrained anisotropy. This behavior is attributed to an artifact
of susceptibility signal decomposition. Thus, these sites were excluded
from further magnetic fabric interpretation.

For the remaining sites, the out-of-phase principal susceptibility axes
Ki, Ko, and K3 are relatively well clustered with respect to the mean
value in most cases (Fig. S6). Five sites, with confidence estimates
greater than 30°, (TC16, TC34, TC40, TC61, and TC62) were also
analyzed with caution. The mean values of the degree of anisotropy and

10

shape parameter (both the in-phase and out-of-phase) are independent
of the clustering/dispersion of principal susceptibilities of individual
specimens around their mean values.

5.4. Anisotropy of anhysteretic remanent magnetization

The anhysteretic remanent magnetization (ARM; Hrouda, 2002a) of
all individual specimens ranges from 5.66 x 1073 to 4.42 x 10° [A/m],
with most of the values clustered between 5.66 x 10> and 8.96 x 10!
[A/m], while sites TC43, TC30, and TC33 have significantly higher
site-mean ARM of 2.74 x 10°, 3.72 x 10° and 3.81 x 10° [A/m]
(Table S2). The degree of anisotropy (Pr) of all specimens spans from
1.048 to 1.766 (4.8%-76.6% anisotropy) with a mean value of 25%. The
shape parameter (Tr) ranges from —0.972 to 0.797, and the mean value
is —0.163, with the majority of specimens plotting in the prolate field.
(Fig. 8a). The Pr parameter is relatively higher as compared to ipP and
opP (3.1% and 11.4% respectively; Figs. 7 and 8). We observe a trend of
increasing Pr with increasing ARM. Specimens with low Pr show a
spectrum of Tr parameters from oblate to prolate, whereas the higher
anisotropic specimens reveal only prolate shapes of the AARM ellipsoid
(Fig. 8). The ARM, degree of anisotropy, and shape parameter show a
rather random distribution on the map (Fig. S5). Out of 17 sites, 11 sites
are well-clustered based on Rj, R, and Rs confidence ellipses of the
mean tensors. The remaining sites (TC19, TC20, TC31, TC34, TC43, and
TC71) were further analyzed with caution.
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Table 1
Rock-magnetic parameters used in this manuscript.
Parameter  Explanation Mathematical References
expression

Anisotropy of In-phase (ip) and out-of-phase (op) magnetic susceptibility (AMS)

km bulk (mean) (K; + K2 + K3)/3 Nagata (1961)
susceptibility

K1, Ky, K3 principal susceptibilities K; >K, > K3 Nye (1957)

K;-K, magnetic foliation plane

K; magnetic lineation

P degree of anisotropy K1/K3 Nagata (1961)

T shape parameter 2In (K2/K3)/In Jelinek (1981)

(K1/K3) —1

Anisotropy of anhysteretic remanent magnetization (AARM)

ARM anhysteretic remanent (R; + R+ R3)/3 After Jackson
magnetization (1991) and Hrouda
(2002a)
Ry, Ro, R3 principal anhysteretic R; >Ry >R3 After Nye (1957)
remanent
magnetizations
R;-R; magnetic foliation plane
R; magnetic lineation
Pr degree of anisotropy Ri/R3 After Nagata
(1961) and Jackson
(1991)
Tr shape parameter 2In (R2/R3)/In After Jelinek
(R1/R3) —1 (1981)
Frequency-dependent susceptibility
XFD frequency-dependent 100 x Dearing et al.
susceptibility (kLF—kHF)/kLF (1996)
[%]
XFN normalized frequency- XFD/(InHF — Hrouda (2011)
dependent susceptibility InLF) [%]
XON normalized frequency- (200/7) x tand Hrouda et al.
dependent susceptibility (2013)
3 phase angle tans = X'/X' Hrouda et al.
(2013)

kLF - in-phase susceptibility at LF; kHF - in-phase susceptibility at HF; LF - low
frequency (976 Hz), HF - high frequency (15,616 Hz); X” - out-of-phase sus-
ceptibility; X - in-phase susceptibility.

6. Interpretation of rock-magnetic dataset
6.1. Source of susceptibility and remanence signal

Rock magnetic mineralogical experiments revealed a variable
mixture of paramagnetic and ferromagnetic minerals as carriers of the
in-phase magnetic susceptibility. Essentially, even specimens with the
lowest susceptibility (i.e., site TC29, ipky, = 46.06 x 107%; TC38, ipkp =
189.70 x 107%) yield a stable out-of-phase magnetic susceptibility and
ferromagnetic remanence behavior (Section 5.2). Hence, we interpret
the first two types of thermomagnetic curves (Section 5.2.2) as domi-
nated by paramagnetic (ferro)silicates with a subtle contribution of low-
Ti magnetite (Rochette, 1987; Hrouda and Jelinek, 1990), while some
new higher-susceptibility mineral phases grew during the heating
experiment (Muxworthy and Mcclelland, 2000). The magnetic fabric
record is thus a result of the dominant magnetocrystalline anisotropy of
biotite and muscovite along with a minor contribution from ferromag-
netic phases (Richter et al., 1993; Martin-Hernandez and Hirt, 2003).

The third type of thermomagnetic curves shows apparent Verwey
transitions and Currie temperatures that imply a dominance of low-Ti
titanomagnetite over the paramagnetic mineral phases. Based on the
thin-section analysis, the magnetite grains occur dominantly as largely
spaced and unequal large grains, while only a few small magnetite
grains and clusters of small grains were identified. We interpret the
fabric patterns to reflect the shape anisotropy of large magnetite grains,
whereas the effect of distribution anisotropy (grain-to-grain magnetic
interactions) is negligible given the large spacing of the magnetite grains
(see Section 5.1; Hargraves et al., 1991; Stephenson, 1994; Canén-Tapia,
1996; Harrison and Feinberg, 2009). In addition, the shape of the hys-
teresis loops and FORCs distribution indicate a mixture of
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single-domain, vortex state, and multi-domain magnetic behaviors.
(Roberts et al., 1995, 2000). The larger and dominant multi-domain
magnetites are indicative of ‘normal’ magnetic fabrics (Rochette et al.,
1999; Ferre, 2002; Chadima et al., 2009). Nevertheless, the presence of
‘intermediate’ or ‘inverse’ fabrics cannot be conclusively refuted, espe-
cially in the presence of some single-domain and vortex state grains. The
presence of minor amounts of very fine-grained Fe-Ti oxides (likely
single-domain to superparamagnetic) observed along some altered
biotite crystals and in the form of inclusions in feldspar phenocrysts may
contribute to a composite AMS fabric (Housen et al., 1993; Borradaile
and Gauthier, 2003). Bumps around 250-300 °C on some thermomag-
netic curves of the ferromagnetic specimens and their irreversible
behavior suggest the presence of some coarse-grained titanomaghemite
due to deuteric oxidation and/or syn-to post-emplacement hydrother-
mal alteration (Ade-Hall et al., 1971; Dunlop and Ozdemir, 1997; Gee
et al., 2010; Petronis et al., 2011).

Frequency-dependent susceptibility revealed that the specimens
have a low-frequency dependence typically up to about 1.4%. There is a
direct correlation between XON and XFN parameters (Fig. 7), which
indicates the presence of a small fraction of magnetically viscous, ul-
trafine magnetic grains. Their magnetic state is near the transition from
a superparamagnetic to a single-domain state (Worm, 1998; Shcherba-
kov and Fabian, 2005). Hence, the opkm and opAMS are carried by
frequency-dependent ultrafine particles. In addition, based on the ARM
acquisition test, the AARM signal is carried by a soft magnetite fraction
with a small amount of viscous component (Machac et al., 2007).

6.2. Comparison of magnetic fabrics methods

We define three groups of magnetic fabrics in the TWC. These groups
are defined based on the relationships between the principal suscepti-
bility (ipAMS and opAMS) and the remanence (AARM) axes, and the
orientation of flow and magnetic foliation planes (Figs. 9, S6, Table 2).
In all cases, we also present subgroups of magnetic fabric behavior based
on a detailed complexities of fabric orientations at a site-scale. Their
significance for geologic interpretations is then discussed below.

(1) Group 1 includes 22 sites divided here in five subgoups. (a) Seven
sites are characterized by subcoaxial principal axes determined
by all applied methods (ipAMS, opAMS in all cases, and AARM in
four cases), and parallel flow (if available) and magnetic folia-
tions (sites TCO1, TC50, TC57, TC61, TC65, TC73, and TC74).
Subgroup (b) comprises sites with similarly oriented ipAMS and
AARM axes, and flow foliation (if available) is parallel with

Table 2
Fabric groups in the Tharandter Wald Caldera.
Group Mutual relations N
Group a  ipAMS, opAMS, and AARM foliations (sub)parallel with flow 7
1 foliation*
b ipAMS and AARM foliations (sub)parallel with flow foliation*; 6
opAMS foliations at high angle
c opAMS, AARM, and flow* foliations (sub)parallel; ipAMS 4
foliations at high angle
d  ipAMS foliations parallel with flow foliation; opAMS* 4
foliations parallel or at high angle; no AARM data
e  AARM and flow foliation parallel, opAMS and ipAMS foliations 1
at high angle
Group a  ipAMS, opAMS, and AARM* foliations (sub)parallel; flow 2
2 foliation at high angle
b  ipAMS, opAMS, and AARM* foliations at high angle; flow 3
foliation* at high angle
¢ ipAMS foliations and flow foliation at high angle; no opAMS 2
and AARM data
Group a  ipAMS, opAMS, and AARM foliations at high angle; no flow 1
3 foliation
b only ipAMS available 2

N = number of sampling sites; * if available or accepted
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ipAMS and AARM magnetic foliations, while the opAMS fabric is
discordant (TC05, TC18, TC33, TC34, TC37, and TC40). (c) Sites
TC20, TC43, TC71, and TC72 have parallel opAMS, AARM, and
flow foliation (if available), while ipAMS is at an angle. The
subgroup (d) includes four cases with either ipAMS or opAMS
magnetic foliation parallel with flow foliation, while no AARM
data are available. Out of these sites, TC42 and TC51 have coaxial
ipAMS and opAMS axes, TC16 has non-coaxial ipAMS and opAMS
axes, or opAMS was rejected in the case of site TC10. (e) In the
case of station TC31, the AARM and flow foliation are subparallel,
whereas ipAMS and opAMS foliations are at a high angle.

(2) Group 2 comprises a mixture of 6 sites which yields a different
orientation of flow and magnetic foliations. Out of these, sub-
group (a) includes sites TC30 and TC66 with subcoaxial principal
susceptibility and remanence axes (if available). (b) Sites TC19,
TC29, and TC35, yielded non-coaxial axes of each method. (c)
Sites TC60 and TC62 yield only ipAMS data and magmatic foli-
ations at a high angle.

(3) Group 3 includes 3 sites where no flow foliation was measured.
(a) At site TC38, the ipAMS and opAMS have non-coaxial prin-
cipal susceptibility axes, and (b) at sites TC45 and TC58, we have
only ipAMS data available.

The relation of the examined caldera lithologies and groups of
magnetic fabrics as defined above are as follows. Group 1 is dominated
by Qz-poor ignimbrite (18 sites, 82%), followed by three sites of Qz-poor
ignimbrite and one site of porphyritic microgranite (ring dike). In
comparison, Group 2 includes 4 sites of Qz-poor ignimbrite, 2 sites of Qz-
rich ignimbrite, and 1 site of porphyritic microgranite. Group 3 has 2
sites of Qz-rich ignimbrite and 1 site of porphyritic microgranite. In
other words, Group 1 dominates most of the examined sites, whereas the
sites of Groups 2 and 3 are scattered rather randomly across the caldera.

7. Discussion
7.1. Significance and applicability of magnetics fabrics

The well-defined magnetic fabrics of Group 1 are considered reliable
for geodynamic interpretations for the following reasons. The general
(sub)coaxial pattern of the magnetic fabric axes implies an organized
crystallographic anisotropy of micas, shape anisotropy of viscous
ferromagnetic minerals (i.e., ultrafine magnetite at the
superparamagnetic/single-domain boundary), shape anisotropy of vor-
tex state and multi-domain magnetite, and planar shape preferred
orientation of fiamme.

However, there are a few complexities related to individual subroups
of Group 1. The pattern of coaxial opAMS and AARM principal axes in
Group 1lc, which are at a high angle to ipAMS axes, imply that the ipAMS
is a combination of two non-coaxial subfabrics carried by paramagnetic
ferrosilicates and magnetite fractions entitled as composite or anoma-
lous fabrics (e.g., Housen et al., 1993; Borradaile and Gauthier, 2003).
Given that the opAMS and AARM foliation yield fabrics parallel with the
flow foliation, we do not attempt to further interpret the composite
ipAMS fabrics at these sites.

The different orientations of opAMS axes as compared to ipAMS and
AARM in Group 1b, 1d, and 1le are interpreted to reflect a weak and
near-random subfabric carried by a small fraction of ultrafine magnetite
grains. These grains likely developed during post-emplacement pro-
cesses, and/or as relics of larger magnetite microphenocrysts that
decomposed during hydrothermal alteration (e.g., Nédélec et al., 2015).
We assume that the opAMS fabrics in these cases reflect an unorganized
late-stage or secondary post-emplacement magnetic fabric, thus opAMS
fabrics at these sites provide no relevant structural insights for the flow
and emplacement processes of TWC ignimbrites.

Group 2a yields magnetic fabrics (ipAMS, opAMS, and AARM) that
are at a high angle to the macroscopic ignimbrite flow fabric. The non-
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parallel magnetic fabrics of Group 2b and 2c are arguably attributed to a
mixture of variable magnetic domain states (multi-domain, vortex state,
single-domain, and ultra-fine magnetite) and their fraction. We note that
these sites do not yield a readily interpretable fabric pattern. As such, the
non-parallel ipAMS, opAMS, and AARM fabrics likely are a result of
various effects including the superposition of inverse and composite
magnetic fabrics (e.g., Rochette et al., 1999; Borradaile and Jackson
2004, 2010) and hydrothermal alteration (e.g., Nédélec et al., 2015), or
their combination. It is worth mentioning that these effects may had
different stages in the relative timing of formation likely restricted to
post-emplacement processes, as they partially or completely obscure the
primary emplacement-related fabric record. For instance, the hydro-
thermal alteration may lead to a decrease in the magnetic susceptibility
and the growth of ARM-bearing iron oxides with fabrics at an angle to
the primary emplacement fabric (Group 2b). Although the absolute
timing of such alteration is unclear, it may have occurred shortly after
ignimbrite emplacement in response to the activity of the underlying
magmatic system or could have occurred continuously from the cooling
of the source magma chamber(s). Alternatively, fluid mobilization may
also be associated with much later faulting.

A late-stage hydrothermal alteration phase(s) that accompanies the
volcano plumbing systems is commonly observed at many ancient to
recent felsic calderas and may remain active long after caldera collapse
(Schirnick et al., 1999; Lindsay et al., 2001; Lipman, 2007; Soler et al.,
2007). The effect of alteration on the primary susceptibility-bearing
minerals was examined in detail by LaBerge et al. (2009) who pointed
out the formation of secondary fabrics defined by the growth of
microlites and vapor-phase minerals in pore space during ignimbrite
cooling. Schlinger et al. (1988) proposed that microcrystals of magnetite
may also nucleate and grow from volcanic glass at high temperatures
just after the emplacement. Wang et al. (2001) suggested that steep to
vertical magnetic fabrics in ignimbrite deposits may be the result of
secondary oxide growth on brittle fractures and columnar jointing that
developed after the emplacement. In addition, the later faulting of the
TWC along the Grund, Herndorf, Mid-Saxony, and other minor faults
may have facilitated hydrothermal circulation, which could potentially
alter the rock-magnetic mineralogy (Just et al., 2004; Kontny and Die-
tze, 2014). Therefore, the magnetic fabrics in Group 2 were rejected
from further geological interpretations of caldera emplacement
dynamics.

Lastly, taking into the account that ipAMS method was successfully
applied to Paleozoic ignimbrites (e.g., Wang et al., 2001; Willcock et al.,
2015), we consider the ipAMS data of the Group 3 reliable even without
the proxy of other magnetic methods and macroscopic flow foliations.
We note, however, that we interpret their geological significance
cautiously, but the possible existence of composite magnetic fabrics or
the effect of alteration at these sites cannot be conclusively ruled out.

7.2. Emplacement dynamics of TWC ignimbrites

We mapped the overall fabric geometry based on the macroscopic
flow foliations (Fig. 10a) and multiple magnetic fabrics (Figs. 10 and
11). In map view, the magnetic foliation planes of the multiple magnetic
methods (excluding the rejected data, see details in sections 5.3 and 7.1)
define a concentric pattern delineating the overall shape of the TWC
(Fig. 10). The sites located close to the inferred caldera margin (in places
highlighted by porphyritic microgranite ring dikes) yield rather steep to
subvertical foliations dipping generally towards the caldera interior.
These foliations are mostly accompanied by steep lineations. Only the
AARM data reveal moderately plunging magnetic lineations. At some
sites, however, the lineations also show various trends and plunges. Sites
located roughly in the caldera interior yield subhorizontal to moderately
dipping foliations and lineations (Figs. 10 and 11). The magnetic fabrics
of all three methods are also defined by dominantly prolate-shaped
ellipsoids.

Such a fabric pattern of an ignimbrite deposit is rather unusual.
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Numerous studies report shallowly dipping magnetic foliations that are
parallel with macroscopic fabric with the associated magnetic lineation
coaxial or perpendicular to the dip direction and dominantly oblate
shape of the fabric ellipsoid (Fig. 12a). This type of fabric relationship is
referred to as normal magnetic fabric. The acute angle between flow
foliation and basal planes is commonly interpreted as representing
imbrication that depends on the PDC regime and flow directions (see for
instance Fisher et al., 1993; Ort et al., 2003; Giordano et al., 2008;
Gountié Dedzo et al., 2011; Agro et al., 2015 among many others).

Given that flow and magnetic fabrics for the TWC ignimbrites do not
reflect typical emplacement geometry for an ignimbrite. In addition,
considering that no information on the character of the bedrock paleo-
topography is available, our dataset does not allow us to directly
interpret the pyroclastic flow directions, but additional post-
emplacement processes must be considered. The steep to subvertical
foliations and prolate character of fabric ellipsoid that dominate the
TWC ignimbrites may suggest (1) regional tectonic overprint; (2)
alteration of the magnetic mineral phase(s); (3) a fabric controlled by
paleotopography, aerial restricted flow confined within the caldera,
and/or interaction with hot pyroclastics; (4) welding and/or rheomor-
phic flow (Ellwood, 1982; Lamarche and Froggatt, 1993; Borradaile and
Werner, 1994; Le Pennec et al., 1998; Wang et al., 2001; Pioli et al.,
2008; Geissman et al., 2010).

Quartz poor ignimbrite

(a)

Outflow facies
(not preserved)

Quartz rich ignimbrite

Host rocks
Feeding dikes
Crystal-poor magma
Crystal-rich magma
Not to scale
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Collapse breccia

(b)

Outflow facies
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Host rocks

Ring faults intruded /\
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Partially drained magma chamber
Rezidual melt pockets

Not to scale

Host rocks
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The tectonic overprint can be ruled out as no systematic fabric
pattern discordant to the caldera margins that would reflect a regional
tectonic strain pattern was observed and the degree of anisotropy is low
compared to other tectonically strained rocks. We did not consider rocks
that showed evidence of alteration and we rejected sites with suspicious
magnetic fabric data. Paleotopography could affect the preserved
orientation of magnetic fabric in the lower part of the deposit, however,
the upper parts of the ignimbrite sequence should preserve an internally
consistent fabric pattern. Finally, most of the petrographic evidence
presented by Benek (1980), Breitkreuz et al. (2021), and this study
imply that the ignimbrites experienced a high degree of welding and
rheomorphism. We thus interpret the fabric pattern of the TWC ignim-
brites as follows.

The high-energy caldera-forming eruptions sourced the pyroclastic
flows, from which the ignimbrites were deposited on the pre-caldera
topography (Fig. 12a). The pyroclastic flows filled paleovalleys and
depressions and then formed an extensive ignimbrite sheet, typical for
such eruptions (Lipman, 2007). The proximal part of the ignimbrite
sheet, now preserved as intra-caldera deposits of the TWC, experienced a
chaotic turbulent flow as reflected by the scatter of some of the magnetic
lineation (Baer et al., 1997; Paquereau-Lebti et al., 2008). During or
shortly after deposition, the ignimbrite deposit while still at high tem-
peratures was strongly welded and likely underwent local

=
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Fig. 12. Simplified model of the two-phase evolution of TWC based on fabric patterns of the ignimbrites. (a) Caldera-forming eruptions sourced the pyroclastic flows
deposited on the pre-caldera topography. (b) Piston-style caldera collapse following the drainage of the underlying magma chamber. Note the expected fabric pattern
for proximal and outflow facies in the right panels. The strike of magnetic foliations and plunge of lineations in the stereographic projections may vary across the

caldera depending on the hypothetical sampling site.
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syn-emplacement ductile rheomorphic deformation (Fig. 12b). Welding
compaction and rheomorphism transposed the primary depositional and
emplacement structures forming the subhorizontal to shallowly
plunging fabrics with prolate ellipsoids and sheared eutaxitic micro-
structure (e.g., Seaman et al., 1991; Wang et al., 2001), although locally
some sites preserved likely a primary emplacement-related oblate fabric.

Following the eruption, the caldera collapsed due to the drainage of
the underlying magma chamber resulting in the partial collapse of
caldera walls and emplacement of the collapse breccia (Breitkreuz et al.,
2021). The caldera collapse occurred when the ignimbrite was still hot
and ductile, allowing the reorientation of foliations and lineations in a
hypersolidus state. The fabrics rotated down-dip towards the caldera
center yielding a pattern of steep fabrics encircling the caldera rim
(Fig. 12). Late-stage caldera activity was marked by the intrusion of
subvolcanic ring dikes and other minor intrusions (Benek, 1980;
Breitkreuz et al., 2021). The post-emplacement hydrothermal activity of
the subvolcanic magmatic system likely caused the alteration of mag-
netic mineralogy (Fig. 12b).

7.3. Magnetic fabrics of ignimbrites: short methodological remarks

Perhaps the biggest methodological issue is that the recent papers
showed that opAMS may be used instead of AARM in some cases or the
opAMS results resemble those of AARM, and field- and frequency-
dependent AMS in subvolcanic dikes (Hrouda et al., 2017, 2020). This
ignimbrite study, however, reports several sites, where opAMS and
AARM principal axes are non-coaxial, while the AARM foliations are
parallel with flow foliation measured in the field. We speculate that such
a disbalance is caused by the random orientation of minerals (sub-
fabrics) that carry the opAMS and AARM signal. Only in cases, where the
opAMS reflect the fabric of ultrafine magnetite grains that are parallel to
larger magnetite grains (i.e., vortex state and/or multi-domain), the
opAMS can be used instead of the AARM. Therefore, detailed
magneto-mineralogical analyses are necessary to be conducted before
analyzing the overall magnetic fabric pattern.

Our dataset corroborates that the ipAMS represent a stand-alone
method for interpreting the magma flow and fabrics of ignimbrite de-
posit (Hrouda, 1982; Tarling and Hrouda, 1993; Borradaile and Henry,
1997; Borradaile and Jackson, 2004, 2010; Chadima et al., 2009; Agro
et al., 2015). Our cautionary note on magnetic fabrics methodology is
only related to deeply eroded caldera ignimbrites that are in part altered
by hydrothermal fluids due to the activity of the post-caldera magmatic
system or some later events. Such processes may potentially lead to the
evolution of inverse and/or composite (sub)fabric that potentially bias
the fabric interpretation. The application of magnetic multi-fabrics as
exemplified in this study may reveal composite fabrics that should be
considered with caution in geodynamic interpretations of magnetic
fabrics. Alternatively, the detection of composite fabrics offers other
opportunities to investigate the alteration processes of magnetic
mineralogy in greater detail (Just et al., 2004; Gee et al., 2010; Petronis
et al., 2011; Kontny and Dietze, 2014).

8. Conclusions

The field mapping, petrography, flow foliation pattern, rock-
magnetic analyses, and magnetic fabrics from various techniques of
TWC rhyolitic ignimbrites indicate a two-stage caldera evolution. First,
the PDC filled the erosional paleodepressions to form a thick ignimbrite
sheet. The highly energetic and hot PDCs caused a high degree of
welding and rheomorphism in the proximal part of the caldera. Simul-
taneously, the caldera-forming eruptions emptied the underlying source
magma chamber and triggered a collapse. Second, the welded hot and
ductile ignimbrite sheet commenced monoclinal bending downwards in
response to piston subsidence causing the transposition of primary
emplacement hypersolidus fabrics to steep inward dipping fabric
encircling the caldera rim. The caldera collapse is postdated by the
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intrusion of microgranite ring and radial dikes associated with a high
heat and hydrothermal fluid flow. The latter likely caused late-stage
magmatic and/or secondary alteration of the magnetic mineralogy as
revealed by multiple rock magnetic techniques. To avoid a possible
ipAMS bias caused by composite (sub)fabrics and unorganized magnetic
fabrics that transposed the primary emplacement record, a multi-fabric
approach (ipAMS, opAMS, and AARM) was employed. Moreover, our
results indicate that the opAMS may substitute the AARM only in the
case when the shape-preferred orientation of ultrafine magnetite grains
is parallel to single-domain, vortex state, and multi-domain grains. This
can be only distinguished by the application of detailed magneto-
mineralogical tests identifying the magnetic domain states. Therefore,
we suggest that in contrast with young and well-exposed ignimbrites,
the complex intra-caldera ignimbrite deposits, including welded to
rheomorphic domains and those located in highly eroded or poorly
exposed terrains, should be investigated via multiple magnetic methods.
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